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Abstract: The Huxley equation, which is a nonlinear partial differential equation, is used to describe
the ionic mechanisms underlying the initiation and propagation of action potentials in the squid
giant axon. This equation, just like many other nonlinear equations, is often very difficult to analyze
because of the presence of the nonlinearity term, which is always very difficult to approximate.
This paper aims to design a reliable scheme that consists of a combination of the nonstandard finite
difference in time method, the Galerkin method and the compactness methods in space variables.
This method is used to show that the solution of the problem exists uniquely. The a priori estimate
from the existence process is applied to the scheme to show that the numerical solution from the
scheme converges optimally in the L2 as well as the H1 norms. We proceed to show that the scheme
preserves the decaying properties of the exact solution. Numerical experiments are introduced with a
chosen example to validate the proposed theory.

Keywords: Huxley equations; nonlinear equation; nonstandard finite difference method; Galerkin
method; optimal rate of convergence
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1. Introduction

Research involving the analysis of nonlinear problems, both in theory and numerically,
with meaning in real life, is nowadays attracting a lot of interest. This interest is increasing
and research is becoming more challenging since some of these problems often do not
have analytic solutions and therefore rely on numerical methods for their solutions. The
problems are mostly modeled as partial differential equations and occur in the fields of
physics, biology, medicine and engineering sciences, to mention a few. The nonlinearity
term in the problems often needs some special treatment to approximate it. The Huxley
equation originated from a description of the ionic mechanisms underlying the initiation
and propagation of action potentials in the squid giant axon in 1952 by Hodgkin and
Huxley. For more on this, see [1]. We will study the problem using one of the commonly
used models stated below. Consider a two-dimensional model of the Huxley equation
stated by

∂u
∂t

− ∆u + u(u − α)(u − 1) = 0, on Ω × [0, T) (1)

u(x, t) = 0 on ∂Ω × [0, T), (2)

u(x, 0) = u0(x) on Ω, (3)
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where x = (x1, x2) ∈ Ω ⊂ R2 and α is an external parameter which plays a very dominant
role in the fast dynamics of the model. The above model is chosen because of the significance
that α ∈ (0, 1) plays in the model. The significance of α in the model has led to a wide
range of applications, such as diffusion processes in cardiac/neuron dynamics, active pulse
transmission lines, simulations of the nerve axon, etc., see [2–4] for more. Based on the
control of the parameter α, the qualitative electro-physiological functioning of the nerve is
maintained and hence plays a key role in our study. For more on this, see [1,2,5,6].

Many powerful mathematical techniques have been used in recent years by researchers
to solve differential equations. As a result of continuous research efforts, a great number
of efficient methods for solving differential equations have been developed with various
forms of discretizations [7–11]. Another efficient technique is the Adomian decomposition
method (ADM) found in [3,12], which yields analytic solutions in the form of rapidly
convergent infinite power series with easily computable terms. This method requires
no transformation, linearization, perturbation or discretization. The method has been
applied to various scientific models, such as in [13]. It was followed by the variational
method proposed by Batiba et al. in [5]. This method can be used to obtain numerical
solutions of problems such as the one under investigation. Other methods can be found in
studies carried out by Hashemi et al. [14], who solved equations through the homotopy
perturbation method and Adomian decomposition method, to mention just a few. One
must not forget the high-order finite difference methods for solving equations proposed by
Sari et al. in [15].

Apart from the contributions from the above renowned researchers, we exploit and
present in this article an alternative efficient numerical method. This different method
consists of coupling the nonstandard finite difference method in time and the Galerkin
method together with the compactness method in space variables, denoted as NSFD-GM.
With this method, we will start with the help of the Galerkin and compactness methods to
show that the Huxley equation has a solution that exists uniquely in the space

L∞
[
(0, T); L2(Ω)

]
∩ L2

[
(0, t); H1

0(Ω)
]
∩ L4

[
(0, T); L4(Ω)

]
.

With the introduction of this space for the existence of the continuous solution u, we
proceed to design the NSFD-GM scheme and use the a priori estimate from this process
to show that the scheme is stable. We further show that the aforementioned scheme
converges optimally in the L2 and the H1 norms. We proceed to show that the numerical
solution obtained from the scheme replicates the decaying properties of the exact solution.
Furthermore, we conclude with the help of an example and some numerical experiments
that the theory is validated. This method is introduced purely because wherever the scheme
from this method has been used, the numerical solution of the scheme always replicates
the qualitative properties of the exact solution. The second reason for the usage of this
method is its performance. For example, where it has been used in the past to solve similar
problems, it has, in many cases, always performed better than the traditional schemes
designed from the Euler method, see [16] for more. The Huxley equation to the best of the
authors’ knowledge has never been analyzed using the above method.

Other coupling techniques could be used to analyze the problem under investigation.
These methods involve the ADI method. For more on this, see [17,18]. A similar approach
was used for the first time to solve a linear heat equation in a non-smooth domain in [16] and
also to obtain the optimal rate of convergence of the solution of the wave equation in [19]. The
technique was recently extended to solve nonlinear problems such as in [20,21]. The NSFD
method was proposed by Mickens in 1994 [22] and major contributions to the creation of the
NSFD method were made by Anguelov et al. in [23,24] and Lubuma et al. in [25,26]. It has been
extensively applied to a variety of concrete problems in physics, epidemiology, engineering,
business and biological sciences, to mention a few. For more on the application of the technique,
see [22,26–28]. As regards the comparison of the standard and nonstandard finite difference
methods, we refer to [22]. We also note a recent comparative study of numerical methods
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for the related Burgers–Huxley Equation [29,30], which also provides further motivation for
exploring alternative reliable numerical schemes.

