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Abstract: In this paper, we consider a new design problem of optimizing a linear transceiver for
correlated multiple-input multiple-output (MIMO) interference channels in the presence of channel
state information (CSI) errors, which is a more realistic and practical scenario than those considered
in the previous studies on uncorrelated MIMO interference channels. By taking CSI errors into
account, the optimization problem is initially formulated to minimize the average mean square error
(MSE) under the general power constraints. Since the objective function is not jointly convex in
precoders and receive filters, we split the original problem into two convex subproblems, and then
linear precoders and receive filters are obtained by solving two subproblems iteratively. It is shown
that the proposed algorithm is guaranteed to converge to a local minimum. The numerical results
show that the proposed algorithm can significantly reduce the sensitivity to CSI errors compared
with the existing robust schemes in the correlated MIMO interference channel.

Keywords: interference channel; MIMO; stochastic robustness; MSE minimization; CSI errors; general
power constraints
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1. Introduction

Inter-cell interference management is an important issue in upcoming wireless com-
munications standards such as 3GPP LTE-Advanced and IEEE 802.16m due to universal
frequency reuse [1,2]. One promising way to mitigate the inter-cell interference is through
cooperation among base stations, e.g., coordinated multi-point transmission (CoMP) in
3GPP LTE-advanced as well as in 4G/5G/6G. In this paper, we consider a multi-cell sce-
nario where base stations and mobile users are equipped with multiple antennas and
model it as a multiple-input multiple-output (MIMO) interference channel. An interference
channel is a network that models simultaneously communicating transmitter–receiver pairs
using the same resources such as time and frequency [3]. In interference channels, much
attention has been focused on information-theoretic studies such as interference alignment
(IA), because the exact capacity characterization of the interference channels still remains
unknown except for some special cases [3].

Recently, linear transceiver designs for the MIMO interference channel have been stud-
ied in [4–7] (as well as for MIMO multiuser systems in [8] and reconfigurable intelligent
surface (RIS)-assisted MIMO systems in [9]) based on various criteria with the assumption
of the perfect knowledge of the channel state information (CSI) at each node. To combat the
assumption of perfect CSI, mean square error (MSE)-based robust transceiver design algo-
rithms were developed in [7] while taking CSI errors into account. The results in [4–7] have
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been developed under the implicit assumption of independent and identically distributed
(i.i.d.) or spatially uncorrelated channel elements.

1.1. Motivations

In real environments, however, the channel elements are not only erroneous due
to inaccurate channel estimation or quantization of estimated CSI [10,11], but are also
correlated due to little scattering and insufficient antenna spacing, e.g., the 3GPP spatial
channel model (SCM). In this case, the performance of the works [4–6] is severely sensitive
to both CSI errors and channel correlation. In addition, the existing results in [7] cannot
be applicable to correlated MIMO interference channels, since they cannot appropriately
deal with interference leakage through the correlated channels and their corresponding
CSI errors. Although joint robust transceiver design methods with imperfect CSI were de-
veloped in [12,13] for single-user point-to-point correlated MIMO channels, these methods
also cannot be directly extended to the correlated MIMO interference channels due to the
interference issue.

Accordingly, in [14–22], effective robust transceiver designs have been developed for
the MIMO interference channel with imperfect CSI. Despite these advantages in designs,
the techniques in [14–22] have limitations or face technical obstacles in the following as-
pects. In [14–19], the CSI errors were assumed to be spatially uncorrelated. Also, in [20],
the CSI errors were assumed to be correlated only at the transmitter sides, not at both the
transmitter and receiver sides. In [21], the CSI errors were assumed to be deterministic
(rather than random), which however may not adequately capture the stochastic nature
of the uncertainty. In [22], a robust transceiver design scheme considering the (full) spa-
tial correlation at both the transmitter and receiver sides was developed for the MIMO
interference channel. However, [22] considered only the total power constraints at the
transmitters, which clearly neglects the per-antenna power constraints, and thus hinders
the practical applicability in distributed MIMO scenarios where multiple single-antenna
devices collaborate to form a virtual antenna array under their strict individual power
constraints (although the total power constraints and per-antenna power constraints have
been investigated separately in the literature, such as in [23], these constraints have not
been dealt with in an integrated or mixed manner as in our work).

