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Abstract: The selection of the most suitable material is one of the key decisions to be made during
the design stage of a manufacturing process. Traditional approaches, such as Ashby maps based
on material properties, are widely used in industry. However, in the production of multi-material
components, the criteria for the selection can include antagonistic approaches. The aim of this work
is to implement a methodology based on the results of process simulations for several materials
and to classify them by applying an advanced data analytics method based on machine learning
(ML)—in this case, the support vector regression (SVR) or multi-criteria decision-making (MCDM)
methodology. Specifically, the multi-criteria optimization and compromise solution (VIKOR) was
combined with entropy weighting methods. To achieve this, a finite element model (FEM) was built
to evaluate the extrusion force and the die wear during the multi-material co-extrusion process of
bimetallic Ti6Al4V-AZ31B billets. After applying SVR and VIKOR in combination with the entropy
weighting methodology, a comparison was established based on material selection and the complexity
of the methodology used. The results show that the material chosen in both methodologies is very
similar, but the MCDM method is easier to implement because there is no need for evaluating the
error of the prediction model, and the time required for data preprocessing is less than the time
needed when applying SVR. This new methodology is proven to be effective as an alternative to
traditional approaches and is aligned with the new trends in industry based on simulation and
data analytics.

Keywords: data analytics; methodologies; multi-material; co-extrusion; FEM; machine learning;
SVR; MCDM

MSC: 90-11; 90B25; 90B30; 90B50

1. Introduction

In recent years and with the rise of Industry 4.0, simulation and data analytics method-
ologies have become more relevant due to their capacity for predicting results and being
more sustainable compared to traditional approaches. There is an increasing need to
develop lighter materials in the aerospace and automotive industries to improve fuel
efficiency, reduce environmental impacts, and increase the payloads to be carried out.
Multi-material forming has become a solution because of its capacity to reduce weight by
joining dissimilar materials and customize the mechanical properties of the final part to
fulfill in-service requirements.

Aluminum alloys and carbon-fiber-reinforced composites are widely used in the
aerospace industry. However, magnesium alloys have a lower density and a good specific
strength [1]; therefore, they could be a good alternative to reduce weight if it were not
for their poor corrosion resistance. Because of this, a multi-material component made
of magnesium alloys combined with titanium alloys, which has excellent mechanical
and physical–chemical properties, together with a very good strength-to-weight ratio
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and superior corrosion resistance [2], could be the solution to manufacture lighter parts
with good mechanical properties and without corrosion problems and thus contribute to
reducing the weight of aircraft.

Multi-material forming involves a co-extrusion process to obtain bimetallic billets
composed of a cylindrical sleeve and a core made of different materials. Some application
cases of multi-material forming processes with two alloys are the studies performed by
Fernández et al. [3,4], who analyzed the effects of different co-extrusion process parameters
via finite element analysis (FEM) simulations, while using analysis of variance (ANOVA)
to determine the most relevant parameters; these authors also investigated the effect of the
selection of die material on the co-extrusion process of bimetallic cylindrical billets made of
a magnesium alloy core and a titanium alloy sleeve. Other interesting contributions are the
studies performed by Negendanka et al. [5], who carried out a study examining diffusion
layer formation under different die angle values in a Mg-core and Al-sleeve billet, and by
Gall et al. [6], who studied the co-extrusion of bimetallic Al–Mg billets into hollow profiles
by means of a finite element method (FEM) simulation together with experiments.

On the other hand, machine learning (ML) [7] has been gaining traction in industry
as the preferred method to forecast results and anticipate problems [8] by means of al-
gorithms based on statistical methods to detect patterns from data. The support vector
machine (SVM) is one of the most popular supervised learning methods within ML. It was
introduced by Vladimir Vapnik [9] in 1995, and its main applications are in classification
and regression analysis. For the latter, the implementation of a support vector regression
(SVR) module within the SVM to estimate discrete values and thus predict future results is
especially interesting. Some examples of SVR applications in industry are the prediction
of the laser cutting process cost for AISI316L stainless steel [10], prediction of the cutting
force and temperature in bone drilling [11], and prediction of the drilling force for drilling
an internal hole in a carbon-fiber-reinforced polymer (CFRP) [12]. When applied to wear
prediction, the research performed by Benkedjouh et al. can be highlighted [13].

Apart from ML, there are other approaches that allow decisions to be made in situa-
tions where there are several requirements to fulfill in a complex environment involving
a large number of variables. Multi-criteria decision-making (MCDM) methods based on
multi-objective optimization have been applied to find a compromise solution to this prob-
lem. The first MCDM method was applied by Pareto in 1896 [14], with his famous 80/20
principle. Another example is the study by Saaty in 1977 [15], in which multi-criteria mod-
els were used to solve problems with conflicting goals. Several MCDM methods have been
developed and applied to support decision making in different areas, such as manufactur-
ing process selection [16], supply chain management contract selection [17], and material
selection [18]. In this research area, a combination of VIKOR [19] with entropy weighting
methods [20,21] has been chosen as an MCDM methodology to establish optimum die
material selection. In the study performed by Fernández et al. [22], different ARAS [23],
TOPSIS [24], VIKOR, and COPRAS [25] MCDM methods were compared, in conjunction
with the AHP [26], standard deviation [27], and entropy weighting methods.

This study developed two methodologies—one based on SVR and the other applying
an entropy weighting method together with MCDM VIKOR—for the material selection
of the die in a multi-material co-extrusion process to obtain bimetallic billets made of
Ti6Al4V-AZ31B. Both methodologies and their results were compared to establish which
one gives better results for the proposed problem.

2. Materials and Methods
2.1. Materials, Geometrical Dimensions, and Process Parameters

In this study, a bimetallic billet made of a Ti6Al4V titanium alloy sleeve and an AZ31B
magnesium alloy core during the co-extrusion process was analyzed.