Starting from Section 2, this paper is organized as follows: In Section 2, we state the
notation and tools to be used to address some of the important concepts of this work. We
proceed in Section 3 to address the existence and uniqueness of the solution of the problem
using the Galerkin method combined with the compactness method. In Section 4, we further
design the numerical scheme NSFD-GM and show that this scheme converges optimally
in specified norms and next show that the scheme replicates the decaying properties of
the exact solution. Section 5 is then followed by some numerical experiments with the
help of an example to validate the aforementioned theory. Finally, Section 6 addresses the
conclusion and further remarks on the findings of the paper.

2. Notation and Preliminaries

In this section, we will set aside various relevant notations and facts to be used in
the analysis of the problem under investigation. Besides these assembling of facts, we
will introduce some fundamental function spaces where this analysis will be carried out.
Among these spaces will be the D(Ω) space, which is defined as a space of infinitely
differentiable functions with compact support on Ω. This space is followed by the space
D′(Ω) that denotes the dual space of D(Ω). This is often called the space of distributions
on Ω. We also denote by ⟨·, ·⟩ the duality between D′(Ω) and D(Ω), and remark that if v is
a locally integrable function, then v can be identified with a distribution by

⟨v, ρ⟩ :=
∫

Ω
v(x)ρ(x)dx, ∀ρ ∈ D(Ω). (4)

We proceed by introducing the Lp(Ω) spaces defined for 1 < p ≤ ∞ by

Lp(Ω) :=

{
v :
(∫

Ω
|v(x)|pdx

)1/p
< ∞

}
.

This space is a Banach space with the norm defined by

∥v∥Lp(Ω) =

(∫
Ω
|v(x)|pdx

)1/p
. (5)

The above space is followed by the definition of the Sobolev spaces stated for m ∈ N
and p ∈ R with 1 < p ≤ ∞ by

Wm,p(Ω) := {vs. ∈ Lp(Ω) : Dαvs. ∈ Lp(Ω), for all multi index |α| ≤ m}. (6)

This is also a Banach space with the norm

∥v∥m,p,Ω =

 ∑
|α|≤m

∥Dαv∥Lp(Ω)

1/p

, p < ∞ (7)

and

∥v∥m,∞,Ω = sup
|α|≤m

(
sup
x∈Ω

ess|Dαv(x)|
)

, p = ∞. (8)

In view of Equation (6), if p is taken as 2, then Wm,2(Ω) becomes the usual Sobolev space
Hm(Ω). For more information on these types of spaces, see [31].

In the assembling of tools, we introduce another frequently used space X, called the
Hilbert space. According to Lions and Magenes [31], this space is defined as the space of
squared integrable functions taking values from (0, T) to X and denoted by Hm[(0, T); X].
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In view of the above reference [31], this space is generally used in conjunction with the
Sobolev space Hm(Ω). Below is the norm of said space.

∥v∥Hm [(0,T);X] :=

 ∑
|α|≤m

∫ T

0
∥Dαv(x)∥2

Xdt

1/2

. (9)

In practice, X will either be an Lp or Wm,p space and in our paper, in particular,
X = L2, L4, H1

0 . In summary, it is of great help to mention that there are still many other tools
such as important inequalities, which include the Hölder, Gronwall’s, Young’s, Poincaré
and Cauchy–Schwarz inequalities to mention a few; details of these sets of tools can be
found in some standard textbooks when needed [31–35]. Since our problem requires
numerical solutions, we need a numerical framework to analyze our discrete problem. For
this reason, we introduce a regular family of triangulations of the domain Ω denoted by
Jh consisting of compatible triangles J of size hJ < h, see [33] for more details. For each
mesh of size Jh, we associate the finite element space V of continuous piecewise linear
functions that are zero on the endpoints defined as follows.

Vh :=
{

vh ∈ C0(Ω̄) : vh|∂Ω = 0, vh|J ∈ P1, ∀J ∈ Jh

}
(10)

where P1 is the space of the polynomial of degree less than or equal to 1. Vh also will be a
finite-dimensional space which is contained in the Sobolev space Hm

0 (Ω). If {Pj}n
j=1 is the

interior of endpoints of Jh, then any function in Vh is uniquely determined by its values at
the point Pj.

3. The Solution of the Problem

This section is devoted to showing that the solution of the Huxley Equations (1)–(3)
exists uniquely in the space L∞[(0, T); L2(Ω)

]
∩ L2[(0, T); H1

0(Ω)
]
∩ L4[(0, T); L4(Ω)

]
. This

goal is achieved via the Galerkin and the compactness methods by using the variational
or weak formulation of Equations (1)–(3) as follows: find u(x, t) ∈ L∞[(0, T); L2(Ω)] ∩
L2[(0, T), H1

0(Ω)] ∩ L4[(0, T); L4(Ω)] such that for all u0 and v ∈ H1
0(Ω), we have〈

∂u
∂t

, v
〉
+ ⟨∇u,∇vs.⟩+

〈
(u3 − (α + 1)u2 + αu), v

〉
= 0 (11)

⟨u(x, 0), v⟩ = ⟨u0, v⟩. (12)

for all v ∈ H1
0(Ω). With the weak problem (11) and (12) in place, we introduce the following

orthonormal basis L2 given by {e1, e2, · · · , em} ⊂ H1
0 ∩ H2(Ω), where m ∈ N. We proceed to

introduce the test functions v spanned by these basis functions as v ∈ span{e1, e2, · · · , em}
to approximate the solution u denoted and defined by

um =
m

∑
i=1

γi(t)ei. (13)

With the above approximate solution (13), we apply the Galerkin approximation
{um}, m ∈ N on the Huxley Equations (1)–(3) that satisfies the following equations

∂um

∂t
− ∆um + Pm

(
u3

m − (α + 1)u2
m + αum

)
= 0, on Ω × (0, T) (14)

um(x, t) = 0 on ∂Ω × (0, T) (15)
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u(x, 0) = Pmu0 on Ω (16)

where the operator Pm denotes the orthogonal projection

Pm : H−1(Ω) −→ Vm ⊂ H−1(Ω). (17)

i.e., the operator is extended from L2(Ω) onto H−1(Ω) and defined on H−1(Ω) by

Pm

(
∑

k∈m
γk

m(t)uk

)
=

m

∑
k=1

γk
m(t)uk. (18)

