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Abstract: In this work, block checkerboard sign pattern matrices are introduced and analyzed. They
satisfy the generalized Perron–Frobenius theorem. We study the case related to total positive matrices
in order to guarantee bidiagonal decompositions and some linear algebra computations with high
relative accuracy. A result on intervals of checkerboard matrices is included. Some numerical
examples illustrate the theoretical results.
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1. Introduction

Finding classes of structured matrices for which accurate computations can be assured has
been a very active research field in recent years (cf. [1–7]). The desired goal is to guarantee high
relative accuracy (HRA), and it has been achieved for the usual linear algebra computations only
for a few classes of matrices. If an algorithm uses only additions of numbers of the same sign,
multiplications, and divisions, on the assumption that each original real datum is known to
HRA, then the output of that algorithm can be calculated with HRA (cf. [2] p. 52). Furthermore,
in well-implemented floating-point arithmetic, HRA is preserved even when performing true
subtractions with original exact data (cf. p. 53 of [2]). Therefore, an algorithm that only
uses additions of numbers of the same sign, multiplications, divisions, and subtractions
(additions of numbers of different sign) of the initial data ensures an output with HRA.

Among the sources of structured matrices for which HRA computations can be guar-
anteed are some subclasses of nonsingular, totally positive matrices. We say that a matrix
is totally positive (TP) whenever all its minors are non-negative (see [8]). These matrices
are also known as totally non-negative. TP matrices have been applied in many different
fields (cf. [9–12]), including Approximation Theory, Statistics, Mechanics, Computer-Aided
Geometric Design, Biomathematics, and Combinatorics, in addition to many other fields.
A nonsingular TP matrix can be decomposed as a bidiagonal factorization, that is, it can be
written as a product of bidiagonal matrices (see Chapter 7 of [10]). If we can compute this
factorization with HRA, then we can apply the algorithms of [13] to perform many linear
algebra computations with HRA, like the calculation of every eigenvalue, every singular
value, and the inverse or solving some linear systems.

Many advantages of dealing with non-negative matrices are known. As recalled above,
additional advantages can be obtained when dealing with TP matrices, in particular in
the field of achieving HRA computations. In this paper, we show that the nice spectral
properties of Perron–Frobenius theorems of non-negative matrices can be extended to some
matrices with a special sign pattern. Analogously, we show how the HRA computations of
some nonsingular TP matrices can be extended to some related classes of matrices with a
special sign pattern.

Mathematics 2024, 12, 853. https://doi.org/10.3390/math12060853 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060853
https://doi.org/10.3390/math12060853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2156-9856
https://orcid.org/0000-0002-4794-5875
https://orcid.org/0000-0002-1340-0666
https://doi.org/10.3390/math12060853
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060853?type=check_update&version=2


Mathematics 2024, 12, 853 2 of 13

The originality of the new results comes from the fact that this manuscript provides
tools to identify new classes of matrices of different signs for which Perron–Frobenius-type
theorems can be applied and for which high-relative-accuracy algorithms can be used.
These matrices arise in Combinatorics, as shown in Section 6, but also in Computer-Aided
Geometric Design or in Approximation Theory.

The structure of the paper is the following: Section 2 presents basic definitions, auxil-
iary results and the extension of Perron–Frobenius theorems to signed matrices. Section 3
introduces bidiagonal decompositions and the class of checkerboard matrices, whose ad-
vantages for achieving HRA computations are presented in Section 4. Section 5 includes a
result on intervals of checkerboard matrices. Section 6 shows some examples of checker-
board matrices with integer entries whose bidiagonal decomposition can be extremely
simple. Finally, Section 7 includes numerical experiments illustrating the accuracy of our
methods with respect to standard methods.

2. Definitions and Auxiliary Results

Given a matrix A, we write A ≥ 0 if all its entries are non-negative. Let us introduce
the notation Qr for the set of strictly increasing sequences of r positive integers, and let
α, β ∈ Qr. Then, we denote the r × r submatrix of A that is formed by taking the rows
numbered by α and the columns numbered by β as A[α|β]. If α = β, submatrix A[α|α] is a
principal submatrix of A, and it is written as A[α]. The dispersion number, d(α), is defined
for every α ∈ Qr as

d(α) := αr − α1 − (r − 1). (1)

So, α consists of successive integers whenever d(α) = 0.
Given a non-negative integer r, let us denote by Pr the set of sequences of r positive

consecutive indices αt ∈ Qr such that αt := (t r + 1, . . . , (t + 1)r) for t ∈ N∪ {0}.

