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Abstract: We analyze the multiscale behaviors of high-frequency intraday prices, with a focus on
how asset prices are correlated over different timescales. The multiscale approach proposed in this
paper is designed for the analysis of high-frequency intraday prices. It incorporates microstructure
noise into the stochastic price process. We consider a noisy fractional Brownian motion model and
illustrate its various statistical properties. This leads us to introduce new latent correlation and
noise estimators. New numerical algorithms are developed for model estimation using empirical
high-frequency data. For a collection of stocks and exchange-traded funds, examples are provided
to illustrate the relationship between multiscale correlation and sampling frequency as well as the
evolution of multiscale correlation over time.
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1. Introduction

The modern financial securities markets are populated with a wide array of market
players, such as hedge funds, high-frequency firms, and other institutional and retail
traders, who execute trades at various timescales, from several milliseconds to multiple
days. Therefore, asset prices are driven by multiscale forces. Depending on the timescales,
their price patterns may be quite different. These observations lead us to examine the
multiscale properties of financial time series.

The original Brownian motion stock model by [1] intrinsically determines return
distribution at any timescale as a result of independent increments and memory-less
properties. Fractional Brownian motion has been proposed to challenge the efficient market
hypothesis (EMH) and replace the standard Brownian motion model for asset prices
(see [2,3]). It leads to a much wider class of stochastic processes with additional scaling
and long-memory properties, and also allows for arbitrage opportunities, as pointed out
by [4]. Fractional Brownian motion has become an important tool in financial modeling
with various applications (see [5,6], among others).

As high-frequency data become increasingly available, more sophisticated models are
needed to capture their dynamics. Multiscale models designed for low-frequency daily
data, such as those by [7–9], can hardly fit the complex structure of high-frequency data,
especially for (co)variance modeling (see [10,11]). It also leads to a host of new research
problems, ranging from stochastic models for intraday prices and their estimations to price
dependency and portfolio management implications (see, e.g., [12]).

Various approaches have been proposed to analyze the complex structure of high-
frequency prices, especially their realized volatility (see, for example, [10,13]). Nevertheless,
market microstructure research by [14,15], among others, suggests that there is noise at
a higher frequency. As a consequence, the market microstructure noise can potentially
bias estimation of the scaling parameters. For example, as shown by [16], the discrepancy
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between realized and instantaneous volatility can lead to bias in the estimation of the
Hurst exponent ([17]). A common idea in various approaches is to conduct measurement at
multiple timescales, and then, assimilate the outputs to arrive at an estimate (see [11,18–21]).

In our companion paper [22], we investigate the theoretical and empirical properties
of multiscale volatility of high-frequency data. Using a fractional Brownian motion model,
we estimate the Hurst exponent and noise level and illustrate the time-varying intraday
patterns. In this paper, we investigate the connections between correlations and timescales
of high-frequency prices. In addition, we incorporate market microstructure noise into our
model to better understand how noise can affect the multiscale behaviors and associated
statistical properties of correlations. This also allows us to estimate the microstructure
noise realized at different times of the day, or compare the noise levels among various
traded assets.

Our study begins with the definitions of multiscale correlation and some important
properties in several stochastic models. In order to model high-frequency price processes, a
class of multivariate noisy fractional Brownian motion models is introduced. Our analysis
on multiscale correlation leads us to an equation that connects correlation and frequency.
Moreover, the effect of microstructure noise is expressed analytically and examined empir-
ically. Using intraday high-frequency price data, we illustrate the estimated correlation–
frequency relationship and microstructure noise level for a collection of ETFs and stocks.

We present the definition and properties of multiscale covariance and correlation in
Section 2. A fractional Brownian motion model with microstructure noise is introduced in
Section 3. This leads to an analysis of the asymptotic behaviors and timescale dependence
of multiscale correlation. Several illustrative examples are provided to show the correlation
structures over different timescales. In Section 4, the model is estimated using empirical
data. We conclude the paper in Section 5.

2. Multiscale Correlation

We consider a collection of p financial assets whose prices at time t are denoted by the
vector P⃗t ∈ Rp. Converting to log prices X⃗t := log(P⃗t), the log return vector over the time
interval from t to t + τ is given by

r⃗X
t,τ = X⃗t+τ − X⃗t. (1)

All operations are applied element-wise. The multiscale covariance matrix can be defined as

V [X⃗][τ] := E[(⃗rX
t,τ −E[⃗rX

t,τ ])(⃗r
X
t,τ −E[⃗rX

t,τ ])
T ]. (2)

We remark that if X⃗t ∈ Rp is a stationary multivariate process, then V [X⃗][τ] ∈ Rp×p must
be a matrix dependent on the time increment τ only at any time t. Next, we define the
notions of multiscale pair-wise covariance and correlation.

2.1. Definition and Properties

Definition 1. Let the pair of log prices Xt ∈ R and Yt ∈ R be stationary processes on 0 ≤ t ≤ T.
For τ > 0, the multiscale covariance between X and Y is defined as

C[X, Y](τ) := E[rX
t,τrY

t,τ ]−E[rX
t,τ ] ·E[rY

t,τ ]. (3)

In turn, their multiscale correlation is defined as

R[X, Y](τ) :=
C[X, Y](τ)√

V [X](τ) · V [Y](τ)
. (4)

Although there is no restriction on the form of the R[X, Y](τ) function, the multiscale
correlation behavior is limited for a wide class of processes.
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Proposition 1 (uncorrelated increments). For any pair of stationary random processes Xt, Yt
has jointly uncorrelated increments, i.e.,

E[(Xt2 − Xt1)(Xt3 − Xt2)] = E[Xt2 − Xt1 ] ·E[Xt3 − Xt2 ],

E[(Yt2 − Yt1)(Yt3 − Yt2)] = E[Yt2 − Yt1 ] ·E[Yt3 − Yt2 ],

E[(Xt2 − Xt1)(Yt3 − Yt2)] = E[Xt2 − Xt1 ] ·E[Yt3 − Yt2 ],

E[(Yt2 − Yt1)(Xt3 − Xt2)] = E[Yt2 − Yt1 ] ·E[Xt3 − Xt2 ],

For any 0 ≤ t1 < t2 < t3, the correlation function R[X, Y](τ) must be a constant in τ.