In addition to this, Equations (14)–(16) should be satisfied with the discrete solutions
taking values in the finite dimensional subspace Vm ∈ H1

0(Ω) defined by (10).
The connection between the Huxley Equations (1)–(3) and the system of

Equations (14)–(16) above validates the fact that the solution of these problems is equiva-
lent, as seen classically in Temam 1997 [36] and Evans 1998 [34]. This connection provides
the framework to show that the solution of the Huxley equation exists uniquely. We achieve
this thanks to the following Theorem 1 for (14)–(16):

Theorem 1. Given the initial solution u0 ∈ L2, u|∂Ω = 0, there exists a unique solution of the
Huxley Equations (1)–(3) u ∈ L∞[(0, T); L2(Ω)

]
∩ L2[(0, T); H1

0(Ω)
]
∩ L4[(0, T); L4(Ω)

]
and

∂u
∂t ∈ L2[(0, T); H−1(Ω)

]
such that Equations (11) and (12) are satisfied for α ∈ (0, 1) .

The proof of the above theorem will be summarized in the following three subsections:
Sections 3.1–3.3. In Section 3.1, we address the uniform estimates of the solution, followed
by covering the compactness method and passage to the limit in Section 3.2, and lastly, in
Section 3.3, the uniqueness of the solution of the problem will be addressed.

3.1. Uniform Estimates of the Solution of the Problem

The above uniform estimate of the solution of the problem is addressed first here, and
all constants independent of m will be denoted by C. With this, we proceed by asserting for
simplicity and notational sake that if um is replaced by u, we can show that um is uniformly
bounded in the space. The above claim is shown by setting v = u in Equation (11) to have

1
2

d
dt
∥u∥2

L2 + ∥∇u∥2
L2 +

∫
Ω

(
u4 − (α + 1)u3 + αu2

)
dx = 0. (19)

The third term of the left-hand side of Equation (19) is bounded. That is,∫
Ω

(
u4 − (α + 1)u3 + αu2

)
dx ≤ ∥u∥4

L4 + α∥u∥2
L2 −

∫
Ω
(α + 1)u3dx

from which the third term on the right-hand side and the Young’s inequality for ϵ > 0 yield

(|α + 1|)1/4∥u∥3
L4 ≤ 3ϵ

4
∥u∥4

L4 +
1

ϵ16/3 (|α + 1|)1/4|Ω|.

Reintroducing the above again into (19), we obtain the following.

1
2

d
dt
∥u∥2

L2 + ∥∇u∥2
L2 +

1
2
∥u∥4

L4 ≤ α∥u∥2
L2 +

1
(3/2)16/3 (α + 1)4|Ω| (20)

where we have chosen ϵ such that 3
4 ϵ = 1

4 and hence ϵ = 2/3. Thus, in view of (20), we
have

1
2

d
dt
∥u∥2

L2 + ∥∇u∥2
L2 +

1
2
∥u∥4

L4 ≤ α∥u∥2
L2 + C(α, Ω) (21)
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where C(α, Ω) = ( 1
(3/2)16/3 (α + 1)4|Ω|. Integrating both sides of (21) over the interval [0, T],

we have

∥u(t)∥2
L2 +

∫ t

0

[
2∥∇u∥2

L2 + ∥u(s)∥4
L4

]
ds ≤ ∥u0∥2

L2 +
∫ t

0
2α∥u(s)∥2

L2 ds + 2C(α, Ω)t. (22)

Keeping only the term ∥u(t)∥2
L2 on the left-hand side of (22) and applying Gronwall’s

inequality yield

∥u(t)∥2
L2 ≤ C

(
∥u0∥2

L2 + C(α, Ω)T
)

eT . (23)

and hence ∫ t

0

[
2∥∇u∥2

L2 + ∥u(s)∥4
L4

]
ds ≤ C

(
∥u0∥2

L2 , C(α, Ω), T
)

. (24)

after reintroducing (23) into (22). In view of (23) and (24), this implies that the solution u(t)
of Equations (11) and (12) is uniformly bounded in the space

L∞
[
(0, T); L2(Ω)

]
∩ L2

[
(0, T); H1

0(Ω)
]
∩ L4

[
(0, T); L4(Ω)

]
.

as required. What remains to be shown now is the boundedness of ∂u
∂t . This can be shown

given the left-hand side of (23) as follows.

∫ T

0

∣∣∣∣〈∂u
∂t

, vs.
〉∣∣∣∣2dx ≤

∫ T

0
|∇u|2L2 |∇v|2L2 dx +

∫ T

0

∣∣∣〈(u3 − (α + 1)u2 + αu), vs.
〉∣∣∣dx (25)

in which we bound the first and the second terms to give

∫ T

0

∣∣∣∣〈∂u
∂t

, vs.
〉∣∣∣∣2dx ≤

∫ T

0
|∇u|2L2 |∇v|2L2 ds + sup

0≤t≤T
∥u∥3

L4∥vs.∥2
H1

+ (α + 1) sup
0≤t≤T

∥u∥2
L4∥v∥2

H1 + α sup
0≤t≤T

∥u∥2
L2∥v∥H1 (26)

after using the Sobolev embedding Theorem on L4 ⊂ H1 and using the fact that the
suprema of u and ∇u are finite in view of (23) and (24). In view of (26), we conclude that∫ T

0

∥∥∥∥∂u(s)
∂t

∥∥∥∥
H−1

ds ≤ C (27)

after using the fact that ∥w∥H−1 = supv∈H1
0
|⟨w, v⟩| with ∥v∥H1

0
≤ 1 and inequality (24).