Definition 1. We say that an infinite matrix B := (bij)i,j≥1 has a block checkerboard sign pattern
if for some positive integer r and all sequences of indices αt, αs ∈ Pr, we have that{

B[αt|αs] ≥ 0 if t − s is an even number,
B[αt|αs] ≤ 0 if t − s is an odd number.

(2)

Let us notice that the principal submatrices B[αt] are non-negative for every αt ∈ Pr.

In Definition 1, the parameter r describes the size of the sign blocks appearing in B.
For the case r = 3, the sign structure of a block checkerboard pattern would be as follows:

B =



+ + + − − − + + +
+ + + − − − + + + · · ·
+ + + − − − + + +
− − − + + + − − −
− − − + + + − − − · · ·
− − − + + + − − −
+ + + − − − + + +
+ + + − − − + + + · · ·
+ + + − − − + + +

...
...

...
. . .


(3)

We say that D := (dij)i,j≥1 is a diagonal matrix if dij = 0 when i ̸= j. Hence, D can
be represented in terms of its diagonal entries using the notation D := diag(di)i≥1, where
di := dii for i ≥ 1.

The matrices introduced in Definition 1 have a particular block sign structure that
can be captured using a sign matrix. Sign matrices are diagonal matrices S := diag(si)i≥1
such that si ∈ {1,−1}. We will consider the particular case Sr := diag(si)i≥1 where
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si = (−1)⌊
i−1

r ⌋. Then, we have the following characterization of infinite matrices with a
block checkerboard sign pattern.

Proposition 1. Given an infinite matrix B := (bij)i,j≥1, B has a block checkerboard sign pattern
with blocks of size r × r if and only if SrBSr := (sibijsj)i,j≥1 is a non-negative matrix.

We can build finite matrices with a block checkerboard sign pattern by taking principal
submatrices with consecutive indices from the infinite matrices given by Definition 2.

Definition 2. We say that A := (aij)1≤i,j≤n is an r-checkerboard matrix if, given r ≥ 1, A = B[α]
for some sequence α ∈ Qn with d(α) = 0 and for some infinite matrix B := (bij)i,j≥1 with a block
checkerboard sign pattern given by (2).

An r-checkerboard matrix A can be identified in terms of an n × n sign matrix K.
In this case, the sign matrix would be given by K := Sr[α], where α is the sequence of
indices for which A satisfies Definition 2. For this sign matrix K, we have that KAK ≥ 0 as
a consequence of Proposition 1. Thanks to this property, we can deduce, for r-checkerboard
matrices, some analogous results to the well-known Perron–Frobenius theorems.

Theorem 1 (cf. p. 26 in [14]). If A := (aij)1≤i,j≤n is a non-negative square matrix, then the
following apply:

1. The spectral radius of A, ρ(A), is an eigenvalue of A;
2. A has a non-negative eigenvector that corresponds to ρ(A).

Theorem 1 gives important information about non-negative matrices. For the case of
r-checkerboard matrices, this result provides the following corollary.

Corollary 1. If A := (aij)1≤i,j≤n is an r-checkerboard matrix with an associated sign matrix K, then
the following apply:

1. The spectral radius of A, ρ(A), is an eigenvalue of A;
2. A has an eigenvector v that corresponds to ρ(A) such that Kv is non-negative.

Proof. Since KAK ≥ 0, ρ(KAK) is an eigenvalue of KAK by Theorem 1. The fact that K = K−1

implies that A and KAK are similar matrices and that they have the same eigenvalues. Hence,
ρ(A) is an eigenvalue of A. By condition 2 of Theorem 1, KAKw = ρ(A)w for a non-negative
vector w. Hence, AKw = ρ(A)Kw, and v := Kw is an eigenvector corresponding to ρ(A) such
that Kv ≥ 0.