Proof. We first show that the covariance C[X, Y](τ) scales linearly with τ:

C[X, Y](τ) ∝ τ.

For any τ1, τ2 > 0; let us show the additive-ness C[X, Y](τ1 + τ2) = C[X, Y](τ1)+C[X, Y](τ2).
Consider that 0 < τ1 < τ1 + τ2; then,

C[X, Y](τ1 + τ2) = E[(Xτ1+τ2 − X0)(Yτ1+τ2 − Y0)]−E[Xτ1+τ2 − X0] ·E[Yτ1+τ2 − Y0]

= E[((Xτ1+τ2 − Xτ1) + (Xτ1 − X0)) · ((Yτ1+τ2 − Yτ1) + (Yτ1 − Y0))]

−E[(Xτ1+τ2 − Xτ1) + (Xτ1 − X0)] ·E[(Yτ1+τ2 − Yτ1) + (Yτ1 − Y0)]

= E[(Xτ1+τ2 − Xτ1)(Yτ1+τ2 − Yτ1)] +E[(Xτ1 − X0)(Yτ1 − Y0))]

−E[Xτ1+τ2 − Xτ1 ] ·E[Yτ1+τ2 − Yτ1 ]−E[Xτ1 − X0] ·E[Yτ1 − Y0] + 0

= C[X, Y](τ2) + C[X, Y](τ1).

Then, C[X, Y](τ) ∝ τ. Following the same derivation, the multiscale variance of the two
processes also satisfies V [X] ∝ τ and V [Y] ∝ τ. Therefore, the correlation must remain a
fixed constant for all values of τ:

R[X, Y](τ) ∝
τ√
τ · τ

= const.

This means that, for the stationary processes in Proposition 1, the mulstiscale correla-
tion stays the same at any time scale over which the correlation is computed.

Example 1 (stochastic volatility model). Let Bt and Wt be independent standard Brownian mo-
tions. For ρ ∈ [−1, 1] and ρσ ∈ [−1, 1], define the following pair of correlated stochastic processes:

dX(1)
t = µ1dt +

√
ν
(1)
t dB(1)

t ,

dX(2)
t = µ2dt +

√
ν
(2)
t

(
ρdB(1)

t +
√

1 − ρ2dB(2)
t

)
,

where the volatility processes are

ν
(1)
t = α

(1)
t dt + β

(1)
t dW(1)

t ,

ν
(2)
t = α

(2)
t dt + β

(2)
t

(
ρσdW(1)

t +
√

1 − ρ2
σdW(2)

t

)
.

In the stochastic volatility model above, B(1)
t , B(2)

t , W(1)
t , and W(2)

t are independent Brownian
motions. The processes (X(1)

t , X(2)
t ) are correlated through a shared Brownian motion, so they do

not have independent increments. Nevertheless, their increments are jointly uncorrelated given that

E
[(∫ t2

t1

√
ν
(k)
t dB(i)

t

)(∫ t3

t2

√
ν
(l)
t dB(j)

t

)]
= 0,
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for any i, j, k, l ∈ {1, 2}. Therefore, the correlation between X(1)
t and X(2)

t is scale-independent.

Proposition 2. Let X(1)
t , · · · , X(n)

t be a sequence of independent processes, and Y(1)
t , · · · , Y(n)

t be
another sequence of independent processes. Further, assume that X(i) ⊥ Y(j), ∀i ̸= j. Denote the
sequence summations by SX = ∑n

i=1 X(i) and SY = ∑n
i=1 Y(i). Then, the multiscale correlation

between the summation of the two sequences is given by

R[SX , SY](τ) =
n

∑
i=1

R[X(i), Y(i)](τ) ·

√
V [X(i)](τ) · V [Y(i)](τ)√(

∑n
j=1 V [X(j)](τ)

)
·
(

∑n
j=1 V [Y(j)](τ)

) . (5)

Proof. Direct computation of the covariance yields the covariance

C[SX , SY](τ) = E
[(

n

∑
i=1

rX(i)

t,τ

)(
n

∑
i=1

rY(i)

t,τ

)]
−E

[
n

∑
i=1

rX(i)

t,τ

]
E
[

n

∑
i=1

rY(i)

t,τ

]

=
n

∑
i=1

E[rX(i)

t,τ rY(i)

t,τ ] +
n

∑
i ̸=j

E[rX(i)

t,τ rY(j)

t,τ ]−
n

∑
i=1

E[rX(i)

t,τ ]E[rY(i)

t,τ ]−
n

∑
i ̸=j

E[rX(i)

t,τ ]E[rY(j)

t,τ ]

=
n

∑
i=1

C[X(i), Y(i)](τ) + 0

=
n

∑
i=1

R[X(i), Y(i)](τ) ·
√
V [X(i)](τ) · V [Y(i)](τ).

