
Citation: Alshehri, N.; Guediri, M.

Gradient Ricci Solitons on Spacelike

Hypersurfaces of Lorentzian

Manifolds Admitting a Closed

Conformal Timelike Vector Field.

Mathematics 2024, 12, 842. https://

doi.org/10.3390/math12060842

Academic Editor: Adolfo

Ballester-Bolinches

Received: 17 February 2024

Revised: 9 March 2024

Accepted: 11 March 2024

Published: 13 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Gradient Ricci Solitons on Spacelike Hypersurfaces of
Lorentzian Manifolds Admitting a Closed Conformal Timelike
Vector Field
Norah Alshehri *,† and Mohammed Guediri †

Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
mguediri@ksu.edu.sa
* Correspondence: nalshhri@ksu.edu.sa
† These authors contributed equally to this work.

Abstract: In this article, we investigate Ricci solitons occurring on spacelike hypersurfaces of Einstein
Lorentzian manifolds. We give the necessary and sufficient conditions for a spacelike hypersurface of
a Lorentzian manifold, equipped with a closed conformal timelike vector field ξ̄, to be a gradient Ricci
soliton having its potential function as the inner product of ξ̄ and the timelike unit normal vector
field to the hypersurface. Moreover, when the ambient manifold is Einstein and the hypersurface is
compact, we establish that, under certain straightforward conditions, the hypersurface is an extrinsic
sphere, that is, a totally umbilical hypersurface with a non-zero constant mean curvature. In particular,
if the ambient Lorentzian manifold has a constant sectional curvature, we show that the compact
spacelike hypersurface is essentially a round sphere.

Keywords: gradient Ricci soliton; Einstein manifold; conformal vector field; spacelike hypersurfaces
with constant mean curvature
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1. Introduction

It is a well-established fact that Ricci solitons are closely linked with Ricci flows, as
outlined in [1]. Essentially, a pseudo-Riemannian metric g defined on M provides a Ricci
soliton on a smooth manifold M if and only if there exists a positive function σ(t) and a
one-parameter family ψ(t) of diffeomorphisms of M such that the one-parameter family of
metrics g(t) = σ(t)ψ(t)∗g satisfies the Ricci flow equation:

∂

∂t
g(t) = −2Ricg(t),

with the initial condition g = g(0). Here, ψ(t)∗ denotes the pullback along the diffeomor-
phism ψ(t), and Ricg(t) represents the Ricci curvature of g(t).

A pseudo-Riemannian manifold (M, g) is called a Ricci soliton if there exists a nonzero
smooth vector field X and a constant λ satisfying

1
2

LX g + Ric = λg, (1)

where LX is the Lie derivative with respect to X and Ric is the Ricci tensor with g. We
denote a Ricci soliton by (M, g, X, λ). The concept of a Ricci soliton was first introduced by
Hamilton [2,3].

Ricci solitons are a type of manifold in differential geometry that generalize the concept
of Einstein metrics, that is, Ric = cg for some constant c. The Ricci soliton is classified as
shrinking, steady, or expanding based on whether λ > 0, λ = 0, or λ < 0, respectively. The
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vector field X is referred to as the potential field of (M, g, X, λ). If the potential field X is
the gradient of some smooth function f on M, that is X = ∇ f , then (M, g, f , λ) will denote
the gradient Ricci soliton (M, g,∇ f , λ). In this case, Equation (1) takes the form

Ric + Hess( f ) = λg, (2)

where Hess( f ) is the Hessian of the function f . The function f is called a potential function
of the Ricci soliton (M, g, f , λ).

Additionally, if LX g = 0, the Ricci soliton is considered trivial, and from Equation (1),
M is an Einstein manifold.

