
Citation: Al Ahmadi, S.; Muhammad,

F.; Al Dawsari, H. Enhancing Arabic

Sign Language Interpretation:

Leveraging Convolutional Neural

Networks and Transfer Learning.

Mathematics 2024, 12, 823. https://

doi.org/10.3390/math12060823

Academic Editors: Xinsong Yang and

Alessandro Niccolai

Received: 16 January 2024

Revised: 22 February 2024

Accepted: 6 March 2024

Published: 11 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Enhancing Arabic Sign Language Interpretation: Leveraging
Convolutional Neural Networks and Transfer Learning
Saad Al Ahmadi , Farah Muhammad * and Haya Al Dawsari

Department of Computer Science, College of Computer & Information Sciences, King Saud University,
Riyadh 11543, Saudi Arabia; salahmadi@ksu.edu.sa (S.A.A.); hs.aldawsari@psau.edu.sa (H.A.D.)
* Correspondence: fnazar@ieee.org

Abstract: In a world essentializing communication for human connection, the deaf community
encounters distinct barriers. Sign language, their main communication method is rich in hand
gestures but not widely understood outside their community, necessitating interpreters. The existing
solutions for sign language recognition depend on extensive datasets for model training, risking
overfitting with complex models. The scarcity of details on dataset sizes and model specifics in
studies complicates the scalability and verification of these technologies. Furthermore, the omission
of precise accuracy metrics in some research leaves the effectiveness of gesture recognition by these
models in question. The key phases of this study are Data collection, Data preprocessing, Feature
extraction using CNN and finally transfer learning-based classification. The purpose of utilizing
CNN and transfer learning is to tap into pre-trained neural networks for optimizing performance
on new, related tasks by reusing learned patterns, thus accelerating development and improving
accuracy. Data preprocessing further involves resizing of images, normalization, standardization,
color space conversion, augmentation and noise reduction. This phase is capable enough to prune
the image dataset by improving the efficiency of the classifier. In the subsequent phase, feature
extraction has been performed that includes the convolution layer, feature mapping, pooling layer
and dropout layer to obtain refined features from the images. These refined features are used for
classification using ResNet. Three different datasets are utilized for the assessment of proposed model.
The ASL-DS-I Dataset includes a total of 5832 images of hand gestures whereas, ASL-DS-II contains
54,049 images and ASL-DS-III dataset includes 7857 images adopted from specified web links. The
obtained results have been evaluated by using standard metrics including ROC curve, Precision,
Recall and F-measure. Meticulous experimental analysis and comparison with three standard baseline
methods demonstrated that the proposed model gives an impressive recognition accuracy of 96.25%,
95.85% and 97.02% on ASL-DS-I, ASL-DS-II and ASL-DS-III, respectively.

Keywords: Arabic Sign Language; CNN; transfer learning; ResNet-152

MSC: 68U10

1. Introduction

Globally, sign language is the primary mode of communication for over 70 million
individuals. The development of an automated interpretation system holds the potential to
greatly improve interactions between sign language users and those who are not proficient
in it. Sign language encompasses not just hand movements but also integrates facial
expressions, eye movements, and lip patterns to effectively convey messages. This form
of communication is crucial for individuals who are deaf or have hearing difficulties, as it
frequently represents their primary means of daily communication.

The World Health Organization reports that approximately 5% of the world’s pop-
ulation experiences hearing loss [1]. This figure represents over 460 million individuals
globally, including 34 million children [2]. Projections indicate that by 2050, the number

Mathematics 2024, 12, 823. https://doi.org/10.3390/math12060823 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12060823
https://doi.org/10.3390/math12060823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9406-6809
https://orcid.org/0000-0002-4845-1156
https://doi.org/10.3390/math12060823
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12060823?type=check_update&version=2

Mathematics 2024, 12, 823 2 of 21

of people with hearing loss might increase to over 900 million. Additionally, noise ex-
posure and other factors are putting around 1.1 billion young people at risk of hearing
impairment [3]. The global economic burden of unaddressed hearing loss is estimated
at 750 billion US dollars. Hearing loss can range from mild to profound, and those with
severe to profound hearing loss often face significant communication challenges.

The deaf community primarily uses sign language, a gesture-based method of com-
munication. However, this creates a divide, as most of the hearing population does not
understand sign language [4]. There are approximately 200 different sign languages world-
wide, each distinct in its way, just like spoken languages. This diversity further emphasizes
the need for effective translation and interpretation solutions to bridge the communication
gap between deaf and hearing individuals.

Sign language serves as a crucial communication method for the deaf community, dis-
tinguishing itself from other natural languages by primarily utilizing physical movements
for conveying messages [5]. These movements, known as gestures or signs, encompass a
variety of actions including hand and finger gestures, head nods, shoulder movements,
and expressive facial features. The proposed work aims to facilitate interaction within the
deaf community as well as between deaf individuals and those who can hear.

In sign language, each gesture or sign can represent a distinct letter, word, or even an
emotion, similar to the way spoken languages use words to form sentences [6]. When a
person who is deaf or has hearing difficulties wishes to convey a message, they employ
these signs. The arrangement and combination of these signs create phrases and sentences,
showcasing that sign language is not just a collection of isolated gestures but a fully fledged
natural language with its own grammar and syntax [7]. This structured linguistic system
allows for complex and nuanced communication, making it an essential tool for many in
the deaf community for everyday interactions and expression.

The combination of computer vision and deep learning has driven remarkable progress
in creating digital assistance systems, transforming sectors like agriculture and communi-
cation [8]. A key area of impact is sign language recognition, synthesis, and translation,
which helps to bridge the communication divide between deaf individuals and the wider
community. Static signs, which are characterized by distinct hand shapes and orientations
without movement [9], are often used in finger spelling alphabet letters and numbers in
various sign languages. The identification of these static signs is enabled by CNN models,
which are adept at detecting and interpreting the stationary positions of hands and fingers.

Moreover, hand segmentation techniques, which are crucial for isolating the hand ges-
tures from the background, employ sophisticated architectures. These techniques enhance
the model’s ability to focus on the relevant features of hand gestures [10]. Overall, the
synergy of computer vision and deep learning in these systems not only facilitates efficient
recognition of sign language but also paves the way for continuous innovation and en-
hancement in assistive technologies, significantly improving the quality of communication
and interaction for deaf individuals.