3. Checkerboard Matrices and Bidiagonal Decomposition

In the previous section, we have seen that r-checkerboard matrices are similar to
non-negative matrices thanks to sign matrices K. This relationship allowed us to deduce
some spectral properties for r-checkerboard matrices. In this section, we will consider
a stronger property, i.e., that KAK is a nonsingular TP matrix. In that case, we obtain
many interesting properties for this class of matrices, as well as the possibility of achieving
accurate computations for solving many of the most common linear algebra problems with
these matrices. The role of sign matrix K is fundamental. Let us start with the simplest case,
which will showcase an important property of nonsingular TP matrices.

3.1. Checkerboard Pattern Matrices

Our first example of a sign matrix is n × n diagonal matrix J := diag((−1)i−1)1≤i≤n,
that is, the matrix associated to an alternating sign pattern. If A is a checkerboard pattern
matrix, then matrix JAJ is non-negative. For example, for the case n = 4,
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A =


+ − + −
− + − +
+ − + −
− + − +

.

For the particular case where JAJ is a nonsingular TP matrix, we have that A−1 is also
a nonsingular TP matrix (see Section 1 of [8]).

3.2. Two-Block Checkerboard Matrices

Now, we are going to focus on the 2 × 2-block case. Let us introduce sign matrix
K2,−1 := diag((−1)⌊(i−1)/2⌋)1≤i≤n. For example, for n = 6, we have that

K2,−1 =



1
1

−1
−1

1
1

 (4)

The sign structure associated to K2,−1 is formed by alternating 2 × 2 blocks of entries
with the same sign. A 2-checkerboard matrix A with a block sign structure associated to
K2,−1 would be as follows:

A =



+ + − − + +
+ + − − + +
− − + + − −
− − + + − −
+ + − − + +
+ + − − + +

.

Let us now define the counterpart to K2,−1, i.e., sign matrix K2,0 = diag((−1)⌊i/2⌋)1≤i≤n.
For example, for n = 6, it takes the form

K2,0 =


1

−1
−1

1
1

−1

.

Once again, the associated sign structure to K2,0 is formed by alternating 2 × 2 blocks
of entries with the same sign (leaving the first row and column as special cases). Hence,
a 2-checkerboard matrix A with this pattern would be of the form

A =


+ − − + +
− + + − −
− + + − −
+ − − + +
+ − − + +

.

3.3. r-Block Checkerboard Matrices

Let us now extend the study to more general block structures: blocks with size r × r.
In this case, the sign matrix of an r-checkerboard matrix A takes the form
Kr,t = diag((−1)⌊

i+t
r ⌋)1≤i≤n for some t = −1, . . . , r − 2, where t depends on sequence

α given by Definition 2. We are particularly interested in the case where r-checkerboard
matrix A satisfies that Kr,t AKr,t is a nonsingular TP matrix. For this class of matrices,
a parametrization that ensures computations with high relative accuracy is achieved
through bidiagonal factorization.
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Definition 3. Let A := (aij)1≤i,j≤n be an r-checkerboard matrix such that Kr,t AKr,t ≥ 0 for some
t = −1, . . . , r − 2. Then, we say that A is a Kr,t-checkerboard matrix if Kr,t AKr,t is nonsingular TP.

In this case, we have r different sign structures depending on the size of the block
appearing on the upper left-hand corner of the matrix.

3.4. Bidiagonal Decomposition and SBD Matrices

Now, we will introduce the representation of a matrix in terms of bidiagonal decom-
position. This factorization gives a unique representation of a nonsingular TP matrix that
can be used to achieve many computations with HRA with this class of matrices.

Theorem 2 (cf. Theorem 4.2 of Chapter 7 of [10]). Let A be a nonsingular n × n TP matrix.
Then, A admits factorization as

A = Fn−1 · · · F1DG1 · · · Gn−1, (5)

where Fi and Gi, i ∈ {1, . . . , n − 1}, are non-negative bidiagonal matrices defined by

Fi =



1
0 1

. . . . . .
0 1

mi+1,1 1

. . . . . .
mn,n−i 1

, GT
i =



1
0 1

. . . . . .
0 1

m̃i+1,1 1

. . . . . .
m̃n,n−i 1

, (6)

and D = diag(p11, . . . , pnn) with pii > 0 for i = 1, . . . , n. Moreover, if mij and m̃ij fulfill
the conditions

mij = 0 ⇒ mhj = 0 ∀ h > i

and
m̃ij = 0 ⇒ mik = 0 ∀ k > j,

then the factorization defined by (5) and (6) is unique.