One of the significant areas of focus in differential geometry and mathematical physics
is the theory of submanifolds, which presents challenging topics related to submanifold
geometry. In many research endeavors, the Gauss, Codazzi, and Ricci Equations for sub-
manifolds play a crucial role as they can be formulated in a manageable manner. The
exploration of Ricci solitons on hypersurfaces has gained traction, particularly in under-
standing the conditions under which hypersurfaces within Riemannian manifolds can
exhibit Ricci soliton structures. While Ricci solitons on hypersurfaces in Riemannian mani-
folds have been extensively investigated, there is a relative scarcity of studies focusing on
Ricci solitons in a Lorentzian manifold ambient space, despite their significance in terms of
geometry and applications in theoretical physics. These circumstances have motivated our
investigation into Ricci solitons on Riemannian hypersurfaces within Lorentzian manifolds.

The fascination with the geometry of Ricci solitons stems from its diverse applications
in various disciplines, particularly in the context of hypersurfaces in Riemannian manifolds,
as exemplified in [4–19]. This paper directs its attention to spacelike hypersurfaces in
Lorentzian manifolds, which, to the best of our knowledge, represent an underexplored
area in the existing literature. More specifically, our investigation centers on the analysis
of gradient Ricci solitons on spacelike hypersurfaces of Lorentzian manifolds. These
hypersurfaces are characterized by the presence of a closed conformal vector field of the
ambient manifold, with the potential function denoted as θ, that is, the inner product
between the closed conformal vector field and the timelike unit normal vector field to
the hypersurface

This paper is organized as follows: the second section revisits essential concepts
and formulas concerning spacelike hypersurfaces in Lorentzian manifolds. Section 3
presents the main results, focusing on characterizing conditions under which a spacelike
hypersurface in a Lorentzian manifold, endowed with a closed conformal vector field,
displays a gradient Ricci soliton structure with θ as the potential function.

The examination then focuses on compact gradient Ricci solitons, particularly when
the ambient manifold is Einstein. We provide sufficient conditions to characterize spacelike
hypersurfaces as extrinsic spheres, that is, totally umbilical hypersurfaces with a nonzero
constant mean curvature. In the special case where the ambient manifold has a constant
sectional curvature, it is deduced that the hypersurface is a round sphere. In the future,
we look forward to generalizing this research in the case where the ambient manifold is a
generalized Robertson Walker (GRW) spacetime.

2. Preliminaries

Let (M, g) be a hypersurface in an orientable Lorentzian manifold (M, g) of dimension
(n + 1). Denote by ∇ and ∇ the Levi-Civita connections of M and M, respectively. Two
fundamental equations apply to all vector fields X and Y that are tangential to M.

∇XY = ∇XY − h(X, Y), (3)

∇X N = −A(X). (4)

Formula (3) is called Gauss’ formula and Formula (4) is called Weingarten’ formula, where
h is the second fundamental form, and A is the shape operator of M derived from a normal
vector field N to M.
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There is a relationship between the second fundamental form h and the shape operator
A of M.

g(A(X), Y) = g(h(X, Y), N). (5)

The Codazzi equation describes the normal part of the curvature R(X, Y)Z as follows:

(R(X, Y)Z)⊥ = (∇Yh)(X, Z)− (∇Xh)(Y, Z), (6)

where X, Y, and Z are tangent to M, while N is normal to M, and R is the curvature tensor
of M, defined as follows:

R(X, Y)Z = ∇[X,Y]Z − [∇X ,∇Y]Z.

The covariant derivative of h is denoted as ∇h, and it is defined as follows:

(∇Xh)(Y, Z) = ∇X(h(Y, Z))− h(∇XY, Z)− h(Y,∇XZ).

The Gauss–Codazzi equation is a mathematical formula that is widely known and used.

R(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W))− g(h(X, W), h(Y, Z)), (7)

for all X, Y, Z and W tangent to M, where R and R are the curvature tensors of M and M,
respectively.

