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Abstract: In this paper, we study a method of polynomial interpolation that lies in-between Lagrange
and Hermite methods. The novelty is that we use very general nodal systems on the unit circle as
well as on the bounded interval only characterized by a separation property. The way in which
we interpolate consists in considering all the nodes for the prescribed values and only half for the
derivatives. Firstly, we develop the theory on the unit circle, obtaining the main properties of the
nodal polynomials and studying the convergence of the interpolation polynomials corresponding to
continuous functions with some kind of modulus of continuity and with general conditions on the
prescribed values for half of the derivatives. We complete this first part of the paper with the study of
the convergence for smooth functions obtaining the rate of convergence, which is slightly slower than
that when equidistributed nodal points are considered. The second part of the paper is devoted to
solving a similar problem on the bounded interval by using nodal systems having good properties of
separation, generalizing the Chebyshev–Lobatto system, and well related to the nodal systems on the
unit circle studied before. We obtain an expression of the interpolation polynomials as well as results
about their convergence in the case of continuous functions with a convenient modulus of continuity
and, particularly, for differentiable functions. Finally, we present some numerical experiments related
to the application of the method with the nodal systems dealt with.

Keywords: Lagrange interpolation; Hermite interpolation; nodal systems; unit circle; bounded
interval; convergence

MSC: 41A05; 65D05; 42C05

1. Introduction

Among the methods of polynomial interpolation most widely studied and used are
those corresponding to Lagrange and Hermite interpolation. The problems that have been
addressed with them are related to the choice of the nodal systems, the computation of
the interpolation polynomials, the analysis of their convergence, and the boundedness of
the errors. Although initially developed for bounded intervals of the real line, they were
also adapted for application to the unit circle through the Szegő transformation (see [1])
and to the trigonometric interpolation. In addition, all of them have been generalized in
different senses.

During the last century, Lagrange interpolation as well as Hermite–Fejér and Hermite
interpolations have been developed by using nodal systems related to the zeros of the
orthogonal polynomials on the bounded interval, basically Jacobi polynomials, and the
zeros of para-orthogonal polynomials on the unit circle. When working with functions, the
conditions needed to assure the uniform or the mean convergence of the interpolants to the
interpolated function have been widely studied (see [1–8]).
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Important extensions of the theory managing to circumvent the link between nodal
systems and measures are the normal or strongly normal nodal arrays in the real case
(see [9]) and the perturbed roots of the unity in the case of the unit circle (see [10]). In [11]
and previous papers, we continued with these ideas, studying the classical Lagrange and
Hermite problems and working with nodal distributions characterized by a good property
of separation between the nodes, which can be obtained through a perturbation of the
uniform distribution.

Some variants in the Hermite method have given rise to other types of interpolation
such as Pál-type interpolation (see [12,13]) or Hermite–Birkhoff interpolation. In some
recent papers, we considered another variation of the classical methods. Indeed, in [14,15],
we studied a problem of interpolation between those of Lagrange and Hermite. There, we
use all the nodes for the data values and half of them for the derivative values. The nodal
systems that we employ are the roots of complex numbers with modulus 1 on the unit circle
and the well-related Chebyshev–Lobatto systems on [−1, 1]. From the point of view of the
behavior of the interpolants in relation to the convergence, this model of interpolation is
closer to the Lagrange one. Notice that the Chebyshev–Lobatto systems play an important
role in other interpolation methods such as the constrained mock-Chebyshev least squares
method (see [16]).

In the present paper, we continue studying the referred intermediate interpolation
problem. The novelty is that we use very general nodal systems on the unit circle as well as
on the bounded interval, satisfying good properties of separation. If we denote by {αj} and
{xj} the nodes on the unit circle and on the interval, respectively, they are characterized by
the following property of separation between two consecutive nodes: the length of the arcs
are ̂αj+1 − αj =

π
n +O( 1

n2 ) and arccos xj+1 − arccos xj =
π
n +O( 1

n2 ), respectively. Hence,
these nodal systems could be generated as random perturbations of the roots of a complex
number with modulus 1 of the type ε jnO( 1

n2 ), where ε jn is a random variable with any
truncated distribution into [−1, 1]. Thus, we can say that we work with dynamic systems.

The paper is organized as follows: In Section 2.1, we present the expressions of the
interpolation polynomials in terms of the nodal polynomials including the barycentric
expressions. Section 2.2 is devoted to describing the nodal systems and to study the proper-
ties of nodal polynomials. In Section 2.3, we analyze the convergence of the interpolation
polynomials related to continuous functions with an appropriate modulus of continuity
and with general conditions on the prescribed values for the derivatives. We dedicate
Section 2.4 to the cases of smooth functions on the unit circle. Sections 2.5 and 2.6 are
devoted to studying interpolation problems on [−1, 1] with nodal points having good
properties of separation and well related to the nodal systems on the unit circle studied
before. We obtain both an expression of the interpolation polynomials and results about
their convergence in the case of continuous functions with a convenient modulus of conti-
nuity. Also, this is particularly for differentiable functions. The results are similar to those
obtained in [14] when considering the Chebyshev–Lobatto system. Section 2.7 is devoted
to presenting some numerical experiments where distinct nodal systems satisfying the
separation property and mechanical models are employed. The results are compared with
those obtained by using as nodal systems the roots of para-orthogonal polynomials with
respect to a Bernstein–Szegő measure (see [1,17]). When we use the jump function, a Gibbs
phenomenon appears. Finally, Sections 3 and 4 are devoted to Materials, and Discussion
and Conclusions.

2. Results
2.1. The Interpolation Polynomials: Expressions

The aim of the present subsection is to study a problem of interpolation on the unit
circle, which can be considered an intermediate case between Lagrange and Hermite
interpolation problems, the one appearing if we fix the Lagrange values on all the nodal
points and we fix the values for the derivatives only on half of the nodes. As usual, when
we interpolate on the unit circle T = {z : |z| = 1}, we work in the space of Laurent
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polynomials Λ[z] = span{zk : k ∈ Z} because of the density of Λ[z] in the space of
continuous functions on T. Due to the characteristics of the problem, we consider nodal
systems with 2n nodes that we denote by {αj,2n}2n

j=1, where |αj,2n| = 1 for j = 1, · · · , 2n and

αj,2n ̸= αk,2n for j ̸= k. If we consider two sequences {uj,2n}2n
j=1 and {v2j−1,n}n

j=1, we pose
the following problem:
Compute the Laurent polynomial H−p,q(z) working in the subspace Λ−p,q[z] = span{zk :
−p ≤ k ≤ q}, with p and q non-negative integers such that p + q = 3n − 1, and satisfying
the interpolation conditions

H−p,q(αj,2n) = uj,2n, for j = 1, · · · , 2n, and H′
−p,q(α2j−1,2n) = v2j−1,n, for j = 1, · · · , n.

For simplicity, we eliminate the second subindex in the notation of the nodal points as well
as in the interpolation conditions. Thus, we write {αj}2n

j=1, {uj}2n
j=1, and {v2j−1}n

j=1 instead.
To solve this problem, we decompose it into two separate problems for which we

introduce the following notation: We denote by HF−p,q(z) the Hermite–Fejér-type interpo-
lation polynomial (Hermite–Fejér interpolation polynomial in the sequel) in the Laurent
space Λ−p,q, satisfying the conditions

HF−p,q(αj) = uj, j = 1, · · · , 2n, and HF ′
−p,q(α2j−1) = 0, j = 1, · · · , n, (1)

and we denote by HD−p,q(z) the polynomial in the Laurent space Λ−p,q, satisfying the
conditions

HD−p,q(αj) = 0, j = 1, · · · , 2n, and HD′
−p,q(α2j−1) = v2j−1, j = 1, · · · , n. (2)

It is clear that
H−p,q(z) = HF−p,q(z) +HD−p,q(z).

If F is a function defined on T and we take uj = F(αj) for j = 1, · · · , 2n, we de-
note by HF−p,q(F, z) the Hermite–Fejér interpolation polynomial related to F and sat-
isfying (1). If F is a regular function on an open set containing T and we take v2j−1 =
F′(α2j−1), j = 1, · · · , n, we denote the Laurent polynomial satisfying (2) by HD−p,q(F, z).
Thus, H−p,q(F, z) = HF−p,q(F, z) +HD−p,q(F, z). When uj = F(αj) for j = 1, · · · , 2n
and the values v2j−1 for j = 1, · · · , n are arbitrary, if we denote this vector of values by
γn = (v2j−1)

n
j=1, we write H−p,q(F, γn, z) = HF−p,q(F, z) +HD−p,q(z).

Our first aim is to obtain the expressions of these interpolation polynomials when we
use nodal systems more general than the equally spaced ones. Indeed, the case in which
the nodal points are equally spaced was studied in [15]. The novelty of the present paper is
that the considered ones are not related to para-orthogonal polynomials on the unit circle,
being only characterized by satisfying some suitable separation properties.

Throughout the paper, we denote the nodal polynomials by W2n(z) =
2n

∏
j=1

(z − αj) and

we use the factorization W2n(z) = Yn(z)Zn(z) with Yn(z) =
n

∏
j=1

(z − α2j−1) and Zn(z) =

n

∏
j=1

(z − α2j). Now, by taking into account the expressions given in [15], we can state the

following result:

Proposition 1. (i) The Hermite–Fejér interpolation polynomial HF−p,q(z) satisfying (1) has
the expression

HF−p,q(z) =
n

∑
k=1

u2k A∗
2k(z) +

n

∑
k=1

u2k−1 A∗
2k−1(z), (3)
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where

A∗
2k(z) =

α
p
2kW2n(z)Yn(z)Z′

n(α2k)

zp(z − α2k)(W ′
2n(α2k))2

and

A∗
2k−1(z) =

α
p
2k−1W2n(z)Yn(z)

zp(z − α2k−1)2W ′
2n(α2k−1)Y′

n(α2k−1)

(
1 − (z − α2k−1)

(
W ′′

2n(α2k−1)

2W ′
2n(α2k−1)

+
Y′′

n (α2k−1)

2Y′
n(α2k−1)

))
+

pα
p
2k−1W2n(z)Yn(z)

zp(z − α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)
.

