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Abstract: The local dynamics of a system of oscillators with a large number of elements and with
diffusive- and advective-type couplings containing a large delay are studied. Critical cases in the
problem of the stability of the zero equilibrium state are singled out, and it is shown that all of
them have infinite dimensions. Applying special methods of infinite normalization, we construct
quasinormal forms, namely, nonlinear boundary value problems of the parabolic type, whose nonlocal
dynamics determine the behavior of the solutions of the initial system in a small neighborhood of
the equilibrium state. These quasinormal forms contain either two or three spatial variables, which
emphasizes the complexity of the dynamical properties of the original problem.
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1. Introduction

We consider the dynamics of chains with diffusive and advective couplings containing
a large delay. The second-order equation with cubic nonlinearity,

ü + au̇ + u + f (u, u̇) = 0, (1)

f (u, u̇) = b1u3 + b2u2u̇ + b3uu̇2 + b4u̇3, (2)

serves as a basic example.
A chain of N equations of the form in (1) has the form

üj + au̇j + uj + f (uj, u̇j) = d
N

∑
k=1

aj−kuk(t − T), (3)

where T > 0 is the delay time, ak denotes the coefficients of the couplings, and uk(t) denotes
N-periodic functions of the index k:

uk±N ≡ uk.

The dynamics of chains of this kind have been studied by many authors, such as [1–3],
where chains without a delay were considered, and [4–12], where chains with a delay were
studied. The main assumption is that the number N of oscillators is sufficiently large; i.e.,
the value ε = 2πN−1 is sufficiently small:

0 < ε ≪ 1. (4)

Functions uk(t) are conveniently associated with the values of a function of two variables,
uk(t) = u(t, xk), where xk denotes points with angular coordinates uniformly distributed
on some circle: xk = 2πkN−1. Condition (4) gives reason to transition from the system in (3)
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to the problem of studying functions of two variables, u(t, x), with a continuous spatial
variable x ∈ (−∞, ∞) and with the periodicity condition

u(t, x + 2π) ≡ u(t, x), (5)

for which
∂2u
∂t2 + a

∂u
∂t

+ u + f
(

u,
∂u
∂t

)
= d

∞∫
−∞

Φ(s, ε)u(t − T, x + s)ds. (6)

The values of the function Φ(s, ε) are determined by coupling coefficients ak. Let us describe
the classes of functions Φ(s, ε) that will be studied in this paper. We arbitrarily set σ > 0
and introduce a Gaussian function:

Fε(s) =
1

σε
√

2π
exp

(
− (s − ε)2

2ε2σ2

)
.

Let Φ0(s, ε) denote the function

Φ0(s, ε) = Fε(s)− 2F0(s) + F−ε(s). (7)

Due to the fact that, for every continuous function u(x),

lim
σ→0

∞∫
−∞

Φ0(s, ε)u(x + s)ds = u(x + ε)− 2u(x) + u(x − ε), (8)

it is natural to call (7) a diffusion-type coupling, since the right part of this equality resem-
bles the expression for the standard difference approximation of the diffusion operator
∂2u/∂x2. Such couplings were used, for example, in [8,12–14]. Let us also note the work
in [15], where chains of systems of laser equations were considered.

Let us introduce two more functions:

Φ1(s, ε) = Fε(s)− F−ε(s) (9)

and
Φ2(s, ε) = Fε(s)− F0(s). (10)

For each fixed continuous function u(x) bounded on the interval (−∞, ∞), we have the
following equations:

lim
σ→0

∞∫
−∞

Φ1(s, ε)u(x + s)ds = u(x + ε)− u(x − ε), (11)

lim
σ→0

∞∫
−∞

Φ2(s, ε)u(x + s)ds = u(x + ε)− u(x). (12)

The right-hand sides of (11) and (12) usually arise, for example, when applying the standard
difference approximation of the advection (transfer) operator ∂u/∂x. Therefore, it is natural
to call the right-hand side in (6) an advection-type coupling.

Another assumption that paves the way for the application of asymptotic methods is
that the value of T is sufficiently large: for some c > 0, we have

T = cε−1. (13)
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In Equation (6), we perform time normalization t → Tt. As a result, we arrive at the
singularly perturbed equation

ε2 ∂2u
∂t2 + εa

∂u
∂t

+ u + f
(

u, ε
∂u
∂t

)
= d

∞∫
−∞

Φ(s, ε)u(t − c, x + s)ds. (14)

Note that the degenerate at ε = 0 in Equation (14) does not give information about the
behavior of solutions. We will use classical asymptotic methods based on the application of
methods of many scales: methods characteristic of the theory of averaging (see, for exam-
ple, [16]) and methods of singular perturbations [17–19]. In order to study the dynamical
properties of solutions under conditions (4) and (13), we will use the special asymptotic
methods of local analysis developed in [20,21].

Let us study the behavior of all solutions of the boundary value problem (14) as t → ∞
with initial functions sufficiently small in the norm C1

[−c,0] × C[0,2π] and 2π-periodic in the
spatial variable x.

In the study of the local—in the neighborhood of the zero equilibrium state—behavior
of solutions, the linearized boundary value problem

ε2 ∂2u
∂t2 + εa

∂u
∂t

+ u = d
∞∫

−∞

Φ(s, ε)u(t − c, x + s)ds, (15)

u(t, x + 2π) ≡ u(t, x). (16)

plays an important role. Its characteristic equation, which we obtain by substituting the
Euler solutions u = exp(ikx + λt) into (15), has the form

ε2λ2 + εaλ + 1 = dγ(z) exp(−cλ), (17)

where, in the case of diffusion coupling,

γ(z) = −4 sin2 z
2
· exp

(
− 1

2
σ2z2

)
, z = εk, k = 0,±1,±2, . . . .

In advective coupling (9),
γ(z) = 2i sin z, (18)

and at the connection of the form in (10),

γ(z) = exp(iz)− 1. (19)

In the case where all roots of Equation (17), for all k = 0,±1,±2, . . ., have negative real
parts that move away from zero as ε → 0, the solutions of the boundary value prob-
lem (15), (16) are asymptotically stable, and the solutions of (14), (16) with sufficiently
small and ε-independent (by the norm C1

[−c,0] × C[0,2π]) initial conditions tend to zero as
t → ∞. If Equation (17) has a root with a positive real part that moves away from zero
as ε → 0, then the solutions of (15), (16) are unstable, and the dynamics problem (14), (16)
becomes nonlocal.

Here, we will consider the critical case where there are no roots with a positive real
part that moves away from zero in (17), but there are roots that tend to the imaginary axis as
ε → 0. Note that, in the case of the finite dimensionality of the critical case, the methodology
for the study of local dynamics is well known. It relies on the method of integral manifolds
and the method of normal forms (see, e.g., [22,23]). A characteristic feature of all of the
problems considered below is the fact that they realize infinite-dimensional critical cases
when infinitely many roots of the characteristic equation tend to the imaginary axis as
ε → 0. Therefore, the methods of integral manifolds and normal forms are not directly
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applicable. The approach developed in [20,21], which is related to the construction of
infinite-dimensional quasinormal forms, is essentially used here.

Let us briefly look at the research design used below. First, a linearized boundary
value problem is considered, and its characteristic equation is studied. We determine
those parameters at which a critical case occurs in the problem of the stability of solutions.
Then, we obtain the asymptotics of those roots of the characteristic equation that tend
to the imaginary axis as the small parameter tends to zero. Since there are infinitely
many such roots, there are also infinitely many solutions corresponding to the linearized
boundary value problem. The set of such solutions can be written in a special form using
another spatial variable. Therefore, it is possible to determine the structure of the main
approximation of solutions to a nonlinear boundary value problem. Let us denote it
conditionally by εU1.