Let {e1, . . . , en} be an orthonormal frame of a pseudo-Riemannian manifold (M, g).
Then, the Ricci curvature tensor on M is a symmetric tensor given by

Ric(X, Y) =
n

∑
i=1

ϵiR(X, ei, Y, ei),

where X and Y are tangent to M, and the scalar curvature S of M is defined by

S =
n

∑
i=1

ϵiRic(ei, ei).

The divergence of the vector field X of M is defined by

div(X) =
n

∑
i=1

ϵig(∇ei X, ei), (8)

where ϵi = g(ei, ei). The trace of the curvature tensor is the Ricci curvature, and the trace of
the Ricci is the scalar curvature.

The mean curvature H of a spacelike hypersurface M in a Lorentzian manifold (M, g)
is define by

H = − 1
n

tr(A),

where tr(A) is the trace of the shape operator A of M derived from a normal vector field N to M.
Equation (7) results in a relationship between the Ricci curvatures Ric and Ric of M

and M, respectively. Furthermore, it can be expressed as follows:

Ric(X, Y) = Ric(X, Y) + g(R(N, X)Y, N) + g(A(X), nHY + A(Y)). (9)

The Hessian Hess( f ) of a smooth function f on a pseudo-Riemannian manifold (M, g)
is a symmetric tensor defined by

Hess( f )(X, Y) = g(S f (X), Y),
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where S f is the Hessian operator defined by S f = ∇X∇ f and ∇ f is the gradient of the
function f .

A point p of a pseudo-Riemannian hypersurface M of M is called an umbilical point if
the shape operator A at p, Ap = ΦI, where Φ is scalar. M is called totally umbilical if every
point of M is umbilical. In particular, M is called totally geodesic if A = 0.

A hypersurface M of a pseudo-Riemannian (M, g) is called an extrinsic sphere if it is
a totally umbilical sphere with a non-zero constant mean curvature.

3. Ricci Solitons on Spacelike Hypersurfaces in Einstein Lorentzian Manifolds

Let (M, g) be an orientable spacelike hypersurface of a Lorentz manifold (M, g) of
dimension (n + 1), and let ξ̄ be a timelike closed conformal vector field on M which means

∇X ξ̄ = ψX,

for all X ∈ X(M) (X(M) is the set of all vector fields on M) and ψ is called the conformal
function, a smooth function on M. The restriction of ξ̄ to M is denoted by ξ. Let N be a unit
timeline normal vector field on M, which can be chosen so that θ = g(ξ, N) < 0. Then, we
can write

ξ = ξT − θN, (10)

where ξT is the tangential component of ξ. By using Gauss and Weingarten formulas, it yields

∇XξT = ψX − θA(X), (11)

and
A(ξT) = −∇θ. (12)

From (8), it is straightforward to derive

divξT = n(ψ + θH). (13)

Let Q and Q be Ricci operators on M and M, respectively, where Q and Q satisfy
Ric(X, Y) = g(QX, Y) and Ric(X, Y) = g(QX, Y).

Some of the notation are reviewed, which are needed in our results. It is easy to see
that R(N, X)N is tangent to M for all X ∈ X(M), and, thus, we can define the normal
Jacobi operator RN : TM → TM by

RN(X) = R(N, X)N.

Define the operator (∇A)ξT on M by

(∇A)ξT(X) = ∇A(X, ξT) = (∇X A)(ξT).

The following lemma is crucial for proving the main results.

Lemma 1.
tr((∇A)ξT) = −Ric(ξT , N)− nξT(H).
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Proof. Let {e1, . . . , en} denote a local orthonormal frame on M that can be taken as parallel.
By using the Codazzi Equation (6), it yields

tr((∇A)ξT) =
n

∑
i=1

g((∇ei A)(ξT), ei)

= −
n

∑
i=1

g(R(ξT , ei)ei, N)−
n

∑
i=1

g((∇ξT A)(ei), ei)

= −
n

∑
i=1

g(R(ξT , ei)ei, N)−
n

∑
i=1

g(∇ξT (A(ei)), ei) +
n

∑
i=1

g(A(∇ξT )ei), ei)

= −
n

∑
i=1

g(R(ξT , ei)ei, N) + g(R(N, N)ξT , N)− ξT
n

∑
i=1

g(A(ei), ei)

= −Ric(ξT , N)− nξT(H).