1.2. Contributions

The main purpose of this study is to develop a novel robust transceiver design by
considering a more realistic and practical scenario than the previous studies. The main
contributions of this paper are as follows:
• We propose to design a new linear transceiver to minimize the average sum-MSE

for the correlated MIMO interference channel under the CSI errors considering the
general power constraints that include the total power constraints and per-antenna
power constraints (as well as their mixtures) as special cases. Our design approach is
based on the existing stochastic robust technique [12].

• Since the optimization problem is not jointly convex in precoders and receive filters, it
is difficult to find the jointly optimal solution. In order to resolve this difficulty, we
leverage the alternating optimization method. More specifically, we propose to divide
the original problem into two subproblems that are convex in precoders and receive
filters, respectively. Then, precoders and receive filters can be obtained by solving two
subproblems iteratively.

• We present extensive numerical results, which demonstrate the superior performance
and effectiveness of the proposed scheme compared to the conventional schemes.

1.3. Organization

The remainder of this paper is organized as follows. Section 2 describes the system
model. Section 3 presents the problem formulation and linear transceiver design design.
Section 4 presents the numerical results and Section 5 concludes this paper.
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1.4. Notations

(·)T, (·)H, and (·)1/2 denote the transpose, conjugate transpose, and matrix square
root, respectively. vec(·) is the vectorization operator and Tr(·) is the trace of a matrix.
Also, ⊗ and vec(·) represent the Kronecker product and vectorization operator, respectively.
Ex(·) denotes the expectation of a random variable x. A circular symmetric Gaussian
random vector z with mean z̄ and covariance matrix Cz is denoted as z ∼ CN(z̄, Cz).

2. System Model

We consider the K-user MIMO interference channel as shown in Figure 1, in which
there are K transmitter–receiver pairs and K transmitters that simultaneously transmit
independent data streams to their intended receivers. The kth transmitter and receiver are
equipped with Mk antennas and Nk antennas, respectively. The transmit signal vector at
the kth transmitter is denoted as xk = Fksk, where Fk ∈ CMk×dk is the precoding matrix at
the kth transmitter and sk ∈ Cdk×1 is the symbol vector transmitted by the kth transmitter,
which satisfies E[sksHk ] = Idk

and E[sksHj ] = 0dk×dj
, ∀j ̸= k.

Also, dk ≤ min(Mk, Nk) denotes the number of transmitted data streams at the kth
transmitter. The received signal at the kth receiver is given by the following:

yk = HkkFksk +
K

∑
j=1,j ̸=k

HkjFjsj + wk, k = 1, · · · , K (1)

where Hkj ∈ CNk×Mj denotes the channel matrix between the j-th transmitter and kth
receiver, and it is assumed to be frequency-flat. wk ∈ CNk×1 is the additive Gaussian noise
at the k-th receiver whose elements are i.i.d. CN

(
0, σ2

k
)
. In this paper, we assume that

the elements of the channel matrices {Hkj}K
k,j=1 are correlated and adopt the Kronecker

channel model, which is widely used in MIMO systems due to its simplicity and analytical
tractability [24] (p. 90). Using this model, the channel matrices can be expressed as follows:

Hkj = R1/2
k H(w)

kj T1/2
j , ∀k, j (2)

where H(w)
kj ∈ CNk×Mj is the spatially white channel matrix whose elements are i.i.d.