3.2. Compactness Method and Passage to the Limit

The analysis in Section 3.1, where we addressed the boundedness of the approximate
solution {um}, m ∈ N, leads us in this subsection to show that the said approximate
solution converges strongly to the solution u. This is achieved first by recalling that we
have obtained the following approximate solution um defined on [0, T]:

um is uniformly bounded in L∞
[
(0, T); L2(Ω)

]
um is uniformly bounded in L2

[
(0, T); H1

0(Ω)
]

um is uniformly bounded in L4
[
(0, T); L4(Ω)

]
∂um

∂t
is uniformly bounded in L2

[
(0, T); H−1.(Ω)

]
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In view of the following embedding

H1
0(Ω) ↪→ L2(Ω) ↪→ H−1(Ω)

by Banach–Alaoglu’s Theorem in [37], there exists a subsequence of um still denoted by um
such that

um −→ u weakly star in L∞
[
(0, T); L2(Ω)

]
um −→ u weakly in L2

[
(0, T); H1

0(Ω)
]

um −→ u weakly in L4
[
(0, T); L4(Ω)

]
∂um

∂t
−→ ∂u

∂t
weakly in L2

[
(0, T); H−1.(Ω)

]
and in view of the following Theorem 2 found in [38], um −→ u strongly in L2[(0, T); L2(Ω)

]
.

Theorem 2. Suppose that X ↪→ Y ↪→ Z are Banach spaces where X, Z are reflexive and X is
compactly embedded in Y. Let 1 < p < ∞. If the functions wN : (0, T) −→ X are such that {wN}
is uniformly bounded in L2[(0, T); X] and

{
∂u
∂t

}
is uniformly bounded in Lp[(0, T); Z], then there

is a subsequence that converges strongly in L2[(0, T); Y].

What remains to be shown under this subsection is that the solution satisfies the
boundary conditions in a distribution sense, and more so that the solution u satisfies
Equation (12). To show this, it suffices to introduce another test function, say ψ, which is
continuously differentiable on [0, T] with values ψ(0) = 1 and ψ(T) = 0. With these claims
in place, we proceed according to the variational Formulation (11) with function ψ to obtain〈

∂um

∂t
, v
〉

ψ(t) + ⟨∇u,∇v⟩ψ(t) +
〈
(u3

m − (α + 1)u2
m + αum), vs.

〉
ψ(t) = 0. (28)

Integrating (28) by parts over the interval [0, T] yields

−
∫ T

0

〈
∂um

∂t
, ψ(t)

〉
vs.dt +

∫ T

0
⟨∇u,∇vs.ψ(t)⟩dt +

∫ T

0

〈
(u3

m − (α + 1)u2
m + αum), vs.ψ(t)

〉
dt

= ⟨u(0), v⟩ψ(t). (29)

In view of Theorem 2, um(t) is uniformly bounded, which, by passing to the limit and
according to (29), yields

−
∫ T

0

〈
∂u
∂t

, ψ(t)
〉

vs.dt +
∫ T

0
⟨∇u,∇vψ(t)⟩dt +

∫ T

0

〈
(u3 − (α + 1)u2 + αu), vs.ψ(t)

〉
dt

= ⟨u(0), v⟩ψ(0). (30)

This, in particular, holds for ψ(t) ∈ D(0, T), which means therefore that u from
Equation (30) is satisfied in the distributional sense. Comparing Equations (29) and (30)
yields the following.

⟨u(0)− u0, v⟩ψ(0) = 0

and since ψ(0) = 1, we then have

⟨u(0)− u0, v⟩ = 0 ∀vs. ∈ H1
0(Ω)

which is Equation (12) as required.
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3.3. Uniqueness of the Solution

We devote this subsection to the uniqueness of the solution of the Huxley
Equations (1) and (3). We achieve this by letting u1 and u2 be the solution such that
u := u1 − u2. Since the solution u satisfies (1) and (3), where u|∂Ω = 0, then u(0) =
u1(0)− u0(0) = 0. In view of this, we proceed using Equation (1) to obtain

∂u
∂t

− ∆u + (u3
1 − (α + 1)u2

1 + αu1)−−(u3
2 − (α + 1)u2

2 + αu2) = 0. (31)

If (31) is multiplied by u and integrated over t, we get

1
2

d
dt
∥u∥2

L2 + ∥∇u∥2
L2 = −

∫
Ω

u2
(

α(u2
1 + u1u2 + u2

2) + (α + 1)(u1 + u2)
)

dx − α
∫

Ω
u2dx. (32)

Estimating the right-hand side of (32) using the Cauchy–Schwartz inequality and the
fact that H1 ⊂ L∞ yields∫

Ω

∣∣∣u2
(

u2
1 + u1u2 + u2

1

)
− u2

∣∣∣dx

≤
∫

Ω
|u|2|u2

1 + u1u2 + u2
2 + (α + 1)(u1 + u2)|dx + α

∫
Ω
|u|2

≤ ∥u∥2
L2

(
|u1|2H1 + |u1|H1 |u|H1 + |u1|2H1 + (α + 1)(|u1|H1 + |u2|H1) + α

)
. (33)

Re-introducing (33) back into (32), we obtain

1
2

d
dt
∥u∥2

L2 + ∥∇u∥2
L2 ≤ ∥u∥2

L2

(
|u1|2H1 + |u1|H1 |u|H1 + |u1|2H1 + (α + 1)(|u1|H1 + |u2|H1) + α

)
from which we obtain

1
2

d
dt
∥u∥2

L2 + ∥∇u∥2
L2 ≤ C∥u∥2

L2Y (34)

where Y = |u1|2H1 + |u1|H1 |u|H1 + |u1|2H1 + (α + 1)(|u1|H1 + |u2|H1) + α. Integrating (34)
over the time interval [0, T] and keeping only the term ∥∥2

L2 on the left-hand side, we obtain

∥u(t)∥2
L2 ≤ ∥u(0)∥2

L2 e
∫ T

0 Y(t)dt = 0, ∀t ≥ 0

after applying the Gronwall inequality. Hence, uniqueness is shown as required.