In this research, the Arabic Alphabets Sign Language Dataset (ArASL2018) was uti-
lized, which a specialized dataset is comprising images that depict each specific sign
corresponding to the letters of the Arabic alphabet. This dataset forms an essential founda-
tion for training and evaluating the proposed model’s ability to recognize sign language.
The experimental analysis conducted using the model demonstrated its efficacy in sign
language recognition. The results were notably impressive, with the model achieving a
recognition accuracy of 94.46%. This high level of accuracy is indicative of the model’s
robustness and its capability to accurately interpret the sign language gestures represented
in the dataset.

Furthermore, a comparative analysis with previous studies was conducted to bench-
mark the performance of the proposed model. This comparison revealed that the proposed
model not only performed well but actually outperformed all the previous studies in terms
of recognition accuracy. This achievement highlights the advancements made in the field
of sign language recognition and underscores the effectiveness of the methodologies and

Mathematics 2024, 12, 823 3 of 21

technologies employed in the current model. Such a high degree of accuracy in recognizing
Arabic sign language gestures is a significant milestone. It not only demonstrates the
potential of deep learning and computer vision in assisting communication for the deaf
community but also sets a new standard for future research and development in this field.

Research Contributions

The key contributions of the proposed research are as follows:

• By outperforming previous studies in recognition accuracy, the methodology estab-
lishes a new benchmark for future research in the field. This sets a higher standard for
the development of sign language recognition systems and opens up new avenues for
further improvements and innovations

• The proposed methodology demonstrates the successful application of advanced deep
learning techniques in the domain of sign language recognition. This contribution is
significant in showcasing the potential of AI in bridging communication gaps for the
deaf and hard of hearing.

• One of the most notable contributions is the achievement of a high recognition accuracy
of 94.46%. This level of precision in correctly identifying the signs for each letter of the
Arabic alphabet represents a substantial improvement over previous methods.

The structure of the rest of this paper is organized as follows: Section 2 provides an
extensive review of current techniques in the field. Section 3 delves into the fundamental
methodology of Arabic Sign Language Recognition (ARSL), detailing its core principles.
The implementation of the research and its simulation are thoroughly examined in Section 4.
Section 5 concludes by discussing the findings of the study and suggesting possible avenues
for further research.

2. Literature Review

This section focuses on existing models specifically designed for Arabic Sign Language
recognition. These models are grounded in the realm of deep learning technology and
utilize Deep Convolutional Neural Networks (CNNs). Emphasizing real-time hand gesture
recognition, they aim to efficiently translate sign language, bridging communication gaps
and enhancing accessibility for diverse communities. The exploration of these models
sheds light on the advancements in technology that are making sign language translation
more accessible and accurate.

Boutania et al. [11] focused on the development of an approach aimed at recognizing
Arabic letters. The proposed system was crafted using a novel image pre-processing tech-
nique to accurately pinpoint the hand’s position, coupled with a proposed architecture
for a CNN utilizing depth data. The primary aim of their work was to facilitate smoother
interactions between individuals with hearing impairments and the general population.
Their system was designed to automatically detect and identify hand-signed letters from
the Arabic alphabet based on user input. Their proposed model achieved an impressive
recognition accuracy of 97.07% for Arabic sign language. For the validation of the effec-
tiveness of their system, they also conducted a comparative study, which showed that
their work surpassed the accuracy of similar studies on the same dataset, particularly in
recognizing static signs.

Qanita et al. [12] introduced an inception V3 model, aimed at automatically and
precisely identifying Arabic Sign Language characters. Utilizing a dataset of 54,049 ArSL
letter images, their research uncovered that the InceptionV3 model stands out among other
pretrained models. Their exceptional results not only demonstrated the superior ability of
InceptionV3 in accurately recognizing Arabic characters but also highlighted its resilience
against overfitting. The success of InceptionV3 in their study paved the way for its potential
application in future Arabic Sign Language recognition research, marking a significant
advancement in this specialized area of study.

Herbaz et al. [13] introduced two unique datasets: the first consists of 54,049 images
from the ArSL-2018 alphabet, captured by more than 40 individuals, and the second is a

Mathematics 2024, 12, 823 4 of 21

personal dataset containing 15,200 images. These images underwent processing with the
VGGNet model and ResNet50, which included classification, normalization, and detection
techniques. The VGGNet layers, initially pre-trained on extensive alphabet sign language
datasets, were further optimized, while the ResNet50 classifier was trained over 40 epochs
with subsequent fine-tuning. This approach achieved accuracy levels that surpassed those
in other studies, demonstrating the effectiveness of these methods. Table 1 presents a
summary of some related studies.

To bridge the gap and alleviate the isolation of the hearing-impaired community, the
development of automatic sign language interpreters is becoming increasingly essential [14].
Their work proposed a hybrid approach combining modified Convolutional Neural Net-
works (CNNs) with machine learning classifiers. This innovative method recognized both
Arabic sign language alphabets and symbolic signs (words). A new dataset comprising
images from existing datasets, video frames, and camera captures were also designed.
These images undergo preprocessing and feature extraction using Linear Discriminant
Analysis. The extracted features then feed into a one-dimensional convolutional neural
network, which utilized one of three classifiers—Decision Trees, Naive Bayes and Ran-
dom Forest—replacing the conventional neural network approach. The performance of
the proposed algorithm was rigorously tested under various challenges, demonstrating
exceptionally high accuracy rates of up to 99.9% in recognizing both alphabets and words.
Moreover, it showed great potential for efficient real-time application.

Table 1. Comparative analysis of the relevant literature based on their strengths and weakness.