The bidiagonal decomposition given by Theorem 2 represents a TP matrix in terms of
n2 parameters. These parameters can be stored in an n × n matrix according to the notation
introduced in [15], where BD(A) represented the bidiagonal decomposition of nonsingular
TP matrix A:

(BD(A))ij =


mij, if i > j,
m̃ji, if i < j,
pii, if i = j.

(7)

Let us denote by ε a vector whose entries are only +1 or −1, that is, ε := (ε1, . . . , εm)
with ε j ∈ {1,−1} for all j = 1, . . . , m. This vector is called a signature. Based on the sign
structure defined by the signature, in [16], a new class of matrices that admits a signed
bidiagonal decomposition was introduced as an extension of nonsingular TP matrices that
admit a unique bidiagonal decomposition. This class was called SBD matrices.

Definition 4. Given a signature ε := (ε1, . . . , εn−1) and a nonsingular n × n matrix A, we say
that A has a signed bidiagonal decomposition with signature ε if there exists a BD(A) such that the
following apply:

1. di > 0 for all i = 1, . . . , n.
2. mijεi−1 ≥ 0 , and m̃jiε j−1 ≥ 0 for all 1 ≤ i, j ≤ n.

We say that A is an SBD matrix if it has a signed bidiagonal decomposition for some signature ε.

We will represent the bidiagonal decomposition of SBD matrices using the notation
in (7). We can define a sign diagonal matrix K := diag(k1, . . . , kn) associated to signature
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vector ε such that ki ∈ {1,−1} for all i = 1, . . . , n and kiki+1 = εi for all i = 1 . . . , n − 1.
Let us observe that there are only two possible sign matrices K for any given ε, defined by
either k1 = ε1 or k1 = −ε1. Hence, we can univocally identify ε with a sign matrix K such
that k1 = +1. We can also characterize SBD matrices in terms of sign matrices K.

Proposition 2 (Corollary 3.2 of [16]). Let A be an n × n nonsingular matrix. Then, A has a
signed bidiagonal decomposition if and only if there exists a diagonal matrix K = diag(k1, . . . , kn)
with ki ∈ {1,−1} for all i = 1, . . . , n such that KAK = |A| is a TP matrix, where |A| represents
a matrix whose entries are the absolute values of the corresponding entries of A.

This proposition implies that Kr,t-checkerboard matrices are SBD matrices for the
signature vector associated to sign matrix Kr,t. Hence, Kr,t-checkerboard matrices can be
represented in terms of a bidiagonal decomposition according to Definition 4. For these
matrices, the associated signature vector is εk,t = (ε j)

n−1
j=1 , where

ε j =

{
−1, if j = i k − t − 1 for i = 1, . . . ,

[ n
k
]
,

+1, otherwise.
(8)

For a general Kr,t-checkerboard matrix, the signature vector of its inverse is given by
−εk,t (see Theorem 3.1 of [16]). Hence, the sign structure of their inverses is related to the
sign blocks appearing in the Kr,t-block checkerboard matrices, and the following apply:

• If we look at the blocks appearing in the principal diagonal of the matrix, the interior
of the blocks of positive entries breaks into 1 × 1 positive blocks when we compute
the inverse.

• The 2× 2 diagonal blocks that have positive diagonal entries and negative off-diagonal
entries (corresponding to the end of a positive diagonal block and the start of the next
one) turn into 2 × 2 blocks of positive entries when computing the inverse.

In order to check this behavior, we should look at the signature vector associated to diagonal
matrix Kr,t. By Theorem 3.1 of [16], a matrix is SBD with signature ε if and only if its inverse
is SBD with signature −ε. For the case of Kr,t-checkerboard matrices, their inverses are
SBD matrices with signature −εk,t. The negative entries in the signature vector imply that
there is a change of sign in the associated sign matrix; hence, only 1 × 1 blocks of positive
entries appear in the principal diagonal of the inverse matrix. The only positive entries of
the signature vector appear for the indices j = i k − t − 1 for i = 1, . . . ,

[ n
k
]
, which implies

that the sign matrix has two entries with the same sign; therefore, at those positions, we
find 2 × 2 blocks of positive entries.