Figure 1 shows the co-extrusion setup with the process parameters and initial dimensions.
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Figure 1. Co-extrusion setup with process parameters and initial billet dimensions.

The main physical and mechanical properties of Ti6Al4V and AZ31B are shown in
Table 1.

Table 1. Physical and mechanical properties of the titanium alloy Ti6Al4V and the magnesium alloy
AZ31B [28,29].

Property Ti6Al4V AZ31B

Density (g/cm3) 4.46 1.74
Tensile strength (MPa) 895 260
Yield strength (MPa) 828 200

Elastic modulus (GPa) 110 44.80
Poisson’s ratio 0.31 0.35

The chemical compositions of Ti6Al4V and AZ31B are listed in Tables 2 and 3, respectively.

Table 2. Chemical composition of titanium alloy Ti6Al4V [28].

Ti (wt.%) Al (wt.%) V (wt.%) Fe (wt.%) C (wt.%) O (wt.%) N (wt.%) H (wt.%)

Bal. 5.5–6.5 3.5–4.5 0.25 0.08 0.13 0.040 0.012

Table 3. Chemical composition of magnesium alloy AZ31B [29].

Mg (wt.%) Al (wt.%) Zn (wt.%) Mn (wt.%) Si (wt.%) Cu (wt.%) Ca (wt.%) Fe (wt.%) Ni (wt.%)

97 2.5–3.5 0.6–1.4 0.20 0.1 0.05 0.04 0.005 0.005

The material candidates for the die were extracted from Daniel et al. [4], whose chemi-
cal composition and physical and mechanical properties data are shown in Tables 4 and 5,
respectively.

Table 4. Chemical composition of die steels [30–34].

Material C (wt.%) Mn (wt.%) Si (wt.%) Cr (wt.%) Mo (wt.%) Ni (wt.%)

AISI316 0.08 2 0.75 16–18 2–3 10–14
H13 0.32–0.45 0.2–0.5 0.8–1.20 4.75–5.50 1.10–1.75 0.30 max

25CrMo4 0.22–0.29 0.60–0.90 0.10–0.40 0.90–1.20 0.15–0.30 -
AISI52100 0.1 0.45 0.26 1.51 0.06 3.39
AISI3310 0.99 0.39 0.16 1.4 - 1.4
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Table 5. Physical and mechanical properties of die steels [35].

Property AISI316 H13 25CrMo4 AISI52100 AISI3310

Density (g/cm3) 8.03 7.78 7.85 7.83 7.81
Tensile strength (MPa) 550 1990 670 992 1866
Yield strength (MPa) 240 1650 435 579 1800
Elastic modulus (GPa) 210 210 205 200 210
Poisson’s ratio 0.3 0.3 0.3 0.3 0.3

The extrusion process parameters evaluated in this research are the following:

➢ Process parameters: ram speed (mm/s) and temperature (◦C).
➢ Tooling parameters: die semi-angle (◦), shear friction factor, and extrusion ratio

(A0/Af).
➢ Geometric parameters: shape factor (H0/D0) and diameter ratio (D0/d0).

In these parameters, A0 and Af are the initial area and the final area of the cross-section
of the billet, respectively; D0 and d0 are the initial external diameter and the internal
diameter of the sleeve, respectively; and H0 is the initial billet height.

2.2. Finite Element Modeling and Simulation Preparation

The commercial software DEFORM3D© (v11.2) [36] was used to perform the finite
element simulations.

All parts were meshed with 7000 tetrahedral elements, and due to the axial symmetry
of the process, only one-quarter of the problem was modeled to reduce the computation
time and to avoid the generation of heavy database files.

The contact condition among the objects of the simulation was defined as follows:
rigid and elastic objects were considered the “masters” (those that deform) and plastic
objects were considered “slaves” (those that are deformed). In the case of the interaction
between the sleeve and the core, where both objects are plastic, the titanium alloy was
defined as the “master” and the magnesium alloy was defined as the “slave”. All materials
were assumed to be isotropic throughout the process.

The heat transfer coefficient between the sleeve and the core and between the sleeve
and the die was set to 11 N/(s·mm·◦C), while that between the extrusion tooling elements
and the die was set to 5 N/(s·mm·◦C). All objects of the simulation had a 0.02 N/(s·mm·◦C)
heat transfer coefficient with the air.

The exponential model developed by Wen-juan et al. [37] was used to define the
behavior of AZ31B, while the Johnson–Cook constitutive equations [38] were used for the
definition of the stress–strain curves of Ti6Al4V.

2.2.1. Tool Wear Model

Archard’s wear model was used to calculate the wear produced on the surface of the
die [39–41]. This model is based on Equation (1):

W =
∫

K × pa·vb

Hc × dt (1)

where K is the wear coefficient; P is the interface pressure; v is the sliding velocity between the
die and the billet; H is the hardness; and a, b, and c are experimentally calibrated coefficients.

The commonly taken value for a and b is 1, while for c, the value is 2 in the case of
steel alloys. The equation for calculating the wear coefficient is as follows:

K = 2 × 10−5.

Taking into account Equation (1), the parameters used to evaluate the wear were the
ram speed and friction, as they can influence the sliding velocity, as well as temperature,
because it has a direct influence on the stress–strain curves.
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2.2.2. FEM Validation

The FEM was validated by using the semi-empirical model proposed by Johnson,
which was applied by García et al. [42]. This model is typically used as a reference in
extrusion processes to establish an upper limit of the extrusion force. To apply Johnson’s
model, it is necessary to obtain the average yield stress of each component in accordance
with its volume fraction, as described by Gisbert et al. [43]. The force obtained by the FEM
was in good agreement with the semi-empirical model results, with this force being the
upper limit of the required forces, as expected. Thus, the FE model can be considered to
have been validated.