Ref# Approach Dataset Size Accuracy Achieved Strengths Weakness

[15] MobileNet, Xception 54,049 images
99.9%

(alphabet and
words)

Assessment of Diverse
Pretrained Models and

Vision Transformers;
Outstanding

Performance in Arabic
Sign Language
Classification

Dependence on large
dataset size; potential

overfitting with
complex models

[16]

Deep Learning-Based
Classification with

Transfer Learning on
12 Image Recognition

Models

Aplhabet Arsl 19
93.7%

(translation
accuracy)

Focuses on translation
accuracy; faster than
traditional models

Limited information
on dataset size and

specific model details;
potential scalability

issues

[17]

Convolutional Neural
Networks with

EfficientnetB1 for
Arabic Sign Language

Interpretation

16,192 images 99% accuracy,
97.9% validation

EfficientnetB1 scaling for
improved CNN

performance; high
accuracy in ArSL

classification

Reliance on a specific
CNN architecture;
may not generalize
well to other sign

languages

[18]
Static Hand Gestures
Recognition for ArSL

using CNN
Arsl 2018 97.42%

Effective static gesture
recognition for ArSL
with high accuracy

Limited to static
gestures; may not
effectively handle

dynamic or complex
signs

[19]
Dynamic Model for
ArSL Recognition

using CNN
Arsl 2019 High

(not quantified)

Dynamic recognition
approach; demonstrates

effectiveness across
multiple gestures

Lack of quantified
accuracy figures; may
not be comprehensive

in gesture coverage

[20]
Deer Hunting

Optimization based
Classification

Self Made
1423 images 92.88%

Combines DenseNet169
with MLP and DHO

algorithm for enhanced
gesture classify

Specific to gesture
classification; may not
account for contextual

nuances in sign
language

Mathematics 2024, 12, 823 5 of 21

3. Materials and Methods

In this part, the structure of the ArSL-CNN model is described, tailored specifically
for Arabic Sign Language classification. The core components of the proposed model
include Data Preprocessing, CNN-based Feature Extraction, and Classification via Transfer
Learning, as demonstrated in Figure 1. Each of these steps plays a critical role in ensuring
the effective and accurate recognition of Arabic Sign Language gestures, leveraging the
strengths of convolutional neural networks and transfer learning techniques.

Figure 1. Schematic architecture of proposed sign language recognition model.

3.1. Data Collection

This research utilizes three datasets majorly composed of images of different signs and
alphabets. To enhance the study’s outcomes, a large dataset was selected. The images in
the dataset vary in terms of lighting, angles, timings, and backgrounds, and were initially
captured in full-color (RGB) mode. Due to their varying sizes, a preprocessing step was
implemented to standardize the images for classification. This involved resizing them to
64 × 64 pixels and converting them to grayscale with a pixel intensity range of 0–255. Each
image in the dataset is meticulously labeled according to its corresponding sign language
letter. The composition of the dataset for each letter is detailed in Figure 2.

Mathematics 2024, 12, 823 6 of 21

Figure 2. The Arsl2018 Alphabet dataset with Correspondence Sign.

3.2. Data Preprocessing

Data preprocessing involves a sequence of morphological procedures designed to
eliminate noise from the dataset. The ArSL2018 dataset, which includes images of sign
language gestures, contains images with varying sizes and levels of lighting [21]. To
make sure the data is uniform and free of impurities, image preprocessing methods are
essential. Initially, all images of sign language gestures are transformed into 64 × 64 pixel
greyscale images. This step is key for efficient real-time classification. By converting images
to greyscale, which uses a single channel instead of the typical three RGB channels, the
complexity of the first convolutional layer is reduced by half. This reduction in parameters
leads to decreased computational time.

This Algorithm 1 outlines a process for preprocessing a set of raw images for use in
machine learning tasks. It starts by converting the images to a consistent format and size,
then normalizes and standardizes their pixel values to ensure they’re within a specific range
and distribution. The color space of the images is also converted to a target specification.
Image augmentation techniques are applied to introduce variability, followed by noise
reduction to improve image quality. Finally, the preprocessed images are split into training,
validation, and test datasets, and the training set is batched for efficient processing. This
sequence of steps prepares the images for effective use in training machine learning models
by ensuring consistency, enhancing model robustness, and facilitating faster convergence.

To further enhance computation efficiency and accelerate the training process, all
images undergo normalization to scale pixel values from 0 to 1. Standardization is also
applied by subtracting the mean and scaling to unit variance [22]. For generating training
and testing sets, images are randomly chosen from the dataset, with 70–30% division is
used for training and testing the data, respectively, with 20% of the training dataset set
aside for validation purposes. As depicted in Figure 3, there is an uneven distribution of
classes within the dataset, leading to the implementation of diverse resampling methods to
correct this imbalance in class representation.

Mathematics 2024, 12, 823 7 of 21

Algorithm 1 Proposed Preprocessing Algorithm for Refining Image Dataset

Input: Raw images set {I_1, I_2, . . ., I_n}
Output: Preprocessed images set {P_1, P_2, . . ., P_n}
Begin

I′_i = ConvertFormat(I_i)
I′′_i = Resize(I′_i, width, height)
I′′′_i = I′′_i/255 [Normalization]
I′′′_i = (I′_i − µ)/σ [Standardization]
I′′′′_i = ConvertColorSpace(I′′′_i, target_space)
I_a_i = Augment(I′′′′_i, transformations)
I_n_i = ReduceNoise(I_a_i, filter_type)
D_train, D_val, D_test = Split({F_1, F_2, . . ., F_n})
B = Batch(D_train, batch_size)

End

Figure 3. Rectangular Local Receptive Field Layers in CNNs.

3.3. CNN Based Feature Extraction

The use of a multilayer architecture alone proves to be inadequate for image recog-
nition tasks, especially considering the complexity and size of the networks involved.
For instance, a relatively simple 100 × 100 pixel image results in 10,000 neurons. When
these neurons are connected to a layer of 1000 neurons, the network ends up having an
overwhelming 10 million connections right at the first hidden layer. Managing such a vast
number of connections is not only challenging but also computationally inefficient [23,24].
While multilayer models may perform acceptably with small images that possess fewer
features, they struggle with larger or more complex datasets. Conversely, Convolutional
Neural Networks (CNNs) offer a more feasible solution for such tasks. CNNs utilize
specialized layers designed to reduce the number of connections, thereby streamlining the

Mathematics 2024, 12, 823 8 of 21

network for more efficient classification without compromising on the quality of feature
detection and extraction.

3.3.1. The Convolution Layer

In CNN, an essential component of their architecture is the specialized approach to
feature extraction [25]. Unlike in traditional neural networks where neurons are fully
connected, in CNNs, neurons in the first convolution layer connect only to a specific subset
within their receptive field, focusing on small, localized regions of the input. This selective
connectivity continues in subsequent layers, where each neuron in a layer like the second
convolution layer connects to a group of neurons within a defined area in the preceding
layer. In CNNs, the initial layers usually detect fundamental features such as edges and
textures. In contrast, the more advanced layers are capable of identifying complex and
abstract characteristics. This structure makes CNNs particularly efficient for tasks that
require detailed visual data analysis, like image recognition.