For example, for k = 3 and t = −1, we have that the sign matrix of the inverse is
Kinv

3,−1 = diag(1,−1, 1, 1,−1, 1, 1,−1, 1, 1,−1, . . .). If we consider an 8 × 8 r-checkerboard
matrix A with the sign structure given by K3,−1, we have that

A =

+ + + − − − + +

+ + + − − − + +

+ + + − − − + +

− − − + + + − −
− − − + + + − −
− − − + + + − −
+ + + − − − + +

+ + + − − − + +




where the black squares denote the diagonal blocks of positive entries. The dashed-line
squares show how the interior of these blocks break into 1 × 1 blocks and the 2 × 2 blocks
appearing when a positive block finishes and the next one starts. Hence, the sign structure
of the inverse would be as follows:
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A−1 =

+ − + + − + + −
− + − − + − − +

+ − + + − + + −
+ − + + − + + −
− + − − + − − +

+ − + + − + + −
+ − + + − + + −
− + − − + − − +




.

For the particular case of 2-checkerboard matrices, we have that the two only possibili-
ties for sign patterns are closely related. For a K2,−1-checkerboard matrix, the associated
signature would be ε2,−1 = (+1,−1,+1,−1 . . . , (−1)n−2). For a K2,0-checkerboard matrix,
its signature is ε2,0 = (−1,+1,−1,+1 . . . , (−1)n−1). Hence, we have that ε2,−1 = −ε2,0,
and we can obtain the following result by Theorem 3.1 of [16].

Corollary 2. The inverse of a K2,−1-checkerboard matrix is a K2,0-checkerboard matrix.

Proof. If A is a K2,−1-checkerboard matrix, then by Proposition 3.4, A is SBD with signature
ε2,−1. By Theorem 3.1 of [16], a matrix is SBD with signature ε if and only if its inverse is
SBD with signature −ε. Therefore, A−1 is SBD with signature −ε2,−1 = ε2,0, which implies, by
Proposition 3.4, that K2,0A−1K2,0 is nonsingular TP; so, A−1 is a K2,0-checkerboard matrix.

4. Bidiagonal Decomposition of Checkerboard Matrices

Given a Kr,t-checkerboard matrix A, we can multiply it from left and right by sign
matrix Kr,t to obtain a nonsingular TP matrix. Hence, their bidiagonal decompositions are
related by the following formula:

|A| = Kr,t AKr,t = Kr,tFn−1 · · · F1DG1 · · · Gn−1Kr,t

= (Kr,tFn−1Kr,t) · · · (Kr,tF1Kr,t)(Kr,tDKr,t)(Kr,tG1Kr,t) · · · (Kr,tGn−1Kr,t). (9)

If we know the bidiagonal decomposition of nonsingular TP matrix Kr,t AKr,t = |A|,
we can obtain the bidiagonal decomposition of A thanks to formula (9). This formula also
allows us to apply some of the HRA algorithms known for nonsingular TP matrices to
this class of matrices, according to [16]. For nonsingular TP matrices, accurate computa-
tions can be achieved using bidiagonal decomposition (Theorem 2) as a parametrization.
In [13,15], Plamen Koev designed algorithms to solve various linear algebra problems
with nonsingular TP matrices with HRA by taking the bidiagonal decomposition as input.
These algorithms have been implemented and are available in the library TNTool for use in
Matlab and Octave. This library also contains later contributions by other authors and can
be downloaded from Koev’s personal website [17]. For Kr,t-checkerboard matrices, we can
perform the following:

• Computing the eigenvalues of |A| with HRA with the function TNEigenvalues in
TNTool. The eigenvalues of A are the same, since they are similar matrices.

• Computing the singular values of |A| with HRA using the function TNSingularValues.
These singular values are also equal to the singular values of A, since |A| and A
coincide up to unitary matrices.

• Computing the inverse of |A| with HRA with the function TNInverseExpand presented
in Section 4 of [6] and available in TNTool. Then, we can obtain the inverse of A with
HRA, since A−1 = Kr,t|A|−1Kr,t.

• Solving the system of linear equations Ax = b with HRA whenever Kr,tb has an
alternating pattern of signs, since Ax = b is equivalent to Kr,t AKr,t(Kr,tx) = Kr,tb,
i.e., |A|y = Kr,tb, where y = Kr,tx, using the function TNSolve.
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5. Intervals of Checkerboard Matrices

This section will present a result on intervals of checkerboard matrices. Given diag-
onal matrix J and two n × n matrices B and C, we can define the checkerboard ordering
associated to J, ≤∗. We say that B ≤∗ C if JBJ ≤ JCJ, where ≤ is the usual entry-wise
inequality between two matrices. This ordering has proven to be quite useful in character-
izing intervals of TP matrices. In [18], the following theorem, which identifies intervals of
nonsingular TP matrices, was proven.