2.3. Support Vector Regression

The SVM works by finding a hyperplane in a high-dimensional space that best sep-
arates data into different classes. It aims to maximize the margin (the distance between
the hyperplane and the nearest data points of each class) while minimizing classification
errors. The SVM can handle both linear and non-linear classification problems by using
various kernel functions. Unlike the SVM used for classification tasks, SVR seeks to find a
hyperplane that best fits the data points in a continuous space.

SVR [44] offers the flexibility to define how much error is acceptable in a model and
is used to find an appropriate line (or a hyperplane in higher dimensions) to fit the data.
Therefore, the goal of SVR is to find a function that approximates the relationship between
the input variables and a continuous target variable while minimizing the prediction error.

Another advantage of SVR over linear or logistic regression is the possibility of us-
ing different kernel functions, such as polynomial or radial functions, which allows the
transformation of data into a higher dimensional space, thereby making it suitable for
non-linear problems.

As mentioned before, the idea is to minimize the result of Equation (2), while taking
into account the constraints of Equations (3)–(5), as it is shown in Figure 2:

1
2
∥ w ∥2 + C ∑N

i=1(ξi + ξ∗i ) (2)

yi − wxi − b ≤ ε + ξi (3)

wxi + b − yi ≤ ε + ξ∗i (4)

ξi, ξ∗i ≥ 0 (5)

where ε is the margin of error; ξ is the deviation from ε, which is also called the tolerance
margin; and w is the classification vector. C is known as the regularized parameter.
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The prediction error can be calculated in different ways. One of the most representative
is by using the determination factor (R2), which shows the quality of the correlation
between the real measured data and the value predicted by Equation (6). A more precise



Mathematics 2024, 12, 813 6 of 22

correlation will be obtained when the value of the determination factor is nearer to 100%.
The calculation is as follows:

R2 =

[
∑n

i=1
(
θi − θmean

i
)
(θ̂i − θ̂mean

i )
]2[

∑n
i=1

(
θi − θmean

i
)][

∑n
i=1

(
θ̂i − θ̂mean

i
)] (6)

where θi is the measurement data, θ̂i is the predicted magnitude in accordance with SVR,
θmean

i is the mean of the measurement data, and θ̂mean
i is the mean of the prediction.

2.4. Entropy Method

The entropy method [21,22] is classified within the category of objective weighting
methods, and it is applicable when the data of a decision matrix are known. Entropy is a
measure of randomness and disorder in the universe.

Starting with the decision matrix D, the projected outcomes pij are calculated by means
of Equation (7):

D =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn


pij =

xij

∑m
i=0 xij

(7)

where n is the number of criteria and m is the number of alternatives.
The entropy measure of the projected outcomes is obtained as shown in Equation (8):

Ej = −k ∗ ∑m
i=1 pij ∗ ln

(
pij

)
(8)

with k = 1/ln(m).
The objective weight-based definition is calculated according to Equation (9):

wj =
1 − Ej

∑n
j=1

(
1 − Ej

) (9)

2.5. VIKOR Method

VIKOR [45,46] stands for VIseKriterijumska Optimizacija I Kompromisno Resenje,
which means multi-criteria optimization and compromise solution.

This methodology is based on the concept that the compromise solution is the one that
is at the minimum distance from the ideal solution while, at the same time, at the maximum
distance from the anti-ideal solution.

One big difference from the SVM is that VIKOR does not require the calculation of
the error because there is no prediction and therefore there is nothing to compare. Instead,
VIKOR requires a validation step before declaring the compromise solution that is feasible
by fulfilling the “acceptable advantage” and “acceptable stability in decision making”
conditions.

Other advantages of using the VIKOR method are the following:

➢ The ability to inmmediately recognize the proper alternative;
➢ A decrease in the number of pairwise comparisons required.

After the criteria to be evaluated are defined, a decision matrix (D) is built:

D =

 x11 · · · x1n
...

. . .
...

xm1 · · · xmn


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At this point, the values of the best f ∗b and the worst f−b for each criterion rating of the
decision matrix are obtained as follows:

f ∗b = max(xib) and f−b = min(xib), when the objective is to maximize the criteria.
f ∗b = min(xib) and f−b = max(xib), when the objective is to minimize the criteria.
Where b = 1 . . .m, with m being the number of criteria that is taken into account, and

i = 1 . . .n, with n being the number of alternatives.
The Utility measure (Sj) and the Regret measure (Rj) are calculated according to

Equations (10) and (11):

Sj = ∑m
b=1 Wb ∗

[
f ∗b − fij

f ∗b − f−b

]
(10)

Rj = max

[
Wb ∗

[
f ∗b − fij

f ∗b − f−b

]]
(11)

where Wb are the weight values obtained in this study after applying the entropy weighting
methods explained above.

The index Q can be obtained by using Equation (12):

Qa = υ ∗
Sj − S∗

S− − S∗ + (1 − υ) ∗
Rj − R∗

R− − R∗ (12)

where
S− = max

(
Sj
)

S∗ = min
(
Sj
)

R− = max
(
Sj
)

R∗ = min
(
Sj
)

In this equation, υ is a parameter that represents the type of voting used during the
process (υ > 0.5 means “vote by majority rule”, υ = 0.5 means “vote by consensus”, and
υ < 0.5 means “with vote”).

The lowest Qa value indicates the best alternative solution, and it can be recommended
if the following conditions are satisfied:

The “acceptable advantage” condition means that Q(a′′) − Q(a′) ≥ DQ, with a′′ being
the alternative in the second position in the ranking list by Qa and a′ being the first one.
DQ is defined according to Equation (13):

DQ =
1

(n − 1)
(13)

where n is the number or alternatives.
Finally, the “acceptable stability in decision making” condition implies that the a’

alternative must also be the best ranked for Sj and/or Rj. If one of the conditions is not
fulfilled, then a set of compromise solutions is proposed.