The array of neurons used for scanning the input image is known as the kernel or filter.
This kernel moves across the input layer to perform convolution operations, but this process
does not inherently ensure that the center of the kernel aligns with the outermost elements
of the input layer. To address this, padding, specifically Zero Padding, is employed [26].
Zero Padding involves adding layers of zeros around the input image, allowing the kernel
to fully cover the border areas of the input without missing any part. This technique
ensures that every element of the input layer, including the outermost elements, can be
processed by the center of the kernel. A stride is essentially the number of pixels by which
the kernel shifts as it convolves around the input. This parameter can be adjusted to control
how broadly the kernel moves across the input layer.

3.3.2. Feature Mapping

The convolutional layer is often visualized in 3D, comprising multiple feature maps.
Each feature map acts as a distinct filter, designed to identify specific features within the
input image, such as vertical or horizontal lines. This multi-faceted approach to feature
detection is depicted in Figure 4, where various feature maps within a convolutional layer
are illustrated, each focusing on extracting different types of features from the input.

Figure 4. Convolutional Layer with Multiple Feature Maps for Enhanced Feature Extraction.

The equation that shows the convolutional layer computes the following output:

Zi,j,k = bk + ∑ fh−1
u−0 ∑ fw−1

v=0 ∑ fn−1
k=0 Xi,j,k·Wu,v,k (1)

Mathematics 2024, 12, 823 9 of 21

where
Zi,j,k: the output of the neurons located at row I and column j in the kth feature map

of the convolutional layer;
Xi,j,k: the output of th neuron in layer L − 1;
bk: the bias team in layer L;
Wu,v,k: the connection weights.

3.3.3. Pooling Layer

The pooling layer in a CNN serves to reduce computational load by downsizing the
inputs [27]. Similar to the convolutional layer, it connects to the outputs of the previous
layer but only partially, focusing on small rectangular receptive fields. Pooling comes in
two main forms: Max pooling and Mean pooling. Max pooling, the more commonly used
type, selects the maximum value from the receptive field in the feature map, emphasizing
the most prominent features. Mean pooling, on the other hand, calculates the average of all
elements within the receptive field, providing a more generalized feature representation.
Figure 5 demonstrates the use of both Max and Mean pooling methods. The figure clearly
shows that applying a 2 × 2 pooling kernel with a stride of 2 diminishes the image’s
dimensions to one-fourth of its initial size. This decrease in size substantially reduces
computational demands, memory needs, and parameter count, thereby making the process
of extracting features from the image more efficient.

Figure 5. Max pooling and mean pooling layer of CNN for feature extraction.

3.3.4. Dropout Layer

A neural network, with its vast array of parameters, provides considerable flexibility
but also becomes susceptible to overfitting. Overfitting occurs when a model learns too
much from the training data, including its noise and irregularities, leading to a decrease in
its performance on new, unseen data. To counteract overfitting, one effective approach is to

Mathematics 2024, 12, 823 10 of 21

implement early stopping in the training process. Performance. However, with unlimited
computations, early stopping can be overly aggressive and time-consuming.

This method entails tracking the network’s performance on a separate validation set
and halting the training phase once there is a noticeable decline in performance on this
dataset. The network thus retains the parameters that yielded the best validation. An
alternative and often more effective approach to prevent overfitting is the implementation
of regularizes, with dropout being one of the most commonly used techniques. Dropout
works by randomly ‘dropping out’ neurons and their incoming and outgoing connections
from the network during the training phase, as depicted in Figure 6. This process is random,
or in other words, each neuron is dropped with a probability defined by the dropout rate
(ρ), typically set between 0.4 and 0.5 in CNNs. It is important to note that during the testing
phase, dropout is not applied, and all neurons are active.

Figure 6. (a) Network without dropout; (b) network with dropout.

To illustrate further, consider a dropout rate (P) of 0.5. During testing, the neurons
are effectively receiving double the input signal compared to the training phase, where
only half of the neurons were active on average. This discrepancy can lead to performance
issues. To compensate, the input signal to each neuron in the testing phase is scaled down,
typically by multiplying it by the dropout rate (in this case, 0.5). This scaling ensures
consistency in the network’s behavior between the training and testing phases. In order
to avoid overfitting, cross-validation was used, which involves dividing the dataset into
multiple parts, using some for training and others for validation. By repeatedly training
and evaluating the model on different subsets, you can ensure that it generalizes well to
unseen data. Algorithm 2 demonstrates the operation of a neural network without dropout
and Algorithm 3 demonstrates the operation of a neural network with dropout.

Algorithm 2 Train Neural Network without Dropout

Input: Training data (X, Y), number of epochs, learning rate
Output: Trained model parameters

1: Initialize network weights and biases
2: for each epoch in number of epochs do
3: for each (x, y) in training data do
4: // Forward Propagation
5: A[0] = x
6: for each layer L do
7: Z[L] = W[L] ∗ A[L − 1] + b[L]
8: A[L] = activation(Z[L])
9: end for
10:
11: // Compute Loss

Mathematics 2024, 12, 823 11 of 21

Algorithm 2 Cont.

12: Loss = compute_loss(A[last layer], y)
13:
14: // Backward Propagation
15: for each layer L in reverse do
16: dZ[L] = derivative of loss with respect to Z[L]
17: dW[L] = dZ[L] ∗ A[L − 1].T
18: db[L] = sum(dZ[L], axis = 1, keepdims = True)
19: dA[L − 1] = W[L].T ∗ dZ[L]
20: end for
21:
22: // Update Parameters
23: for each layer L do
24: W[L] = W[L] − learning rate ∗ dW[L]
25: b[L] = b[L] − learning rate ∗ db[L]
26: end for
27: end for
28:
29: // Optional: Early Stopping based on validation performance
30: if validation performance decreases then
31: break
32: end if
33: end for
34:
35: return W, b

Algorithm 3 Train Neural Network with Dropout

Input: Training data (X, Y), number of epochs, learning rate, dropout rate ρ

Output: Trained model parameters

1: Initialize network weights and biases
2: for each epoch in number of epochs do
3: for each (x, y) in training data do
4: // Forward Propagation with Dropout
5: A[0] = x
6: for each layer L do
7: Z[L] = W[L] ∗ A[L − 1] + b[L]
8: A[L] = activation(Z[L])
9: if L < last layer then
10: D[L] = (random numbers < ρ)
11: A[L] = A[L] ∗ D[L]
12: A[L] = A[L]/ρ
13: end if
14: end for
15:
16: // Compute Loss
17: Loss = compute_loss(A[last layer], y)
18:
19: // Backward Propagation with Dropout
20: for each layer L in reverse do
21: if L < last layer then
22: dA[L] = dA[L] ∗ D[L]
23: dA[L] = dA[L]/ρ
24: end if
25: dZ[L] = derivative of loss with respect to Z[L]
26: dW[L] = dZ[L] ∗ A[L − 1].T

Mathematics 2024, 12, 823 12 of 21

Algorithm 3 Cont.