Theorem 3. Let B and C be n × n nonsingular TP matrices satisfying B ≤∗ C, i.e., JBJ ≤ JCJ.
If A is an n × n matrix such that B ≤∗ A ≤∗ C, then A is nonsingular TP.

This idea has been extended to find orderings associated to SBD matrices in [19], and
here, we analyze orderings for the case of checkerboard matrices. If a given n × n matrix A
is a Kr,t-checkerboard matrix, we know that Kr,t AKr,t is nonsingular TP. Hence, we define
the following ordering for Kr,t-checkerboard matrices.

Definition 5. Given two n × n matrices, A and B, we define the ordering ≤r,t as A ≤r,t B if
JKr,t AKr,t J ≤ JKr,tBKr,t J.

Now, we present a result on intervals of Kr,t-checkerboard matrices based on the
ordering ≤r,t.

Proposition 3. Let B and C be n×n Kr,t-checkerboard matrices satisfying B ≤r,t C, i.e., JKr,tBKr,t J ≤
JKr,tCKr,t J. If A is an n × n matrix such that B ≤r,t A ≤r,t C, then A is a Kr,t-checkerboard matrix.

Proof. Since B and C are Kr,t-checkerboard matrices, we have that Kr,tBKr,t and Kr,tCKr,t
are nonsingular TP matrices that satisfy J(Kr,tBKr,t)J ≤ J(Kr,t AKr,t)J ≤ J(Kr,tCKr,t)J for an
n × n matrix A. Hence, by Theorem 3, Kr,t AKr,t is a nonsingular TP matrix, or equivalently,
A is a Kr,t-checkerboard matrix.

6. Integer Examples

Many examples of TP matrices are ill conditioned. For instance, the symmetric Pascal
matrix, whose (i, j)-th entry is the binomial coefficient (i+j−2

j−1 ) is a well-known example of ill-
conditioning. However, the symmetric Pascal matrix admits a really simple representation
in terms of the bidiagonal decomposition: all the nonzero entries of this factorization are
ones. Hence, many linear algebra problems can be solved accurately with the Pascal matrix
if we use algorithms that take the bidiagonal decomposition as input.

In this section, we are going to illustrate some examples of r-checkerboard matrices
that admit an easy representation in terms of bidiagonal decomposition with integer entries.

6.1. Generalized Pascal Matrix

Our first example comes from an extension of the Pascal matrix depending on a
parameter x ∈ R. The generalized Kr,t-checkerboard Pascal matrix of the first kind, SPn[x],
is defined as the triangular matrix

(SPn[x])ij = (−1)⌊
i+t

r ⌋+⌊ j+t
r ⌋xi−j

(
i − 1
j − 1

)
, i ≥ j

and the symmetric generalized Pascal matrix, SRn[x], is defined as

(SRn[x])ij = (−1)⌊
i+t

r ⌋+⌊ j+t
r ⌋xi+j−2

(
i + j − 2

j − 1

)
. (10)
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These matrices are the signed counterparts of the generalized Pascal matrix, Pn[x] := |SPn[x]|,
and the symmetric generalized Pascal matrix, Rn[x] := |SRn[x]| (see [20]). Their bidiagonal
decomposition are

(BD(SPn[x]))ij =


1, if i = j,
εi−1x, if i > j,
0, if i < j.

(BD(SRn[x]))ij =


x2(i−1), if i = j,
εi−1x, if i > j,
ε j−1x, if i < j,

(11)

respectively, where εi = ±1 is given by (8) for i = 1, . . . , n − 1. For the case x ∈ Z, we have
that these are examples of integer matrices.