The variance terms in the denominator of (5) follow from the independence of (X(i))1=1,...,n
and (Y(i))1=1,...,n.

Remark 1. Note that in Equation (5), even if R[X(i), Y(i)](τ) is constant for all i = 1, · · · , n, the
correlation of the two summations can still be scale-dependent if the variance scaling behavior is
different among the pairs (X(i), Y(i)), i = 1, · · · , n.

2.2. Numerical Estimation

In order to estimate the multiscale correlation function from discrete observations, we
consider a given pair of time series, (Xi, Yi), for i = 1, · · · , n. The multiscale correlation can
be estimated as follows.

For m = 1, 2, · · · , M:

• Compute variance VX,m, VY,m using

VX,m =
1

n − m

n−m

∑
i=1

(Xi+m − Xi − µXm)2,

VY,m =
1

n − m

n−m

∑
i=1

(Yi+m − Yi − µYm)2,

where
µX =

Xn − X1

n − 1
, and µY =

Yn − Y1

n − 1

are estimated drifts.
• Compute covariance:

CXY,m =
1

n − m

n−m

∑
i=1

(Xi+m − Xi − µXm)(Yi+m − Yi − µYm).

• Compute correlation:
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RXY,m =
CXY,m√

VX,m · VY,m
. (6)

We will apply these expressions in the sections below.

3. Multivariate High-Frequency Models

In this section, we discuss multiscale volatility in the intraday setting with high-
frequency prices. The definitions of fractional Brownian motions are based on the seminal
work of [3]. Then, we incorporate additional elements into the fractional Brownian motion
model to create interesting scaling behaviors.

3.1. Correlated Fractional Brownian Motions

Definition 2. A fractional Brownian motion (fBm) BH
t , t ≥ 0, is a continuous-time Gaussian

process that satisfies E[BH
t ] = 0, ∀t ≥ 0, and has the following covariance function:

E[BH
t BH

s ] =
1
2
(t2H + s2H − |t − s|2H),

where t, s ≥ 0, and H ∈ (0, 1) is called the Hurst exponent.

As is well know, in the case of H = 1
2 , we obtain the standard Brownian motion. When

H ∈ (0, 1/2), the fractional Brownian motion is called anti-persistent or mean-reverting,
and its increments are negatively correlated. When H ∈ (1/2, 1), the fBm has positively
correlated increments and is called persistent or trending.

A fractional Brownian motion adopts various forms of stochastic integral representa-
tion, which can be found in Chapter 1.2 of [23] and references therein. In this study, we
focus on the following representation to construct a fractional Brownian motion from an
underlying standard Brownian motion:

BH
t = B(W; H)t :=

1
Γ(H + 1/2)

∫ t

−∞

(
(t − s)H−1/2 − (−s)H−1/2

+

)
dWs, (7)

where (Wt)t∈R is the underlying Brownian motion. We will apply this representation to
define correlated fractional Brownian motions and generate sample paths of fractional
Brownian motions.

The correlation between Brownian motions has been well established for a long time.
Like any random walk with stationary and independent increments, Brownian motion also
has scale-independent correlation, as shown in Proposition 1. The correlation between frac-
tional Brownian motions was studied more recently in the setting of multivariate fractional
Brownian motion (mfBm) [24–27]. To begin with, let us first define a pair of correlated
fractional Brownian motions using Equation (7) and study their correlation property.

Proposition 3. For any Hurst exponent pair H1, H2 ∈ (0, 1), and for any correlation coefficient
ρ ∈ [−1, 1], define the following pair of correlated fractional Brownian motions:

BH1
t = B(W(1); H1)t,

BH2
t = B(ρW(1) +

√
1 − ρ2W(2); H2)t,

where W(1) and W(2) are independent standard Brownian motions, and the B(·) operator is defined
in Equation (7). Then their multiscale correlation function is as follows:
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R[BH1 , BH2 ](τ) = ρ .

Proof. Without loss of generality, let us take t = 0 in Equation (3) and analyze the incre-
ments from 0 to τ. The covariance between BH1 and BH2 is

C[BH1 , BH2 ](τ) = E[BH1
τ BH2

τ ]−E[BH1
τ ] ·E[BH2

τ ]

= E[B(W(1); H1)τ · B(ρW(1) +
√

1 − ρ2W(2); H2)τ ]− 0

= ρ ·E[B(W(1); H1)τ · B(W(1); H2)τ ] +
√

1 − ρ2 ·E[B(W(1); H1)τ · B(W(2); H2)τ ]

= ρ ·E[B(W(1); H1)τ · B(W(1); H2)τ ].

Note that we have used linearity of the B(·) operator. To compute the expectation of the
product of two stochastic integrals, we apply the generalized Ito isometry to obtain

E
[(∫ τ

−∞

(
(τ − s)H1−1/2 − (−s)H1−1/2

+

)
dWs

)(∫ τ

−∞

(
(τ − s)H2−1/2 − (−s)H2−1/2

+

)
dWs

)]
=
∫ τ

−∞

(
(τ − s)H1−1/2 − (−s)H1−1/2

+

)(
(τ − s)H2−1/2 − (−s)H2−1/2

+

)
ds.

Using a change in variable u := s/τ, we can write∫ τ

−∞

(
(τ − s)H1−1/2 − (−s)H1−1/2

+

)(
(τ − s)H2−1/2 − (−s)H2−1/2

+

)
ds

=
∫ 1

−∞
τH1−1/2

(
(1 − u)H1−1/2 − (−u)H1−1/2

+

)
τH2−1/2

(
(1 − u)H2−1/2 − (−u)H2−1/2

+

)
τdu

=τH1+H2 · I(H1, H2),

where I(H1, H2) is the integral

I(H1, H2) :=
∫ 1

−∞

(
(1 − u)H1−1/2 − (−u)H1−1/2

+

)(
(1 − u)H2−1/2 − (−u)H2−1/2

+

)
du.