4. The Design of the NSFD-GM Scheme

Apart from the analytic solution of the Huxley equation addressed in Section 3 above,
we devote this section to the design of the numerical reliable NSFD-GM scheme mentioned
in Section 1. With this scheme, we will show that the numerical solution of the scheme
is stable. With the stability of the scheme, we further show that the scheme converges
optimally in the L2 and in the H1 norms. Finally, we show that the scheme preserves the
decaying properties of the exact solution. To achieve all the above-mentioned objectives, we
will need to introduce the numerical framework. This is achieved by stating the following
discrete version of the variational form (11) and (12): find uh : [0, T] −→ Vh, the discrete
solution, such that〈

∂uh
∂t

, vh

〉
+ ⟨∇u,∇v⟩+

〈
(u3

h − (α + 1)u2
h + αuh), vh

〉
= 0 (35)

⟨uh(x, 0), vh⟩ = ⟨Phu0, vh⟩, ∀ vh ∈ Vh. (36)
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where Ph is the orthogonal projection onto Vh.
The above framework leads to another framework geared toward assisting us with the

analysis of the convergence and error of the discrete problem (35) and (36) to the analytic
problem (11) and (12). We proceed in this present framework by assuming the regularity of
the solution u of (11) and (12) and the fact that the subspace Vh ⊂ H1

0(Ω) is due to [39]. In
addition, we will also assume that Ph with respect to the Dirichlet linear product ⟨∇u,∇v⟩
satisfies the inequality

∥Phv − v∥ ≤ Ch2∥v∥H2 , for v ∈ H1
0 ∩ H2, (37)

where ∥ · ∥ is the usual norm in L2, and H2 is a standard Sobolev space with some constant
C. It is also well known in view of [40] that if u is sufficiently smooth on a closed time
interval [0, T] and the discrete initial data are suitably chosen, then

|u(t)− uh(t)| ≤ C1(u, C2, C3)h2 for t ∈ [0, T] (38)

where C2 is the bound on u and ∇u and C3 is the constant in (37).
With the above numerical framework in place, we proceed to address the aforemen-

tioned objectives. We consider the following discretization over the time interval [0, T]
by letting the time step size tn = n∆t for n = 0, 1, 2, · · · , N. This is followed by finding
the NSFD-GM approximate solution {Un

h } such that Un
h ≈ un

h at each discrete time tn in
the space Vh for sufficiently smooth functions. This approximation allows us to define the
NSFD-GM scheme as that which consists of finding a fully discrete solution of the Huxley
equation Un

h ∈ Vh for vh ∈ Vh such that for all vh ∈ Vh ⊂ H1
0(Ω), we have

⟨δnUn
h (t), vh⟩+ ⟨∇Un

h ,∇vh⟩+
〈(

U3n
h − (α + 1)U2n

h + αUn
h

)
, vh

〉
= 0, (39)

⟨Un
h , vh⟩ = ⟨Phu0, vh⟩, (40)

where

δnUn
h =

Un
h − Un−1

h
ϕ(∆t)

and ϕ(∆t) =
eλ∆t − 1

λ
. (41)

The above different framework leads to the following clarifications:

1. That the special and complicated function ϕ(∆t) is in such a way that

0 < ϕ(∆t) < 1 for n = 1, 2, 3, · · · , N (42)

2. That if the nonlinear function U3n
h − (α + 1)U2n

h + αUn
h is made very small that its

effect is negligible, or even zero, then the scheme (39) will coincide to the exact scheme〈
Un+1

h − Un
h

ϕ(∆t)
, vh

〉
+ ⟨∇Un

h ,∇vh⟩ = 0 (43)

which, according to Mickens [22], replicates the decaying to zero [21], which is the main
feature of the exact solution (1)–(3). The numerical framework described above permits the
introduction of the stability and the convergence of the scheme. These will be addressed
in two subsections, which will be Sections 4.1 and 4.2, respectively. Before these analyses
are performed, we will need to state without proof the following result as seen in [41] (for
details, see
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Lemma 1. Let an, bn be two positive series satisfying

an+1 − an

ϕ(∆t)
+ αan+1 < bn

where bn < b, ∀ n ≥ 0 and 0 < ϕ(∆t) < 1 for each ∆t. Then,

an ≤ 1
1 + ϕ(∆t α)n a0 +

1 + ϕ(∆t) α

α

(
1 − 1

(1 + ϕ(∆t) α)n+1

)
b, ∀ n ≥ 0

provided ϕ(∆t), 1 + ϕ(∆t) > 0.

For the full proof of the above lemma, we refer to paper [21], pages 1164–1165.

4.1. Stability of the NSFD-GM Scheme

This subsection is preserved for the analysis of the stability of the scheme (35) and (36).
In this analysis, we show that the numerical solution from the NSFD-GM scheme is uni-
formly bounded as in the following Theorem 3.

Theorem 3. Assume that the solution of the Huxley equation u in Equations (11) and (12) is
regular. Then, given U0

h ∈ Vh, we show that the numerical solution Un
h (t) of the NSFD-GM

scheme (39) and (40) remains bounded in the following sense

|U0
h |

2 ≤ |U0
h |

2 + 4ϕ(∆t)C(α, Ω), (44)

N

∑
n=1

|Un − Un−1
h |2 ≤ |U0

h |
2 + 4ϕ(∆t)C(α, Ω). (45)

Proof. We proceed to prove the above Theorem 3 by setting vh = Un
h in Equation (39) to

produce the following result:〈
Un

h − Un−1
h , Un

h

〉
+ 2ϕ(∆t)∥∇Un

h ∥
2
L2 + ϕ(∆t)∥Un

h ∥
4
L4 ≤ 2ϕ(∆t)∥Un

h ∥
2
L2

+ 2ϕ(∆t)
1

(3/2)16/3 (α + 1)4|Ω|

in which we have used the inequalities (20) and Equation (41). In view of this, we have the
following:〈

Un
h − Un−1

h , Un
h

〉
+ 2ϕ(∆t)∥∇Un

h ∥
2
L2 + 2ϕ(∆t)∥Un

h ∥
4
L4 ≤ 2ϕ(∆t)∥Un

h ∥
2
L2 + 2C(α, Ω) (46)

where C(α, Ω) = 1
(3/2)16/3 (α + 1)4|Ω|. It is well known in view of (46) that the first term of

the left-hand side is given by〈
Un

h (t)− Un−1
h (t), Un

h (t)
〉
=

1
2
|Un

h |
2 − 1

2
|Un−1

h |2 + 1
2
|Un

h − Un−1
h |2.