2.6. Methodology

Two different methodologies were proposed for the selection of the optimum die
material in order to obtain the minimum extrusion force and die wear. The methodology
steps are shown in the flowchart in Figure 3.
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The criteria for the final result comparison are as follows:

➢ Simplicity;
➢ Amount of data obtained from the simulations;
➢ Time consumption.

The prediction was carried out using the Python software [47].

3. Results

In this study, a set of simulations for a multi-material co-extrusion process were
performed by using the commercial software DEFORM3D© (v11.2), followed by the ap-
plication of two different methodologies, to choose the best die material to obtain the
minimum extrusion force and the minimum wear during the process. For the list of
simulations carried out in the present work, see Table A1 in Appendix A.

3.1. SVR Methodology

As explained above, a dataset was obtained for the parameters listed in Table 6, and
for each material and each parameter to be predicted, several dataframes were obtained by
using the “pandas” together with the “sklearn” libraries.
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Table 6. Ranking of process parameters’ influence on extrusion force.

Material Parameters

AISI316 Extrusion ratio, friction, ram speed, core diameter, billet height,
die semi-angle, and temperature.

H13 Friction, extrusion ratio, core diameter, billet height, die
semi-angle, ram speed, and temperature.

25CrMo4 Friction, ram speed, billet height, core diameter, die semi-angle,
temperature, and extrusion ratio.

AISI52100 Friction, core diameter, die semi-angle, extrusion ratio, billet
height, ram speed, and temperature.

AISI3310 Ram speed, core diameter, friction, extrusion ratio, die semi-angle,
billet height, and temperature.

Using the “RFE” module for Regression Feature Selection from “sklearn.feature_selection”,
together with the “SVR” module from “sklearn.svm”, the process parameters were ranked
according to their influence on the extrusion force, as shown in Table 6.

Taking into account these results, it can be concluded that friction is the most important
process parameter, while temperature is the least important one. This conclusion is in good
agreement with the findings reported by Fernández et al. [3,4], who performed a deeper
analysis of the influence of each process parameter on the extrusion force.

As there is no clear pattern regarding the influence of the process parameters and their
influence is clearly dependent on the die material, all the parameters were implemented in
the prediction model.

For the prediction model of the extrusion force, the dataframes for each material were
split into two groups—one for training and one for testing—using the “train_test_split”
function from the “sklearn.model_selection” module, with the test size being 0.3.

After applying the “LinearRegression” function from “sklearn.linear_model” to build
the prediction model using the training data, the model was evaluated using the test data.
The determination factor (R2) for each material is shown in Table 7.

Table 7. Determination factor (R2) for the extrusion force in the linear regression model.

Material R2

AISI316 0.91461
H13 0.92245

25CrMo4 0.70708
AISI52100 0.86922
AISI3310 0.91966

Figures 4–8 show the comparisons between the simulation values and the predic-
tion values.

By using the prediction model for each die material, a larger number of results for the
extrusion force could be compared without the need to perform more simulations. Table 8
shows the ranking of the die materials as a function of the times that their prediction value
for the extrusion force was the lowest.

If the minimum extrusion force was the only requirement for the selection of die
materials, AISI3310 would be the chosen material, followed by AISI316 and H13, which
shared the second position in the ranking.

The SVR methodology was then applied for wear prediction with the following modification:
Due to the variation in the results, it was not possible to apply a linear regression model

and so a polynomial one had to be used. To produce a polynomial regression model, it was
necessary to import the “PolynomialFeatures” module from the “sklearn.preprocessing”
library to generate a new feature matrix consisting of all the polynomial combinations of the
features with a degree less than or equal to the specified degree (in this case, a two-degree
polynomial function was used).



Mathematics 2024, 12, 813 10 of 22Mathematics 2024, 12, 813 10 of 22 
 

 

 
Figure 4. Comparison of AISI316 extrusion force prediction and simulation values. 

 
Figure 5. Comparison of H13 extrusion force prediction and simulation values. 

 
Figure 6. Comparison of 25CrMo4 extrusion force prediction and simulation values. 

Figure 4. Comparison of AISI316 extrusion force prediction and simulation values.

Mathematics 2024, 12, 813 10 of 22 
 

 

 
Figure 4. Comparison of AISI316 extrusion force prediction and simulation values. 

 
Figure 5. Comparison of H13 extrusion force prediction and simulation values. 

 
Figure 6. Comparison of 25CrMo4 extrusion force prediction and simulation values. 

Figure 5. Comparison of H13 extrusion force prediction and simulation values.

Mathematics 2024, 12, 813 10 of 22 
 

 

 
Figure 4. Comparison of AISI316 extrusion force prediction and simulation values. 

 
Figure 5. Comparison of H13 extrusion force prediction and simulation values. 

 
Figure 6. Comparison of 25CrMo4 extrusion force prediction and simulation values. Figure 6. Comparison of 25CrMo4 extrusion force prediction and simulation values.



Mathematics 2024, 12, 813 11 of 22Mathematics 2024, 12, 813 11 of 22 
 

 

 
Figure 7. Comparison of AISI52100 extrusion force prediction and simulation values. 

 
Figure 8. Comparison of AISI3310 extrusion force prediction and simulation values. 

By using the prediction model for each die material, a larger number of results for 
the extrusion force could be compared without the need to perform more simulations. 
Table 8 shows the ranking of the die materials as a function of the times that their predic-
tion value for the extrusion force was the lowest. 