(ii) The interpolation polynomial HD−p,q(z) satisfying (2) has the expression

HD−p,q(z) =
n

∑
k=1

v2k−1B∗
2k−1(z), (4)

where

B∗
2k−1(z) =

α
p
2k−1W2n(z)Yn(z)

zp(z − α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)
.

Proof. From [15], we obtain expressions (3) and (4) with A∗
2k(z) =

α
p
2k

zp A2k(z), A∗
2k−1(z) =

α
p
2k−1
zp A2k−1(z) +

pα
p−1
2k−1
zp B2k−1(z) and B∗

2k−1(z) =
α

p
2k−1
zp B2k−1(z), being

A2k(z) =
W2n(z)∏n

j=1(z − α2j−1)

(z − α2k)W ′
2n(α2k)∏n

j=1(α2k − α2j−1)
,

A2k−1(z) =
W2n(z)∏n

j=1,j ̸=k(z − α2j−1)

(z − α2k−1)W ′
2n(α2k−1)∏n

j=1,j ̸=k(α2k−1 − α2j−1)
×[

1 − (z − α2k−1)

(
W ′′

2n(α2k−1)

2W ′
2n(α2k−1)

+
(∏n

j=1,j ̸=k(z − α2j−1))
′
z=α2k−1

∏n
j=1,j ̸=k(α2k−1 − α2j−1)

)]

and

B2k−1(z) =
W2n(z)∏n

j=1,j ̸=k(z − α2j−1)

W ′
2n(α2k−1)∏n

j=1,j ̸=k(α2k−1 − α2j−1)
.

By doing some computations for the first term, we obtain

A2k(z) =
W2n(z)Yn(z)

(z − α2k)W ′
2n(α2k)Yn(α2k)

=
W2n(z)Yn(z)∏n

j=1,j ̸=k(α2k − α2j)

(z − α2k)W ′
2n(α2k)Yn(α2k)∏n

j=1,j ̸=k(α2k − α2j)
=

W2n(z)Yn(z)Z′
n(α2k)

(z − α2k)(W ′
2n(α2k))2 .

Proceeding in the same way for the rest, we obtain

A2k−1(z) =
W2n(z)Yn(z)

(z − α2k−1)2W ′
2n(α2k−1)Y′

n(α2k−1)
×(

1 − (z − α2k−1)

(
W ′′

2n(α2k−1)

2W ′
2n(α2k−1)

+
Y′′

n (α2k−1)

2Y′
n(α2k−1)

))
,
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and

B2k−1(z) =
W2n(z)(z − α2k−1)∏n

j=1,j ̸=k(z − α2j−1)

W ′
2n(α2k−1)(z − α2k−1)∏n

j=1,j ̸=k(α2k−1 − α2j−1)
=

W2n(z)Yn(z)
W ′

2n(α2k−1)(z − α2k−1)Y′
n(α2k−1)

.

Hence, we obtain the expressions for A∗
2k, A∗

2k−1, and B∗
2k−1.

The barycentric expressions of these interpolation polynomials are given below. They
are very convenient for practical or numerical purposes (see [18]).

Corollary 1. (i) The Hermite–Fejér interpolation polynomial HF−p,q(z) satisfying (1) has the
barycentric expression

n
∑

k=1

α
p
2k Z′

n(α2k)u2k
(z−α2k)(W ′

2n(α2k))2 +
α

p
2k−1

(z−α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)

(
1

z−α2k−1
− W ′′

2n(α2k−1)
2W ′

2n(α2k−1)
− Y′′

n (α2k−1)
2Y′

n(α2k−1)
+ p

)
u2k−1

n
∑

k=1

α
p
2k Z′

n(α2k)
(z−α2k)(W ′

2n(α2k))2 +
α

p
2k−1

(z−α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)

(
1

z−α2k−1
− W ′′

2n(α2k−1)
2W ′

2n(α2k−1)
− Y′′

n (α2k−1)
2Y′

n(α2k−1)
+ p

) (5)

(ii) The interpolation polynomial HD−p,q(z) satisfying (2) has the barycentric expression

n
∑

k=1

α
p
2k−1

(z−α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)
v2k−1

n
∑

k=1

α
p
2k Z′

n(α2k)
(z−α2k)(W ′

2n(α2k))2 +
α

p
2k−1

(z−α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)

(
1

z−α2k−1
− W ′′

2n(α2k−1)
2W ′

2n(α2k−1)
− Y′′

n (α2k−1)
2Y′

n(α2k−1)
+ p

) (6)

Proof. (i) It is obtained in the usual way, that is, by simplifying the common factors after
dividing the expression of HF−p,q(z), given in Proposition 1, by the interpolation polyno-
mial H−p,q(1, z), which corresponds to constant function 1.

(ii) Proceeding in the same manner with HD−p,q(z) leads to it.

Remark 1. Since it is usual to choose the subspaces of Laurent polynomials in a balanced way, we
take p = E[ 3n

2 ] and q = E[ 3n−1
2 ]. Thus, for n being even, we take p = 3n

2 along with q = 3n
2 − 1

and for n being odd, we take p = 3n−1
2 together with q = 3n−1

2 . Without loss of generality, in
what follows, we consider and develop the case in which n is even and thus we work in the space
Λ− 3n

2 , 3n
2 −1[z].

2.2. Nodal Systems: Properties and Auxiliary Results

We consider nodal systems {αj}2n
j=1 fulfilling the following separation property: there

exists A > 0 such that for 2n > A
π , the length of the shortest arc between two consecutive

nodes αj and αj+1, that we denote by ̂αj − αj+1, satisfies

̂αj − αj+1 =
2π

2n
+

A(j)
(2n)2 =

π

n
+

A(j)
4n2 with |A(j)| ≤ A, j = 1, · · · , 2n, (7)

where α2n+1 = α1. We assume that the nodes are numbered in clockwise order. We use
Landau’s notation for complex sequences, writing that an = O(bn) if | an

bn
| is bounded. Thus,

we write ̂αj − αj+1 = π
n +O( 1

4n2 ). We will use the same O to denote different sequences.
Unless otherwise mentioned explicitly, the limits we obtain from (7) will be uniform.

So as to study the convergence behavior of the interpolation polynomials, we present
below, in several lemmas, some properties related to the nodal system. Most of these
properties are based on the following well-known relation between arcs and strings linked
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to the convex nature of the arcsin function:
For z1, z2 ∈ T, it holds that

2
π
(ẑ1 − z2) ≤ |z1 − z2| ≤ (ẑ1 − z2).

Lemma 1. Let W2n(z) =
2n

∏
j=1

(z − αj) with {αj}2n
j=1 satisfying separation property (7). Then,

(i) It holds that

|W2n(z)| < 2eA,
|W ′

2n(z)|
2n

< 2eA and
|W ′′

2n(z)|
4n2 < 2eA, ∀z ∈ T.

(ii) There exists a positive constant B > 0 such that for n large enough,

|W ′
2n(αj)|
2n

> B, ∀j. (8)

(iii) Let us assume that z is not a nodal point and α1 and α2n are the nodal points nearest to z.
Then, there exist positive constants K and E such that

|W2n(z)|
|z − α1|

< 2nK and
|W2n(z)|
|z − α2n|

< 2nK

and
1

|z − αj|
<

nE
j − 1

, for j > 1, and
1

|z − α2n−j|
<

nE
j

, for j ≥ 1.

Proof. (i) and (ii) See Proposition 1 in [11].
(iii) It suffices to apply separation property (7) and the mean value theorem. Notice

that the result is valid for every z, which is not a nodal point. It suffices to renumber the
nodes in such a way that α1 and α2n are the nodal points nearest to z.

As an immediate consequence of the preceding lemma, we obtain certain properties
for the polynomials Yn(z) and Zn(z). They are similar to the former ones. Since Yn(z) =
∏n

j=1(z − α2j−1) and Zn(z) = ∏n
j=1(z − α2j),

̂α2j−1 − α2j+1 =
2π

n
+

A(2j − 1) + A(2j)
4n2 =

2π

n
+

A1(2j − 1)
n2 with

|A1(2j − 1)| = |A(2j − 1) + A(2j)|
4

≤ A
2

, j = 1, · · · , n,
(9)

and

̂α2j − α2j+2 =
2π

n
+

A(2j) + A(2j + 1)
4n2 =

2π

n
+

A1(2j)
n2 with

|A1(2j)| = |A(2j) + A(2j + 1)|
4

≤ A
2

, j = 1, · · · , n.
(10)

Therefore, from Lemma 1, we obtain the following lemma:

Lemma 2. (i) It holds that

|Yn(z)| < 2eA/2,
|Y′

n(z)|
n

< 2eA/2 and
|Y′′

n (z)|
n2 < 2eA/2, ∀z ∈ T, and

|Zn(z)| < 2eA/2,
|Z′

n(z)|
n

< 2eA/2 and
|Z′′

n (z)|
n2 < 2eA/2, ∀z ∈ T.
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(ii) There exists a positive constant B1 such that for n large enough,

|Y′
n(α2j−1)|

n
> B1, ∀j, and

|Z′
n(α2j)|

n
> B1, ∀j.

(iii) If we assume that z is not a nodal point and α1 and α2n are the nodal points nearest to z, then
there exists a positive constant K such that

|Yn(z)|
|z − α1|

< nK and
|Zn(z)|
|z − α2n|

< nK.

Proof. (i) and (ii) are obtained from Lemma 1 by using separation properties (9) and (10).
(iii) By applying the mean value theorem and (i), we have

|Yn(z)| = |Yn(z)− Yn(α1)| = |Yn(eiθ)− Yn(eiθ1)| ≤

max
z∈T

|Y′
n(z)|

π

2
|z − α1| ≤ eA/2πn|z − α1| ≤ Kn|z − α1|.