The solutions of the nonlinear boundary value problem are then found in the form of a
formal series in powers of ε, the coefficients of which are periodic in t. Since, for simplicity,
there is no quadratic nonlinearity in the equation, then, as a consequence, there are no
terms of order ε2 in the formal asymptotic series. Substituting the formal series into the
original equation, we obtain a special linear inhomogeneous boundary value problem for
the elements of this series. Using the solvability conditions for the resulting equation, we
arrive at an equation for the unknown slowly varying amplitudes included in U1. These
equations are called quasinormal forms. They describe the local behavior of the original
boundary value problem.

Note that the form of the notation in (7) is convenient from a purely technical point of
view. Below, we will use the equality

∞∫
−∞

F±(s, ε) exp(iks)ds = exp(±ikε) exp
(
− σ2ε2k2

2

)
.

The σ parameter defines the set of chain elements that significantly affect each specific
element. In addition, it also sets the strength of the corresponding influence: the farther the
elements are from each other, the weaker this influence is.

At σ = 0, an additional critical case arises; therefore, this work examines the dynamics
of the system under the condition σ ≪ 1. As it turns out, in these cases, the quasinormal
form acquires an additional spatial variable. It follows that, for σ → 0, there is a tendency
for the dynamic properties of solutions to become more complex.

The corresponding results are given in Sections 2.3 and 3.5.
Chains of this type without a delay were studied in [14]. The presence of a delay, on the

one hand, allows one to obtain explicitly formal expressions for critical cases. On the other
hand, the dimensionality of critical cases increases, and the corresponding quasinormal
forms become even more complicated.

This paper consists of two parts. The first part studies diffusion-type couplings,
whereas the second part deals with advection-type couplings.

2. Diffusion-Type Coupling

Linear analysis has a central role in the study of the boundary value problem (14), (16).

2.1. Linear Analysis

Let us consider the roots of the characteristic Equation (17). Recall that critical cases in
the stability problem (15), (16) are realized when Equation (17) has a root with a zero or
sufficiently close to zero real part for some k. In this connection, for some real value of ω,
let us set λ = iωε−1 in (17). As a result, we obtain the following:

1 − ω2 + iaω = dγ(z) exp
(
− iωε−1c

)
, z = εk, k = 0,±1,±2, . . . . (20)
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Let p(ω) denote the modulus of the left part of (20):

p(ω) =
[
(1 − ω2)2 + a2ω2]1/2,

and let
p0 = min

−∞<ω<∞
p(ω) = p(ω0).

Here,

ω0 =


0, if a2 ≥ 2,(

1 − a2

2

)1/2

, if a2 < 2,
p0 =

1, if a2 ≥ 2,
a2

2
(4 − a2)1/2, if a2 < 2.

Note that p0 = 0 for a = 0.
In this section, we will focus on the first case, where

σ > 0. (21)

The case
σ = εσ1. (22)

will be discussed in Section 2.3.
Let condition (21) be satisfied. For each fixed z and under the condition

d|γ(z)| < p0

Equation (20) has no real roots. Below, we assume that

γ0 = max
−∞<z<∞

γ(z) = γ(z0) (z0 ≥ 0). (23)

The value of z0 is defined in a unique way and is found simply. From the condition
γ′(z0) = 0, we find that z0 is the first positive root of the equation

z
2
= 2(σ2z)−1.

Given d|γ0| < p0 and sufficiently small ε, all roots of Equation (17) have negative
real parts that move away from zero as ε → 0. Given d|γ0| > p0, we find z0 such that
Equation (17) has a root with a positive real part that moves away from zero as ε → 0.

Let us restrict ourselves to the case where the parameter d is positive. The value of
the parameter d0, which distinguishes the critical case in the stability problem (15), (16), is
determined by the equality

d0 = p0|γ0|−1.

In this connection, we assume below that, for an arbitrary fixed value d1 for the parameter
d, we have

d = d0 + ε2d1. (24)

Under this condition, let us consider the asymptotics of all those roots of the character-
istic Equation (17) whose real parts tend to zero as ε → 0. We note at once that there are
infinitely many such roots, so the critical case has infinite dimensionality.

Let us introduce some more notations. Let Ω0 = Ω0(ω0) be a real value for which

1 − ω2
0 + iω = p0 exp(iΩ0).

We let θω = θω(ε) ∈ [0, 2π) denote an expression that complements the value ω0(cε)−1 to
an integer multiple of 2π. When ω0 = 0, then θω = 0. We will similarly let θz = θz(ε) ∈ [0, 1)
denote an expression that complements the value z0ε−1 to an integer. Given z0 = 0, we
consider that θz = 0.
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Let us formulate two simple statements about the asymptotics of the roots of (17).

Lemma 1. Let
a2 > 2. (25)

Then, d0 = p0 = 1, ω0 = 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of (17), the real parts
of which tend to zero as ε → 0, the asymptotic equations

λkn(ε) = πic−1(2n + 1) + ελ1kn + ε2λ2kn + . . . , (26)

are satisfied, where
λ1kn = −c−2iaπ(2n + 1),

λ2kn = c−3
(

1 − 1
2

a2
)
(π(2n + 1))2 − ic−3a2π(2n + 1) + c−1d1γ0 p−1

0 +

+
1
2

c−1γ′′
0 (z0)(θz + k)2(p0γ0)

−1.

Lemma 2. Let
0 < a2 < 2. (27)

Then, ω0 > 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of (17) whose real parts tend to zero
as ε → 0, the asymptotic equations

λkn(ε) = i
ω0

ε
+ λ0n + ελ1kn + ε2λ2kn + . . . (28)

hold, where
λ0n = ic−1[π(2n + 1) + θω − Ω0

]
, κ = p0 exp(iΩ0),

λ1kn = ic−1κ−1(2ω0 − ia)λ0n, (29)

λ2kn =c−1
[(

κ−1 − 1
2
(−2ω0 + ia)2κ−2

)
λ2

0n + d1 p−1
0 −

+
1
2

γ′′(z0)(θz + k)2(p0γ0)
−1 − (cκ)−12iω0κ−1(2ω0 − ia)λ0n − iκ−1aλ0n

]
.

Note that the following conditions hold:

ℜ
(
κ−1 − 1

2
(−2ω0 + ia)2κ−2

)
< 0, ℜλ1kn = 0. (30)

The first condition in (30) is obvious. Regarding the second equality in (30), it suffices to
prove that the expression

(2ω0 − ia)κ−1

is purely imaginary. In this case, P(ω) = p(ω) exp(iΩ(ω)) and P′(ω) =
(

p′(ω)+ iΩ′(ω)p(ω)
)

exp
(
iΩ(ω)

)
; hence,

P′(ω) = iΩ′(ω0)p0 exp(iΩ0) = −2ω0 + ia.

Therefore, we conclude that (−2ω0 + ia)κ−1 = iΩ′(ω0) = 2ia−1.
The roots λkn(ε) of the characteristic Equation (17) allow us to determine solutions to

the linear boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
i(z0ε−1 + θz + k)x + λkn(ε)t

)
,
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and hence, the formal set of solutions is

u(t, x, ε) =
∞

∑
k,n=−∞

(
ξknukn(t, x, ε) + ξ̄knūkn(t, x, ε)

)
, (31)

where ξkn denotes arbitrary complex constants.