6.2. Matrices of Stirling Numbers

Our next example comes from matrices of Stirling numbers. The Stirling num-
bers of the first kind (si,j) are the coefficients of the expansion of the falling factorial
(x)n = ∏n−1

k=0 (x − k), i.e., (x)n = ∑n
k=0 sn,kxk, where (x)n = ∏n−1

k=0 (x − k). Let us recall that
the Stirling numbers of the first kind can be calculated using the following recurrence relation:

sn+1,k = sn,k−1 − n · sn,k,

where s00 = 1, sn0 = 0 for n > 0, and s0k = 0 for k > 0. Then, matrix S = (sij)1≤i,j≤n is a
K1,−1-checkerboard matrix whose bidiagonal decomposition is given by

(BD(S))ij =


1, i = j,

−(i − j), i > j,
0, otherwise.

Matrix S is the inverse of a nonsingular TP matrix. That TP matrix is precisely the
matrix whose entries are Stirling numbers of the second kind. Let us recall that the Stirling
number of the second kind, bn,k, counts the different partitions of a set of n elements into k
non-empty subsets. Hence, these numbers can be obtained by using the recurrence relation

bn+1,k = bn,k−1 + k · bn,k,

with the initial conditions b00 = 1, bn0 = 0 for n > 0, and b0k = 0 for k > 0. Then, matrix
B = (bij)1≤i,j≤n is a nonsingular TP matrix whose bidiagonal decomposition takes the
following form:

(BD(B))ij =


1, i = j,
j, i > j,
0, otherwise.

7. Numerical Experiments

In [13], Koev introduced methods to calculate the eigenvalues and the singular values
of A and the solution of linear systems of equations Ax = b, where b has a pattern of
alternating signs from the parameterization BD(A) for the case where A is a TP matrix.
These algorithms provide approximations to the solutions of these algebraic problems with
HRA if BD(A) is obtained with HRA. In addition, in [6], Marco and Martínez developed
an algorithm to calculate, with HRA, the inverse A−1 under the same previous hypotheses.
In the software library TNTool, available in [17], these four algorithms are implemented with
Matlab. The names of the corresponding functions are TNEigenvalues, TNSingularValues,
TNInverseExpand, and TNSolve. They require, as input argument, bidiagonal decomposi-
tion BD(A) of A, given by (7), with HRA. In addition, TNSolve needs vector b of the system
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of linear equations Ax = b as a second argument. Regarding computational cost, the algo-
rithms are at least as fast as the usual algorithms for solving these algebraic problems, as
shown in the following:

• TNInverseExpand and TNSolve have both a computational cost of O(n2) elemen-
tary operations.

• TNEigenValues and TNSingularValues both require O(n3) elementary operations.

In order to illustrate the theoretical results, we considered the square matrices SRn[1/2]
of order n = 5, 10, . . . , 50 defined by (10), i.e.,

(SRn[1/2])ij = (−1)⌊
i−1

2 ⌋+⌊ j−1
2 ⌋ 1

2i+j

(
i + j

j

)
.

Table 1 shows the condition numbers k(A) := ∥A∥∞∥A−1∥∞ of these matrices. It can
be observed that these matrices are very ill conditioned. So, accurate results cannot be
expected when using the usual algorithms for solving algebraic problems with them.

Table 1. Condition numbers of SRn[1/2].

n k(SRn[1/2])

5 5.44 × 103

10 2.37 × 108

15 1.11 × 1013

20 5.77 × 1017

25 3.06 × 1022

30 1.63 × 1027

35 8.96 × 1031

40 4.97 × 1036

45 2.74 × 1041

50 1.54 × 1046

It can be observed that SRn[1/2] is a Kr,t-checkerboard matrix. In particular, it can be
seen that K2,−1(SRn[1/2])K2,−1 = Rn[1/2] > 0, where Rn[1/2] is the symmetric general-
ized Pascal matrix defined by the absolute value of (10) for x = 1/2 and K2,−1 is the order
n matrix given by (4). Since Rn[1/2] is a TP matrix, taking into account the discussion in
Section 4, the singular values and the inverse of SRn[1/2], as well as the solution of systems
SRn[1/2]x = b, whenever K2,−1b has an alternating pattern of signs, can be computed with
HRA. Observe that since Rn[1/2] is a symmetric matrix, the eigenvalues and the singular
values of Rn[1/2] coincide. Since K−1

2,−1 = K2,−1, the same applies to matrices SRn[1/2].
The bidiagonal decomposition (BD(Rn[x])) of a generalized symmetric Pascal matrix

Rn[x] can be computed with HRA for all x > 0 by (11) (taking the case where ε j = 1 for
j = 1, . . . , n − 1). We implemented the algorithm for the computation of this bidiagonal
decomposition in the Matlab function TNBDGPascalSym.