We obtain the second inequality proceeding in a similar manner.

We finish this subsection with some properties, which play an important role in the
study of the convergence of the interpolation polynomials.

Lemma 3. There exists a positive constant D such that for every n and for every z ∈ T, it holds that

(i)
|W2n(z)|p

np

2n

∑
j=1

1
|z − αj|p

<

{
D(1 + ln n), p = 1,

D, p > 1.
(11)

(ii)
|Yn(z)|p

np

n

∑
j=1

1
|z − α2j−1|p

<

{
D(1 + ln n), p = 1,
D, p > 1.

Proof. (i) By applying Lemma 1, we have

|W2n(z)|p
np

2n

∑
j=1

1
|z − αj|p

=

1
np

|W2n(z)|p
|z − α1|p

+
|W2n(z)|p

np

(
n

∑
j=2

1
|z − αj|p

+
n−1

∑
j=1

1
|z − α2n−j|p

)
+

1
np

|W2n(z)|p
|z − α2n|p

≤

2p+1Kp + 2peAp

(
n

∑
j=2

Ep

(j − 1)p +
n−1

∑
j=1

Ep

jp

)
= 2p+1Kp + 2p+1eApEpHn−1,p,

where Hn−1,p is the (n − 1)-partial sum of the harmonic series ∑∞
j=1

1
jp .

Hence,

2p+1Kp + 2p+1eApEp Hn−1,p <

{
D(1 + ln n), p = 1,
D, p > 1.

(ii) It can be obtained in the same way as (i). To simplify the notation, we consider n as
even. Indeed, if we do the same, applying Lemmas 1 and 2, we obtain
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|Yn(z)|p
np

n

∑
j=1

1
|z − α2j−1|p

=
1

np
|Yn(z)|p
|z − α1|p

+
|Yn(z)|p

np

n

∑
j=2

1
|z − α2j−1|p

≤

Kp + 2pe
A
2 p 1

np

n

∑
j=2

1
|z − α2j−1|p

=

Kp + 2pe
A
2 p 1

np

 n
2

∑
j=2

1
|z − α2j−1|p

+
n

∑
j= n

2 +1

1
|z − α2j−1|p

 =

Kp + 2pe
A
2 p 1

np

 n
2

∑
j=2

1
|z − α2j−1|p

+

n
2

∑
j=1

1
|z − α2n−(2j−1)|p

 ≤

Kp + 2pe
A
2 pEp

 n
2

∑
j=2

1
(2j − 2)p +

n
2

∑
j=1

1
(2j − 1)p

 = Kp + 2pe
A
2 pEp

n−1

∑
j=1

1
jp =

Kp + 2pe
A
2 pEpHn−1,p <

{
D(1 + ln n), p = 1,
D, p > 1.

In what follows, we bound 2eA and 2e
A
2 by A and we denote B = min{B, B1}, where

A, B, and B1 are the constants appearing in Lemmas 1 and 2.

Remark 2. In [17], it was proved property (11) when considering as nodal polynomials the para-
orthogonal polynomials related to measures in the Szegő class with the Szegő function having
analytic extension outside the unit disk (see [1,19]). Here, we have proved it by using only the
separation properties satisfied by the nodal points. It is clear that those para-orthogonal polynomials
in [17] also hold separation property (7).

2.3. Convergence of Hermite–Fejér and Hermite Interpolation in the Case of Continuous Functions

Proposition 2. There exists a positive constant L > 0 such that for every function F bounded on
T, it holds that

|HF− 3n
2 , 3n

2 −1(F, z)| ≤ L ∥ F ∥∞ ln n

for every z ∈ T.

Proof. The result can be obtained in a more general situation, that is, with p and q such
that p + q = 3n − 1, with p = O(n). Thus, we begin the proof in this general situation. It is
clear that

|HF−p,q(F, z)| ≤
n

∑
k=1

|F(α2k)A∗
2k(z)|+

n

∑
k=1

|F(α2k−1)A∗
2k−1(z)|.

By applying the preceding lemmas to the first summation, it holds that

n

∑
k=1

|F(α2k)A∗
2k(z)| =

n

∑
k=1

|F(α2k)|
|αp

2kW2n(z)Yn(z)Z′
n(α2k)|

|zp(z − α2k)||W ′
2n(α2k)|2

≤

n

∑
k=1

∥ F ∥∞
|W2n(z)|
|z − α2k|

A2n
B2n2 ≤∥ F ∥∞

A2

B2 D(1 + ln n).

(12)
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Proceeding in the same way for the second one, it holds that

n

∑
k=1

|F(α2k−1)A∗
2k−1(z)| ≤∥ F ∥∞ ×

n

∑
k=1

∣∣∣∣∣ α
p
2k−1W2n(z)Yn(z)

zp(z − α2k−1)2W ′
2n(α2k−1)Y′

n(α2k−1)

(
1 − (z − α2k−1)

(
W ′′

2n(α2k−1)

2W ′
2n(α2k−1)

+
Y′′

n (α2k−1)

2Y′
n(α2k−1)

))∣∣∣∣∣+
∥ F ∥∞ p

n

∑
k=1

∣∣∣∣∣ α
p
2k−1W2n(z)Yn(z)

zp(z − α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)

∣∣∣∣∣ ≤
∥ F ∥∞ ×

n

∑
k=1

|W2n(z)Yn(z)|
|z − α2k−1|2|W ′

2n(α2k−1)Y′
n(α2k−1)|

[
1 + |z − α2k−1|

(∣∣∣ W ′′
2n(α2k−1)

2W ′
2n(α2k−1)

|+ | Y′′
n (α2k−1)

2Y′
n(α2k−1)

∣∣∣)]+
∥ F ∥∞ p

n

∑
k=1

|W2n(z)Yn(z)|
|z − α2k−1||W ′

2n(α2k−1)Y′
n(α2k−1)|

≤

∥ F ∥∞
1

2n2B2

n

∑
k=1

|W2n(z)||Yn(z)|
|z − α2k−1|2

(
1 + |z − α2k−1|

3 eAn
B

)
+ ∥ F ∥∞

peA/2

n2B2

n

∑
k=1

|W2n(z)|
|z − α2k−1|

=

∥ F ∥∞
|Zn(z)|
2n2B2

n

∑
k=1

|Yn(z)|2
|z − α2k−1|2

+ ∥ F ∥∞
3eA

2nB3 |W2n(z)|
n

∑
k=1

|Yn(z)|
|z − α2k−1|

+

∥ F ∥∞
peA/2

n2B2 |
n

∑
k=1

|W2n(z)|
|z − α2k−1|

.

For simplicity, now we take p = 3n
2 and apply Lemma 3, obtaining

n

∑
k=1

|F(α2k−1)A∗
2k−1(z)| ≤∥ F ∥∞

[
AD
B2 +

3A2D
B3 (1 + ln n) +

3AD
2B2 (1 + ln n)

]
≤

∥ F ∥∞
D
B2 K(1 + ln n)

(13)

for some positive constant K. Hence, from (12) and (13), we obtain that there exists L
such that

|HF− 3n
2 , 3n

2 −1(F, z)| ≤ L ∥ F ∥∞ ln n.

In order to prove convergence of the Hermite–Fejér interpolation polynomials related
to some continuous functions, first, we recall the following definition and we present an
auxiliary result.

The modulus of continuity w(F, δ) of a given function F(z) continuous in a subset A
of C is w(F, δ) = sup

z1, z2∈A, |z1−z2|<δ

|F(z1)− F(z2)|.

Lemma 4. Let F be a continuous function on T with the modulus of continuity w(F, δ) =
o(| ln δ|−1) when δ → 0. Then, for each natural number N, there exists a Laurent polynomial
PN ∈ Λ−N,N and there exists εN > 0 with {εN} → 0 such that ∥ F − PN ∥∞< εN

ln N .

Proof. This result is a consequence of Jackson’s theorem and the proof can be seen in
Lemma 2 of [15].

Proposition 3. Let F be a continuous function on T with the modulus of continuity w(F, δ) =
o(| ln δ|−1) when δ → 0. Then, HF− 3n

2 , 3n
2 −1(F, z) converges to F uniformly on T.
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Proof. Let n be large enough and N = E[ 4
√

n]. Then, it holds that − 3n
2 < −N and

N < 3n
2 − 1. By the preceding lemma, we know that there exists PN ∈ Λ−N,N ⊂ Λ− 3n

2 , 3n
2 −1

such that ∥ F − PN ∥∞< εN
ln N , with {εN} → 0. Then,

∥ F −HF− 3n
2 , 3n

2 −1(F, ) ∥∞≤∥ F − PN ∥∞ + ∥ PN −HF− 3n
2 , 3n

2 −1(PN , ) ∥∞ +

∥ HF− 3n
2 , 3n

2 −1(PN , )−HF− 3n
2 , 3n

2 −1(F, ) ∥∞ .

If we now apply Proposition 2, it holds that

∥ HF− 3n
2 , 3n

2 −1(PN , )−HF− 3n
2 , 3n

2 −1(F, ) ∥∞=∥ HF− 3n
2 , 3n

2 −1(PN − F, ) ∥∞≤

L ∥ PN − F ∥∞ ln n ≤ L
εN

ln N
ln n ≤ L1εN

for some constant L1. The last inequality follows from the fact that the sequence { ln n
ln N }

is bounded.
On the other hand,

∥ PN −HF− 3n
2 , 3n

2 −1(PN , ) ∥∞=∥ PN − PN +HD− 3n
2 , 3n

2 −1(PN , ) ∥∞=∥ HD− 3n
2 , 3n

2 −1(PN , ) ∥∞.