27: db[L] = sum(dZ[L], axis = 1, keepdims = True)
28: dA[L − 1] = W[L].T ∗ dZ[L]
29: end for
30:
31: // Update Parameters
32: for each layer L do
33: W[L] = W[L] − learning rate ∗ dW[L]
34: b[L] = b[L] − learning rate ∗ db[L]
35: end for
36: end for
37:
38: // Optional: Early Stopping based on validation performance
39: if validation performance decreases then
40: break
41: end if
42: end for
43:
44: return W, b

3.4. Classification Using Transfer Learning

Transfer learning is a powerful technique in machine learning, especially for image
classification tasks. It involves using a pre-trained model, which has been trained on a large
and general dataset, as the starting point for training on a new, usually smaller, dataset
for a specific task. The effectiveness of transfer learning lies in leveraging the learned
features and patterns from the extensive initial training, which can significantly improve
the performance on the new task, especially when the available data for the new task is
limited. Transfer learning bridges the gap between the availability of large-scale annotated
datasets and the need for specialized image classification tasks. It is a go-to strategy in many
real-world applications, providing a head start in model training and boosting performance,
especially when computational resources or labeled data are limited.

ResNet, short for Residual Network, was introduced by researchers from Microsoft. It
is particularly known for its ability to enable the training of very deep neural networks. It
is widely used for transfer learning in various machine learning tasks, especially in image
processing and computer vision. Transfer learning involves taking a model trained on one
task and applying it to a different, but related task.

3.5. Classification Layer

The classification process starts with a pre-trained model, ResNet 152 which has been
initially trained on a large dataset like ImageNet. This pre-training provides the model
with a comprehensive understanding of various image features [28]. When this model
is applied to a new classification task, the primary goal is to adjust the model so it can
effectively categorize images according to the new task’s requirements.

In fine-tuning for classification, the entire network, including the pre-trained layers,
is trained (or retrained) on the new dataset. This is a departure from feature extraction,
where the pre-trained layers are kept frozen. The fine-tuning process involves adjust-
ing the weights across all layers of the network. These adjustments enable the model
to adapt its previously learned feature detection capabilities to the specifics of the new
classification task.

During fine-tuning, it is common to replace the final layer (or layers) of the pre-trained
model with new ones that are tailored to the new task. For instance, if the original model
was trained to classify 1000 different categories but the new task only involves 10, the final
classification layer would be modified to output 10 categories instead of 1000. The ResNET
model is shown in Figure 7.

Mathematics 2024, 12, 823 13 of 21

Figure 7. ResNet Model for classification of Arabic Sign Language.

Let us denote the function of the original ResNet model as F(x; θ), where x is the input
image, and θ represents the weights of the model. The output of this function is a vector of
probabilities across the original set of classes, say C, where C could be 1000 for ImageNet.

F(x; θ) = [p1 + p1 +p1, . . . , pn] (2)

The classification task includes N classes (where N is different from C); the original
output layer of ResNet is replaced. Let ϕ denote the weights of the new output layer. The
modified model function can be represented as

G(x; θ, ϕ). (3)

During fine-tuning, we adjusted both θ and ϕ using the new dataset. The goal was
to reduce the loss function L, which quantifies the discrepancy between the predicted
outcomes and the true labels in the new dataset. The loss function could be cross-entropy
for classification tasks.

minθ,ϕ L(G(x; θ, ϕ), y) (4)

where y represents the actual label of the image x in the dataset.
Algorithm 4 outlines the fine-tuning process for a pre-trained ResNet model. It

involves modifying the output layer for the new number of classes (N), and then iteratively
training (both forward and backward passes) on the new dataset. The weights of the
pre-trained layers (θ) and the new output layer (φ) are updated using their respective
learning rates (α for θ, β for φ) based on the gradients of the loss function. The fine-
tuning is performed over a specified number of epochs to adapt the model for the new
classification task.

Algorithm 4 Fine-Tuning of Pre-Trained ResNet Model for Arabic Sign Language Recognition

Inputs:
PreTrainedResNetModel: ResNet model pre-trained on ImageNet (weights θ)
NewDataset: Dataset for the new classification task
N: Number of classes in the new task
α: Learning rate for θ
β: Learning rate for φ
Epochs: Number of training epochs

Procedure:
1: Modify PreTrainedResNetModel:

Mathematics 2024, 12, 823 14 of 21

Algorithm 4 Cont.

Replace the output layer to have N nodes (weights φ)

2: for each epoch in 1 to Epochs do
3: for each batch (X, Y) in NewDataset do
4: // Forward Pass
5: PredictedOutput = G(X; θ, φ)

// G: Modified ResNet function

6: // Compute Loss
7: Loss = L(G(X; θ, φ), Y)

// L: Loss function (e.g., cross-entropy)

8: // Backward Pass and Update
9: Compute gradients: ∇θL, ∇φL
10: Update θ: θ = θ − α ∗ ∇θL
11: Update φ: φ = φ − β ∗ ∇φL
12: end for
13: end for

4. Experimental Results and Analysis

The present section contains an analysis of the experiment of this study which in-
cludes the description of performance metrics, baseline methods, dataset detail and the
obtained results.