Remark 1. Together with the roots λkn(ε) of Equation (17), there are roots λkn(ε), which corre-
spond to the solutions of the boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

Note that for the parameters z and −z, the roots in (17) are the same, since the dependence of the
right-hand side of (17) on z is even. This means that for the modes of −(z0ε−1 + θz + k), the roots
are the same: λkn(ε). Therefore, the problem (15), (16) has the solutions

ũkn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

Under the conditions of Lemma 1, we have the following:

ũkn(t, x, ε) = ukn(t, x, ε),

which is not the case under the conditions of Lemma 2.

2.2. Nonlinear Analysis

We separately consider the cases where a2 > 2 and where 0 < a2 < 2.

2.2.1. Case a2 > 2

In this case, we have the equality ω0 = 0, Ω0 = 0, p0 = 1. The critical case in the
stability problem is defined by the equality

d0|γ0| = 1. (32)

We will base the following on the representation in (31). Let us write it in a more convenient
form:

u(t, x, ε) = E(x)
∞

∑
k,n=−∞

ξkn exp
(
ikx + ic−1π(2n + 1)(1 − εc−1a)t + (λ2kn + O(ε))τ

)
=

= E(x)
∞

∑
k,n=−∞

ξkn(τ) exp
(
ikx + iπ(2n + 1)x1

)
= E(x)ξ(τ, x, x1), (33)

where τ = ε2t is the “slow” time, E(x) = exp
(
i(z0ε−1 + θz)x

)
, and ξkn(τ) = ξkn exp

(
(λ2kn +

O(ε))τ
)

denotes the coefficients of the expansion ξ(τ, x, x1) into a Fourier series by the
2π-periodic argument x and 1-antiperiodic argument x1 = c−1(1 − εc−1a)t.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u = ε
(
E(x)ξ(τ, x, x1) + cc

)
+ ε3u3(τ, x, x1) + . . . . (34)

Here and below, cc denotes the term that is complex conjugate to the previous one. The un-
known complex function ξ(τ, x, x1) is to be defined. Let us substitute (34) into (14) and
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equate the coefficients of the various powers of ε. Then, at the first degree of ε, we obtain
the identity. Equating the coefficients of ε3, we arrive at the equation

c
∂ξ

∂τ
=(2c2)−1(a2 − 2)

∂2ξ

∂x2
1
+ (2γ0)

−1γ′′(z0)
∂2ξ

∂x2 − iγ−1
0 γ′′(z0)θz

∂ξ

∂x
−

− ac−2 ∂ξ

∂x1
+

(
(2γ0)

−1γ′′(z0)θ
2
z − γ−1

0 d1
)
ξ + 3b1ξ|ξ|2 (35)

with the boundary conditions

−ξ(τ, x, x1 + 1) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (36)

Here, we take into account the relations

dξ

dt
=ε2 ∂ξ

∂τ
+

∂ξ

∂x1
(1 − εac−1),

ξt−c =ξ(τ − ε2c, x, x1 − c(1 − εac−1)) =

=ξ(τ, x, x1)− ε2c
∂ξ

∂τ
+ εa

∂ξ

∂x1
+

1
2

ε2a2 ∂2ξ

∂x2
1
+ o(ε2).

Let us introduce the following notation. We arbitrarily fix the value θ0z ∈ [0, 1) and let
εn = εn(θ0z) denote a sequence such that εn → 0, for n → ∞, and θz(εn, θ0z) = θ0z. The
above constructions justify the following result.

Theorem 1. Let a2 > 2 and conditions (24) and (32) be satisfied. Let θ0z ∈ [0, 1) be arbitrarily
fixed, and let the boundary value problem (35), (36) for θz = θ0z have a bounded solution ξ(τ, x, x1)
for τ → ∞, x ∈ [0, 2π], x1 ∈ [0, 1]. Then, the function u(t, x, ε) = ε

(
E(x)ξ(τ, x, x1) + cc

)
+

ε3u3(τ, x, x1) satisfies the boundary value problem (14), (16) up to o(ε3).

Thus, the parabolic boundary value problem (35), (36) is a quasinormal form for the
boundary value problem (14), (16).

2.2.2. Case 0 < a2 < 2

The dynamical properties in this case are significantly more complicated. The principal
parts of the roots λkn(ε) of the characteristic equation are close to iω0ε−1: i.e., they are
asymptotically large. Therefore, it is natural to expect that the oscillations in the boundary
value problem (14), (16) will be rapid.

Note that, in this case,

ω0 =

(
1 − a2

2

)1/2

, p0 =
a2

2
(4 − a2)1/2, d0 = p0|γ0|−1. (37)

The roots of λkn(ε) correspond to the Euler solutions of the linear boundary value prob-
lem (15), (16):

u±
kn(t, x, ε) = exp

(
± i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

It is more convenient to write these functions in the form

u±
kn(t, x, ε) = E±(t, x) exp

(
ikx + iπ(2n + 1)x1 + (λ2kn + O(ε))τ

)
,

where

E±(t, x) = exp
(
± i(c−1ω0ε−1 + c−1(θω − Ω0) + εc−1κ−1(2ω0 − ia)·

· ic−1(θω − Ω0))t + i(z0ε−1 + θz)x
)
,
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R = κ−1(2ω0 − ia) · ic−1(θω − Ω0) = 2(ca)−1, ℑR = 0,

τ = ε2t, x1 = c−1(1 − εc−1R)t. Hence, we find that

∞

∑
k,n=−∞

ξ±knu±
kn(t, x, ε) = E±(t, x)

∞

∑
k,n=−∞

ξ±kn(τ) exp
(
ikx + iπ(2n + 1)x1

)
=

= E±(t, x)ξ±(τ, x, x1).

Here, ξ±kn denotes arbitrary complex constants, and ξ±kn(τ) = ξ±kn exp
(
(λ2kn + O(ε))τ

)
.

The functions ξ±kn(τ) are the Fourier coefficients of the function ξ±(τ, x, x1), which is 2π-
periodic with respect to x and 1-antiperiodic with respect to x1.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u(t, x) = u+(t, x) + u−(t, x), (38)

u±(t, x) = ε
(
ξ±(τ, x, x1)E±(t, x) + cc

)
+ ε3u3(t, τ, x, x1) + . . . ,

where the dependence on t, x and x1 is periodic.
Let us substitute (38) into (14) and equate the coefficients of the same powers ε. In the

first step, we obtain the identity, and for ε3, we obtain an equation for u3. From the
condition in the specified class of functions, we arrive at the relation. Let us substitute (38)
into (14) and equate the coefficients of the same powers ε. In the first step, we obtain the
identity, while, by equating the coefficients of ε3, we obtain an equation for u3. From its
solvability condition in the specified class of functions, we arrive at the relation

∂ξ±

∂τ
= A1

∂2ξ±

∂x2
1

+ A2
∂ξ±

∂x1
+ A3ξ± + B1

∂2ξ±

∂x2 + B2
∂ξ±

∂x
+ c−1βξ±(|ξ±|2 + 2|ξ∓|2), (39)

in which

A1 =− c−3
[
κ−1 − 1

2
(ia − 2ω0)

2κ−2
]

,

A2 =c−3
[
− 2(κ−1 − 1

2
(ia − 2ω0)

2κ−2(θω − Ω0)) + cκ−22ω0(2ω0 − ia)+

+ c2κ−1a(θω − Ω0)

]
,

A3 =c−3
[

1
2
(ia − 2ω0)κ2(θω − Ω0)

2 −κ−1
]
+ d1c−1 p−1

0 +

+
1
2

γ′′(z0)c−1θ2
z (p0γ0)

−1 − i(cκ)−22iω0(2ω0 − ia)·

· (θω − Ω0)− i(cκ)−1a(θω − Ω0),

B1 =
1
2

c−1γ′′(z0)(p0γ0)
−1,

B2 =c−1γ′′(z0)θz(p0γ0)
−1,

β =b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that the function ξ(τ, x, x1) satisfies the boundary conditions

−ξ(τ, x, x1 + 1) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (40)

In order to formulate the final result, we introduce some notations. We arbitrarily fix
θ0ω ∈ [0, 2π) and let the sequence εs = εs(θ0ω) be defined by the condition θω(εs(θ0ω)) =
θ0ω (s = 1, 2, . . .). Let Γ(θ0ω) denote all limit points of the sequence θz(εs(θ0ω)) from the
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interval [0, 1]. Let θ0z denote the limit element of Γ(θ0ω) and let the subsequence εsΓ of the
sequence εs be such that

lim
Γ→∞

θz(εsΓ) = θ0z.