In turn, we obtain the covariance

C[BH1 , BH2 ](τ) = ρτH1+H2 · I(H1, H2)

Γ(H1 + 1/2) · Γ(H2 + 1/2)

= ρτH1+H2 .

Here, we refer to [28] for canceling the integral I(H1, H2) with the normalizing factor. The
variance terms can be verified by taking H1 = H2:

V [BH1 ](τ) = E[B(W(1); H1)
2
τ ] = τ2H1 ,

V [BH2 ](τ) = E[B(ρW(1) +
√

1 − ρ2W(2); H2)
2
τ ] = τ2H2 .

And by the definition of correlation,

R[BH1 , BH2 ](τ) = ρ.

More general multivariate fractional Brownian motion can be defined through self-
similarity in vector form. Its covariance structure is given in Theorem 2.1 of [29]. One can
show that the pair-wise correlation will still be constant.

Next, we discuss the scale-independent correlation in a more general case, with
multivariate fractional Brownian motion being a special example. To this end, let us define
self-similarity formally in a multivariate scenario.
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Definition 3 (self-similarity). A p-dimensional multivariate random process (X⃗t)t≥0 ∈ Rp is
self-similar if there exists a vector H⃗ ∈ (0, 1)p, s.t.(

X(1)
λt , · · · , X(p)

λt

)
dist.
=
(

λH1 X(1)
t , · · · , λHp X(p)

t

)
, ∀t ≥ 0. (8)

Proposition 4. For any p-dimensional multivariate random process that is self-similar, the pair-
wise multiscale correlation R[X(i), X(j)](τ) between any 1 ≤ i, j ≤ p must be a constant.

Proof. We prove this by showing that for any τ1 ̸= τ2 ∈ R+, R[X(i), X(j)](τ1) = R[X(i), X(j)]
(τ2). Due to self-similarity, their variance functions satisfy

V [X(i)](τ2) =

(
τ2

τ1

)2Hi

V [X(i)](τ1), V [X(j)](τ2) =

(
τ2

τ1

)2Hj

V [X(j)](τ1).

The covariance is given by

C[X(i), X(j)](τ2) = E[(X(i)
t+τ2

− X(i)
t ) · (X(j)

t+τ2
− X(j)

t )]

= E[X(i)
τ2 X(j)

τ2 ]

= E
[(

τ2

τ1

)2Hi

X(i)
τ1 ·

(
τ2

τ1

)2Hj

X(j)
τ1

]

=

(
τ2

τ1

)Hi+Hj

E
[

X(i)
τ1 X(j)

τ1

]
=

(
τ2

τ1

)Hi+Hj

C[X(i), X(j)](τ1).

Then, we have

R[X(i), X(j)](τ2) =
C[X(i), X(j)](τ2)√

V [X(i)](τ2)V [X(j)](τ2)

=
(τ2/τ1)

Hi+HjC[X(i), X(j)](τ1)√
(τ2/τ1)2HiV [X(i)](τ1) · (τ2/τ1)

2HjV [X(j)](τ1)

= R[X(i), X(j)](τ1).

Example 2 (multivariate fractional Brownian motion). A multivariate fractional Brownian
motion (mfBm) is a p-dimensional Gaussian process with stationary increments and satisfies
self-similarity with H⃗ ∈ (0, 1)p. According to Proposition 4, it has scale-independent pair-
wise correlation.

3.2. Microstructure Noise in Correlated Prices

In markets with high-frequency prices, the notion of microstructure noise has been
proposed and studied; see the early work by [30], for example. The intuition is that activities
by agents in the market that result in transactions, along with various frictions in the trading
process, may give rise to “noise” in the observed prices (see [31]). In the literature, there
are different approaches to modeling this. In the recent work by [16], noise is implicitly
modeled based on the discrepancy between stochastic volatility and realized volatility, and
it has an effect on estimating the Hurst exponent of the volatility process.

To avoid any confusion on the concept of “market microstructure noise”, we fix our
modeling to be the same as the form in [14,19,20], among others. In this section, we are
going to establish the multiscale behaviors of microstructure noise generalized into a
multivariate case.
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Definition 4. Let (X⃗t)t≥0 ∈ Rp be a p-dimensional stochastic process. We denote the multivariate
noisy price process as

P⃗t = exp(Y⃗t),

where
Y⃗t = X⃗t + ϵ⃗t,

for t ≥ 0, and ϵ⃗ is the independent random noise vector such that ϵ⃗ ⊥ X, E[⃗ϵt] = 0⃗, Cov(ϵt) = Σϵ,
and ϵt i.i.d., for ∀t ≥ 0. The covariance matrix Σϵ is a positive semi-definite matrix.

Property 1. For any p-dimensional noisy price process

Y⃗t = X⃗t + ϵ⃗t ,

the pair-wise multiscale correlation between i and j, i ̸= j, is

R[Yi, Yj](τ) =
R[Xi, Xj](τ)

√
V [Xi](τ)V [Xj](τ) + 2Σϵ,ij√(

V [Xi](τ) + 2σ2
ϵi

)
·
(
V [Xj](τ) + 2σ2

ϵj

) .