Table 8. Ranking of die materials as a function of the times that the lowest extrusion force was 
produced. 

Material Ranking 
AISI316 2 

H13 2 
25CrMo4 5 
AISI52100 3 
AISI3310 1 

If the minimum extrusion force was the only requirement for the selection of die 
materials, AISI3310 would be the chosen material, followed by AISI316 and H13, which 
shared the second position in the ranking. 

Figure 7. Comparison of AISI52100 extrusion force prediction and simulation values.

Mathematics 2024, 12, 813 11 of 22 
 

 

 
Figure 7. Comparison of AISI52100 extrusion force prediction and simulation values. 

 
Figure 8. Comparison of AISI3310 extrusion force prediction and simulation values. 

By using the prediction model for each die material, a larger number of results for 
the extrusion force could be compared without the need to perform more simulations. 
Table 8 shows the ranking of the die materials as a function of the times that their predic-
tion value for the extrusion force was the lowest. 

Table 8. Ranking of die materials as a function of the times that the lowest extrusion force was 
produced. 

Material Ranking 
AISI316 2 

H13 2 
25CrMo4 5 
AISI52100 3 
AISI3310 1 

If the minimum extrusion force was the only requirement for the selection of die 
materials, AISI3310 would be the chosen material, followed by AISI316 and H13, which 
shared the second position in the ranking. 

Figure 8. Comparison of AISI3310 extrusion force prediction and simulation values.

Table 8. Ranking of die materials as a function of the times that the lowest extrusion force was produced.

Material Ranking

AISI316 2
H13 2

25CrMo4 5
AISI52100 3
AISI3310 1

Tables 9 and 10 show the ranking of the process parameters and the determination
factor (R2) for the wear model.
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Table 9. Ranking of process parameters for die wear.

Material Parameters

AISI316 Friction, ram speed, and temperature.
H13 Friction, ram speed, and temperature.

25CrMo4 Temperature, friction, and ram speed.
AISI52100 Friction, temperature, and ram speed.
AISI3310 Temperature, ram speed, and friction.

Table 10. Determination factor (R2) for the extrusion force in the polynomial regression model.

Material R2

AISI316 0.75695
H13 0.74873

25CrMo4 0.63223
AISI52100 0.80571
AISI3310 0.65881

The conclusion is in good agreement with the findings reported by Fernández et al. [4],
who performed a deeper analysis of the influence of each process parameter on the die wear.

The prediction model for the die wear was not as accurate as the one for the extrusion
force. This could be due to the fact that the number of simulations performed to obtain
the wear distribution was lower than for that for the extrusion force because Archard’s
wear model only takes into account temperature, friction, and ram speed, as mentioned in
Section 2.2.1.

Figures 9–13 show the comparisons between the simulation values and the predic-
tion values.

Table 11 shows the ranking of the die materials as a function of the times that their
prediction value for the die wear was the lowest value.

Finally, a crosscheck between Tables 8 and 11 was performed to rank the die mate-
rials and find the one that best fulfills the requirements of minimum extrusion force and
minimum die wear, and the results are shown in Table 12.
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Table 11. Ranking of die materials as a function of the times that the minimum wear in the die
was produced.

Material Ranking

AISI316 2
H13 3

25CrMo4 N/A
AISI52100 N/A
AISI3310 1

Table 12. Ranking of die materials as a function of fulfilling the requirements of minimum extrusion
force and minimum die wear.

Material Ranking

AISI316 2
H13 3

25CrMo4 5
AISI52100 4
AISI3310 1

In both rankings, AISI3310 is the best choice to reduce the extrusion force and die
wear. AISI316 and H13 have the same ranking position with regard to the extrusion force
but not with regard to the die wear, and the reason is because, in the final ranking, AISI316
is ranked better than H13. The die materials that can be rejected as feasible options are
AISI52100 and 25CrMo4.

3.2. MCDM Methodology

As explained in Section 3, a dataset was obtained from the simulations listed in
Table A1. In the MCDM methodology, weights were calculated by means of the entropy
method and, afterwards, the VIKOR method was applied to classify the different materials
based on the criteria rating values.

For the entropy method, the decision matrix D was obtained based on the results for
each simulation listed in Table A1 regarding the extrusion force and die wear.
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86.019 136.529 228.511 307.324 97.898 88.621 88.040 84.512 83.759 0.367 0.318 0.302 0.124 0.417 0.253 0.378 0.361 0.370
86.153 124.955 227.644 307.783 98.095 88.706 88.140 84.799 83.850 0.379 0.382 0.257 0.219 0.414 0.271 0.404 0.381 0.354
95.608 128.196 199.579 307.520 100.048 87.505 111.049 87.149 86.484 0.361 0.327 0.250 0.211 0.471 0.445 0.354 0.341 0.345
87.120 134.333 206.128 309.397 100.654 86.238 110.203 88.307 88.602 0.507 0.369 0.410 0.452 0.573 0.462 0.430 0.436 0.428
92.531 132.578 221.350 306.154 100.708 87.422 112.221 89.296 87.588 0.304 0.257 0.281 0.236 0.389 0.303 0.291 0.292 0.173

From D, the normalized matrix was obtained by means of Equation (7):

0.1923 0.2079 0.2110 0.1998 0.1968 0.2021 0.1727 0.1947 0.1947 0.1913 0.1925 0.2011 0.1000 0.1842 0.1459 0.2035 0.1993 0.2214
0.1926 0.1903 0.2102 0.2001 0.1972 0.2023 0.1729 0.1954 0.1949 0.1977 0.2311 0.1717 0.1764 0.1829 0.1563 0.2175 0.2105 0.2118
0.2137 0.1952 0.1842 0.1999 0.2011 0.1996 0.2179 0.2008 0.2010 0.1884 0.1978 0.1667 0.1701 0.2078 0.2568 0.1908 0.1881 0.2067
0.1947 0.2046 0.1903 0.2011 0.2024 0.1967 0.2162 0.2034 0.2059 0.2642 0.2233 0.2733 0.3639 0.2532 0.2665 0.2315 0.2407 0.2565
0.2068 0.2019 0.2043 0.1990 0.2025 0.1994 0.2202 0.2057 0.2036 0.1584 0.1553 0.1871 0.1897 0.1719 0.1744 0.1567 0.1614 0.1037