Note that it is possible that the set Γ(θ0ω) coincides with the segment [0, 1], and it is possible
that this set consists of a single element.

Theorem 2. Let 0 < a2 < 2 and d0 = p0|γ0|−1. We arbitrarily fix θ0ω ∈ [0, 2π) and let
θ0z ∈ Γ(θ0ω). Let ξ±(τ, x, x1) be the solution of the boundary value problem (39), (40) that is
bounded for τ → ∞, x ∈ [0, 2π], x1 ∈ [0, 1]. Then, the function

u(t, x, ε) = ε
(
ξ+(τ, x, x1)E+(t, x) + cc + ξ−(τ, x, x1)E−(t, x) + cc

)
+ ε3u3(t, τ, x, x1)

satisfies the boundary value problem (14), (16) up to o(ε3
sΓ
) for τ = ε2t, x1 = (1 − εc−1R)t, for

the sequence ε = εsΓ .

Thus, the boundary value problem (39), (40) is a quasinormal form for the original
boundary value problem (14), (16) in this critical case.

2.3. Small Values of Parameter σ

Below, we will consider important questions about the dynamical properties of the
boundary value problem (14), (16) for small values of σ. We will assume that for some fixed
value of σ1, equality (22) is satisfied.

The interest in this case is due to the fact that, first, as is shown above for small σ,
the corresponding integral expressions in the boundary value problem (14), (16) are close
to being written in the form of a finite difference on the spatial variable.

Second, it follows from (17) that the value of exp
(
− σ2z2/2

)
on the right-hand side

of (17) is small, and hence, the critical cases are determined by the periodic function γ(z).
Thus, the critical values of z0 in (23) are obviously not unique. There are obviously infinitely
many such values. This suggests that the quasinormal form becomes significantly more
complex, and the dynamical properties more interesting and diverse.

Under condition (22) for the function γ(z), we have the equality

γ(z) = −4 sin2
(

z
2

)
· exp

(
− 1

2
ε2σ2

1 z2
)

.

Let
γ0(z) = −4 sin2 z

2
.

Then,

γ(z) = γ0(z)
(

1 − 1
2

ε2σ2
1 z2 + O(ε4)

)
.

The largest value |γ0(z)| = 4, and for all values zm at which this value is reached, we have
the equations

zm = π(2m + 1), m = 0,±1,±2, . . . .

Recall that ε = 2πN−1. Below, we will assume that the value N is even, so all values of
π(2m + 1)ε−1 are integers for all integers m.

Consider the set of integers π(2m + 1)ε−1 + k, k, m = 0,±1,±2, . . .. Let ukmn(t, x)
denote the Euler solutions of the linear problem (15), (16):

ukmn(t, x) = exp
[
i
(
π(2m + 1)ε−1 + k

)
x + λkmn(ε)t

]
.

Here, λkmn(ε) represents the roots of the characteristic equation (17) whose real parts tend
to zero as ε → 0.
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2.3.1. Building A Quasinormal Form For A2 > 2

Recall that, given a2 > 2, we have ω0 = Ω0 = 0, p0 = 1, |γ0| = 4, and d0 = 1/4. Let
us first consider the asymptotics of λkmn(ε).

Lemma 3. Let conditions (22), (24) and (25) be satisfied. Then, there are asymptotic equalities:

λkmn(ε) = c−1iπ(2n + 1) + ελ1kmn + ε2λ2kmn + . . . ,

where

λ1kmn =iac−2π(2n + 1),

λ2kmn =
1
2
(2 − a2)c−3(π(2n + 1)

)2 − ia2c−3π(2n + 1) + 4d1 −
1
2

σ2
1
(
π(2m + 1)

)2−

− 1
4
(θz + k)2.

The set of Euler solutions of the linear boundary value problem (15), (16)

u(t, x, ε) =
∞

∑
k,m,n=−∞

ξkmn exp
(
i(π(2m + 1)ε−1 + k)x + λkmn(ε)t

)
can be written in the form

u(t, x, ε) =
∞

∑
k,m,n=−∞

ξkmn(τ) exp
(
ikx + iπ(2m + 1)y + iπ(2n + 1)x1

)
=

= ξ(τ, x, y, x1). (41)

Here,

ξkmn(τ) = ξkmn exp
(
λ2kmn + O(ε)τ

)
, y = xε−1, x1 = (1 + εac−1)t.

Based on the representation in (41), we will look for solutions of the nonlinear boundary
value problem (14), (16) of the form

u(t, x) = εξ(τ, x, y, x1) + ε3u3(τ, x, y, x1) + . . . . (42)

After substituting (42) into (14) and following the standard steps, we arrive at the boundary
value problem for determining the unknown function ξ(τ, x, y, x1):

∂ξ

∂τ
=

a2 − 2
2c

· ∂2ξ

∂x2
1
− a2

c2 · ∂ξ

∂x1
+

σ1

2c
· ∂2ξ

∂y2 +
1
4c

· ∂2ξ

∂x2 − iθz

2c
· ∂ξ

∂x
+

+

(
4d1

c
− 1

4c
θ2

z

)
ξ +

b1

c
ξ3, (43)

−ξ(τ, x, y + 1, x1) ≡ ξ(τ, x, y, x1) ≡ ξ(τ, x + 2π, y, x1), (44)

−ξ(τ, x, y, x1 + 1) ≡ ξ(τ, x, y, x1). (45)

As a result of the above constructions, we come to the justification of the following result.

Theorem 3. Let conditions (22), (24) and (25) be satisfied. Let θz0 ∈ [0, 1) be arbitrarily fixed,
and let ξ(τ, x, y, x1) be a solution of the boundary value problem (43)–(45) bounded for τ → ∞,
x ∈ [0, 2π], y ∈ [0, 1], x1 ∈ [0, 1]. Then, for the sequence εs(θz(εs(θz0) = θz0), the function

u(t, x) = εξ(τ, x, y, x1) + ε3u3(τ, x, y, x1)

satisfies the boundary value problem of (14), (16) up to o(ε3
s) for θz = θz0.
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2.3.2. Building Quasinormal Forms for 0 < A2 < 2

Recall that, in this case, Equation (37) holds.
Let us consider the asymptotics of such roots of the characteristic Equation (17) whose

real parts tend to zero as ε → 0.
In the following, θω denotes such a quantity that complements the expression ω0ε−1

to a value that is an odd multiple of πc−1.