4.1. Dataset Description

Three different types of datasets were used for the analysis of the proposed model.
In the ASL-DS-I dataset, which is an ArASL2018 dataset comprising 54,049 fully anno-
tated images, representing 32 alphabets of Arabic sign language. These images were
captured from 40 participants, who varied in age. Each image was in grayscale, formatted
as 64 × 64 pixels JPG, and was taken using a smart camera. In ASL-DS-II more than 40 indi-
viduals contributed to compile 54,049 images as a new dataset of ArSL alphabets. Typically,
the classification of alphabet deployments of the standard Arabic letters and digits ranged
from 32 different hand signs and alphabets. The constituent class intervals were dispersed
unevenly. The ASL-DS-III dataset consisted of total 7857 raw and fully labeled RGB images.
The dataset collected data from more than 200 participants and different settings including
lighting, different image orientations, the different background, different image size, and
image resolution values. All images were supervised and filtered by the field experts with
the confident level to have a better-quality dataset. The dataset description is shown in
Table 2.

Table 2. Dataset description.

Dataset ID Name Size Web Link

ASL-DS-I Arabic Sign Language ArSL dataset 5832 images https://shorturl.at/bjmtL, accessed on 10 January 2024

ASL-DS-II Arabic Alphabets Sign Language Dataset (ArASL) 54,049 images https://shorturl.at/vBLVY, accessed on 10 January 2024

ASL-DS-III RGB Arabic Alphabets Sign Language Dataset 7857 images https://shorturl.at/clyI6, accessed on 12 January 2024

4.2. Experimental Enjoinment

With the help of the Tensor Flow and Keras libraries, Python was used in order to
put the suggested model into action [23]. In order to carry out the experiment, a CPU
system with a moderate price tag was used. For experiments, an NVIDIA GeForce RTX
3080, with 8 GB of VRAM was used. This offers a good balance between cost, performance,
and memory size. A CPU with a speed of 2.60 GHz Intel Core-i5-3230 and 8 GB of data
storage was also used. The training parameters are given in Table 3.

https://shorturl.at/bjmtL
https://shorturl.at/vBLVY
https://shorturl.at/clyI6

Mathematics 2024, 12, 823 15 of 21

Table 3. Training Parameters.

Name Web Link

1 Learning Rate 0.001
2 Batch Size 64
3 Number of Epochs 100

4.3. Performance Matrices

In order to assess the effectiveness of the proposed work, the performance matrices
that are shown below were used.

• A confusion matrix is a 2 by 2 table with four outputs from a classifier that is produce
as a result of building the model.

• The definition of accuracy is the amount of times that are truly classified or divided by
the total times.

Accuracy =

(
tp + tn

)(
tp + tn + f p + fn

) (5)

• Precision (P): precision prolongs upon the error extent over the indicators of either all
the cases of the positive class, or all the cases that have been reckoned by the learning
system to be positive.

Precision =

(
tp
)(

tp + fp
) (6)

• Recall (R): this show how many of the positive instances it has classified actually
are positive.

Recall =

(
tp
)(

tp + fn
) (7)

• F-measure (F): this has been used to contrast algorithms, with the F1 score defined as
the harmonic mean of sensitivity and precision.

F-measure =
2 ∗ P ∗ S

P + S
(8)

• The ROC curve provides a visual representation of the ability of a binary classification
model to discriminate between classes.

4.4. Baseline Methods

For the purpose of evaluating the effectiveness and quality of the work that is being
suggested, the following baseline approaches have been used.

• Herbaz et al. [13] used two different models as the bases for this analysis, VGGNet
and ResNet50. The authors trained and tested their algorithm both without and with
fine-tuning enhancers. The results of recognizing the alphabets in ArSsl dataset were
89.05%, 89.99%, and 88.50% respectably.

• Latif et al. [29] presents Deep CNN architectures like AlexNet and ZFNet. A number of
experiments were carried out and CNN architectural design parameters were changed
in almost all the experimentations in order to achieve the optimal and best possible
recognition rates. Their proposed Deep CNN architecture achieved an accuracy of
94.06%, as depicted in the experimental results.

• Aldhahri et al. [30] used a CNN to develop a model of classifying Arabic language
alphabet signs to help reach the goal of communication. The outcome of the analysis
showed an accuracy rate of 94.46%.

Mathematics 2024, 12, 823 16 of 21

4.5. Results

The performance of the proposed model on different datasets is presented in Figure 8,
using Accuracy, Specificity and Sensitivity, respectively. It was observed that the proposed
model performed excellently on the ASL-DS-I Dataset with 94.56% precision, 93.25% recall,
96.25% accuracy and a 93.90% F-measure. Also, the ASL-DS-II dataset that was used to test
the model was also a very excellent platform for this project as the model achieved 94.84%
precision, 94.56% recall, a 94.70% F-measure and 95.85% accuracy. ASL-DS-III dataset were
also obtained and used to test the model in order to see how well a dataset with mostly
close in features images will be amenable and responsive to the project and the model
returned 96.74% precision, 96.56% recall, 97.02% accuracy and 96.65% F-measure.

Figure 8. Experimental results in terms of accuracy, precision, recall, and F1 score on multiple datasets.

Figure 9 depicts the Receiver Operating Characteristic (ROC) curves that show the
performance of the proposed approach. These curves measure the True Positive Rate (TPR),
and the False Positive Rate (FPR) for the various datasets. One of the evaluation metrics
for model performance on the various datasets is the Area Under the Curve (AUC) of
the ROC curve. The model achieved an AUC of 0.81 for the ASL-DS-1 Dataset, 0.83 for
the ASL-DS-II Dataset and 0.72 for the ASL-DS-III Dataset. The ROC curves for two of
the datasets covered more than 80% of the area, while the third covered more than 72%,
showing then that the model is performing well in differentiating between the positive and
negative classes on the different dataset, thereby validating the performance of the model.

The first comparative analysis consisted of the performance test of proposed model
with six different combination of standard deep learning models each one having feature
extraction and sign language recognition stages. The configurations include Single Layer
LSTM, LSTM-LSTM, Single Layer GRU, GRU-GRU, GRU-LSTM and LSTM-GRU.

Each model was evaluated for their performance with K-fold cross validation. Most
notably, the LSTM-GRU model showed the highest accuracy among the other six type of
configuration. For the development of the models were performed using Keras/TensorFlow
libraries which have been widely utilized for their great flexibility and efficiency in deep
learning model construction. Graphically, the results are shown in Figure 10.

Mathematics 2024, 12, 823 17 of 21

Figure 9. ROC curve-based analysis on multiple datasets for proposed sign language recognition
model. (a) ASL-DS-I Dataset; (b) ASL-DS-II Dataset; (c) ASL-DS-III Dataset.