By applying (4) and the generalization of Markov’s inequality (see [20]),

∥ P′ ∥∞≤ (2r + q) ∥ P ∥∞, for P ∈ Λ−r,q,

and we have, for z ∈ T,

|HD− 3n
2 , 3n

2 −1(PN , )| = |
n

∑
k=1

α
p
2k−1W2n(z)Yn(z)P′

N(α2k−1)

zp(z − α2k−1)W ′
2n(α2k−1)Y′

n(α2k−1)
| ≤

n

∑
k=1

2eA/2|W2n(z)P′
N(α2k−1)|

2n2B1B|z − α2k−1|
<

n

∑
k=1

A ∥ P′
N ∥∞

2n2B2
|W2n(z)|
|z − α2k−1|

=

A ∥ P′
N ∥∞

2nB2
1
n

n

∑
k=1

|W2n(z)|
|z − α2k−1|

<
A ∥ P′

N ∥∞

2nB2 D(1 + ln n) ≤

A
2B2

3N ∥ PN ∥∞

n
D(1 + ln n) ≤ L2

N
n

∥ PN ∥∞ (1 + ln n)

and for some constant L2 and since ∥ PN ∥∞≤ εN
ln N+ ∥ F ∥∞, we obtain

∥ HD− 3n
2 , 3n

2 −1(PN , ) ∥∞≤ L2
N
n

( εN
ln N

+ ∥ F ∥∞

)
(1 + ln n) ≤

L2
1

n
3
4

( εN
ln N

+ ∥ F ∥∞

)
(1 + ln n) ≤ L3

(1 + ln n)

n
3
4

for some positive constant L3. Therefore, it goes to zero.

Next, we study the complete problem, that is, the Hermite interpolation problem with
nonvanishing conditions for the derivatives. In [17], under suitable conditions for the nodal
systems, it was given a sufficient condition on the derivatives, which cannot be improved,
in order to obtain convergence for continuous functions. Now, we prove that other similar
conditions work.

Proposition 4. Let F be a continuous function on T with the modulus of continuity w(F, δ) =
o(| ln δ|−1) when δ → 0 and let γn = (v2j−1)

n
j=1. Then,

(i) If ∥ γn ∥q= o(n) for some q, 1 ≤ q < ∞, then H− 3n
2 , 3n

2 −1(F, γn, z) converges to F uniformly
on T.

(ii) If ∥ γn ∥∞= o( n
ln n ), then H− 3n

2 , 3n
2 −1(F, γn, z) converges to F uniformly on T.
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Proof. (i) If we apply expression (4), we obtain

|HD− 3n
2 , 3n

2 −1(z)| = |
n

∑
k=1

α
3n
2

2k−1W2n(z)Yn(z)

z
3n
2 (z − α2k−1)W ′

2n(α2k−1)Y′
n(α2k−1)

v2k−1| ≤

n

∑
k=1

|W2n(z)||Yn(z)|
|W ′

2n(α2k−1)||Y′
n(α2k−1)||z − α2k−1|

|v2k−1| ≤
A

2B2n

n

∑
k=1

|W2n(z)|
n|z − α2k−1|

|v2k−1|.

Firstly, we assume that q > 1. In this case, we take p > 1 such that 1
p + 1

q = 1 and apply
Lemma 3. Then, we obtain

A
2B2n

n

∑
k=1

|W2n(z)|
n|z − α2k−1|

|v2k−1| ≤

≤ A
2B2n

(
|W2n(z)|p

np

n

∑
k=1

1
|z − α2k−1|p

) 1
p
(

n

∑
k=1

|v2k−1|q
) 1

q

≤ A
2B2 D

∥ γn ∥q

n
.

Secondly, we assume that q = 1. If we apply Lemmas 1 and 2, we have

|HD− 3n
2 , 3n

2 −1(z)| ≤
n

∑
k=1

|W2n(z)||Yn(z)|
|W ′

2n(α2k−1)||Y′
n(α2k−1)||z − α2k−1|

|v2k−1| ≤

A
2B2n

n

∑
k=1

|Yn(z)|
n|z − α2k−1|

|v2k−1| ≤
A

2B2n
|Yn(z)|

n|z − α1|
|v1|+

A2

2B2n

n

∑
k=2

1
n|z − α2k−1|

|v2k−1| ≤

AK
2B2n

|v1|+
A2E
2B2n

n

∑
k=2

|v2k−1| ≤ L4
∥ γn ∥1

n

for some positive constant L4.
Hence, if we take into account the expression H−n,n−1(F, γn, z) = HF−n,n−1(F, z) +

HD−n,n−1(z) and Proposition 3, then the result is proven.
(ii) Proceeding in a similar way, we obtain

|HD− 3n
2 , 3n

2 −1(z)| ≤
n

∑
k=1

|W2n(z)||Yn(z)|
|W ′

2n(α2k−1)||Y′
n(α2k−1)||z − α2k−1|

|v2k−1| ≤

A
2B2n2

n

∑
k=1

|Yn(z)|
|z − α2k−1|

|v2k−1| ≤
A

2B2
∥ γn ∥∞

n
|Yn(z)|

n

n

∑
k=1

1
|z − α2k−1|

≤

A
2B2

∥ γn ∥∞

n
D(1 + ln n) ≤ AD

B2
∥ γn ∥∞

n
ln n

and taking into consideration our hypothesis, the result is proven.

2.4. Interpolation of Smooth Functions: Convergence of the Interpolation Polynomials

Proposition 5. If F is an analytic function in an open annulus containing T, then H− 3n
2 , 3n

2 −1(F, z)

uniformly converges to F on T and the order of convergence is O(r
3n
2 ln n), for some r such that

0 < r < 1.

Proof. We assume that F(z) = ∑∞
k=−∞ akzk with |ak| ≤ Pr|k| for some positive constant P

and 0 < r < 1. Thus, F can be expressed as F(z) = F1,n(z) + F2,n(z) + F3,n(z), where

F1,n(z) =

3n
2 −1

∑
k=− 3n

2

akzk, F2,n(z) =
∞

∑
k= 3n

2

akzk and F3,n(z) =
− 3n

2 −1

∑
k=−∞

akzk. (14)
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Since H− 3n
2 , 3n

2 −1(F1,n, z) = F1,n(z),

|H− 3n
2 , 3n

2 −1(F, z)− F(z)| = |H− 3n
2 , 3n

2 −1(F2,n, z) +H− 3n
2 , 3n

2 −1(F3,n, z)− F2,n(z)− F3,n(z)| ≤

|H− 3n
2 , 3n

2 −1(F2,n, z)− F2,n(z)|+ |H− 3n
2 , 3n

2 −1(F3,n, z)− F3,n(z)|.

In this way, we have to study both absolute differences, that is, |H− 3n
2 , 3n

2 −1(Fi,n, z)− Fi,n(z)|
for i = 2, 3. For simplicity, we develop the case i = 2.

Note that |F2,n(z)| ≤
∞

∑
k= 3n

2

|akzk| ≤
∞

∑
k= 3n

2

Prk = P
r

3n
2

1 − r
, which goes to zero uniformly

on T.
In order to obtain H− 3n

2 , 3n
2 −1(F2,n, z), first, we compute

H− 3n
2 , 3n

2 −1(z
j, z) = HF− 3n

2 , 3n
2 −1(z

j, z) +HD− 3n
2 , 3n

2 −1(z
j, z).

On the one hand, by taking into account Proposition 2, we obtain |HF− 3n
2 , 3n

2 −1(z
j, z)| ≤

L ln n. On the other hand, since HD− 3n
2 , 3n

2 −1(z
j, z) =

n

∑
k=1

jαj−1
2k−1B∗

2k−1(z) according to (4),

by applying (8) and Lemmas 2 and 3, it follows that

|HD− 3n
2 , 3n

2 −1(z
j, z)| ≤

n

∑
k=1

j|B∗
2k−1(z)| =

n

∑
k=1

j
|W2n(z)||Yn(z)|

|z − α2k−1||W ′
2n(α2k−1)||Y′

n(α2k−1)|
≤

jA
2B2n

|W2n(z)|
n

n

∑
k=1

1
|z − α2k−1|

<
jA

2B2n
D(1 + ln n).

Hence,

|H− 3n
2 , 3n

2 −1(z
j, z)| ≤ L ln n +

jAD
2B2n

(1 + ln n) ≤ Q
(

ln n + j
ln n

n

)
(15)

and therefore

∣∣∣H− 3n
2 , 3n

2 −1(F2,n, z)
∣∣∣ =

∣∣∣∣∣∣H− 3n
2 , 3n

2 −1

 ∞

∑
k= 3n

2

akzk, z

∣∣∣∣∣∣ =
∣∣∣∣∣∣

∞

∑
k= 3n

2

akH− 3n
2 , 3n

2 −1(z
k, z)

∣∣∣∣∣∣ ≤
∞

∑
k= 3n

2

|ak|
∣∣∣H− 3n

2 , 3n
2 −1(z

k, z)
∣∣∣ ≤ ∞

∑
k= 3n

2

|ak|Q
(

ln n + k
ln n

n

)
≤ PQ ln n

∞

∑
k= 3n

2

rk + PQ
ln n

n

∞

∑
k= 3n

2

krk

for some positive constant Q.

Taking into account that
∞

∑
k= 3n

2

rk =
r

3n
2

1 − r
and

∞

∑
k= 3n

2

krk = r
3n
2

(
3n

2(1 − r)
+

r
(1 − r)2

)
,

then
|H− 3n

2 , 3n
2 −1(F2,n, z)| ≤ Tr

3n
2 ln n

for some positive constant T and thus it goes to zero uniformly on T.
The corresponding result for the absolute difference |H− 3n

2 , 3n
2 −1(F3,n, z)− F3,n(z)| can

be obtained in a similar way.

Proposition 6. If F(z) =
∞

∑
k=−∞

akzk is a function defined on T with |ak| ≤ K 1
|k|s , for some positive

constant K, k ̸= 0 and s > 2, then H− 3n
2 , 3n

2 −1(F, z) converges to F(z) uniformly on T. Moreover,

the order of convergence is O
(

ln n
( 3n

2 )s−2

)
.
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Proof. As we proceed as in the previous proposition, we write F(z) = F1,n(z) + F2,n(z) +
F3,n(z), where F1,n(z), F2,n(z), and F3,n(z) are those given in (14). Since H− 3n

2 , 3n
2 −1(F1,n, z) =

F1,n(z),

|H− 3n
2 , 3n

2 −1(F, z)− F(z)| ≤ |H− 3n
2 , 3n

2 −1(F2,n, z)− F2,n(z)|+ |H− 3n
2 , 3n

2 −1(F3,n, z)− F3,n(z)|.