Lemma 4. Let 0 < a2 < 2 and let conditions (22) and (24) be satisfied. Then, for λkmn(ε),
k, m, n = 0,±1,±2, . . . , the asymptotic equalities take place:

λkmn(ε) = i
(
ωε−1 + θω − c−1Ω0 + c−1π(2n + 1)

)
+ ελ1kmn + ε2λ2kmn + . . . ,

λ1kmn = −2i(ac)−1K, K = θω − c−1Ω0 + c−1π(2n + 1),

λ2kmn = −D1K2 + D2K − 1
2

σ2
1
(
π(2m + 1)

)2
+ d1d−1

0 − K2,

D1 = 2a−2c−3 − (1 + iaω0 − ω2
0)

−1c−3,

D2 = 2i(2iω0 + a)
(

p0 exp(iΩ0)ca
)−1.

Note that ℜD1 > 0.
The set of Euler solutions of the linear boundary value problem (15), (16) can then be

represented as

u(t, x) =
∞

∑
k,m,n=−∞

ξkmn exp
(
i(π(2m + 1)ε−1 + k)x + λkmn(ε)t

)
=

= E(t)
∞

∑
k,m,n=−∞

ξkmn(τ) exp
(
iπ(2m + 1)y + ikx + iπ(2n + 1)x1

)
=

= E(t)ξ(τ, x, y, x1). (46)

Here, τ = ε2t, E(t) = exp
[
i(ω0ε−1 + (θω − c−1Ω0)(1 − 2ε(ca)−1))t

]
, ξkmn(τ) = ξkmn ·

exp
(
(λ2kmn + O(ε))τ

)
, y = xε−1, x1 = c−1(1 − 2ε(ca)−1)t. Based on the representation

in (46), we will look for solutions of the nonlinear boundary value problem (14), (16) of
the form

u(t, x) = ε
(
ξ(τ, x, y, x1)E(t) + cc

)
+ ε3u3(t, τ, x, y, x1) + . . . , (47)

where the dependence on x, y, x1 and t is periodic.
By substituting (47) into (14) and performing some straightforward calculations, we

arrive at an equation for u3. From its solvability condition in the specified class of functions,
we obtain

∂ξ

∂τ
=D1

∂2ξ

∂x2
1
+ i(2D1 + D2)

∂ξ

∂x1
(θω − c−1Ω0) +

1
2c

σ2
1

∂2ξ

∂y2 +

+
1
c

∂2ξ

∂x2 +
(
− D1(θω − Ω0)

2 + D2(θω − Ω0)
)
ξ + c−1βξ|ξ|2. (48)

For this equation, the boundary conditions are satisfied:

−ξ(τ, x, y, x1 + 1) ≡ ξ(τ, x, y, x1) ≡ ξ(τ, x + 2π, y, x1), (49)

−ξ(τ, x, y + 1, x1) ≡ ξ(τ, x, y, x1). (50)

Let us summarize.
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Theorem 4. Let conditions (22), (24) and (27) be satisfied. We arbitrarily fix θ0ω ∈ [0, c−1π) and
let ξ(τ, x, y, x1) be a solution of the boundary value problem (48)–(50) for θω = θ0ω bounded for
τ → ∞, x ∈ [0, 2π], y ∈ [0, 1], x1 ∈ [0, 1]. Then, the function

u(t, x) = ε
(
ξ(τ, x, y, x1)E(t) + cc

)
+ ε3u3(t, τ, x, y, x1)

satisfies the boundary value problem (14), (16) up to o(ε3) for τ = ε2t, x1 = c−1(1 − 2ε(ca)−1)t
and ε = εs(θ0ω).

Thus, in this section, we construct quasinormal forms, namely, boundary value prob-
lems of the parabolic type, (43)–(45) and (48)–(50), with three spatial variables. They play
the role of the normal forms of the original boundary value problem (14), (16) in the above
critical cases.

3. Advective-Type Coupling
3.1. The Results of Linear Analysis in the Case Φ(s) = Φ1(s)

At each fixed z and under the condition

d|γ(z)| < p0

Equation (20) has no real roots. Let us assume that

γ0 = max
−∞<z<∞

|γ(z)| = |γ(z0)| (z0 ≥ 0). (51)

The value of z0 is defined in a unique way and is found simply. From the condition
|γ(z0)|′ = 0, we find that z0 is the first positive root of equation

z = 2(σ2z)−1. (52)

Given d|γ0| < p0 and sufficiently small ε, all roots of Equation (17) have negative
real parts that move away from zero as ε → 0. Given d|γ0| > p0, we find a z0 such that
Equation (17) has a root with a positive real part that moves away from zero as ε → 0.

Let us restrict ourselves to the case where the parameter d is positive. The value of
the parameter d0, which distinguishes the critical case in the stability problem (15), (16), is
determined by the equality

d0 = p0|γ0|−1.

In this connection, we assume below that, for an arbitrary fixed value d1 for the parameter
d, we have

d = d0 + ε2d1. (53)

Under this condition, let us consider the asymptotics of all those roots of the character-
istic Equation (17) whose real parts tend to zero as ε → 0. There are infinitely many such
roots, so the critical case has infinite dimensionality.

Let us introduce some more notations. Let Ω0 = Ω0(ω0) be a real value for which

1 − ω2
0 + iω = p0 exp(iΩ0).

As above, we let θω = θω(ε) ∈ [0, 2π) denote an expression that complements the value of
cω0ε−1 to an integer multiple of 2π. Given ω0 = 0, we consider θω = 0. We similarly let
θz = θz(ε) ∈ [0, 1) denote an expression that complements the value of z0ε−1 to an integer.
Given z0 = 0, we consider that θz = 0.

We shall now formulate a statement about the asymptotics of the roots of (17) in the
case of (18).

Lemma 5. Let γ(z) = γ1(z) and
a2 > 2. (54)
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Then, d0γ0 = p0 = 1, ω0 = 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17),
the real parts of which tend to zero as ε → 0, the asymptotic equations are satisfied:

λkn(ε) = πic−1
(

2n +
1
2

)
+ ελ1kn + ε2λ2kn + . . . , (55)

where

λ1kn = −c−2iaπ

(
2n +

1
2

)
,

λ2kn = c−3
(

1 − 1
2

a2
)(

π

(
2n +

1
2

))2

− ic−3a2π

(
2n +

1
2

)
+ c−1d1γ0 p−1

0 +

+
1
2

c−1γ′′
0 (z0)(θz + k)2(p0γ0)

−1.

Lemma 6. Let γ(z) = γ1(z) and
0 < a2 < 2. (56)

Then, ω0 > 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17) whose real parts
tend to zero as ε → 0, the asymptotic equations are satisfied:

λkn(ε) = iω0ε−1 + λ0n + ελ1kn + ε2λ2kn + . . . , (57)

where

λ0n = ic−1
[

π

(
2n +

1
2

)
+ θω − Ω0

]
, κ = p0 exp(iΩ0),

λ1kn = ic−1κ−1(2ω0 − ia)λ0n, (58)

λ2kn =c−1
[(

κ−1 − 1
2
(−2ω0 + ia)2κ−2

)
λ2

0n + d1 p−1
0 −

+
1
2

γ′′(z0)(θz + k)2(p0γ0)
−1 − (cκ)−12iω0κ−1(2ω0 − ia)λ0n − iκ−1aλ0n

]
.

Note that

ℜ
(
κ−1 − 1

2
(−2ω0 + ia)2κ−2

)
< 0, ℜλ1kn = 0. (59)

The roots λkn(ε) of the characteristic Equation (17) allow us to determine solutions to
the linear boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
i(z0ε−1 + θz + k)x + λkn(ε)t

)
,

and hence, the formal set of solutions is

u(t, x, ε) =
∞

∑
k,n=−∞

(
ξknukn(t, x, ε) + ξ̄knūkn(t, x, ε)

)
, (60)

where ξkn denotes arbitrary complex constants.