The main objective of these models is the discovery of sign language. It is likely that
the performance results of the models will get better once we increase our number of
samples per word and also the size of our datasets. The use of this method will give the
models more varieties of training examples, resulting in the discovery of the sign language
in a more effective and sought-after method.

An additional experiment was conducted comparing the proposed model to the
standard baseline models, as mentioned in Section 4.4. As can be seen in Figure 11, it
was found that the proposed model achieved an accuracy of 96.37%, which outperformed
the other existing models, Herbaz et al. [13], Latif et al. [29] and lastly Aldhahri et al. [30].
This experiment thus points out the competitiveness and the viability of the proposed
model and hence it could be used in applications which demand the overall accuracy as
the primary metric being operational, even though the methodologies underlying these
models, as mentioned above are quite different.

Mathematics 2024, 12, 823 18 of 21

Figure 10. Comparative analysis of proposed model with standard deep learning models. (a) ASL-
DS-I Dataset; (b) ASL-DS-II Dataset; (c) ASL-DS-III Dataset.

Mathematics 2024, 12, 823 19 of 21

Figure 11. Comparatives analysis of proposed model with baseline methods (baseline methods
needed to be changed) [13,29,30].

5. Conclusions

Sign language is essential for the deaf community, primarily using hand gestures for
communication. However, a significant barrier exists for those outside this community,
as they often find it challenging to understand sign language without an interpreter. This
gap underscores the importance of technological solutions. Advancements in computer
vision, especially in motion and gesture recognition, have been propelled forward by deep
learning techniques. This study leverages these advancements to address communication
challenges. We utilized the ArASL2018, which comprises images representing each sign
of the Arabic alphabet, to train our model. Experimental analysis of the model yielded a
promising recognition accuracy of 94.46%. For future work, we aim to expand the model’s
capabilities to include more complex sign language constructs beyond individual letters,
such as words and phrases. Additionally, improving the model’s performance in real-world
scenarios, where background noise and varying lighting conditions can affect recognition
accuracy, will be a focus. Another significant area of development is enhancing the model’s
adaptability to different sign language dialects, recognizing the diversity within the deaf
community. Lastly, integrating this technology into accessible applications and devices
to facilitate real-time translation and communication for the deaf and hearing-impaired
individuals is a key goal.

Author Contributions: S.A.A.: conceptualization, methodology, writing—original draft, F.M.: soft-
ware, writing—review and editing, H.A.D.: visualization, supervision. All authors have read and
agreed to the published version of the manuscript.

Funding: The authors extend their appreciation to the King Salman Center for Disability Research
for funding this work through Research Group no KSRG-2023-512.

Data Availability Statement: The data presented in this study are openly available.

Conflicts of Interest: The authors have no conflicts of interest.

Mathematics 2024, 12, 823 20 of 21

References
1. Agrawal, S.; Jalal, A.; Tripathi, R. A survey on manual and non-manual sign language recognition for isolated and continuous

sign. Int. J. Appl. Pattern Recognit. 2016, 3, 99–134. [CrossRef]
2. Demircioglu, B.; Bulbul, G.; Kose, H. Turkish Sign Language recognition with Leap Motion. In Proceedings of the 24th Signal

Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 16–19 May 2016; pp. 589–592.
3. Hdioud, B.; Tirari, M.E.H. Facial expression recognition of masked faces using deep learning. IAES Int. J. Artif. Intell. 2023, 12,

921–930. [CrossRef]
4. Das, S.P.; Talukdar, A.K.; Sarma, K.K. Sign Language Recognition Using Facial Expression. Procedia Comput. Sci. 2015, 58, 210–216.

[CrossRef]
5. Waters, D.; Campbell, R.; Capek, C.M.; Woll, B.; David, A.S.; McGuire, P.K.; Brammer, M.J.; MacSweeney, M. Fingerspelling,

signed language, text and picture processing in deaf native signers: The role of the mid-fusiform gyrus. Neuroimage 2007, 35,
1287–1302. [CrossRef] [PubMed]

6. da Silva, E.P.; Kumada, K.M.O.; Costa, P.D.P. Analysis of Facial Expressions in Brazilian Sign Language (Libras). Eur. Sci. J. ESJ
2021, 17, 1. [CrossRef]

7. Kumar, K. DEAF-BSL: Deep lEArning Framework for British Sign Language recognition. Trans. Asian Low-Resour. Lang. Inf.
Process. 2022, 21, 1–14. [CrossRef]

8. Jiang, X.; Satapathy, S.C.; Yang, L.; Wang, S.H.; Zhang, Y.D. A Survey on Artificial Intelligence in Chinese Sign Language
Recognition. Arab. J. Sci. Eng. 2020, 45, 9859–9894. [CrossRef]

9. Saleh, Y.; Issa, G.F. Arabic sign language recognition through deep neural networks fine-tuning. Int. J. Online Biomed. Eng. 2020,
16, 71–83. [CrossRef]

10. Hasasneh, A. Arabic sign language characters recognition based on a deep learning approach and a simple linear classifier.
Jordanian J. Comput. Inf. Technol. 2020, 6, 281–290. [CrossRef]

11. Hdioud, B.; Tirari, M.E.H. A Deep Learning based Approach for Recognition of Arabic Sign Language Letters. Int. J. Adv. Comput.
Sci. Appl. 2023, 14, 424–430. [CrossRef]

12. Bani Baker, Q.; Alqudah, N.; Alsmadi, T.; Awawdeh, R. Image-Based Arabic Sign Language Recognition System Using Transfer
Deep Learning Models. Appl. Comput. Intell. Soft Comput. 2023, 2023, 5195007. [CrossRef]

13. Herbaz, N.; El Idrissi, H.; Badri, A. A Novel Approach for Recognition and Classification of Hand Gesture Using Deep Convolution
Neural Networks. In Proceedings of the International Conference on Intelligent Systems and Pattern Recognition, New York, NY,
USA, 11–13 May 2023; Springer Nature: Cham, Switzerland, 2023; pp. 90–105.