Thus, we have to study the behavior of |H− 3n
2 , 3n

2 −1(Fi,n, z)− Fi,n(z)| for i = 2, 3 to obtain
the uniform convergence of H− 3n

2 , 3n
2 −1(F, z) to F.

Indeed, if z ∈ T,

|H− 3n
2 , 3n

2 −1(F2,n, z)− F2,n(z)| ≤ |H− 3n
2 , 3n

2 −1(F2,n, z)|+ |F2,n(z)|

and, by applying the integral test, it holds that

|F2,n(z)| = |
∞

∑
k= 3n

2

akzk| ≤
∞

∑
k= 3n

2

|ak| ≤ K
∞

∑
k= 3n

2

1
ks ≤ K

s − 1
1

( 3n
2 − 1)s−1

= O
(

1
( 3n

2 )s−1

)
.

By taking into account (15), we have

∣∣∣H− 3n
2 , 3n

2 −1(F2,n, z)
∣∣∣ =

∣∣∣∣∣∣H− 3n
2 , 3n

2 −1

 ∞

∑
k= 3n

2

akzk, z

∣∣∣∣∣∣ =∣∣∣∣∣∣
∞

∑
k= 3n

2

akH− 3n
2 , 3n

2 −1(z
k, z)

∣∣∣∣∣∣ ≤
∞

∑
k= 3n

2

|ak|
∣∣∣H− 3n

2 , 3n
2 −1(z

k, z)
∣∣∣ ≤

∞

∑
k= 3n

2

KQ
ks ln n

(
1 +

k
n

)
= KQ ln n

 ∞

∑
k= 3n

2

1
ks +

1
n

∞

∑
k= 3n

2

1
ks−1

 ≤

KQ ln n
(

1 +
1
n

) ∞

∑
k= 3n

2

1
ks−1 .

By applying the integral test again, we obtain

|H− 3n
2 , 3n

2 −1(F2,n, z)| ≤ KQ ln n
(

1 +
1
n

)
1

s − 2
1

( 3n
2 − 1)s−2

= O
(

ln n
( 3n

2 − 1)s−2

)
.

Hence,
∣∣∣H− 3n

2 , 3n
2 −1(F2,n, z)− F2,n(z)

∣∣∣ goes to zero and the order of convergence is

O
(

ln n
( 3n

2 )s−2

)
. The term

∣∣∣H− 3n
2 , 3n

2 −1(F3,n, z)− F3,n(z)
∣∣∣ can be studied in a similar manner

and finally the result follows.

Remark 3. In [15], when considering the roots of unimodular complex numbers as nodal systems,
we obtained similar results to those given in Propositions 5 and 6 although the order of convergence
given in [15] is better than those.

2.5. The Case of the Bounded Interval

In this subsection, we consider very general nodal systems in the interval [−1, 1].
Let n be even and let {xj}n+1

j=1 be a nodal system ordered as follows: xn+1 < xn <

· · · < x2 < x1 with xn+1 = −1 and x1 = 1. We also assume that the nodal points satisfy
the separation property

arccos xj+1 − arccos xj =
π

n
+

a(j)
n2 , being |a(j)| ≤ a, j = 1, · · · , n, (16)
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with a being a positive constant such that 2a
π < n.

Now, our aim is to solve the following interpolation problem, intermediate between
those of Lagrange and Hermite on the interval [−1, 1]:

Given two sequences of real numbers {qj}n+1
j=1 and {v2j−1}

n
2 +1
j=1 , find an algebraic polynomial

h 3n
2 +1(x) ∈ P 3n

2 +1[x] satisfying

h 3n
2 +1(xj) = qj, j = 1, · · · , n + 1, and

h′3n
2 +1(x2j−1) = v2j−1, j = 1, · · · ,

n
2
+ 1.

(17)

When qj = f (xj) for j = 1, · · · , n + 1, with f being a function defined on [−1, 1], and

Vn
2 +1 = (v2j−1)

n
2 +1
j=1 being arbitrary, we denote the interpolation polynomial satisfying

(17) by h 3n
2 +1( f , Vn

2 +1, x). When qj = f (xj) for j = 1, · · · , n + 1 and v2j−1 = f ′(x2j−1) for
j = 1, · · · , n

2 + 1, f being a differentiable function on [−1, 1], we denote the corresponding
interpolation polynomial by h 3n

2 +1( f , x).
To obtain the expression of the polynomial h 3n

2 +1(x) satisfying (17), first, we study
the corresponding problem on T obtained through the Szegő transformation. By this

transformation between [−1, 1] and T, which is x =
z + 1

z
2

, our real nodal system becomes

{αj}2n
j=1, where α1 = 1 and αn+1 = −1, that is, {αj}2n

j=1 = {−1, 1} ∪ {αj}n
j=2 ∪ {αj}n

j=2.
According to what was said, we will denote the corresponding nodal polynomial by
W2n(z). Furthermore, since for j = 1, · · · , n + 1, αj = xj + ı

√
1 − x2

j , that is, αj = eı arccos xj ,
we have

̂αj − αj+1 = arccos xj+1 − arccos xj =
π

n
+

a(j)
n2 , j = 1, · · · , n.

Clearly, {αj}2n
j=1 satisfies relation (7) with A(j) = 4a(j), A = 4a, and 2n > A

π .
Thus, the transformed problem is that of finding a polynomial H− 3n

2 , 3n
2 −1(z) in the

space Λ− 3n
2 , 3n

2 −1[z] such that

H− 3n
2 , 3n

2 −1(α1) = q1, H− 3n
2 , 3n

2 −1(αn+1) = qn+1,

H− 3n
2 , 3n

2 −1(αj) = H− 3n
2 , 3n

2 −1(αj) = qj, for j = 2, · · · , n,

H′
− 3n

2 , 3n
2 −1(α1) = 0, H′

− 3n
2 , 3n

2 −1(αn+1) = 0 and

H′
− 3n

2 , 3n
2 −1(α2j−1) = H′

− 3n
2 , 3n

2 −1
(α2j−1) = ıv2j−1α2j−1

√
1 − x2

2j−1, for j = 2, · · · ,
n
2

.

(18)

In Proposition 1, we have given the expressions to compute the polynomial H− 3n
2 , 3n

2 −1(z)
satisfying (18). Indeed, by taking into account that the nodal points are conjugated, the
expressions can be simplified and it is immediate seeing that H− 3n

2 , 3n
2 −1(z) has real coeffi-

cients. Thus, if we define

p 3n
2
(x) =

1
2

(
H− 3n

2 , 3n
2 −1(z) +H− 3n

2 , 3n
2 −1

(
1
z

))

for x =
z+ 1

z
2 and z ∈ T, then p 3n

2
(x) fulfills that p 3n

2
(xj) = qj for j = 1, · · · , n + 1.

Since

p′3n
2
(x) =

1
2

(
H′

− 3n
2 , 3n

2 −1(z) +H′
− 3n

2 , 3n
2 −1

(
1
z

)(
− 1

z2

))
dz
dx

and dz
dx = 2z2

z2−1 ,

p′3n
2
(x) =

1
z2 − 1

(
z2H′

− 3n
2 , 3n

2 −1(z)−H′
− 3n

2 , 3n
2 −1

(
1
z

))
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and therefore p′3n
2
(x2j−1) =

1
α2j−1

2−1 2ıv2j−1α2j−1

√
1 − x2

2j−1 = v2j−1, where the last equality

comes from the fact that z2−1
z = 2ı

√
1 − x2.

Since H′
− 3n

2 , 3n
2 −1

(1) = H′
− 3n

2 , 3n
2 −1

(−1) = 0, taking into account that

p′3n
2
(1) = lim

x→1
p′3n

2
(x) = lim

z→1

z2H′
− 3n

2 , 3n
2 −1

(z)−H′
− 3n

2 , 3n
2 −1

( 1
z )

z2 − 1

and applying L’Hôpital’s rule, we obtain that p′3n
2
(1) = H′′

− 3n
2 , 3n

2 −1
(1). Proceeding in a

similar way, we also obtain that p′3n
2
(−1) = −H′′

− 3n
2 , 3n

2 −1
(−1).

Since we cannot assure that p′3n
2
(1) and p′3n

2
(−1) are equal to v1 and vn+1, respectively,

we modify p 3n
2
(x) by adding two auxiliary polynomials to adjust the values in 1 and

−1. Thus, to obtain the polynomial h 3n
2 +1(x) satisfying (17), we consider the polynomials

Q 3n
2 +1(x) and R 3n

2 +1(x) satisfying the conditions

Q 3n
2 +1(xj) = 0, j = 1, · · · , n + 1; Q′

3n
2 +1(1) = 1 and Q′

3n
2 +1(x2j−1) = 0, j = 2, · · · ,

n
2
+ 1

and

R 3n
2 +1(xj) = 0, j = 1, · · · , n + 1; R′

3n
2 +1(−1) = 1 and R′

3n
2 +1(x2j−1) = 0, j = 1, · · · ,

n
2

,

that is,

Q 3n
2 +1(x) =

n+1
∏
j=1

(x − xj)

n
2 +1
∏
j=2

(x − x2j−1)

n+1
∏
j=2

(1 − xj)

n
2 +1
∏
j=2

(1 − x2j−1)

; R 3n
2 +1(x) =

n+1
∏
j=1

(x − xj)

n
2

∏
j=1

(x − x2j−1)

(−1)
3n
2

n
∏
j=1

(1 + xj)∏
n
2
j=1(1 + x2j−1)

.