Remark 2. Together with the roots λkn(ε) of Equation (17), there are the roots λkn(ε), which
correspond to the solutions of the boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.



Mathematics 2024, 12, 790 15 of 28

Note that for the parameters z and −z, the roots in (17) are the same, since the dependence of the
right-hand side of (17) on z is even. This means that for the modes of −(z0ε−1 + θz + k), the roots
are the same, i.e., λkn(ε). Therefore, the problem (15), (16) has the following solutions:

ũkn(t, x, ε) = exp
(
− i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

Under the conditions of Lemma 5, we have

ũkn(t, x, ε) = ukn(t, x, ε),

and under the conditions of Lemma 6, this is no longer the case.

3.2. The Results of Linear Analysis in the Case Φ(s) = Φ2(s)

In the case of (19), the value of z0 > 0 is defined as the first positive root from the
equation

z
2
= (2σ2z)−1. (61)

Lemma 7. Let condition (19) be satisfied and a2 > 2. Then, d0γ0 = p0 = 1, ω0 = 0, and for
the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17) whose real parts tend to zero as ε → 0,
the asymptotic equations are satisfied:

λkn(ε) =

[
iπ

(
1
2
+ 2n

)
+

i
2
(
z0 + ε(θz + k)

)]
c−1 + ελ1kn + ε2λ2kn + . . . , (62)

where

λ1kn = −ic−2a
(

π

(
1
2
+ 2n

)
+

z0

2

)
− 1

2
c−1(θz + k),

λ2kn =

(
2πn

c

)2[2 − a2

c

]
+

2πn
c

[
π

2c2 (2 − a2) +
z0

c2 (2 − a2) + i
a2

c

]
+ d0c−1γ′′(z0)k2+

+ 2d0c−1γ′′(z0)θzk + B1,

B1 = c−1d1γ0 + c−1d0γ′′(z0)θ
2
z +

π2

4c3 (2− a2)+
π2

2c3 z0(2− a2)+
z2

4c3 (2− a2)− ia2

2c2 (π + z0).

Lemma 8. Let condition (19) be satisfied and

0 < a2 < 2. (63)

Then, ω0 > 0, and for the roots λkn(ε) (k, n = 0,±1,±2, . . .) of Equation (17), the real parts of
which tend to zero as ε → 0, the asymptotic equations are fulfilled:

λkn(ε) = i
[
ω0ε−1 + c−1λ0n

]
+ ε

(
i
2

c−1(θz + k) + λ1kn

)
+ ε2λ2kn + . . . , (64)

where

λ0n = π

(
2n +

1
2

)
+ θω − Ω0 +

z0

2
, κ = p0 exp(iΩ0),

λ1kn = − 2i
ac2 λ0n, (65)

λ2kn =− 2c−3a−2λ2
0n + d1(cd0)

−1 + d0(cγ0)
−1γ′′(z0)(θz + k)2+

+ (cp0 exp(iΩ0))
−1

[
c−2λ2

0n − (2iω0 + a)
(
− 2i

ac
λ0n +

1
2
(θz + k)

)]
.
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Remark 3. The roots λkn(ε) of the characteristic Equation (17) allow us to determine solutions to
the linear boundary value problem (15), (16):

ukn(t, x, ε) = exp
(
i(z0ε−1 + θz + k)x + λkn(ε)t

)
,

and hence, the formal set of solutions is

u(t, x, ε) =
∞

∑
k,n=−∞

(
ξknukn(t, x, ε) + ξ̄knūkn(t, x, ε)

)
, (66)

where ξkn denotes arbitrary complex constants.

This remark applies to Lemmas 5–8.

3.3. Nonlinear Analysis for Φ(s) = Φ1(s)

Consider the cases a2 > 2 and a2 < 2 separately.

3.3.1. Case a2 > 2

In this case, we have the equality ω0 = 0, Ω0 = 0, p0 = 1. The critical case in the
stability problem is defined by the equality

d0|γ0| = 1. (67)

The following will be based on the representation in (66). Let us write it in a more conve-
nient form:

u(t, x, ε) = E(t, x)
∞

∑
k,n=−∞

ξkn exp
(

ikx + 2iπnc−1(1 − εc−1a)t + (λ2kn + O(ε))τ

)
=

= E(t, x)ξ(τ, x, x1), (68)

where τ = ε2t is the “slow” time, E(t, x) = exp(i(z0ε−1 + θz)x+ iπ(2c)−1(1− εac−1)t), and
ξkn(τ) = ξkn exp

(
(λ2kn + O(ε))τ

)
denotes coefficients of the expansion of ξ(τ, x, x1) into

a Fourier series with respect to the 2π-periodic argument x and the c-periodic argument
x1 = (1 − εc−1a)t.

Solutions of the nonlinear boundary value problem (14), (16) are found in the form

u = ε
(
E(t, x)ξ(τ, x, x1) + cc

)
+ ε3u3(τ, x, x1) + . . . . (69)

Here and below, cc denotes the term that is complex conjugate to the previous one. The un-
known complex function ξ(τ, x, x1) is to be defined. Let us substitute (69) into (14) and
collect the coefficients of the same powers of ε. Then, at the first power of ε, we obtain an
identity. Equating the coefficients of ε3, we arrive at the equation

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+ (2γ0)

−1γ′′(z0)
∂2ξ

∂x2 − iγ−1
0 γ′′(z0)θz

∂ξ

∂x
+

+ ic−1
(

a2 − π

2

(
1 − 1

2
a2
))

∂ξ

∂x1
+ B0ξ + 3b1ξ|ξ|2, (70)

B0 = c−2π2 1
4

(
1 − 1

2
a2
)
+ ia2c−2 1

2
π +

1
2

γ′′(z0)θ
2
z + 2d1c−1γ0

with the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (71)
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Here, the following relations are taken into account:

dξ

dt
=ε2 ∂ξ

∂τ
+

∂ξ

∂x1
(1 − εac−1),

ξt−c =ξ(τ − ε2c, x, x1 − c(1 − εac−1)) =

=ξ(τ, x, x1)− ε2c
∂ξ

∂τ
+ εa

∂ξ

∂x1
+

1
2

ε2a2 ∂2ξ

∂x2
1
+ o(ε2).

Let us introduce the following notation. We arbitrarily fix the value θ0z ∈ [0, 1) and
let εn = εn(θ0z) denote a sequence for which εn → 0 as n → ∞ and θz(εn, θ0z) = θ0z. The
above constructions justify the following result.

Theorem 5. Let a2 > 2 and conditions (53) and (67) be satisfied. Let θ0z ∈ [0, 1) be arbitrarily
fixed, and let the boundary value problem (70), (71) at θz = θ0z have a bounded solution ξ(τ, x, x1)
as τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function u(t, x, ε) = ε

(
E(t, x)ξ(τ, x, x1) + cc

)
+

ε3u3(τ, x, x1) satisfies the boundary value problem (14), (16) with accuracy up to o(ε3).

Thus, the parabolic boundary value problem (70), (71) is a quasinormal form for the
boundary value problem (14), (16).

3.3.2. Case a2 < 2

The dynamical properties in this case are much more complicated. The principal
parts of the roots λkn(ε) of the characteristic equation are close to iω0ε−1: i.e., they are
asymptotically large. Therefore, the oscillations in the boundary value problem (14), (16)
will be rapid.