CN(0, 1). Tj ∈ CMj×Mj and Rk ∈ CNk×Nk represent the transmit correlation at the jth
transmitter and receive correlation at the kth receiver, respectively. Although the channel
matrices can vary block to block due to mobile location, the correlation matrices can be
assumed to be constant over a large number of blocks since the scattering environments
change slowly. For this reason, they can be estimated reliably at each receiver and fed back
to the transmitters through reliable feedback links [25]. Hence, we reasonably assume that
the channel correlation matrices are constant and available at each node, and that the CSI
errors are mainly due to the imperfect channel estimation.

We define the CSI error for each link of the interference channel as follows:

∆kj = Hkj − Ĥkj, ∀k, j (3)

where Ĥkj is an estimate of Hkj. For the Kronecker channel model, the CSI error can

be modeled as vec
(

∆kj

)
∼ CN

(
0Mj Nk×1, σ2

e,kj
(
Σj ⊗Ψk

))
[13,26], and it is said to have a

matrix variate complex Gaussian distribution, which can be written as follows [27]:

∆kj ∼ CNNk ,Mj

(
0Nk×Mj , σ2

e,kj
(
Σj ⊗Ψk

))
(4)

where σ2
e,kj is the channel estimation error variance, and Σj ∈ CMj×Mj and Ψk ∈ CNk×Nk

represent the column and row covariance of ∆kj, respectively. It is assumed that the CSI
error is independent of the transmitted symbol and noise. If the minimum MSE (MMSE)
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channel estimator is used to estimate the spatially white channel H(w)
kj , the matrices Σj

and Ψk can be represented by Σj = Tj and Ψk = Rk, respectively, and σ2
e,kj is given by

σ2
e,kj = 1− σ2

ĥ,kj
, where σ2

ĥ,kj
denotes the variance of each element of Ĥ(w)

kj [26]. On the

other hand, if the correlated channel Hkj is estimated using the MMSE channel estimator,

Σj and Ψk are given by Σj = Tj and Ψk =
(

INk + σ2
e,kjR

−1
k

)−1
, and σ2

e,kj is given by

σ2
e,kj = σ2

k Tr
(
Tj
)
/p(tr)j , where p(tr)j is the training signal power at the jth transmitter [13].

F1

F2

FK

:  Desired channel

:  Interference channel

G1

G2

GK

Figure 1. K-user MIMO interference channel.

3. Problem Formulation and Linear Transceiver Design
3.1. General Power Constraints

We impose the general power constraints at each transmitter, which are described by

E
[∥∥∥Q1/2

l,k xk

∥∥∥2
]

= Tr
(

FH
k Ql,kFk

)
≤ pl,k, l = 1, · · · , Lk, (5)

where Ql,k’s and pl,k’s are weighting matrices and power budgets, respectively. Also,
Lk denotes the number of constraints, which determines the type of power constraint
together with the weighting matrices Ql,k’s. The general power constraints in (5) include
the total power constraint, per-antenna power constraints, and a mixture between total
and per-antenna power constraints as special cases via a proper selection of Ql,k’s [28,29].
For example, when Lk = 1 and Q1,k = IMk , it corresponds to the total power constraint

with Tr
(

FH
k Fk

)
≤ p1,k, where p1,k corresponds to the total power budget. On the other

hand, when Lk = Mk and Ql,k = eleTl , l = 1, · · · , Mk, where el = [0, · · · , 0, 1, 0, · · · , 0]T

denotes the lth unit vector (i.e., all zeros except for the lth entry being unity), the general
power constraints reduce to the per-antenna power constraints as Tr

(
[FkFH

k ]l,l
)
≤ pl,k,

l = 1, · · · , Mk, with pl,k corresponding to the power budget of the lth transmit antenna of
the kth transmitter.