First, by using TNBDGPascalSym in Matlab, we calculated the bidiagonal decomposi-
tion (BD(Rn[1/2])) with high relative accuracy. Then, we computed approximations to
the singular values of Rn[1/2] by using TNSingularValues with BD(Rn[1/2]) as input
argument. Approximations to these singular values were also obtained with the Matlab
function svd. In order to illustrate the accuracy of the approximations to the singular values
computed by the two methods, the singular values of SRn[1/2] were also calculated with
Mathematica using a precision of one hundred digits. Then, the relative errors for the
approximations to the singular values obtained by both methods were computed, taking
the singular values obtained with Mathematica as the exact singular values. These rela-
tive errors showed that the approximations of all the singular values calculated by using
TNBDGPascalSym are highly accurate and that the approximations of the lower singular
values computed by using the Matlab function svd are not very accurate. It was also
observed that the lower the singular value is, the less accurate the approximation provided
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by svd is. To demonstrate this fact, the relative errors of the approximations to the smallest
singular value of the considered examples (SRn[1/2], n = 5, 10, . . . , 50), obtained by both
svd and TNSingularValues, are shown in Figure 1. From the results in that figure, it can be
concluded that our method produces very accurate results, as opposed to the inaccurate
results obtained with svd.

Figure 1. Relative errors for the smallest singular value of SRn[1/2].

Approximations to (SRn[1/2])−1, n = 5, 10, . . . , 50, were also obtained by using
Matlab with inv and by using TNInverseExpand together with TNBDGPascalSym. The exact
inverses, (SRn[1/2])−1, were obtained with Mathematica using exact arithmetic. Then,
the corresponding component-wise relative errors were computed. The mean relative errors
are shown in Figure 2a, and the maximum relative errors are shown in (b). In this case, it
is also clear that the accuracy of the results provided by TNInverseExpand is significantly
better than that of the results provided by inv.

Finally, we considered the systems of linear equations SRn[1/2]x = bn, n = 5, 10, . . . , 50
such that K2,−1bn has an alternating pattern of signs and with entries whose absolute value
is an integer randomly chosen in the interval [1, 1000]. Then, approximations to the solution
of these linear systems were computed in two ways: the first one, by using the Matlab
command A\b, and the second one, by solving the system |SRn[1/2]|y = K2,−1bn with
TNSolve and then computing the solution of the original system as x = K2,−1y. The exact
solutions of these systems were computed with Mathematica; then, the component-wise
relative errors for both approximations were calculated. The mean relative errors are shown
in Figure 3a, and the maximum relative errors are shown in (b). The results obtained with
the HRA algorithms are much better from the point of view of accuracy than the results
obtained with the usual Matlab method.

Figure 2. Relative errors for (SRn[1/2])−1, n = 5, 10, . . . , 50.
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Figure 3. Relative errors for the linear systems SRn[1/2]x = bn, n = 5, 10, . . . , 50.

In order to compare the computation time of the HRA methods with that of the usual
methods, we solved the three algebraic problems considered in this section for SR50[1/2]
one hundred times. Table 2 shows the average computation time for each one of the
algebraic problems.

Table 2. Average computation time in seconds.

Inverse Linear System Singular Values

HRA methods 6.32 × 10−4 1.34 × 10−5 3.90 × 10−3

Usual methods 2.06 × 10−4 1.95 × 10−4 8.07 × 10−5

8. Conclusions

We introduce the class of block checkerboard pattern matrices, which are matrices
with a regular pattern of signs for which a generalized Perron–Frobenius type theorem is
satisfied. We consider bidiagonal decomposition of checkerboard matrices for achieving
linear algebra computations with high relative accuracy (HRA). These HRA computations
include the calculation of all eigenvalues and all singular values, the calculation of the
inverses, and the solution of some associated linear systems. We also introduce a new order
relation for matrices, deriving a result on intervals of block checkerboard matrices. We
present new families of matrices with integer entries, which can be used as test matrices to
check the accuracy of linear algebra algorithms. Numerical examples illustrate the accuracy
of the presented methods compared with standard methods for the abovementioned linear
algebra computations.
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