Our first result presents the conditions that a spacelike hypersurface must satisfy to be
identified as a gradient Ricci soliton of the particular type (M, g, θ, λ).

Theorem 1. Let (M, g) be an (n+1)-dimensional Lorentzian manifold endowed with a timelike
closed conformal vector field ξ̄. Let (M, g) be a spacelike hypersurface of (M, g), and let ξ, ξT , and
θ be the same as above. (M, g, θ, λ) is a Ricci soliton if and only if the following equation is satisfied:

Q + RN − (∇A)(ξT) + (nH − ψ)A + (1 + θ)A2 = λI. (14)

Proof. By using Equations (3) and (4), it follows that

Hess(θ)(X, Y) = g(∇X∇θ, Y)

= −g(∇X(A(ξT)), Y)

= −g((∇X A)(ξT), Y)− g(A(∇XξT), Y)

= −g((∇X A)(ξT), Y)− g(ψA(X)− θA2(X), Y).

From this last expression, we have

Sθ = −(∇A)ξT − ψA + θA2.

By using Equation (2), it yields

Q = (∇A)ξT + ψA − θA2 + λI. (15)

By substituting (15) into (9), we obtain (14).

The next result outlines a practical condition applicable to a spacelike hypersurface,
establishing its characterization as a gradient Ricci soliton of the type (M, g, θ, λ).

Theorem 2. Let (M, g) be an (n+1)-dimensional Lorentzian manifold with a timelike closed
conformal vector field ξ̄ on M. Let (M, g) be a spacelike hypersurface of (M, g), and let ξ, ξT , and
θ be the same as above. If (M, g, θ, λ) is a Ricci soliton, then

S̄ + 2Ric(N, N) + (ψ − nH)nH + (1 + θ)|A|2 + Ric(ξT , N) + nξT(H) = nλ. (16)

Proof. Formula (16) is obtained just by tracing Equation (14) and using Lemma 1.

In the case of an Einstein ambient manifold, Theorem 2 yields the following implication.
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Theorem 3. Let (M, g) be an (n+1)-dimensional Einstein Lorentzian manifold with Ric = nc̄g,
where c̄ is a constant. Let ξ̄ be a timelike closed conformal vector field on M. Let (M, g) be a
spacelike hypersurface of (M, g), and let ξ, ξT , and θ be the same as above. If (M, g, θ, λ) is a Ricci
soliton, then

(1 + θ)(|A|2 − nH2) + n(n − 1)(c̄ − H2) + ndiv(HξT) = nλ. (17)

Proof. Using (13) and (16), it follows that

S̄ + 2Ric(N, N) + (1 + θ)(|A|2 − nH2)− n(n − 1)H2 + nHdiv(ξT)
+Ric(ξT , N) + nξT(H) = nλ.

(18)

Since M is Einstein, then Ric(N, N) = −nc̄, Ric(ξT , N) = 0 and S̄ = n(n + 1)c̄.
It follows that Equation (18) becomes

(1 + θ)(|A|2 − nH2) + n(n − 1)(c̄ − H2) + nHdiv(ξT) + nξT(H) = nλ. (19)

Using div(HξT) = Hdiv(ξT) + ξT(H) yields (17).

A simple consequence of the last theorem is the following result.

Theorem 4. Let (M, g) be an (n+1)-dimensional Einstein Lorentzian manifold with Ric = nc̄g,
where c̄ is a constant, and let ξ̄ be a timelike closed conformal vector field on M. Let (M, g) be a
compact spacelike hypersurface of (M, g), and let ξ, ξT , and θ be the same as above. If (M, g, θ, λ)
is a Ricci soliton, then∫

M
(1 + θ)(|A|2 − nH2)dV = n

∫
M
(λ − (n − 1)(c̄ − H2))dV. (20)

There are interesting results after imposing certain assumptions on the function θ.