Re-introducing this back into (46) with little calculation yields

|Un
h |

2 − |Un−1
h |2 + |Un

h − Un−1
h |2 + 4ϕ(∆t)∥∇Un

h ∥
2
L2 + 2ϕ(∆t)∥Un

h ∥
4
L4

≤ 4αϕ(∆t)∥Un
h ∥

2
L2 + 4ϕ(∆t)C(α, Ω) (47)
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Summing the above inequality (47) for n = 1, 2, 3, · · · , N, we obtain

|Un
h |

2 +
N

∑
n=1

|Un
h − Un−1

h |2 + 4ϕ(∆t)
N

∑
n=1

∥∇Un
h ∥

2
L2 + 2ϕ(∆t)

N

∑
n=1

∥Un
h ∥

4
L4

≤ 4αϕ(∆t)
N

∑
n=1

∥Un
h ∥

2
L2 + |U0

h |
2 + 4ϕ(∆t)C(α, Ω) (48)

In view of Equations (23) and (24), we can directly read inequalities (44) and (45) from
inequality (48) as required.

4.2. Convergence of the NSFD-GM Scheme

An analysis of the stability of the NSFD-GM scheme of the Huxley equation is given
in this subsection. We will proceed first by showing that the stable numerical solution of
the scheme converges and attains a rate that is optimal in the L2 and H1 norms. Secondly,
we will prove that the numerical scheme preserves the decaying properties of the exact
solution. This is achieved first by stating without proof the following results as seen in
Shen [41].

Lemma 2. Let ∆t, γ and ak, bk, dk, γk for the integer k ≥ 0 be non-negative numbers such that

aJ +
J

∑
k=0

bk∆t ≤
J

∑
k=0

dkaJ∆t +
J

∑
k=0

γk∆t + γ, ∀ J ≥ 0. (49)

Suppose that

dk∆t < 1 and set σk = (1 − dk∆t)−1, ∀ k ≥ 0. (50)

Then, we have

aJ +
J

∑
k=0

bk∆t ≤ exp

(
J

∑
k=0

dk∆t

)(
J

∑
k=0

γk∆t + γ

)
∀ J ≥ 0. (51)

In view of Lemma 2 and this framework, we prove the following error estimate in
Theorem 4.

Theorem 4. Assume that Φk is a non-negative number and that the continuous and discrete
solutions of the Huxley Equations (11), (12), (39) and (40), respectively, exist and are unique
together with ∂2u

∂t2 ∈ L2[(0, T); H−1(Ω)] satisfying

Φkϕ(∆t) < 1 and σk = (1 − Φkϕ(∆t))−1, ∀ k ≥ 0.

Then, we have

∥u(tJ)− Uh(tJ)∥+ ϕ(∆t)
J

∑
k=0

∣∣∣∣ ∂

∂x
(u(tJ)− Uh(tJ))

∣∣∣∣2 ≤ C(tJ)(ϕ(∆t)), ∀J ≥ 0. (52)

Proof. We prove the above theorem by using the implicit nonstandard finite difference in
time as follows:

Un+1 − Un

ϕ(∆t)
= ∆Un+1 −

(
U3

n+1 − (α + 1)U2
n+1 + αUn+1

)
. (53)

We proceed by using the nonstandard Taylor’s integral theorem on discrete Equation (1)
as follows:
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u(tn+1)− u(tn)

ϕ(∆t)
=

∂u(tn+1)

∂t
− 1

2

∫ tn+1

tn

∂2u(t)
∂t2 (tn+1 − t)dt,

= ∆u(tn+1)−
(

u3(tn+1)−−(α + 1)u2(tn+1) + αu(tn+1)
)

− 1
2

∫ tn+1

tn

∂2u(t)
∂t2 (tn+1 − t)dt. (54)

Combining (53) and (54), taking note that Θn = u(tn)− Un, we have

1
ϕ(∆t)

[Θn+1 − Θn, Θn+1] = −∥∇Θn+1∥2
L2 −

1
2

∫ tn+1

tn

〈
∂2u(t)

∂t2 , Θn+1

〉
(t − tn+1)dt

+
〈(

u3(n+1) − (α + 1)u2(n+1) + αun+1
)
−
(

U3
n+1 − (α + 1)U2

n+1 + αUn+1

)
, Θn+1

〉
(55)

after setting un+1 = u(tn+1) and multiplying (53) by Θn+1, where Θn+1 = u(tn+1)− Un+1.
Estimating the third term of the right-hand side of (55) yields

∫
Ω

∣∣∣((u3(n+1) − (α + 1)u2(n+1) + αun+1
)
−
(

U3
n+1 − (α + 1)U2

n+1 + αUn+1

))
, Θn+1

∣∣∣dt

≤
∫

Ω
|Θn+1|

∣∣∣(|un+1|2 + |un+1||Un+1|+ |Un+1|2 + (α + 1)
(
|un+1|+ |Un+1|

)
+ α

)∣∣∣dt

≤ ∥Θn+1∥2
L2

(
|un+1|4 + ∥un+1∥2

H1 |Un+1∥2
H1 + ∥Un+1∥2

H1

+ (α + 1)
(
∥un+1∥2

H1 + ∥Un+1∥2
H1

)
+ α

)
(56)

after using the Cauchy–Schwartz inequality on the right-hand side of (56) and the fact
that H1 ⊂ L∞ and un+1, Un+1 ∈ L2[(0, T); H1