Proof. The multiscale covariance in the noise is

C[ϵi, ϵj] = E[(ϵi,t+τ − ϵi,t)(ϵj,t+τ − ϵj,t)]

= E[ϵi,t+τϵj,t+τ ] +E[ϵi,tϵj,t]

= 2Σϵ,ij.

The rest of the process is to apply Proposition 2 and calculate the denominator in the
same manner.

Note that even if RXiXj(τ) is scale-independent, RYiYj(τ) can still be scale-dependent,
as long as the multiscale variance of the underlying process is not constant. We remark
that the multiscale variance is most likely to depend on the timescale unless the price
is pure noise. Therefore, for almost all price processes, its noisy process will have scale-
dependent correlation.

Lastly, the off-diagonal entries of the covariance matrix, Σϵ,ij, for i ̸= j, reflect the
correlations among the microstructure noises from different price processes. If the noises
are independent, then these entries are zero. Our framework, without further assumptions
or specifications, does not require them to be zero.

3.3. Noisy Fractional Brownian Motion

We now consider a bivariate noisy fractional Brownian motion model for a pair of
asset price processes. This leads to the analytical and numerical studies of the associated
correlation structure and asymptotic behaviors.

Definition 5. For Hurst exponents H1, H2 ∈ (0, 1), drift coefficients µ1, µ2 ∈ R; volatility
parameters σ1, σ2 ∈ R+; initial values Y(1)

0 , Y(2)
0 ∈ R; and correlation coefficient ρ ∈ [−1, 1] define

the pair of noisy fractional Brownian motions:

Y(1)
t = Y(1)

0 + µ1t + σ1B(W(1); H1)t + ϵ
(1)
t , (9)

Y(2)
t = Y(2)

0 + µ2t + σ2B(ρW(1) +
√

1 − ρ2W(2); H2)t + ϵ
(2)
t , (10)

where W(1)
t and W(2)

t are independent Brownian motions, and ϵ
(1)
t and ϵ

(2)
t are microstructure

noises with variance V(ϵ(1)t ) = σ2
ϵ,1, V(ϵ(2)t ) = σ2

ϵ,2, and correlation ρϵ ∈ [−1, 1].
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3.3.1. Correlation Curve

Applying Proposition 3 and Property 1 gives the multiscale correlation of noisy frac-

tional Brownian motions. Denote ηi: =
σ2

ϵ,i
σ2

i
, i = 1, 2 as the noise ratios. As a general case, let

us first consider the microstructure noise ϵ
(1)
t , ϵ

(2)
t to be correlated, i.e., the noise correlation

ρϵ ̸= 0. The multiscale correlation is given by

R[Y1, Y2](τ) =
ρτH1+H2 + 2ρϵ

√
η1η2√

(τ2H1 + 2η1)(τ2H2 + 2η2)
. (11)

If the microstructure noises are assumed to be independent, then ρϵ = 0 and the above
formula can be simplified to

R[Y1, Y2](τ) = ρ · τH1+H2√
(τ2H1 + 2η1)(τ2H2 + 2η2)

. (12)

We can see from Equation (12) that the noisy correlation is just the underlying correlation
times a scaling factor, which depends on the noise ratios and the Hurst exponents of the
underlying processes. In the special case where H1 = H2 = 1/2, i.e., the log price processes
are noisy Brownian motions, we have

R[Y1, Y2](τ) = ρ · τ√
(τ + 2η1)(τ + 2η2)

. (13)

3.3.2. Asymptotic Behavior

Next we consider the asymptotic behavior of multiscale correlation. Results are
derived for a general case assuming that the microstructure noises could possibly be
correlated, followed by a special case of independent noise.

• τ → ∞,
R[Y1, Y2](τ) → ρ.

The correlation converges to the correlation between the two underlying fractional
Brownian motions.

• τ → 0,
R[Y1, Y2](τ) → ρϵ.

Unlike volatility, the limit of correlation exists when the timescale is approaching
zero. The intercept depends on the correlation between the noises, which can be used
to determine if there are correlated noises. Also, note that the asymptotic behavior
of correlation does not depend on the Hurst exponent H at both ends, which is
different from the volatility function. The Hurst exponent only affects the rate at
which correlation to the underlying value increases.

In order to better understand the speed of correlation scaling, let us further look at the
derivative of the correlation function. We can derive

d
dτ

R[Y1, Y2](τ) =ρ · 2τH1+H2(2η1η2(H1 + H2) + η1H1τ2H2 + η2H2τ2H1)

τ((2η1 + τ2H1)(2η2 + τ2H2))3/2

− ρϵ ·
2
√

η1η2

(
2η2H1τ2H1 + 2η1H2τ2H2 + (H1 + H2)τ

2(H1+H2)
)

τ((2η1 + τ2H1)(2η2 + τ2H2))3/2 .

The form is rather complicated, with one fBm correlation term and one noise correla-
tion term. Let us look at its asymptotic behaviors under certain conditions.

• τ → ∞,

– Case H1 ̸= H2:
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d
dτ

R[Y1, Y2](τ) ≈ ρ
2ηi− Hi−

τ1+2Hi−
,

where i− as the minimizer of Hi, i = 1, 2. We can see that the noise correlation
term doesn’t affect the asymptotic behavior at a large scale, and the limiting
behavior is controlled by the smaller Hurst exponent.

– Case H1 = H2 = H:

d
dτ

R[Y1, Y2](τ) ≈
4H

τ1+2H

(
η1 + η2

2
ρ −√

η1η2ρϵ

)
.