Theorem 5. Consider the manifolds (M, g) and (M, g) as defined in Theorem 4, with the additional
assumption that θ < −1 (resp. −1 < θ < 0) everywhere. If (M, g, θ, λ) is a non-trivial Ricci
soliton, then λ ≤ (n − 1)(c̄ − H2) (resp. λ ≥ (n − 1)(c̄ − H2)), with equality holds if and only
if M is an extrinsic sphere. In particular, if (M, g) has a constant sectional curvature, then M is
necessarily a sphere with a constant sectional curvature c = c̄ − H2 > 0. In this case, the Ricci
soliton is shrinking.

Proof. Applying Schwartz’s inequality leads to the conclusion that λ ≤ (n − 1)(c̄ − H2).
It is a well-established fact that when equality is achieved, it indicates that M is totally
umbilical. In [20], Lemma 35 on page 116 implies that M has a constant sectional curvature
c = c̄ − H2. As M is compact, it must be that M is a sphere with a constant positive curva-
ture c = c̄ − H2. This implies that λ > 0. Consequently, the Ricci soliton is shrinking.

Remark 1. In Theorem 5, assuming that M is a space form implies that it is isometric to the de
Sitter Space Sn+1

1 (c̄), where c̄ > 0.

The consequences derived from Equation (20) in Theorem 4 also lead to the following result.

Theorem 6. Let (M, g) be an (n+1)-dimensional Einstein Lorentzian manifold with Ric = nc̄g,
where c̄ is a constant, and let ξ̄ be a timelike closed conformal vector field on M. Let (M, g) be a
compact spacelike hypersurface of (M, g), and let ξ, ξT , and θ be the same as above. If (M, g, θ, λ)
is a Ricci soliton, such that either θ < −1 and λ ≥ (n − 1)(c̄ − H2), or −1 < θ < 0 and
λ ≤ (n − 1)(c̄ − H2), then M is totally umbilical, H is a constant, and M is an extrinsic sphere.

Proof. Clearly, Equation (20) implies |A|2 − nH2 = 0 if θ < −1 and λ ≥ (n − 1)(c̄ − H2)
or −1 < θ < 0 and λ ≤ (n − 1)(c̄ − H2). It is concluded that M is totally umbilical with
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a constant mean curvature H, since λ = (n − 1)(c̄ − H2). It must be that H ̸= 0 because
otherwise, M will be totally geodesic, a contradiction of the compactness of M.

4. Conclusions

Gradient Ricci solitons have been extensively studied in Riemannian manifolds, as
discussed in the introduction. However, this concept has received limited attention in
the Lorentzian context, with only a few papers published on the topic. In this paper, we
investigate gradient Ricci solitons on spacelike hypersurfaces of Lorentzian manifolds,
marking the first attempt to do so. We believe that our research offers several advantages
and potential impacts compared to the existing literature, thereby advancing knowledge
in Lorentzian geometry. By studying gradient Ricci solitons in Lorentzian manifolds,
particularly on spacelike hypersurfaces, we aim to gain a deeper understanding of their
properties and behavior. This understanding could have significant implications across
various branches of physics, particularly in general relativity, where Lorentzian manifolds
are fundamental. Our research also aims to contribute to the development of a more com-
prehensive theoretical framework applicable to diverse mathematical and physical fields.
Additionally, we hope that our findings will inspire further research and potentially lead
to practical applications in fields such as cosmology, gravitational physics, and geometric
analysis. In summary, we think that our work represents a significant step forward in
understanding gradient Ricci solitons on spacelike hypersurfaces of Lorentzian manifolds,
with implications for both theoretical mathematics and applied physics.
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