Hence, we obtain that the polynomial h 3n
2 +1(x) fulfilling (17) has the expression

h 3n
2 +1(x) = p 3n

2
(x) + (v1 − p′3n

2
(1))Q 3n

2 +1(x) + (vn+1 − p′3n
2
(−1))R 3n

2 +1(x). (19)

Our next step is to study some convergence problems by applying the results ob-
tained in the previous subsections. Thus, we have to transform the expression of the
polynomial h 3n

2 +1(x) given above, for which purpose we begin by transforming Q 3n
2 +1(x)

and R 3n
2 +1(x) here.

Indeed, if we take into account that x =
z+ 1

z
2 for x ∈ [−1, 1] and z ∈ T, then x − xj =

1
2z (z − αj)(z − αj) for j = 1, · · · , n + 1, and, in particular, for j = 1 and j = n + 1, it holds
that x − 1 = 1

2z (z − 1)2 and x + 1 = 1
2z (z + 1)2, respectively.

Moreover, if x = 1, then 1 − xj =
1
2 (1 − αj)(1 − αj) for j = 2, · · · , n, and if x = −1,

then 1 + xj = − 1
2 (1 + αj)(1 + αj) for j = 2, · · · , n.

To relate these expressions to the nodal polynomials, we recall that

W2n(z) = (z − 1)(z + 1)
n

∏
j=2

(z − αj)(z − αj),

which implies that

W ′
2n(1) = 2

n

∏
j=2

(1 − αj)(1 − αj) and W ′
2n(−1) = −2

n

∏
j=2

(1 + αj)(1 + αj),
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and

Yn(z) = (z − 1)(z + 1)

n
2

∏
j=2

(z − α2j−1)(z − α2j−1),

which implies that

Y′
n(1) = 2

n
2

∏
j=2

(1 − α2j−1)(1 − α2j−1) and Y′
n(−1) = −2

n
2

∏
j=2

(1 + α2j−1)(1 + α2j−1).

Hence, we obtain

(i)
n

∏
j=2

(x − xj) =
1

2n−1zn−1

n

∏
j=2

(z − αj)(z − αj) =
1

2n−1zn−1
W2n(z)

(z − 1)(z + 1)
.

(ii)

n
2

∏
j=2

(x − x2j−1) =
1

2
n
2 −1z

n
2 −1

n
2

∏
j=2

(z − α2j−1)(z − α2j−1) =
1

2
n
2 −1z

n
2 −1

Yn(z)
(z − 1)(z + 1)

.

(iii)
n

∏
j=2

(1 − xj) =
1

2n−1

n

∏
j=2

(1 − αj)(1 − αj) =
W ′

2n(1)
2n .

(iv)

n
2

∏
j=2

(1 − x2j−1) =
1

2
n
2 −1

n
2

∏
j=2

(1 − α2j−1)(1 − α2j−1) =
Y′

n(1)

2
n
2

.

(v)
n

∏
j=2

(1 + xj) =
(−1)n−1

2n−1

n

∏
j=2

(1 + αj)(1 + αj) =
(−1)nW ′

2n(−1)
2n .

(vi)

n
2

∏
j=2

(1 + x2j−1) =
(−1)

n
2 −1

2
n
2 −1

n
2

∏
j=2

(1 + α2j−1)(1 + α2j−1) =
(−1)

n
2 Y′

n(−1)

2
n
2

.

Therefore,

Q 3n
2 +1(x) =

(z + 1)2W2n(z)Yn(z)

23z
3n
2 +1W ′

2n(1)Y
′
n(1)

(20)

and

R 3n
2 +1(x) =

(z − 1)2W2n(z)Yn(z)

23(−1)nz
3n
2 +1W ′

2n(−1)Y′
n(−1)

. (21)

Proposition 7. Let f be a continuous function on [−1, 1] with ω( f , δ) = o(| ln δ|−1) when
δ → 0 and let h 3n

2 +1( f , Vn
2 +1, x) ∈ P 3n

2 +1 be the interpolation polynomial satisfying (17) with

Vn
2 +1 = (v2j−1)

n
2 +1
j=1 . If ∥ Vn

2 +1 ∥∞= o( n
ln n ) or ∥ Vn

2 +1 ∥q= o(n) for some q such that
1 ≤ q < ∞, then the sequence h 3n

2 +1( f , Vn
2 +1, x) uniformly converges to f on [−1, 1].

Proof. By using the Szegő transformation, we define a function F on T by means of
F(z) = F(z) = f (x) for z ∈ T.

Let us write
γ∗

n =

(0, ıv3

√
1− x2

3α3, · · · , ıvn−1

√
1− x2

n−1αn−1, 0,−ıvn−1

√
1− x2

n−1αn−1, · · · ,−ıv3

√
1− x2

3α3)

and denote by H− 3n
2 , 3n

2 −1(F, γ∗
n, z) the interpolation polynomial satisfying the conditions

H− 3n
2 , 3n

2 −1(F, γ∗
n, α1) = f (x1), H− 3n

2 , 3n
2 −1(F, γ∗

n, αn+1) = f (xn+1),

H− 3n
2 , 3n

2 −1(F, γ∗
n, αj) = H− 3n

2 , 3n
2 −1(F, γ∗

n, αj) = f (xj) for j = 2, · · · , n,

H′
− 3n

2 , 3n
2 −1(F, γ∗

n, α1) = 0, H′
− 3n

2 , 3n
2 −1(F, γ∗

n, αn+1) = 0 and

H′
− 3n

2 , 3n
2 −1(F, γ∗

n, α2j−1) = H′
− 3n

2 , 3n
2 −1

(F, γ∗
n, α2j−1) = ıv2j−1α2j−1

√
1 − x2

2j−1 for j = 2, · · · ,
n
2

.
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If we write p 3n
2
( f , γ∗

n, x) =
H− 3n

2 , 3n
2 −1

(F,γ∗
n ,z)+H− 3n

2 , 3n
2 −1

(F,γ∗
n , 1

z )

2 and we take into account
expression (19), we obtain

h 3n
2 +1( f , Vn

2 +1, x) = p 3n
2
( f , γ∗

n, x) + (v1 − p′3n
2
(1))Q 3n

2 +1(x) + (vn+1 − p′3n
2
(−1))R 3n

2 +1(x).

Hence, ∣∣∣h 3n
2 +1

(
f , Vn

2 +1, x
)
− f (x)

∣∣∣ =∣∣∣p 3n
2
( f , γ∗

n, x)− f (x) +
(

v1 − p′3n
2
(1)
)

Q 3n
2 +1(x) +

(
vn+1 − p′3n

2
(−1)

)
R 3n

2 +1(x)
∣∣∣ =∣∣∣∣∣H− 3n

2 , 3n
2 −1(F, γ∗

n, z) +H− 3n
2 , 3n

2 −1(F, γ∗
n, 1

z )

2
−

F(z) + F
(

1
z

)
2

+

(
v1 − p′3n

2
(1)
)

Q 3n
2 +1(x) +

(
vn+1 − p′3n

2
(−1)

)
R 3n

2 +1(x)

∣∣∣∣∣ ≤
1
2

∣∣∣H− 3n
2 , 3n

2 −1(F, γ∗
n, z)− F(z)

∣∣∣+ 1
2

∣∣∣∣H− 3n
2 , 3n

2 −1

(
F, γ∗

n,
1
z

)
− F

(
1
z

)∣∣∣∣+∣∣∣v1 − p′3n
2
(1)
∣∣∣∣∣∣Q 3n

2 +1(x)
∣∣∣+ ∣∣∣vn+1 − p′3n

2
(−1)

∣∣∣∣∣∣R 3n
2 +1(x)

∣∣∣.
We study the behaviour of the first two terms in the last expression by applying Proposi-

tion 4. To carry this out, we take into account that ∥ γ∗
n ∥q≤ 2

1
q ∥ Vn

2 +1 ∥q and ∥ γ∗
n ∥∞≤∥

Vn
2 +1 ∥∞. Hence, under our hypothesis, we have ε > 0 and then ∥ H− 3n

2 , 3n
2 −1(F, γ∗

n, )−
F ∥∞< ε for every z ∈ T and n large enough.

To study the last two terms, we take into account the following facts:

(i) |v1| ≤∥ Vn
2 +1 ∥q and |vn+1| ≤∥ Vn

2 +1 ∥q for q such that 1 ≤ q ≤ ∞.
(ii) By applying Lemmas 1 and 2, we obtain that the polynomials Q 3n

2 +1(x) and R 3n
2 +1(x)

given in (20) and (21) can be bounded for every x ∈ [−1, 1], as

|Q 3n
2 +1(x)| ≤ A2

B2
1
n2 and |R 3n

2 +1(x)| ≤ A2

B2
1
n2 .

Therefore, it is immediate that |v1Q 3n
2 +1(x)| and |vn+1R 3n

2 +1(x)| go to zero when n
goes to ∞.

Finally, we use the same arguments as those of Theorem 6 in [14] in the following way:
We know that for an n large enough, there exists N = E[

√
n] such that N2 ≤ n ≤ (N + 1)2

and there exists PN ∈ Λ−N,N satisfying ∥ F − PN ∥∞< ϵN
ln N with {εN} → 0. Therefore,

∥ H− 3n
2 , 3n

2 −1(F, γ∗
n, ) − PN ∥∞< ε + εN

ln N . Notice that for an n large enough, Λ−N,N ⊂
Λ− 3n

2 , 3n
2 −1.

On the one hand, by applying twice the mentioned Markov’s inequalities, we obtain

∥ H′′
− 3n

2 , 3n
2 −1(F, γ∗

n, )− P′′
N ∥∞≤

(
9n
2

− 1
)

9n
2

∥ H− 3n
2 , 3n

2 −1(F, γ∗
n, )− PN ∥∞≤

81n2

4

(
ε +

εN
ln N

)
.

Hence, ∥ H′′
− 3n

2 , 3n
2 −1

(F, γ∗
n, ) ∥∞≤∥ P′′

N ∥∞ + 81n2

4
(
ε + εN

ln N
)
.