Note that, in this case,

ω0 =

(
1 − a2

2

)1/2

, p0 =
a2

2
(4 − a2)1/2, d0 = p0|γ0|−1. (72)

The roots of λkn(ε) correspond to the Euler solutions of the linear boundary value prob-
lem (15), (16):

u±
kn(t, x, ε) = exp

(
± i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

It is more convenient to write these functions in the form

u±
kn(t, x, ε) = E±(t, x) exp

(
ikx + 2iπnx1 + (λ2kn + O(ε))τ

)
,

where

E±(t, x) = exp
(

i(c−1ω0ε−1 + c−1
(

θω − Ω0 +
π

2

)
+ εc−1κ−1(2ω0 − ia)·

· ic−1(θω − Ω0))t ± i(z0ε−1 + θz)x
)

,

R = κ−1(2ω0 − ia) · ic−1(θω − Ω0), ℑR = 0,

τ = ε2t, x1 = (1 − εc−1R)t. Hence, we find that

∞

∑
k,n=−∞

ξ±knu±
kn(t, x, ε) = E±(t, x)

∞

∑
k,n=−∞

ξ±kn(τ) exp
(
ikx + 2iπnx1

)
=

= E±(t, x)ξ±(τ, x, x1).
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Here, ξ±kn denotes arbitrary complex constants, and ξ±kn(τ) = ξ±kn exp
(
(λ2kn + O(ε))τ

)
.

The functions ξ±kn(τ) are the Fourier coefficients of the function ξ±(τ, x, x1), which is 2π-
periodic with respect to x and c-periodic with respect to x1.

Solutions of the nonlinear boundary value problem (14), (16) are found in the form

u(t, x) = u+(t, x) + u−(t, x), (73)

u±(t, x) = ε
(
ξ±(τ, x, x1)E±(t, x) + cc

)
+ ε3u3(t, τ, x, x1) + . . . ,

where the dependencies on t, x and x1 are periodic.
Let us substitute (73) into (14) and equate the coefficients of the same powers of ε.

In the first step, we obtain an identity, and by collecting the coefficients of ε3, we obtain the
equation for u3. From its solvability condition in the specified class of functions, we arrive
at the relation

∂ξ±

∂τ
= A1

∂2ξ±

∂x2
1

+ A2
∂ξ±

∂x1
+ A3ξ± + B1

∂2ξ±

∂x2 + B2
∂ξ±

∂x
+ c−1βξ±(|ξ±|2 + 2|ξ∓|2), (74)

in which

A1 =− c−3
[
κ−1 − 1

2
(ia − 2ω0)

2κ−2
]

,

A2 =c−3
[
− 2(κ−1 − 1

2
(ia − 2ω0)

2κ−2(θω − Ω0)) + cκ−22ω0(2ω0 − ia)+

+ c2κ−1a(θω − Ω0)

]
,

A3 =c−3
[

1
2
(ia − 2ω0)κ2(θω − Ω0)

2 −κ−1
]
+ d1c−1 p−1

0 +

+
1
2

γ′′(z0)c−1θ2
z (p0γ0)

−1 − i(cκ)−22iω0(2ω0 − ia)·

· (θω − Ω0)− i(cκ)−1a(θω − Ω0),

B1 =
1
2

c−1γ′′(z0)(p0γ0)
−1,

B2 =c−1γ′′(z0)θz(p0γ0)
−1,

β =b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that the function ξ(τ, x, x1) satisfies the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (75)

In order to formulate the final result, we introduce some notations. We arbitrarily fix
θ0ω ∈ [0, 2π) and let the sequence εs = εs(θ0ω) be defined by the condition θω(εs(θ0ω)) =
θ0ω (s = 1, 2, . . .). We let Γ(θ0ω) denote all limit points of the sequence θz(εs(θ0ω)) from the
interval [0, 1]. We let θ0z denote the limit element of Γ(θ0ω) and let the subsequence εsΓ of
the sequence εs be such that

lim
Γ→∞

θz(εsΓ) = θ0z.

Note that it is possible that the set Γ(θ0ω) coincides with the segment [0, 1], and it is possible
that this set consists of a single element.

Theorem 6. Let 0 < a2 < 2 and d0 = p0|γ0|−1. We arbitrarily fix θ0ω ∈ [0, 2π) and let
θ0z ∈ Γ(θ0ω). Let ξ±(τ, x, x1) be a bounded solution of the boundary value problem (74), (75)
as τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function

u(t, x, ε) = ε
(
ξ+(τ, x, x1)E+(t, x) + cc + ξ−(τ, x, x1)E−(t, x) + cc

)
+ ε3u3(t, τ, x, x1)
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satisfies the boundary value problem (14), (16) up to o(ε3
sΓ
) for τ = ε2t, x1 = (1 − εc−1R)t, for

the sequence ε = εsΓ .

Thus, the boundary value problem (74), (75) is a quasinormal form for the original
boundary value problem (14), (16) in this critical case.

3.4. Nonlinear Analysis for Φ(s) = Φ2(s)

And here, we consider the cases a2 > 2 and a2 < 2 separately.

3.4.1. Case a2 > 2

In this case, we have the equality ω0 = 0, Ω0 = 0, p0 = 1. The critical case in the
stability problem is defined by the equality

d0|γ0| = p0. (76)

The following will be based on the representation in (66). Let us write it in a more conve-
nient form:

u(t, x, ε) = E(t, x)
∞

∑
k,n=−∞

ξkn exp
(

ikx + 2iπnc−1(1 − εc−1a)t + (λ2kn + O(ε))τ

)
=

= E(t, x)ξ(τ, x, x1), (77)

where τ = ε2t is the “slow” time,

E(t, x) = exp
(
i(ω0ε−1 + θω − Ω0 +

1
2
(z0 + π + εθz)) + i(z0ε−1 + θz)x + iπ(2c)−1(1 − εac−1)t

)
,

and ξkn(τ) = ξkn exp
(
(λ2kn + O(ε))τ

)
denotes coefficients of the expansion of ξ(τ, x, x1)

into a Fourier series with respect to the 2π-periodic argument x and the c-periodic argument
x1 = (1 − εc−1a)t.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u = ε
(
E(t, x)ξ(τ, x, x1) + cc

)
+ ε3u3(τ, x, x1) + . . . . (78)

Here and below, cc denotes the term that is complex conjugate to the previous one. The un-
known complex function ξ(τ, x, x1) is to be defined. Let us substitute (78) into (14) and
collect the coefficients of the same powers of ε. Then, at the first power of ε, we obtain an
identity. Equating the coefficients of ε3, we arrive at the equation

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+ (2γ0)

−1γ′′(z0)
∂2ξ

∂x2 − iγ−1
0 γ′′(z0)θz

∂ξ

∂x
+

+ ic−1
(

a2 − π

2

(
1 − 1

2
a2
))

∂ξ

∂x1
+ B0ξ + 3b1ξ|ξ|2, (79)

B0 = c−2π2 1
4

(
1 − 1

2
a2
)
+ ia2c−2 1

2
π +

1
2

γ′′(z0)θ
2
z + 2d1c−1γ0

with the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (80)

Let us introduce some notation. We arbitrarily fix the value θ0z ∈ [0, 1) and let εn = εn(θ0z) de-
note a sequence for which εn → 0 as n → ∞ and θz(εn, θ0z) = θ0z. The above constructions
justify the following result.