This function form is the same as the H1 ̸= H2 case; however, it is surprising that
the noise correlation term plays a part in the asymptotic behavior even at very
large scale. A positive correlation in the noise will actually decrease the speed of
correlation convergence.

• τ → 0,

– Case H1 ̸= H2:
d

dτ
R[Y1, Y2](τ) ≈ −

ρϵHi−
2ηi−

τ2Hi−−1.

Again, the smaller Hurst exponent controls the limiting behavior. Also, note
that positive noise correlation leads to a negative derivative in the correlation at
small scale.

– Case H1 = H2 = H:

d
dτ

R[Y1, Y2](τ) ≈
(

ρ
√

η1η2
− ρϵ

η1 + η2

2η1η2

)
Hτ2H−1.

As in the large-scale limit scenario, equal Hurst exponents make the derivative
contribution of fBm correlation and noise correlation balanced throughout the
whole correlation curve.

In general, the contribution of the fBm and the noise terms to the correlation derivative
is sensitive to the difference between the Hurst exponents. If the Hurst exponents are
different, it is always the smaller one dominating the asymptotic behavior at both small and
large scales. The dominant term is different at the two ends though. When the two processes
have identical Hurst exponents, the fBm and the noise terms are balanced at any scale and
weighted according to the arithmetic mean and the geometric mean of the noise ratios.

Figure 1 shows the correlation and derivative as a function of τ in the noisy fractional
Brownian motion model under different combinations of Hurst exponents. The parameters
are ρ = 0.8, ρϵ = 0, η1 = 10−5, and η2 = 2 × 10−5. In other words, the two processes are
correlated through the fractional Brownian motions, but their microstructure noises are
independent. The correlation curves R(τ) all increase in τ and approach the constant
correlation coefficient ρ = 0.8. This can be seen on the right panel as the slopes dR/dτ
start from a high value and decay to zero as τ goes from 10−4 to 10−2. The one associated
with the highest Hurst exponent pair (H1 = H2 = 0.55) has the lowest correlation but also
increases most rapidly as τ increases.
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Figure 1. Multiscale correlation of the noisy Brownian motion model with different Hurst exponents.
Left: correlation curves approaching the model correlation parameter ρ = 0.8. Right: correlation
derivative curves for different Hurst exponents.

3.3.3. Correlation Curve Evaluation and Fitting

The correlation curve given by Equation (11) can be rather complicated, with six
parameters, making it hard to evaluate against observation from real-world data. One prac-
tical approach is to consider the noisy Brownian motion model so that the correlation is
given by Formula (13). Starting from this expression with only three parameters, ρ, η1, η2, a
simple rearrangement yields

1
(R[Y1, Y2](τ))2 =

1
ρ2

(τ + 2η1)(τ + 2η2)

τ2 =
1
ρ2

(
1 +

2η1

τ

)(
1 +

2η2

τ

)
.

Next, if we define the frequency variable ω: = 1/τ and assume that η1, η2 ≪ 1,
we have

1
R[Y1, Y2]2

=
1
ρ2 (1 + 2(η1 + η2)ω + 4η1η2ω2) (14)

≈ 1
ρ2 +

2(η1 + η2)

ρ2 ω. (15)

From (15), we observe that the inverse of the correlation squared can be approximated
by a linear function in frequency ω : 1/τ. The intercept is determined by ρ2, and the slope
is positive and depends on the summation of the two noise ratios η1 + η2. We will return to
this as we empirically verify this property with real-world data in the next section

Consider a collection of p noisy Brownian motions Y1, · · · , Yp, with corresponding
noise ratios η1, · · · , ηp. Suppose the correlation coefficient between the latent processes of
Yi and Yj is ρij; we can evaluate the parameters following the following procedure:

• Compute Rij,m, 1 ≤ i < j ≤ p using Equation (6), and ωm = 1
mδt , for m = 1, · · · , M.

• Fit linear regressions 1
R2

ij,m
= αij + βijωm for 1 ≤ i < j ≤ p.

• Estimate the correlation ρ̂ij = sgn(Rij,M) 1√
αij

.

• Define the index mapping function ξ(i, j) = ∑i−1
l=1(p − l) + (j − i), for 1 ≤ i < j ≤ p.

The values of ξ are 1, · · · , p(p − 1)/2.

• Construct the vector b⃗ ∈ Rp(p−1)/2, s.t. bξ(i,j) =
βij

2αij
for 1 ≤ i < j ≤ p.

• Construct the matrix A ∈ Rp(p−1)/2×p, s.t. Ak,i = 1 if there exists j > i s.t. k = ξ(i, j)
or j < i s.t. k = ξ(j, i); otherwise, Ak,i = 0.

• Estimate the noise ratio vector η̂ = A†⃗b.

Here, A† represents the pseudo-inverse of A. For η̂ = A†⃗b to be solvable, there must
be p ≥ 3 noisy Brownian motions in the collection. When p = 3, A is invertible. When
p > 3, the matrix is over-determined.
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4. Experiments on Intraday Data

In this section, we discuss the experimental results obtained using real-world high-
frequency data of intraday prices sampled at 3 s intervals. Exchange-traded funds (ETFs)
and stocks from different sectors are considered, with dates ranging from 27 January 2020
to 22 September 2023. On each trading day in the sample, the market is open for 6.5 h. The
collection of equities covers a variety of types that can be categorized as follows:

• Broad market ETFs: SPY, IWM.
• Bond ETFs: HYG, TLT.
• Sector ETFs: XLK, XLF, XLP, XLY.
• Technology sector ETF and stocks: QQQ, AAPL, MSFT, NVDA.