3.2. Problem Formulation

For given CSI errors with known distributions, one of the most popular approaches to
design the transceiver is to optimize the average performance of the system. This approach
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is known as the stochastic robust technique [12,13]. By exploiting this technique, in this
section, we will design a set of precoders and receive filters to minimize the average sum-
MSE, i.e., the total discrepancy between the transmit signals and their estimates, over CSI
errors under the general power constraints in (5). We select the sum-MSE minimization
as an optimization criterion for the following reasons. First, an MSE-based design can
improve the performance of the system in all SNR regions unlike the zero-forcing and
matched filtering. Second, in the case of a transmission of control signals, it is better to
minimize the total MSE for improvement of the transmission reliability. Finally, it is known
that the solution of the weighted sum-MSE minimization problem maximizes the sum-rate
if weight matrices are properly chosen [30].

Let ŝk = GH
k yk represent the estimate of sk when a linear receive filter Gk ∈ CNk×dk is

used. In order to derive an expression of the average sum-MSE over CSI errors, denoted by

J = E{∆kj}K
k,j=1

{
K

∑
k=1

Esk ,wk

[
∥sk − ŝk∥2

]}
, (6)

we state the following lemma.

Lemma 1 ([27]). Let X ∈ Cm×n be a random matrix and X ∼ CNm,n(X̄, A⊗ B); then,

E
[
XHMX

]
= X̄HMX̄ + Tr(BM)AT

E
[
XMXH

]
= X̄MX̄H + Tr

(
MAT

)
B

where M ∈ Cm×m is a deterministic matrix, and A ∈ Cn×n and B ∈ Cm×m are positive semi-
definite matrices.

Using Lemma 1, the average sum-MSE is expressed as follows:

J
(
{Fk}K

k=1, {Gk}K
k=1

)
= E{∆kj}K

k,j=1

[
K

∑
k=1

Esk ,wk

[
∥sk − ŝk∥2

]]

=
K

∑
k=1

Tr

[
GH

k

(
K

∑
j=1

ĤkjFjFH
j ĤH

kj + σ2
e,kjTr(FH

j ΣT
j Fj)Ψk

)
Gk + σ2

k GH
k Gk + Idk

]
− 2Re

[
Tr(GH

k ĤkkFk)
]
. (7)

Our goal is to design a set of precoders and receive filters that minimize the average sum-
MSE under the general power constraints at each transmitter. The optimization problem
can be formulated as follows:

minimize
{Fk}K

k=1,{Gk}K
k=1

J
(
{Fk}K

k=1, {Gk}K
k=1

)
subject to Tr

(
FH

k Ql,kFk

)
≤ pl,k, ∀l, k. (8)

Since the optimization problem in (8) is not jointly convex in {Fk}K
k=1 and {Gk}K

k=1, it is
difficult to find {Fk}K

k=1 and {Gk}K
k=1 jointly. However, it is convex in {Fk}K

k=1 for a given
{Gk}K

k=1, and in {Gk}K
k=1 for a given {Fk}K

k=1 (in general, combining two convex problems
does not necessarily guarantee that the resulting problem will remain convex. In our case,
although the problem in (8) is convex in either {Fk}K

k=1 or {Gk}K
k=1, it is not jointly convex

over both {Fk}K
k=1 and {Gk}K

k=1 due to the coupling between {Fk}K
k=1 and {Gk}K

k=1).
Based on this observation, we divide the original problem (8) into two convex sub-

problems that can be solved iteratively via the alternating minimization method [5].
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3.3. Receive Filter Design

For a given {Fk}K
k=1, the optimization problem in (8) becomes an unconstrained convex

optimization problem with respect to {Gk}K
k=1, and hence the optimal receive filters can be

obtained by the optimality conditions, which are given by ∂J
∂G∗k

= 0, ∀k. From the optimality

conditions, the optimal receive filters for a given {Fk}K
k=1 can be found in the form of the

well-known Wiener filter as follows:

Gk =
(

Γk + σ2
k INk

)−1
ĤkkFk, ∀k (9)

where Γk = ∑K
j=1 ĤkjFjFH

j ĤH
kj + ∑K

j=1 σ2
e,kjTr

(
FH

j ΣT
j Fj

)
Ψk.