Then, the entropy array (Ej) was calculated by applying Equation (8):

Ej = [0.999418867 0.999681506 0.999085371 0.999996437 0.999952024 0.999966715 0.996102816 0.999852667
0.999839187 0.990960752 0.99430503 0.989129167 0.944884512 0.993690857 0.979914551 0.994771731 0.99470602
0.976990905]

The weights are presented in Table 13.

Table 13. Entropy method weights.

W.
1(%)

W.
2(%)

W.
3(%)

W.
4(%)

W.
5(%)

W.
6(%)

W.
7(%)

W.
8(%)

W.
9(%)

W.
10(%)

W.
11(%)

W.
12(%)

W.
13(%)

W.
14(%)

W.
15(%)

W.
16(%)

W.
17(%)

W.
18(%)

0.40 0.22 0.62 0 0.03 0.02 2.66 0.10 0.11 6.16 3.88 7.41 37.56 4.30 13.69 3.56 3.61 15.68

Using the VIKOR method, the best f ∗b and worst f−b values for each criterion were
obtained directly from the decision matrix D.

86.019 136.529 228.511 307.324 97.898 88.621 88.040 84.512 83.759 0.367 0.318 0.302 0.124 0.417 0.253 0.378 0.361 0.370
86.153 124.955 227.644 307.783 98.095 88.706 88.140 84.799 83.850 0.379 0.382 0.257 0.219 0.414 0.271 0.404 0.381 0.354
95.608 128.196 199.579 307.520 100.048 87.505 111.049 87.149 86.484 0.361 0.327 0.250 0.211 0.471 0.445 0.354 0.341 0.345
87.120 134.333 206.128 309.397 100.654 86.238 110.203 88.307 88.602 0.507 0.369 0.410 0.452 0.573 0.462 0.430 0.436 0.428
92.531 132.578 221.350 306.154 100.708 87.422 112.221 89.296 87.588 0.304 0.257 0.281 0.236 0.389 0.303 0.291 0.292 0.173
447.431 656.591 1083.212 1538.178 497.402 438.492 509.653 434.063 430.283 1.918 1.652 1.499 1.242 2.265 1.735 1.856 1.812 1.669

fi* 86.019 124.955 199.579 306.154 97.898 86.238 88.040 84.512 83.759 0.304 0.257 0.250 0.124 0.389 0.253 0.291 0.292 0.173
fi- 95.608 136.529 228.511 309.397 100.708 88.706 112.221 89.296 88.602 0.507 0.382 0.410 0.452 0.573 0.462 0.430 0.436 0.428

The Utility measure (Sj) and the Regret measure (Rj) were then obtained:

Sj Ri

0.23758265 0.12075866
0.36022622 0.11092085
0.44932592 0.1258087
0.98459134 0.37557176
0.21183731 0.12764252

S* 0.21183731 R* 0.11092085
S− 0.98459134 R− 0.37557176

Using the values S*, S−, R*, and R−, together with the assumption of vote by consensus
(υ = 0.5), the index Q was calculated:



Mathematics 2024, 12, 813 16 of 22

Qi

AISI3310 0.03524455
H13 0.09601303

AISI52100 0.18179111
25CrMo4 1
AISI3310 0.03159193

Using the VIKOR method, the index Q was ranked from the lowest to the highest
value. The best material to obtain the minimum extrusion force and the minimum die wear
is AISI3310. But before recommending this material as the best compromise solution, the
conditions of “acceptable advantages” and “acceptable stability in decision making” have
to be fulfilled.

In this case, DQ = 0.25 according to Equation (13).

Q(2) − Q(1) = 0.0365261
Q(3) − Q(1) = 0.0644211
Q(4) − Q(1) = 0.15019917
Q(5) − Q(1) = 0.96840807 > DQ
Q(1) = S*

As only the second condition was fulfilled, a set of compromise solutions was ranked,
and the results are presented in Table 14.

Table 14. VIKOR ranking of die materials.

Material Ranking

AISI316 2
H13 3

25CrMo4 4
AISI52100 5
AISI3310 1

4. Discussion

In this paper, two methodologies are proposed to choose the best material for the die
in a multi-material coextrusion process, taking into account that the process has to fulfill
the requirements of minimum extrusion force and minimum die wear.

The first methodology proposed is an SVR methodology based on the SVM. The main
advantage of this methodology is that the prediction model obtained during the process
allows engineers to predict the outcomes when varying the process parameters. On the
other hand, the disadvantages are the number of simulations needed to obtain a good
prediction model and, depending on the results of those simulations, the complexity of
obtaining the prediction model, which can be very high.

The second methodology is the MCDM methodology, which allows the selection of
the best die material with a smaller number of simulations than the SVR methodology and
without having to consider the accuracy or complexity of prediction models. Also, it is less
time-consuming because the entropy and VIKOR methods can be applied directly to the
data, and there is no need to have knowledge in programming languages like Python.