4.1. Multiscale Correlation Curve

The assets are divided into three comparison groups and we analyze the multiscale
correlation behavior among each group. The correlation Formula (6) allows us to compute
the correlation curves for different asset pairs within one group.

4.1.1. Sector ETFs

In this group, we analyze the multiscale correlation among four sector ETFs, namely
XLK, XLF, XLP, and XLY. Figure 2 shows the correlation curves for all of the pairs among the
four ETFs, averaged over all dates in the dataset. From the plots, we can see that all of the
correlation curves show a concave increasing shape, converging up to certain levels. This is
clear evidence that the correlation between intraday price movements is scale-dependent.
As we have shown in the previous sections, none of the Brownian motion, fractional
Brownian motion, or stochastic volatility models yield such scale-dependent correlation.
The shape of the curves are very similar to that of the noisy (fractional) Brownian motion
model shown in Figure 1.
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Figure 2. Correlation curves for sector ETFs, estimated for 3 s intraday data. For algorithm, see
Section 2.2. The curves shown in each plot are estimated and averaged over all dates in the sample.

To further evaluate whether the real-world data match the correlation function of a
noisy fractional Brownian motion model, we transformed the estimated curves to check
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if the data exhibit linearity according to (15). Then, using (15), we obtained the average
correlation curves over all dates. Figure 3 shows the plots of 1/R2 against ω: 1/τ. From
the figures, we can see approximately linear relations for all of the ticker pairs, indicating
that the model could be a good fit. Nevertheless, we should also notice the bumpy shape
when ω is very small, i.e., at large timescale. Even though only very small parts are shown
on the plots, we should keep in mind that ω: = 1/τ is not evenly distributed on the x-axis.
Therefore, there might be unexplained patterns at large timescales. Even though the noisy
fractional Brownian motion model may not be a perfect fit for the whole dynamics of the
data, it provides a theoretical framework to explain the correlation behavior existing in
real-world high-frequency prices.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ω (min−1)

2

4

6

8

10

12

14

1
R2

XLK
XLF
XLP
XLY

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ω (min−1)

4

6

8

10

12

14

16

1
R2

XLF
XLK
XLP
XLY

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ω (min−1)

6

8

10

12

14

16

1
R2

XLP
XLK
XLF
XLY

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
ω (min−1)

2

4

6

8

10

12

14

16

1
R2

XLY
XLK
XLF
XLP

Figure 3. Inverse of correlation squared vs. frequency on intraday data, 1/R2 vs. ω: = 1/τ, for
sector ETFs, estimated using 3 s intraday prices.

Following the fitting procedure for (15), we provide numerical estimation of the
correlation and noise ratio parameters in Table 1.

Table 1. Estimated parameters in multivariate noisy Brownian motion model using the correlation
curves based on the intraday dataset. The first four columns show the estimated latent correlation
matrix. The last column shows the noise ratio estimator ηi: = σ2

ϵ,i/σ2
i .

XLK XLF XLP XLY η (10−2 min)

XLK 1 0.449211 0.354327 0.755362 0.580811
XLF 0.449211 1 0.450155 0.560384 3.719924
XLP 0.354327 0.450155 1 0.371876 1.674828
XLY 0.755362 0.560384 0.371876 1 1.761024

4.1.2. Stock vs. Bond

We now analyze the multiscale correlation between the equity ETFs, SPY and IWM,
and the bond ETFs, HYG and TLT. Figure 4 shows the correlation curves for all of the pairs
among the four ETFs, averaged over all dates in the dataset. While the sector ETFs are
positively correlated, in the stock vs. bond case, we see a clear negative correlation between
TLT and the two stock market ETFs. Even though the correlation sign is flipped, we can see
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that the absolute value for all the correlation curves show a concave increasing shape as
before. The bond ETF pair, HLG and TLT, shows nearly zero correlation that is constant
across the timescale studied, which is very different from all other pairs. The correlation
curves among SPY, IWM, and HYG also show a positive concave increasing shape.
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Figure 4. Correlation curves for stock vs. bond ETFs, estimated for 3 s intraday data using the
algorithm in Section 2.2. Each curve shows the average estimated correlation over all available dates
for each asset pair.

Similarly, we transform the estimated curves to check if the data fit the linear form
in (15). Figure 5 shows the plots of 1/R2 against ω: 1/τ. From the figures, we can see
approximately linear relations for pairs among stock ETFs and between stock and bond,
indicating that the model could be a good fit. However, the trend is clearly different
between the two bond ETFs, HYG and TLT, indicating that the dynamics between the bond
ETFs cannot be explained by the noisy fractional Brownian motion model. The 1/R2 value
is also extremely high due to the low correlation between HYG and TLT.

The numerical estimations of the correlation and noise ratio parameters are summa-
rized in Table 2. We see a negative correlation between the stock ETFs and TLT as expected.

Table 2. Estimated parameters in multivariate noisy Brownian motion model using the correlation
curves based on the intraday dataset. The first four columns show the estimated latent correlation
matrix. The last column shows the noise ratio estimator ηi: = σ2

ϵ,i/σ2
i .

SPY IWM HYG TLT η (10−2 min)

SPY 1 0.767284 0.616883 −0.120105 4.661190
IWM 0.767284 1 0.50646 −0.143798 3.237822
HYG 0.616883 0.50646 1 0.014145 6.159371
TLT −0.120105 −0.143798 0.014145 1 1.014963
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Figure 5. 1/R2 vs. ω: = 1/τ plots for stock vs. bond, estimated for the 3 s intraday dataset. The
transform using Equation (15) is applied to the average correlation curves over all dates.