3.4. Precoder Design

When {Gk}K
k=1 are given, the optimization problem in (8) is a constrained convex

optimization problem with respect to {Fk}K
k=1, because the objective function is a quadratic

function and the general power constraints are convex with respect to {Fk}K
k=1. To be

specific, with some mathematical manipulations, the average sum-MSE in (7) can be
rewritten in terms of {Fk}K

k=1 as follows:

J =
K

∑
k=1

[
vec(Fk)

HAkvec(Fk)− 2Re
{

bH
k vec(Fk)

}]
+ const (10)

where:

Ak =
K

∑
j=1

Idj
⊗
(

ĤH
kjGjGH

j Ĥkj + σ2
e,jkTr(GH

j ΨT
j Gj)Σ

T
k

)
, (11)

bk = vec(GH
j Ĥkj). (12)

Similarly, the general power constraints in (5) can be equivalently written as follows:

vec(Fk)
HCl,kvec(Fk) ≤ pl,k, ∀l, k (13)

where:

Cl,k = Idk
⊗Ql,k. (14)

Using the above results and introducing the slack variables {tk}K
k=1 (corresponding to the

upper bound of the objective value), the precoder design problem can be recast into the
following second-order cone programming (SOCP):

minimize
{Fk}K

k=1,{tk}K
k=1

K

∑
k=1

tk

subject to
∥∥∥A1/2

k vec(Fk)
∥∥∥ ≤ √tk + 2Re

{
bH

k vec(Fk)
}

, ∀k,∥∥∥C1/2
l,k vec(Fk)

∥∥∥ ≤ √pl,k, ∀l, k. (15)

Since the above SOCP problem is convex, it can be solved efficiently via convex optimization
techniques such as the interior point method [31].

For a special case when only the total power constraints are imposed (i.e., Tr
(

FH
k Fk

)
≤

p1,k, ∀k), the optimal precoders can be found in a closed form to satisfy the Karush–Khun–
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Tucker (KKT) conditions [31]. Specifically, from the KKT conditions, the optimal precoders
for a given {Gk}K

k=1 are expressed as follows:

Fk =
(
Φk + λkIMk

)−1ĤH
kkGk, ∀k (16)

where Φk = ∑K
j=1 ĤH

jkGjGH
j Ĥjk + ∑K

j=1 σ2
e,jkTr

(
GH

j ΨjGj

)
ΣT

k . This coincides with the
existing result in [22] (Equation (6)). Note, that λk ≥ 0 denotes the Lagrangian multiplier
associated with the total power constraint at the kth transmitter, which is chosen to satisfy
Tr
(

FH
k Fk

)
≤ p1,k. Since the total transmit power Tr

(
FH

k Fk

)
is a monotonically decreasing

function of λk, the optimal value of λk can be found through a one-dimensional (1-D) search
such as the bisection method [7].

3.5. Proposed Algorithm

In this subsection, based on the results (9) and (16) obtained in the previous subsections,
we propose a robust transceiver design algorithm. The proposed algorithm is shown in
Algorithm 1 and summarized as follows. First, the algorithm is initialized by an appropriate
set of precoders that satisfies the power constraints. Then, {Gk}K

k=1 and {Fk}K
k=1 are

iteratively updated based on (9) and (16), respectively, until the stopping criterion is met.
It is clear that the updated linear receive filters {Gk(t + 1)} yield the minimum aver-

age sum-MSE for a given {Fk(t)}, and hence J({Fk(t)}, {Gk(t + 1)})≤ J({Fk(t)}, {Gk(t)}).
Also, since {Fk(t + 1)}minimizes the average sum-MSE for a given {Gk(t + 1)}, we have
J({Fk(t + 1)}, {Gk(t + 1)}) ≤ J({Fk(t)}, {Gk(t + 1)}). That is, the proposed algorithm
monotonically decreases the average sum-MSE that is lower-bounded by zero. Thus, ac-
cording to the monotonic convergence theorem [32], the proposed algorithm is guaranteed
to converge to a local optimum. If initial points are properly selected, the proposed algo-
rithm may converge to the global optimum. Several methods for choosing appropriate
initial points were given in [7].