0(Ω)
]
. Estimating the second term of the

right-hand side of (55) using Hölder, Poincaré and Young’s inequalities with some calcula-
tions yields

∣∣∣∣12
∫ tn+1

tn

〈
∂2u(t)

∂t2 , Θn+1

〉
(t − tn+1) dt

∣∣∣∣ ≤ C
2ϕ(∆t)

∣∣∣∣∂Θn+1

∂x

∣∣∣∣
L2

∫ tn+1

tn

∣∣∣∣∂2u
∂t2

∣∣∣∣2
H−1

|t − tn+1| dt

≤ C(ϕ(∆t))1/2

(∫ tn+1

tn

∣∣∣∣∂2u
∂t2

∣∣∣∣2
H−1

dt

)1/2

|∇Θn+1|L2

≤ 1
2
∥∇Θn+1∥2

L2 + Cϕ(∆t)
∫ tn+1

tn

∣∣∣∣∂2u
∂t2

∣∣∣∣2
H−1

dt. (57)

Re-introducing (56) and (57) back into (55) and using the fact that

⟨Θn+1 − Θn, Θn+1⟩ =
1
2

[
|Θn+1|2L2 − |Θn|2L2 + |Θn+1 − Θn|2L2

]
we have after some manipulations:

|Θn+1|2L2 − |Θn|2L2 + |Θn+1 − Θn|2L2 + ϕ(∆t)∥∇Θn+1∥2
L2 ≤ C∥Θn+1∥2

L2 Φn+1

+ Cϕ(∆t)Ψn+1 (58)

where
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Φn+1 = |un+1|4 + ∥un+1∥2
H1 |Un+1∥2

H1 + ∥Un+1∥2
H1 + (α + 1)

(
∥un+1∥2

H1 + ∥Un+1∥2
H1

)
+ α

and

Ψn+1 = ϕ(∆t)
∫ tn+1

tn

∣∣∣∣∂2u
∂t2

∣∣∣∣2
H−1

dt.

Setting ak = |Θn+1|2L2 and bk = |∇Θn+1|2L2 and taking partial sums of the inequality
(58), together with the fact that a0 = u0 − U0 = 0, we have

an +
n

∑
k=0

bkϕ(∆t) ≤
n

∑
k=0

akϕ(∆t)Ψk +
n

∑
k=0

ϕ(∆t)Φk. (59)

Applying Lemma 2 in (59) yields

an +
n

∑
k=0

bkϕ(∆t) ≤ exp

(
n

∑
k=0

σkϕ(∆t)Ψk

)(
n

∑
k=0

Φk(ϕ(∆t))2

)
(60)

provided Ψkϕ(∆t) < 1 and σk = (1 − Ψkϕ(∆t))−1, ∀ k ≥ 0. Since an, bk, Ψk and Φk are all
positive series, then in view of Lemma 2,

an +
n

∑
k=0

bkϕ(∆t) ≤ C(ϕ(∆t))

and hence the proof of Theorem 4 is complete.

The error estimate shown above allows us to show the optimal rate of convergence in
both the L2 and the H1 norms as follows.

Theorem 5. Under the assumption of Theorem 4 above, the numerical solution of the Huxley
Equations (39) and (40) using the NSFD-FEM method has the following rate of convergence

∥u(t)− Uh(t)∥L2 ≤ C(t)(h2 + ϕ(∆t)), ∀t ≥ 0 (61)

where C(t) depends on t. Furthermore, the discrete solution Uh(t) preserves all the qualitative
properties of the exact solution of the nonlinear equation under investigation.

Proof. The following error decomposition equation is used to investigate the rate of con-
vergence of the problem:

∥u(tn)− Uh(tn)∥L2 = ∥u(tn)− Phu(tn) + Phu(tn)− Uh(tn)∥L2

≤ ∥ξn∥L2 + ∥ηn∥L2 , (62)

where ∥ξn = ∥u(tn)− Phu(tn)∥L2 represents the error inherent in the Galerkin approxima-
tion of the linearized Huxley equation. The error caused by non-linearity is denoted by
ηn = ∥Phu(tn)− Uh(tn)∥L2 . With this distinction in place, we have, after using inequality
(38) and Theorem 4 and in view of (62), the following estimates

∥u(tn)− Uh(tn)∥L2 ≤ C(tn+1)h2 + sup
t∈[tn ,tn+1]

∥Phu(tn+1)− Uh(tn+1)∥L2

≤ C(tn+1)h2 + C(tn+1)ϕ(∆t), ∀ t ∈ [tn, tn+1]. (63)

In view of inequality (63), we can conclude without difficulty that (61) is indeed
achieved.



Mathematics 2024, 12, 867 14 of 18

As for the preservation of the decaying quality of the exact solution, we finish by
acknowledging from [22] that the above NSFD-GM scheme was designed for

ϕ(∆t) =
eλ∆t − 1

λ
≈ ∆t + O(∆t)2. (64)

Based on the approximation above (64), we observe that as ∆t −→ 0, then ϕ(∆t) ≈ ∆t.
In view of the above scheme (39) and (40), we deduce that the numerical solution of the
NSFD-GM scheme Vh ⊂ H1

0(Ω) converges pointwise in H1
0(Ω) to u as ∆t −→ 0 by the

compactness theorem. We justify this as follows: if we choose the data of our scheme (39)
as U0

h ∈ H1
0(Ω) and F ∈ L2[(0, T); H−1(Ω)

]
, then we have

⟨δnUn
h (t), vh⟩+ ⟨∇Un

h ,∇vh⟩+
〈(

U3n
h − (α + 1)U2n

h + αUn
h

)
, vh

〉
= F. (65)

If, in addition, we let the support of F be very small so that the test function vh = 1 is
far inside the support, say Ω1 ⊂ Ω and F is regular, then integrating Equation (65) over Ω
will yield ∫

Ω
Fvhdx = F(a) measure over the supp(vh), a ∈ Ω1.