4.1.3. Technology Market and Stocks

Now, we turn to the three technology stocks, AAPL, MSFT, and NVDA, along with
the technology market ETF, QQQ. Figure 6 shows the correlation curves for all of the pairs
among the four ETFs, averaged over all dates in the dataset. Similar to the sector ETF case,
from the plots, we can see that all of the correlation curves show a concave increasing shape,
converging to certain levels. This is clear evidence that the correlation between intraday
price movements is scale-dependent. The shapes of the curves are also very similar to that
of the noisy (fractional) Brownian motion model shown in Figure 1.

As before, we transform the estimated curves to check if the data fit the linear form
implied by (15). Figure 7 shows the plots of 1/R2 against ω: 1/τ. Similar to the sector ETF
case, the plots show approximately linear relations for all of the ticker pairs, indicating
that the model could be a good fit. Nevertheless, we should also notice the bumpy shape
when ω is very small at large timescales. However, unlike the sector ETF case, the trend
at large timescales for the technology stocks is going downwards. This indicates that the
unexplained patterns at large timescales for the technology stocks trend towards a higher
correlation. In contrast, the correlation for the sector ETFs drops at large timescales.

Following the fitting procedure for the correlation–frequency equation in (15), we
provide a numerical estimation of the correlation and noise ratio parameters in Table 3.

Table 3. Estimated parameters in multivariate noisy Brownian motion model using the correlation
curves using the intraday dataset. The first four columns show the estimated latent correlation matrix.
The last column shows the noise ratio estimator ηi: = σ2

ϵ,i/σ2
i .

QQQ AAPL MSFT NVDA η (10−3 min)

QQQ 1 0.796396 0.798133 0.768358 2.960843
AAPL 0.796396 1 0.636989 0.585792 4.575938
MSFT 0.798133 0.636989 1 0.571759 5.063824
NVDA 0.768358 0.585792 0.571759 1 13.742560
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Figure 6. Correlation curves among {QQQ, AAPL, MSFT, NVDA} estimated for 3 s intraday data.
For the algorithm, we refer to Section 2.2. The curves shown in each plot are estimated and averaged
over all dates in the sample.
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Figure 7. 1/R2 vs. ω: = 1/τ plots for technology market and stocks, estimated for the 3 s intraday
dataset. Equation (15) is applied to the average correlation curves over all dates.
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4.2. Multiscale Correlation Time Series

For various ETFs and stocks, the estimated multiscale correlation does not stay con-
stant over time. To see the evolution of multiscale correlation over time, we compute the
60-day rolling average of the correlation estimated at 3 s, 30 s, and 10 min scales. This is
shown in Figures 8–11.
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Figure 8. Multiscale correlation between stock and bond ETFs estimated for a 60-day rolling window.
Correlations of intraday returns at different scales are estimated for each day and averaged over all
dates in the rolling window.

Figure 8 shows the multiscale correlations among three ETFs: SPY, HYG, and TLT.
While the SPY-HYG pair exhibits parallel correlation time series at the three timescales, the
other two pairs show scale-crossing behavior when the correlation changes signs. We can
see clearly that the correlations at all timescales approach zero at the same time, and the
smallest timescales always have the smallest absolute correlation value. This is consistent
with the noisy fractional Brownian motion model that we proposed. Figure 9 shows the
multiscale correlation time series among three stocks from the same sector: AAPL, MSFT,
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and NVDA. We can see that all three pairs exhibit similar patterns, suggesting common
behavior for the technology stocks.

In Figures 10 and 11, we consider six ETF pairs using the four sector ETFs: XLK, XLF,
XLP, and XLY. The correlation tends to be visibly lower at the larger timescale than at the
small timescale. This pattern holds over multiple years. The correlations at the smaller
timescales (i.e., 3 s and 30 s) become quite close over time. The scale dependency seems
to be stronger at a higher frequency for the sector ETFs than technology stocks. Another
interesting observation is that the correlation tends to dip in the middle of the year, most
obviously in 2021 and 2023.
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Figure 9. Multiscale correlations among technology stocks estimated for a 60-day rolling window.
Correlations of intraday returns at different scales are estimated for each day and averaged over all
dates in the rolling window.
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Figure 10. Multiscale correlations among 3 pairs of sector ETFs {XLK, XLF, XLP} estimated for a
60-day rolling window. Correlations of intraday returns at different scales are estimated for each day
and averaged over all dates in the rolling window.
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Figure 11. Cont.
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Figure 11. Multiscale correlations between XLY of 3 other sector ETFs {XLK, XLF, XLP} estimated for
a 60-day rolling window. Correlations of intraday returns at different scales are estimated for each
day and averaged over all dates in the rolling window.

5. Conclusions

In this paper, we have presented a multiscale correlation analysis of noisy high-
frequency financial data. The stochastic model studied herein is shown to possess a variety
of statistical properties suitable for real-world intraday prices. To extract the correlation
structure from prices, we devise a novel Hurst exponent estimator based on our model and
estimate the exponent using a collection of major US stocks and ETFs. This helps better the
understanding of the intraday correlations among asset prices and also the evolution of
correlations over time.

The current study also suggests several future directions for further investigation. For
instance, machine learning models can be designed to harness the Hurst exponents and
other estimates from our model as useful inputs. There are a number of practical applica-
tions, including portfolio optimization and risk management at different timescales. Our
current study illustrates that the Hurst exponent for different assets may vary significantly.
This should motivate authors to conduct research on finding and understanding the factors
that give rise to this phenomenon.
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