The results for the top three materials selected are the same regardless of the method-
ology applied. Therefore, if there is no need to apply other values to the parameters to
obtain a prediction model to forecast the results, the recommended methodology for die
material selection is the MCDM methodology due to its simplicity and the time saved in
implementing it because there is no need for data preprocessing, nor there is a need for
programming or statistical knowledge to interpret the results of the obtained model. In
addition, MCDM is more scalable due to the fact that the SVM needs to re-evaluate the
prediction model with new data to ensure the accuracy of the results while making certain
that the prediction error is not increased.
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Finally, for future research, it would be interesting to conduct a comparison among
different machine learning methods to obtain a more robust prediction model not only
for the wear but also for other parameters, such as the damage factor, mean stresses, and
resultant microstructure.
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Appendix A

Table A1. List of simulations performed by using DEFORM3D© (v11.2).

Simulation Material Ram Speed
(mm/s)

Core
Diameter

(mm)

Billet
Height

(H)

Temperature
(◦ C) Friction

Die
Semi-Angle

(◦)

Extrusion
Ratio

1 AISI316 2 5 20 200 0.2 30 1.78
2 AISI316 2 6 15 100 0.2 30 2.25
3 AISI316 2 7 25 100 0.3 30 1.44
4 AISI316 3 6 15 200 0.3 15 2.25
5 AISI316 3 7 15 300 0.2 45 1.44
6 AISI316 2 6 20 200 0.1 30 1.78
7 AISI316 2 6 20 200 0.1 15 1.78
8 AISI316 2 6 20 200 0.1 45 1.78
9 AISI316 2 6 20 200 0.1 60 1.78

10 AISI316 2 6 20 200 0.1 75 1.78
11 AISI316 2 6 20 200 0.1 90 1.78
12 AISI316 2 2 20 200 0.1 30 1.78
13 AISI316 2 4 20 200 0.1 30 1.78
14 AISI316 2 8 20 200 0.1 30 1.78
15 AISI316 2 10 20 200 0.1 30 1.78
16 AISI316 2 6 15 200 0.1 30 1.78
17 AISI316 2 6 25 200 0.1 30 1.78
18 AISI316 2 6 30 200 0.1 30 1.78
19 AISI316 2 6 35 200 0.1 30 1.78
20 AISI316 2 6 20 200 0.2 30 1.78
21 AISI316 2 6 20 200 0.3 30 1.78
22 AISI316 2 6 20 200 0.4 30 1.78
23 AISI316 2 6 20 200 0.5 30 1.78
24 AISI316 2 6 20 200 0.6 30 1.78
25 AISI316 2 6 20 200 0.7 30 1.78
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Table A1. Cont.

Simulation Material Ram Speed
(mm/s)

Core
Diameter

(mm)

Billet
Height

(H)

Temperature
(◦ C) Friction

Die
Semi-Angle

(◦)

Extrusion
Ratio

26 AISI316 2 6 20 100 0.1 30 1.78
27 AISI316 2 6 20 300 0.1 30 1.78
28 AISI316 1 6 20 300 0.1 30 1.78
29 AISI316 3 6 20 300 0.1 30 1.78
30 AISI316 4 6 20 300 0.1 30 1.78
31 AISI316 2 6 20 200 0.1 30 1.44
32 AISI316 2 6 20 200 0.1 30 2.25
33 AISI316 2 6 20 200 0.1 30 2.94
34 H13 2 5 15 100 0.1 15 1.44
35 H13 2 6 25 300 0.1 15 1.78
36 H13 3 5 15 300 0.3 30 1.78
37 H13 3 6 25 100 0.2 45 1.44
38 H13 3 7 25 200 0.1 30 2.25
39 H13 2 6 20 200 0.1 30 1.78
40 H13 2 6 20 200 0.1 15 1.78
41 H13 2 6 20 200 0.1 45 1.78
42 H13 2 6 20 200 0.1 60 1.78
43 H13 2 6 20 200 0.1 75 1.78
44 H13 2 6 20 200 0.1 90 1.78
45 H13 2 2 20 200 0.1 30 1.78
46 H13 2 4 20 200 0.1 30 1.78
47 H13 2 8 20 200 0.1 30 1.78
48 H13 2 10 20 200 0.1 30 1.78
49 H13 2 6 15 200 0.1 30 1.78
50 H13 2 6 25 200 0.1 30 1.78
51 H13 2 6 30 200 0.1 30 1.78
52 H13 2 6 35 200 0.1 30 1.78
53 H13 2 6 20 200 0.2 30 1.78
54 H13 2 6 20 200 0.3 30 1.78
55 H13 2 6 20 200 0.4 30 1.78
56 H13 2 6 20 200 0.5 30 1.78
57 H13 2 6 20 200 0.6 30 1.78
58 H13 2 6 20 200 0.7 30 1.78
59 H13 2 6 20 100 0.1 30 1.78
60 H13 2 6 20 300 0.1 30 1.78
61 H13 1 6 20 300 0.1 30 1.78
62 H13 3 6 20 300 0.1 30 1.78
63 H13 4 6 20 300 0.1 30 1.78
64 H13 2 6 20 200 0.1 30 1.44
65 H13 2 6 20 200 0.1 30 2.25
66 H13 2 6 20 200 0.1 30 2.94
67 AISI52100 2 5 15 100 0.1 15 1.44
68 AISI52100 2 6 25 300 0.1 15 1.78
69 AISI52100 3 5 15 300 0.3 30 1.78
70 AISI52100 3 6 25 100 0.2 45 1.44
71 AISI52100 3 7 25 200 0.1 30 2.25
72 AISI52100 2 6 20 200 0.1 30 1.78
73 AISI52100 2 6 20 200 0.1 15 1.78
74 AISI52100 2 6 20 200 0.1 45 1.78
75 AISI52100 2 6 20 200 0.1 60 1.78
76 AISI52100 2 6 20 200 0.1 75 1.78
77 AISI52100 2 2 20 200 0.1 30 1.78
78 AISI52100 2 4 20 200 0.1 30 1.78
79 AISI52100 2 8 20 200 0.1 30 1.78
80 AISI52100 2 10 20 200 0.1 30 1.78
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Table A1. Cont.