Thus, the uniform convergence of the solution Un
h over Ω is equivalent to the point-

wise convergence of scheme (65). Hence, Un
h (a) is the NSFD-GM numerical solution that

converges to u and possesses all the qualities of u in (43). For more of these types of analysis,
see [32]. Hence, the above justification therefore completes the second part of the proof of
Theorem 5.

Remark 1. Even though our method preserves the decaying properties of the exact solution, there
are other qualities of the solution, such as the positivity-preserving nonlinear finite volume scheme,
which can also be applied to problems such as ours. For more information on these types of schemes,
see [42,43].

5. Numerical Experiments

This section is devoted to conducting numerical experiments to justify our proposed
theory. To this end, we used Matlab 7.100 software (R2014a). With this framework, we
constructed algorithms from the NSFD-GM scheme, wrote approximate codes, and used
the software above to run the codes for the numerical solution from the scheme. The
aforementioned experiments were carried out over the domain Ω = (0, 2)2 × (0, T), where
Ω is discretized into a regular mesh Jh. The discretized structure of the regular mesh is of
size h in the space variables and ∆t in the time variables. This discretization of both the space
and the time domain leads to the computation of the numerical solution of the problem
(1)–(3). This is achieved by considering the maximum value of T = 0.098, ∆t = 0.01, and
ϵ, α = 1. The above scheme is implemented by considering the complicated function ϕ(∆t)
to be in such a way that λ = 4 and h = 1

M , where M denotes the number of triangles in
the discretization. With this framework in place, the iteration process proceeds by first
considering the following exact solution:

u(x1, x2, t) =
1

(1 + e
(x1+x2−t)

2ϵ )
. (66)

We introduce the above exact solution (67) into the left-hand side of Equation (1) to
obtain the function on the right-hand side f . This then leads to the NSFD-GM scheme in (39)
to compute the approximate solution of the scheme in (39). The result of this computation
process is determined using the following initial solution:
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u(x1, x2, 0) =
1

(1 + e
(x1+x2)

2ϵ )
. (67)

with the prescribed Newton’s iteration, yielding the following Figures 1–3. These figures
are derived from two experiments, where Figure 2 is the results from the traditional SFD-
GM and the second is the results from NSFD-GM discussed earlier. These results are shown
in Figures 2 and 3, respectively, and Figure 1 shows the exact solution.

Figure 1. The exact computed solution.

Figure 2. Approximate solution to the SFD-GM scheme.
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Figure 3. Approximate solution to the NSFD-GM scheme.

With the above illustrated solutions, we fix the space variables and vary the time to
obtain the following L2 and H1 errors displayed in the two tables below.

Table 1 displays the errors and the rate of convergence for the NSFD-FEM scheme in
both norms, and Table 2 shows the errors and rates of convergence for the SFD-GM scheme
also in both norms.

Table 1. SFD-GM Error in both L2 and H1-norms.

M L2-Error Rate L2 H1-Error Rate H1

200 2.1501 ×10−3 4.9213 ×10−2

400 6.9467 ×10−4 1.60 3.2244 ×10−2 0.61

600 3.3755 ×10−4 1.78 2.4474 ×10−2 0.68

800 1.9824 ×10−4 1.85 1.9611 ×10−2 0.77

1000 1.3061 ×10−4 1.87 1.6478 ×10−2 0.78

1200 9.2034 ×10−5 1.92 1.4010 ×10−2 0.89

Observations 1. Using both the NSFD-GM and SFD-GM schemes, we anticipated that the rate
of convergence in the L2-norm will be roughly 2 and that of the H1-norm will be approximately
1. The rates of convergence in both schemes appear to show some closeness, with the NSFD-GM
outperforming the SFD-GM in both L2 and H1 norms according to the results shown in the above
tables. These results are expected, since the NSFD-GM scheme consistently demonstrates certain
viability and efficiency traits that result from maintaining the qualitative characteristics of the exact
solution. Given these additional distinctions, we are forced to support the NSFD-GM scheme.

Table 2. NSFD-GM Error in both L2 and H1-norms.

M L2-Error Rate L2 H1-Error Rate H1

200 2.1369 ×10−3 4.623 ×10−2

400 6.2223 ×10−4 1.78 3.0713 ×10−2 0.59

600 2.9869 ×10−4 1.81 2.3693 ×10−2 0.64

800 1.7342 ×10−4 1.89 1.8660 ×10−2 0.83

1000 1.1223 ×10−4 1.95 1.5333 ×10−2 0.88

1200 8.0981 ×10−5 1.97 1.2918 ×10−2 0.94
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6. Conclusions and Future Remarks

We started the paper by applying the Galerkin method combined with the compactness
method to the Huxley equation. These methods helped us to show theoretically that the
continuous solution of the aforementioned equation exists uniquely in the space

L∞
[
(0, T); L2(Ω)

]
∩ L2

[
(0, T); H1

0(Ω)
]
∩ L4

[
(0, T); L4(Ω)

]
with the effect of the parameter α well managed. This was followed by designing an efficient
scheme NSFD-GM, and we showed that this designed scheme was stable. We proceeded to
show that the numerical solution obtained from the designed scheme converges with an
optimal rate in both the L2 and the H1 norms. In addition, we showed that the numerical
solution preserves all the decaying properties of the exact solution. Furthermore, numerical
experiments with the help of an example were conducted to justify the validity of the
scheme. All the above processes revealed that the scheme is reliable, accurate and efficient.
For this reason, this scheme could act as a fair alternative to the most traditional SFD-GM
scheme to solve similar problems such as the Huxley equation.

For further studies, we would like to expand this method to handle real-world prob-
lems that involve systems of nonlinear equations connected to the Huxley equation and
observe how the parameter α affects the solution of the systems. We will also conduct some
comparison studies, in terms of efficiency, between the technique presented in this paper
and others when applied to problems similar to the one investigated here.
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