Algorithm 1 Proposed Robust Transceiver Design for MIMO Interference Channel with
Generalized Power Constraints

1: Set the iteration number n = 0. Initialize Fj(0), ∀j.
2: Set n← n + 1. Update Gk(n), ∀k, as in (9).
3: Update Fj(n), ∀j by solving the SOCP problem (15).
4: Repeat Steps 2 and 3 until the algorithm converges or works for a predetermined number

of iterations.

4. Results and Discussion
4.1. Simulation Setup

In the simulations, we considered a three-user MIMO interference channel with
M1 = M2 = M3 = 4, N1 = N2 = N3 = 4, and d1 = d2 = d3 = 2. Also, the QPSK
modulation was used for each data stream. The exponential model was used for both the
transmit and receive correlation matrices, and their entries were given by [Tk]m,n = ρ

|m−n|
T ,

∀m, n ∈ {1, · · · , Mk} and [Rk]m,n = ρ
|m−n|
R , ∀m, n ∈ {1, · · · , Nk}, where |ρT | ≤ 1 and

|ρR| ≤ 1 are the correlation coefficients at the transmitter and receiver, respectively [33].
Each transmitter has the same power constraint (p1 = p2 = p3) and the noise variance at
each receiver is the same (σ2

1 = σ2
2 = σ2

3 ). We define the SNR as ∑3
k=1(pk/σ2

k ). We use the
erroneous CSI model considered in [26]. In this case, Σk = Tk, Ψk = Rk, ∀k, and the
channel estimate of each link can be expressed as Ĥkj = R1/2

k Ĥ(w)
kj T1/2

j , ∀k, j. Also, we set
Lk = 1 and Q1 = IMk , ∀k.

4.2. Performance Comparisons

The BER performance of the proposed algorithm is compared with the following
conventional schemes: a perfect CSI case, a nonrobust scheme, the robust scheme in [7]
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(denoted by Baseline scheme I), which corresponds to Tk = IMk and the Rk = INk case in
the proposed algorithm, the robust scheme in [20] (denoted by Baseline scheme II), and a con-
ventional robust least squares technique taking the channel perturbation into account [34].
The results were averaged over 10,000 independent trials. Figure 2 shows the average
BER performance for the weekly correlated MIMO interference channel (ρT = ρR = 0.2)
when σ2

e,kj = 0.05 and σ2
e,kj = 0.01, ∀k, j. The average BER performance for the strongly

correlated MIMO interference channel (ρT = ρR = 0.8) is shown in Figure 3 for when
σ2

e,kj = 0.05 and σ2
e,kj = 0.01, ∀k, j. From these figures, we can see that the proposed

algorithm provided better BER performance and significantly reduced the sensitivity to CSI
errors compared with the conventional robust schemes in the correlated MIMO interference
channel. When σ2

kj = 0.01, the proposed scheme degraded by roughly 1–3 dB compared to
the perfect CSI case.

The convergence behavior of the proposed algorithm is depicted in Figure 4 for
SNR = 5 dB and 15 dB with two different initialization methods. One is the singular
matrices initialization method and the other is the random initialization method [7]. In
both cases, we used the values σ2

e,kj = 0.01 and σ2
e,kj = 0.05, ∀k, j. From the figure, we can

observe that the proposed algorithm converged within a few iterations.
As shown in Figures 5 and 6, we set σ2

e,kj = 0.05 and σ2
e,kj = 0.01, ∀k, j, respectively,

and compared the average BER performance of the proposed and conventional schemes.
From Figures 5 and 6, it can be observed that the proposed scheme still significantly out-
performed the other schemes.