On the other hand, applying Markov’s inequality again, we obtain

∥ P′′
N ∥∞≤ (9N2 + N) ∥ P ∥∞≤ 10n

(
∥ F ∥∞ +

εN
ln N

)
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and therefore

∥ H′′
− 3n

2 , 3n
2 −1(F, γ∗

n, ) ∥∞≤ 10n
(
∥ F ∥∞ +

εN
ln N

)
+

81n2

4

(
ε +

εN
ln N

)
,

from which we deduce |p′3n
2
(1)||Q 3n

2 +1(x)| ≤
(

10n(∥ F ∥∞ + εN
ln N ) + 81n2

4 (ε+ εN
ln N )

)
A2

n2 and

the same inequality for |p′3n
2
(−1)||R 3n

2 +1(x)|.

2.6. Interpolation of Smooth Functions: Convergence

Now, our objective is to study the rate of convergence for the interpolation polynomials
related to smooth functions in the sense given in [21]. Thus, first, we assume that f is a
function defined on [−1, 1] that can be written as f (x) = ∑∞

l=0 alTl(x), where |al | ≤ C
lt for

some positive constant C and a natural number t. In the expression, Tl(x) denotes the
Chebyshev polynomial of the first kind of degree l.

To obtain the interpolation polynomial h 3n
2 +1( f , x) satisfying (17) with the nodal

system fulfilling (16), we decompose f as follows: f = f1,n + f2,n, where f1,n(x) =

∑
3n
2 +1

l=0 alTl(x) and f2,n(x) = ∑∞
l= 3n

2 +2 alTl(x). Since h 3n
2 +1( f1,n, x) = f1,n(x), we only need

to compute h 3n
2 +1(Tl , x) for l ≥ 3n

2 + 2 to obtain h 3n
2 +1( f2,n, x).

Lemma 5. There exist positive constants K1 and K2 such that for every natural number l,

|h 3n
2 +1(Tl , x)| ≤ K1

(
ln n +

l ln n
n

)
+K2

l2

n2 .

Proof. We define a function F on T by F(z) = F(z) = zl+z−l

2 = Tl(x) and we compute the
interpolation polynomial H− 3n

2 , 3n
2 −1(F, γ∗

n, z), where

γ∗
n = (0, ıv3

√
1 − x2

3α3, · · · , ıvn−1

√
1 − x2

n−1αn−1, 0,−ıvn−1

√
1 − x2

n−1αn−1, · · · ,

−ıv3

√
1 − x2

3α3),

being x2j−1 =
α2j−1+α2j−1

2 and v2j−1 = T′
l (x2j−1).

Thus, we obtain that ıv2j−1

√
1 − x2

2j−1α2j−1 = l
2 α2j−1(α

l
2j−1 − α2j−1

l) and therefore

−ıv2j−1

√
1 − x2

2j−1α2j−1 = − l
2 α2j−1(α

l
2j−1 − α2j−1

l).

By applying (19) and taking into account that T′
l (1) = l2 and T′

l (−1) = (−1)l−1l2,
we have

h 3n
2 +1(Tl , x) = p 3n

2
(x) + (l2 − p′3n

2
(1))Q 3n

2 +1(x) + ((−1)l−1l2 − p′3n
2
(−1))R 3n

2 +1(x),

where p 3n
2
(x) = H− 3n

2 , 3n
2 −1(

zl+z−l

2 , γ∗
n, z) = HF− 3n

2 , 3n
2 −1(

zl+z−l

2 , z) +HD− 3n
2 , 3n

2 −1(z).

From Proposition 2, we know that |HF− 3n
2 , 3n

2 −1(
zl+z−l

2 , z)| ≤ L ln n. Furthermore, we

are in conditions to apply Proposition 4 since ω( zl+z−l

2 , δ) = o(| ln δ|−1) and ∥ γ∗
n ∥∞≤ l =

o( n
ln n ). Hence, |HD− 3n

2 , 3n
2 −1(z)| ≤

AD
B2

l ln n
n .

Therefore, |p 3n
2
(x)| = |H− 3n

2 , 3n
2 −1(

zl+z−l

2 , γ∗
n, z)| ≤ L ln n + AD

B2
l ln n

n .
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Now, we take into account that p′3n
2
(1) = H′′

− 3n
2 , 3n

2 −1

(
zl+z−l

2 , γ∗
n, 1
)

. By applying the

aforementioned Markov’s inequality twice, we obtain that

∥ H′′
− 3n

2 , 3n
2 −1

(
zl + z−l

2
, γ∗

n,

)
∥∞≤ 81n2

4
∥ H− 3n

2 , 3n
2 −1

(
zl + z−l

2
, γ∗

n,

)
∥∞≤

81n2

4

(
L ln n +

AD
B2

l ln n
n

)
,

and therefore |p′3n
2
(1)| ≤ 81n2

4 (L ln n + AD
B2

l ln n
n ). An analogous expression can be deduced

for |p′3n
2
(−1)|.

Hence,

|h 3n
2 +1(Tl , x)| ≤ L ln n +

AD
B2

l ln n
n

+
A2

B2

(
2l2 +

81n2

2

(
L ln n +

AD
B2

l ln n
n

))
1
n2 =(

1 +
81A2

2B2

)(
L ln n +

AD
B2

l ln n
n

)
+

2A2l2

B2n2 ≤ K1

(
ln n +

l ln n
n

)
+K2

l2

n2 ,

from which the result follows.

Proposition 8. Let f be a function defined on [−1, 1] by f (x) =
∞
∑

l=0
alTl(x) with |al | ≤ C

lt for

some positive constant C and a real number t such that t > 3. Then, h 3n
2 +1( f , x) converges to f

uniformly on [−1, 1] and the order of convergence is O
(

ln n
( 3n

2 )t−1

)
.

Proof. By using the decomposition of f , given at the beginning of this subsection, we have
| f (x)− h 3n

2 +1( f , x)| = | f2,n(x)− h 3n
2 +1( f2,n, x)|.

On the one hand, we have | f2,n(x)| ≤
∞
∑

l= 3n
2 +2

|al ||Tl(x)| ≤ C
∞
∑

l= 3n
2 +2

1
lt ≤ C 1

(t−1)
1

( 3n
2 )t−1 ,

which goes to 0 uniformly when n tends to ∞.
On the other hand, by applying Lemma 5, we obtain

|h 3n
2 +1( f2,n, x)| ≤

∞

∑
l= 3n

2 +2

|al ||h 3n
2 +1(Tl , x)| ≤ C

∞

∑
l= 3n

2 +2

1
lt |h 3n

2 +1(Tl , x)| ≤

C
∞

∑
l= 3n

2 +2

1
lt

(
K1

(
ln n +

l ln n
n

)
+K2

l2

n2

)
=

CK1 ln n
∞

∑
l= 3n

2 +2

1
lt + CK1

ln n
n

∞

∑
l= 3n

2 +2

1
lt−1 + CK2

1
n2

∞

∑
l= 3n

2 +2

1
lt−2 .

By using the fact that
∞
∑

l= 3n
2 +2

1
lt ≤ 1

t−1
1

( 3n
2 )t−1 again, we obtain

|h 3n
2 +1( f2,n, x)| ≤ CK1

t − 1
ln n

( 3n
2 )t−1

+
CK1

t − 2
ln n

n
1

( 3n
2 )t−2

+
CK2

t − 3
1
n2

1
( 3n

2 )t−3
,

which converges to 0 when n tends to ∞.

Finally, we treat the case of analytic functions.
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Proposition 9. Let f be an analytic function on [−1, 1] that can be written as f (x) = ∑∞
l=0 alTl(x),

where |al | ≤ Krl for some constant K > 0 and 0 < r < 1. Then, h 3n
2 +1( f , x) converges to f

uniformly on [−1, 1] and the order of convergence is O(r
3n
2 ln n).

Proof. We write f = f1,n + f2,n, with f1,n and f2,n having the expressions given at the
beginning of this subsection. Since h 3n

2 +1( f1,n, ) = f1,n, we have

| f − h 3n
2 +1( f , )| = | f2,n − h 3n

2 +1( f2,n, )| ≤ | f2,n|+ |h 3n
2 +1( f2,n, )|.

On the one hand,

| f2,n| = |
∞

∑
l= 3n

2 +2

alTl | ≤
∞

∑
l= 3n

2 +2

Krl = K
r

3n
2 +2

1 − r
.

On the other hand, by applying Lemma 5, we obtain

|h 3n
2 +1( f2,n, )| = |h 3n

2 +1(
∞

∑
l= 3n

2 +2

alTl , )| ≤
∞

∑
l= 3n

2 +2

|al ||h 3n
2 +1(Tl , )| ≤ K

∞

∑
l= 3n

2 +2

rl |h 3n
2 +1(Tl , )| ≤

K
∞

∑
l= 3n

2 +2

(
K1 ln n rl +K1l

ln n
n

rl +K2
l2

n2 rl
)
= KK1 ln n

r
3n
2 +2

1 − r
+

KK1
ln n

n

(
( 3n

2 + 2)r
3n
2 +2

1 − r
+

r
3n
2 +3

(1 − r)2

)
+

KK2

n2

(
( 3n

2 + 2)2

1 − r
+

(3n + 5)r − 3(n + 1)r2

(1 − r)3

)
r

3n
2 +2,

which goes to zero when n tends to ∞.

Remark 4. The last results are similar to those given in [14], where we use the Chebyshev–Lobatto
points as a nodal system. In that particular situation, the order of convergence is faster than those
obtained in the present propositions, Propositions 8 and 9.

2.7. Numerical Experiments

This subsection is devoted to presenting some graphs related to the application of the
method with the nodal systems dealt with. Actually, we have been interested in these types
of nodal systems for some years. Notice that the different theories of interpolation have
been developed based, in many cases, upon the roots of orthogonal polynomials; but this is
a quite theoretical situation outside the equispaced nodal systems on T (closely connected
with the four Chebyshev families on the bounded interval). Indeed, the separation property
stated in (7) was obtained as a result of the study of the roots of para-orthogonal polynomials
with respect to a measure that is an analytical modification of the Lebesgue measure on
the unit circle. But we can obtain a lot of nodal systems with the same property using
mechanical models.