14. Altememe, M.S.; Abbadi, N.K.E. A hybrid model between a one-dimensional convolution neural network and machine learning
algorithms for arabic sign language word recognition. In AIP Conference Proceedings, Proceedings of the 4th International Scientific
Conference of Alkafeel University (ISCKU 2022), Najaf, Iraq, 20–21 December 2022; AIP Publishing: College Park, MD, USA, 2023;
Volume 2977.

15. Alharthi, N.M.; Alzahrani, S.M. Vision Transformers and Transfer Learning Approaches for Arabic Sign Language Recognition.
Appl. Sci. 2023, 13, 11625. [CrossRef]

16. Nahar, K.M.; Almomani, A.; Shatnawi, N.; Alauthman, M. A Robust Model for Translating Arabic Sign Language into Spoken
Arabic Using Deep Learning. Intell. Autom. Soft Comput. 2023, 37, 2037–2057. [CrossRef]

17. Dabwan, B.A.; Jadhav, M.E.; Ali, Y.A.; Olayah, F.A. Arabic Sign Language Recognition Using EfficientnetB1 and Transfer Learning
Technique. In Proceedings of the IEEE 2023 International Conference on IT Innovation and Knowledge Discovery (ITIKD),
Manama, Bahrain, 8–9 March 2023; pp. 1–5.

18. Mohammed, H.I.; Waleed, J. Hand gesture recognition using a convolutional neural network for arabic sign language. In AIP
Conference Proceedings; AIP Publishing: College Park, MD, USA, 2023; Volume 2475.

19. Benkaddour, M.K.; Abazi, Y.; Aziza Akram, Z. Hand Gesture and Sign Language Recognition Based on Deep Learning. Doctoral
Dissertation, University of KASDI Merbah Ouargla, Ouargla, Algeria, 2023.

20. Al-onazi, B.B.; Nour, M.K.; Alshahran, H.; Elfaki, M.A.; Alnfiai, M.M.; Marzouk, R.; Othman, M.; Sharif, M.M.; Motwakel, A.
Arabic Sign Language Gesture Classification Using Deer Hunting Optimization with Machine Learning Model. Comput. Mater.
Contin. 2023, 75, 3413–3429. [CrossRef]

21. Latif, G.; Mohammad, N.; Alghazo, J.; AlKhalaf, R.; AlKhalaf, R. ArASL: Arabic alphabets sign language dataset. Data Brief 2019,
23, 103777. [CrossRef]

22. Gal, M.S.; Rubinfeld, D.L. Data standardization. NYUL Rev. 2019, 94, 737. [CrossRef]
23. Benkaddour, M.K. CNN based features extraction for age estimation and gender classification. Informatica 2021, 45, 697–703.

[CrossRef]
24. Trosten, D.J.; Sharma, P. Unsupervised feature extraction–A cnn-based approach. In Proceedings of the Image Analysis: 21st

Scandinavian Conference, SCIA 2019, Norrköping, Sweden, 11–13 June 2019; Proceedings 21; Springer International Publishing:
Berlin/Heidelberg, Germany, 2019; pp. 197–208.

25. Zhao, X.; Wei, H.; Wang, H.; Zhu, T.; Zhang, K. 3D-CNN-based feature extraction of ground-based cloud images for direct normal
irradiance prediction. Sol. Energy 2019, 181, 510–518. [CrossRef]

26. Chen, R.; Pan, L.; Zhou, Y.; Lei, Q. Image retrieval based on deep feature extraction and reduction with improved CNN and PCA.
J. Inf. Hiding Priv. Prot. 2020, 2, 67. [CrossRef]

https://doi.org/10.1504/IJAPR.2016.079048
https://doi.org/10.11591/ijai.v12.i2.pp921-930
https://doi.org/10.1016/j.procs.2015.08.056
https://doi.org/10.1016/j.neuroimage.2007.01.025
https://www.ncbi.nlm.nih.gov/pubmed/17363278
https://doi.org/10.19044/esj.2021.v17n22p1
https://doi.org/10.1145/3513004
https://doi.org/10.1007/s13369-020-04758-2
https://doi.org/10.3991/ijoe.v16i05.13087
https://doi.org/10.5455/jjcit.71-1587943974
https://doi.org/10.14569/IJACSA.2023.0140447
https://doi.org/10.1155/2023/5195007
https://doi.org/10.3390/app132111625
https://doi.org/10.32604/iasc.2023.038235
https://doi.org/10.32604/cmc.2023.035303
https://doi.org/10.1016/j.dib.2019.103777
https://doi.org/10.2139/ssrn.3326377
https://doi.org/10.31449/inf.v45i5.3262
https://doi.org/10.1016/j.solener.2019.01.096
https://doi.org/10.32604/jihpp.2020.010472

Mathematics 2024, 12, 823 21 of 21

27. Yuan, Z.W.; Zhang, J. Feature extraction and image retrieval based on AlexNet. In Proceedings of the Eighth International
Conference on Digital Image Processing (ICDIP 2016), Chengdu, China, 20–22 May 2016; Volume 10033, pp. 65–69.

28. Zhang, L.; Li, H.; Zhu, R.; Du, P. An infrared and visible image fusion algorithm based on ResNet-152. Multimed. Tools Appl. 2022,
81, 9277–9287. [CrossRef]

29. Latif, G.; Mohammad, N.; AlKhalaf, R.; AlKhalaf, R.; Alghazo, J.; Khan, M. An automatic Arabic sign language recognition system
based on deep CNN: An assistive system for the deaf and hard of hearing. Int. J. Comput. Digit. Syst. 2020, 9, 715–724. [CrossRef]

30. Aldhahri, E.; Aljuhani, R.; Alfaidi, A.; Alshehri, B.; Alwadei, H.; Aljojo, N.; Alshutayri, A.; Almazroi, A. Arabic sign language
recognition using convolutional neural network and mobilenet. Arab. J. Sci. Eng. 2023, 48, 2147–2154. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s11042-021-11549-w
https://doi.org/10.12785/ijcds/090418
https://doi.org/10.1007/s13369-022-07144-2

	Introduction
	Literature Review
	Materials and Methods
	Data Collection
	Data Preprocessing
	CNN Based Feature Extraction
	The Convolution Layer
	Feature Mapping
	Pooling Layer
	Dropout Layer

	Classification Using Transfer Learning
	Classification Layer

	Experimental Results and Analysis
	Dataset Description
	Experimental Enjoinment
	Performance Matrices
	Baseline Methods
	Results

	Conclusions
	References