In Figure 7, the total achievable rate of the proposed scheme is compared with that of
the distributed interference alignment (IA) scheme in [4] and those of the robust schemes
in [7,20] when σ2

e,kj = 0.01, ∀k, j. From the figure, we can observe that the proposed scheme
yielded a higher total achievable rate than the schemes in [4,7,20], and it achieved almost the
same degrees of freedom as those of the IA scheme roughly for the 0 dB to 20 dB SNR range.
As the SNR increased beyond 20 dB, the performance of the proposed scheme degraded,
but it still outperformed the nonrobust IA scheme and the robust schemes in [7,20] in terms
of the total achievable rate.
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Figure 2. The average BER performance for the weakly correlated channel (ρT = ρR = 0.2).
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Figure 3. The average BER performance for the strongly correlated channel (ρT = ρR = 0.8).
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4.3. Complexity Analysis

In each iteration of Algorithm 1, the update of the receive filters {Gk}K
k=1 requires a

computational complexity ofO(∑K
k=1 N3

k ) and the update of the precoders {Fk}K
k=1 requires

a computational complexity of O((∑K
k=1 Mkdk + Lk)

3.5). Thus, the overall complexity of

the proposed scheme is estimated as O
(

Niter

(
∑K

k=1 N3
k +

(
∑K

k=1 Mkdk + Lk

)3.5
))

, where

Niter denotes the number of iterations. Similarly, the computational complexity of the
nonrobust scheme or the robust scheme in [4] is estimated as O

(
Niter ∑K

k=1(M3
k + N3

k )
)

.

4.4. Discussion

Overall, from the numerical results along with the analysis on the computational com-
plexities, it can be concluded that the proposed scheme yields a comparable performance to IA
with perfect CSI and considerably surpasses the other schemes in terms of the BER and data
rate at the cost of slightly higher computational complexity than the other schemes, thereby
rendering it highly useful in practice. The conventional schemes suffer from poor sensitivities
to the correlated CSI errors, and thus they should be of limited applicability in practice.

5. Conclusions

In this paper, we have investigated the robust transceiver design for the correlated
MIMO interference channel in the presence of CSI errors, considering the general transmit
power constraints. We have proposed an alternating optimization-based iterative algorithm
minimizing the average sum-MSE with respect to the CSI errors, and it has been shown
that the proposed algorithm is guaranteed to converge to a local optimum. Through the
simulation results, the proposed algorithm has been demonstrated to better cope with
the CSI errors compared to the conventional robust schemes in the correlated MIMO
interference channel.

As an interesting and important focus of future research, it is deserved to study the
robust transceiver design in a more general scenario, e.g., in multi-cell or multi-group
multicast scenarios.
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Abbreviations
List of mathematical symbols used in this paper:

Symbol Definition
K Number of transmitter–receiver pairs
Mk Number of antennas at the kth transmitter
Nk Number of antennas at the kth receiver
xk Transmit signal of the kth transmitter
Fk Precoding matrix of the kth transmitter
sk Transmit symbol (or data) of the kth transmitter
dk Number of data streams of the kth transmitter
yk Received signal at the kth receiver
wk Received noise at the kth receiver
Hkj MIMO channel matrix between the jth transmitter and the kth receiver
Tk Transmit correlation matrix at the kth transmitter
Rk Receive correlation matrix at the kth transmitter
Ĥkj Estimate of Hkj
∆kj Error between Hkj and Ĥkj
Σj Column covariance matrix of ∆kj
Ψk Row covariance matrix of ∆kj
Ql,k Weighting matrix for the lth power constraint at the kth transmitter
pl,k Power budget for the lth power constraint at the kth transmitter
Gk Receiver filter at the kth receiver
ŝk Estimate of sk at the kth receiver
J(·) Average sum-MSE
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