So, all our examples are related to nodal systems on T satisfying the separation
property because of different origins and particular functions, which are interpolated using
barycentric expressions (5) and (6). We use distinct nodal systems presented in two different
papers, where they were studied in detail. We also use the parameters considered there.
Next, we list the nodal systems and the functions that will be employed.

1. Our first example uses a measuring instrument based on a Cardan device. The full
description of the nodal system and the proof that the system satisfies, (7), can be

found in [11]. We choose F(z) =
∞
∑

k=1

1
k6 (zk + z−k) as the test function.

2. Our second example uses a measuring device based on a countdown process. The
full description of the nodal system and the proof that it satisfies, (7), can be found

in [11]. As the test function, we take F(z) = z+ 1
z

2 sin 2
z+ 1

z
.
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3. The third example is based on the analysis of certain positions of a natural satellite
orbiting its planet. A detail description of the nodal system and the proof that (7) is
satisfied can be found in [11]. We choose F(z) = ez + e

1
z as the test function.

4. Finally, we present an example that uses a nodal system constituted by the roots of
a para-orthogonal polynomial with respect to a Bernstein–Szegő measure. The full
description of the nodal system and the proof that it satisfies, (7), can be found in [19].
We select a jump function as the function to be approximated through interpolation.

In order to obtain a simple graphical representation, we always use a real-valued
function F(z) with z = eiθ . All the graphs depict F(eiθ) and the real part of the interpo-
lation polynomial, the only component which has interest as a consequence of this piece
of work. Thus, when considering H− 3n

2 , 3n
2 −1(F, z) with z = eiθ , all the graphs represent

ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)). In this case, it is easy to prove that the original interpolation con-
ditions lead to zeroth-order contact points where the derivatives are not prescribed and
first-order contact points where the derivatives are prescribed. In some cases, we use the
Hermite–Fejér polynomial HF− 3n

2 , 3n
2 −1(F, eiθ). In a similar way, the original interpolation

conditions originate zeroth-order contact points where the derivatives are not prescribed
and zeroth-order contact points where null values for the derivatives are prescribed. At
these last nodes, ℜ(HF− 3n

2 , 3n
2 −1(F, eiθ)) will necessarily have a horizontal tangent.

Example 1. Our first example presents, in a graphical way, the peculiarities of H− 3n
2 , 3n

2 −1(F, z)
and HF− 3n

2 , 3n
2 −1(F, z). We use a nodal system with 2n nodes and n = 30. The objective function is

F(z) =
∞
∑

k=1

1
k6 (zk + z−k). In Figure 1 below, F(eiθ) is depicted in black and ℜ(H− 3n

2 , 3n
2 −1(F, eiθ)) in

red. We added the interpolation points in blue; notice that the region contains only 12 nodes. The only
change below is that we represent ℜ(HF− 3n

2 , 3n
2 −1(F, eiθ)) instead of ℜ(H− 3n

2 , 3n
2 −1(F, eiθ)).

The more relevant facts are

1. The set of contact points between the objetive function and ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)) is a mix of
zeroth-order contact points (even nodes, numbering in increasing order for the arguments,
that is, starting from θ = 0) and first-order contact points (odd nodes, numbering in the
same way).

2. In a similar way, the contact points between the function and the real part of the Hermite–Fejér
interpolant, which is ℜ(HF− 3n

2 , 3n
2 −1(F, eiθ)), are zero-order contact ones. But at the odd

nodes, it has a horizontal tangent.

Example 2. Our second example is included to show the convergence of the Hermite–Fejér inter-
polant HF− 3n

2 , 3n
2 −1(F, z) and the interpolant H− 3n

2 , 3n
2 −1(F, z), taking derivatives, and allowing

us to satisfy the hypothesis of Proposition 4. We employ a nodal system with 2n nodes and n = 100.

The objective function is F(z) = z+ 1
z

2 sin 2
z+ 1

z
, a quite variable function near π

2 and 3π
2 (±i). In

Figure 2 below, the function F(eiθ) with θ ∈ [π
2 − 0.3, π

2 + 0.3], which is close to π
2 , is depicted in

black. Furthermore, ℜ(HF− 3n
2 , 3n

2 −1(F, eiθ)) is depicted in red. We added the interpolation points

in blue. Below, we represent, in a greater interval, ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)) and the function for

θ ∈ [0, π
2 + 0.3]. Near π

2 and 3π
2 , we take null values for the derivatives and far from both points,

we use the derivatives of the function, allowing the hypothesis of Proposition 4 to be satisfied.
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Figure 1. Representation of F(z) =
∞
∑

k=1

1
k6 (zk + z−k) in black and the real parts of the interpolation

polynomials in red. Above with ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)) and below with ℜ(HF− 3n
2 , 3n

2 −1(F, eiθ)).

Example 3. This example is considered to represent the convergence of H− 3n
2 , 3n

2 −1(F, z) corre-
sponding to an analytical function on an open annulus containing T. We use a nodal system
with 2n nodes and n = 40. The objective function is F(z) = ez + e

1
z . In Figure 3, at the

top, the function F(eiθ) with θ ∈ [0, 2π] is depicted in black and ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)) is de-
picted in red. The relevant fact is that both functions are indistinguishable. In the middle, we
represent the difference between both functions to observe the accuracy. Finally, at the bottom,
− log10 |ℜ(H− 3n

2 , 3n
2 −1(F, eiθ))| is represented in black when this value is less than or equal to 10.5,

and in red for 10.5 or in other cases; this gives a clear idea of the order of the error.

Example 4. Our last example is included to present H− 3n
2 , 3n

2 −1(F, z) and HF− 3n
2 , 3n

2 −1(F, z)

when F(z) =
{

0 i f ℜ(z) ≥ 0
1 i f ℜ(z) < 0

is the interpolated function, in which case they are equal. We

use a 2n-node system with n = 400.
Note that the function is discontinuous and we have not developed a theory for these types of

functions. Observing Figure 4, the more relevant facts are

1. Far from ±i, we can intuit convergence.
2. Near ±i, a phenomenon similar to a Gibbs phenomenon with a singular aspect appears.
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Figure 2. Representation of F(z) = z+ 1
z

2 sin 2
z+ 1

z
in black along with the real parts of the interpolation

polynomials in red. Above, ℜ(HF− 3n
2 , 3n

2 −1(F, eiθ)). Below, ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)) using a subset of
derivatives.
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Figure 3. At the top, representation of F(eiθ) (where F(z) = ez + e
1
z ) in black together with

ℜ(H− 3n
2 , 3n

2 −1(F, eiθ)) in red. In the middle, representation of the difference between the functions. At

the bottom, in black, − log10 |ℜ(H− 3n
2 , 3n

2 −1(F, eiθ))| when this value is less than or equal to 10.5, and
in red for 10.5 or in other cases; this gives a clear idea of the order of the error.



Mathematics 2024, 12, 869 25 of 27

1 2 3 4 5 6

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

1.4 1.5 1.6 1.7

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

Figure 4. Above, representation of the jump function F(eiθ) in black together with
ℜ(H− 3n

2 , 3n
2 −1(F, eiθ)) in red. Below, detail near one jump.

3. Materials

To perform the numerical experiments included in this piece of work, we created four
variants of a common program (root1.nb, root2.nb, root3.nb, and root4.nb), which can be
obtained at the url https://github.com/eberriochoa/slhseparationproperties (accessed on
31 January 2024), which enlists different programs. The notation and formulae are included
in the paper. These files are the text of notebooks elaborated on with Mathematica® 14.0.
These programs (notebooks) should run correctly with recent previous versions and future
versions because we use only simple commands. It is possible that minimal adaptations
can be needed. Furthermore, we do not use compiled routines.

4. Discussion and Conclusions

In this paper, we have developed a theory working around two topics, namely, nodal
systems on the unit circle not related with measures and an interpolation method between
Lagrange and Hermite methods.

(i) Nodal systems on the unit circle not related with measures.
In [11] and previous papers, we established a new type of nodal system on the
unit circumference addressed to the classical interpolation methods of Lagrange and
Hermite. Indeed, we characterized the nodal arrays by satisfying only a property of
separation generalizing the uniform separation. With the goal of using these nodal
systems in a new method of interpolation introduced in [15], in the present work,
we carried out an important advance in the type of nodal system used. Although
this property of separation is the one satisfied by the nodal points corresponding

https://github.com/eberriochoa/slhseparationproperties
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to the roots of para-orthogonal polynomials with respect to measures in the Szegő
class with analytic extension outside the unit disk, we develop our work without
using any measure. Thus, our results are rather general. We also highlight the
importance of these nodal systems due to the large number of applications and their
relevance. Examples of nodal systems treated in this work appear in some situations
that are studied in Applied Physics such as celestial mechanics and mechanical
applications. Thus, our results allow us to interpolate functional values in applied
sciences. In addition, these systems originate others in the interval with identical
separation properties. Thus, the first important conclusion is that we can use different
interpolation methods based on nodal systems, which are not related with measures,
and we can use these methods confidently. This conclusion is fully supported in the
article and the previous cited papers.

(ii) An interpolation method between Lagrange and Hermite methods.
An important conclusion is related with the use or not of supplementary information
that we could have in some interpolation problems. At least, when the supplementary
information is related with derivatives in a relevant part of the nodal system regularly
distributed and we approximate or reconstruct a smooth function, we must conjecture
that we must use the information. Indeed, if we interpolate a smooth function by
using our nodal systems, the accuracy obtained using this intermediate method of
interpolation is better than that obtained using Lagrange interpolation. This conjecture
is supported in Sections 2.4 and 2.6 and we must point out that smooth functions are
in many cases the object of interpolation methods.

A future research direction could be the analysis of the Gibbs–Wilbraham phenomenon
associated with this intermediate interpolation method with our nodal system.
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