Simulation Material Ram Speed
(mm/s)

Core
Diameter

(mm)

Billet
Height

(H)

Temperature
(◦ C) Friction

Die
Semi-Angle

(◦)

Extrusion
Ratio

81 AISI52100 2 6 15 200 0.1 30 1.78
82 AISI52100 2 6 25 200 0.1 30 1.78
83 AISI52100 2 6 30 200 0.1 30 1.78
84 AISI52100 2 6 35 200 0.1 30 1.78
85 AISI52100 2 6 20 200 0.2 30 1.78
86 AISI52100 2 6 20 200 0.3 30 1.78
87 AISI52100 2 6 20 200 0.4 30 1.78
88 AISI52100 2 6 20 200 0.5 30 1.78
89 AISI52100 2 6 20 200 0.6 30 1.78
90 AISI52100 2 6 20 200 0.7 30 1.78
91 AISI52100 2 6 20 100 0.1 30 1.78
92 AISI52100 2 6 20 300 0.1 30 1.78
93 AISI52100 1 6 20 300 0.1 30 1.78
94 AISI52100 3 6 20 300 0.1 30 1.78
95 AISI52100 4 6 20 300 0.1 30 1.78
96 AISI52100 2 6 20 200 0.1 30 1.44
97 AISI52100 2 6 20 200 0.1 30 2.25
98 25CrMo4 2 6 20 200 0.3 45 1.44
99 25CrMo4 2 7 15 200 0.1 45 1.78

100 25CrMo4 3 5 25 200 0.2 15 1.44
101 25CrMo4 3 7 20 100 0.3 15 1.78
102 25CrMo4 2 6 20 300 0.1 30 1.78
103 25CrMo4 2 6 20 200 0.1 30 1.78
104 25CrMo4 2 6 20 200 0.1 15 1.78
105 25CrMo4 2 6 20 200 0.1 45 1.78
106 25CrMo4 2 6 20 200 0.1 60 1.78
107 25CrMo4 2 6 20 200 0.1 75 1.78
108 25CrMo4 2 6 20 200 0.1 90 1.78
109 25CrMo4 2 2 20 200 0.1 30 1.78
110 25CrMo4 2 4 20 200 0.1 30 1.78
111 25CrMo4 2 8 20 200 0.1 30 1.78
112 25CrMo4 2 10 20 200 0.1 30 1.78
113 25CrMo4 2 6 15 200 0.1 30 1.78
114 25CrMo4 2 6 25 200 0.1 30 1.78
115 25CrMo4 2 6 30 200 0.1 30 1.78
116 25CrMo4 2 6 35 200 0.1 30 1.78
117 25CrMo4 2 6 20 200 0.2 30 1.78
118 25CrMo4 2 6 20 200 0.3 30 1.78
119 25CrMo4 2 6 20 200 0.4 30 1.78
120 25CrMo4 2 6 20 200 0.5 30 1.78
121 25CrMo4 2 6 20 200 0.6 30 1.78
122 25CrMo4 2 6 20 200 0.7 30 1.78
123 25CrMo4 2 6 20 100 0.1 30 1.78
124 25CrMo4 2 6 20 300 0.1 30 1.78
125 25CrMo4 1 6 20 300 0.1 30 1.78
126 25CrMo4 3 6 20 300 0.1 30 1.78
127 25CrMo4 4 6 20 300 0.1 30 1.78
128 25CrMo4 2 6 20 200 0.1 30 1.44
129 25CrMo4 2 6 20 200 0.1 30 2.25
130 AISI3310 2 6 20 200 0.1 30 1.78
131 AISI3310 2 6 20 200 0.1 15 1.78
132 AISI3310 2 6 20 200 0.1 45 1.78
133 AISI3310 2 6 20 200 0.1 60 1.78
134 AISI3310 2 6 20 200 0.1 75 1.78
135 AISI3310 2 6 20 200 0.1 90 1.78
136 AISI3310 2 2 20 200 0.1 30 1.78
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Table A1. Cont.

Simulation Material Ram Speed
(mm/s)

Core
Diameter

(mm)

Billet
Height

(H)

Temperature
(◦ C) Friction

Die
Semi-Angle

(◦)

Extrusion
Ratio

137 AISI3310 2 4 20 200 0.1 30 1.78
138 AISI3310 2 8 20 200 0.1 30 1.78
139 AISI3310 2 10 20 200 0.1 30 1.78
140 AISI3310 2 6 15 200 0.1 30 1.78
141 AISI3310 2 6 25 200 0.1 30 1.78
142 AISI3310 2 6 30 200 0.1 30 1.78
143 AISI3310 2 6 35 200 0.1 30 1.78
144 AISI3310 2 6 20 200 0.2 30 1.78
145 AISI3310 2 6 20 200 0.3 30 1.78
146 AISI3310 2 6 20 200 0.4 30 1.78
147 AISI3310 2 6 20 200 0.5 30 1.78
148 AISI3310 2 6 20 200 0.6 30 1.78
149 AISI3310 2 6 20 200 0.7 30 1.78
150 AISI3310 2 6 20 100 0.1 30 1.78
151 AISI3310 2 6 20 300 0.1 30 1.78
152 AISI3310 1 6 20 300 0.1 30 1.78
153 AISI3310 3 6 20 300 0.1 30 1.78
154 AISI3310 4 6 20 300 0.1 30 1.78
155 AISI3310 2 6 20 200 0.1 30 1.44
156 AISI3310 2 6 20 200 0.1 30 2.25
157 AISI3310 2 6 20 200 0.1 30 2.94
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