Theorem 7. Let a2 > 2 and conditions (53) and (76) be satisfied. Let θ0z ∈ [0, 1) be arbitrarily
fixed, and let the boundary value problem (79), (80) at θz = θ0z have a bounded solution ξ(τ, x, x1)
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as τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function u(t, x, ε) = ε
(
E(t, x)ξ(τ, x, x1) + cc

)
+

ε3u3(τ, x, x1) satisfies the boundary value problem (14), (16) with accuracy up to o(ε3).

Thus, the parabolic boundary value problem (79), (80) is a quasinormal form for the
boundary value problem (14), (16).

3.4.2. Case a2 < 2

The principal parts of the roots λkn(ε) of the characteristic equation are close to
iω0ε−1: i.e., they are asymptotically large. Therefore, the oscillations in the boundary value
problem (14), (16) will be rapid.

Note that, in this case,

ω0 =

(
1 − a2

2

)1/2

, p0 =
a2

2
(4 − a2)1/2, d0 = p0|γ0|−1. (81)

The roots of λkn(ε) correspond to the Euler solutions of the linear boundary value prob-
lem (15), (16):

u±
kn(t, x, ε) = exp

(
± i(z0ε−1 + θz + k)x + λkn(ε)t

)
.

It is more convenient to write these functions in the form

u±
kn(t, x, ε) = E±(t, x) exp

(
ikx + 2iπnx1 + (λ2kn + O(ε))τ

)
,

where

E±(t, x) = exp
(

i(c−1ω0ε−1 + c−1
(

θω − Ω0 +
π

2

)
+ εc−1κ−1(2ω0 − ia)·

· ic−1(θω − Ω0))t ± i(z0ε−1 + θz)x
)

,

R = κ−1(2ω0 − ia) · ic−1(θω − Ω0) =
2
a

, ℑR = 0,

τ = ε2t, x1 = (1 − εc−1R)t. Hence we find that

∞

∑
k,n=−∞

ξ±knu±
kn(t, x, ε) = E±(t, x)

∞

∑
k,n=−∞

ξ±kn(τ) exp
(
ikx + 2iπnx1

)
=

= E±(t, x)ξ±(τ, x, x1).

Here, ξ±kn denotes arbitrary complex constants, and ξ±kn(τ) = ξ±kn exp
(
(λ2kn + O(ε))τ

)
.

The functions ξ±kn(τ) are the Fourier coefficients of the function ξ±(τ, x, x1), which is 2π-
periodic with respect to x and c-periodic with respect to x1.

The solutions of the nonlinear boundary value problem (14), (16) are found in the form

u(t, x) = u+(t, x) + u−(t, x), (82)

u±(t, x) = ε
(
ξ±(τ, x, x1)E±(t, x) + cc

)
+ ε3u3(t, τ, x, x1) + . . . ,

where the dependencies on t, x and x1 are periodic.
Let us substitute (82) into (14) and equate the coefficients of the same powers of ε.

In the first step, we obtain an identity, whereas, by collecting the coefficients of ε3, we obtain
the equation for u3. From its solvability condition in the specified class of functions, we
arrive at the relation

c
∂ξ±

∂τ
= A1

∂2ξ±

∂x2
1

+ A2
∂ξ±

∂x1
+ A3

∂2ξ±

∂x2 + A4
∂ξ±

∂x
+ A5ξ + βξ±(|ξ±|2 + 2|ξ∓|2), (83)
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in which

A1 = 2a2 −
(

p0 exp(iΩ0)
)−1, ℜA1 > 0,

A2 = 2iA1lc−1 + 4a−2,

A3 = d0γ−1
0 γ′′(z0),

A4 = −2iθzd0γ−1
0 γ′′(z0)− 2(a2c)−1,

A5 = A1l2 + d1d−1
0 + d0γ−1

0 γ′′(z0)θ
2
z − 4i(a2c)−1l + a−1θz,

l = θω − Ω0 +
1
2
(π + z0),

β = b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that the function ξ(τ, x, x1) satisfies the boundary conditions

ξ(τ, x, x1 + c) ≡ ξ(τ, x, x1) ≡ ξ(τ, x + 2π, x1). (84)

In order to formulate the final result, we introduce some notations. We arbitrarily fix
θ0ω ∈ [0, 2π) and let the sequence εs = εs(θ0ω) be defined by the condition θω(εs(θ0ω)) =
θ0ω (s = 1, 2, . . .). Let Γ(θ0ω) denote all limit points of the sequence θz(εs(θ0ω)) from the
interval [0, 1]. Let θ0z denote the limit element of Γ(θ0ω), and let the subsequence εsΓ of the
sequence εs be such that

lim
Γ→∞

θz(εsΓ) = θ0z.

We formulate the final result.

Theorem 8. Let 0 < a2 < 2 and d0 = p0|γ0|−1. We arbitrarily fix θ0ω ∈ [0, 2π) and let
θ0z ∈ Γ(θ0ω). Let ξ±(τ, x, x1) be a bounded solution of the boundary value problem (74), (75) as
τ → ∞, x ∈ [0, 2π], x1 ∈ [0, c]. Then, the function

u(t, x, ε) = ε
(
ξ+(τ, x, x1)E+(t, x) + cc + ξ−(τ, x, x1)E−(t, x) + cc

)
+ ε3u3(t, τ, x, x1)

satisfies the boundary value problem (14), (16) up to o(ε3
sΓ
) for τ = ε2t, x1 = (1 − εc−1R)t, for

the sequence ε = εsΓ .

Thus, the boundary value problem (74), (75) is a quasinormal form for the original
boundary value problem (14), (16) in this critical case.

3.5. Quasinormal Forms in the Case of Small Values of the Parameter σ

Here, we assume that for each fixed σ1 > 0, the following condition is satisfied:

σ = εσ1. (85)

Let us separately consider the cases where Φ(s) = Φ1(s) and Φ(s) = Φ2(s).

3.5.1. Building a Quasinormal Form under the Condition Φ(s) = Φ1(s) and A2 > 2

Under condition (85) for the function γ(z), we have the following:

γ(z) = 2i(sin z) · exp
(
− 1

2
ε2σ2

1 z2
)

.

Set
γ0(z) = 2i sin z.

Then,

γ(z) = γ0(z)
(

1 − 1
2

ε2σ2
1 z2 + O(ε4)

)
.
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The largest value |γ0(z)| = 2, and for all values z±m at which this value is reached, we have
the equations

z±m = π

(
2m ± 1

2

)
, m = 0,±1,±2, . . . .

Recall that ε = 2πN−1. Consider the sets of integers π(2m ± 1/2)ε−1 + k, k, m = 0,±1,±2, . . ..
We let ukmn(t, x) denote the Euler solutions of the linear problem (15), (16):

u±
kmn(t, x) = exp

[
i
(
π

(
2m +

1
2

)
ε−1 + θzm + k

)
x + λ±

kmn(ε)t
]

.

Here, λ±
kmn(ε) denotes the roots of the characteristic Equation (17) whose real parts tend to

zero as ε → 0. Note that

θzm =


0, N = 4P
3/4, N = 4P + 1
1/2, N = 4P + 2
1/4, N = 4P + 3.

Recall that, for a2 > 2, we have ω0 = Ω0 = 0, p0 = 1, |γ0| = 2, d0 = 1/2. Let us first
consider the asymptotics of λ±

kmn(ε).

Lemma 9. Let conditions (53), (54) and (85) be satisfied. Then, there are the asymptotic relations

λ±
kmn(ε) = c−1iπ

(
2n ± 1

2

)
+ ελ±

1kmn + ε2λ±
2kmn + . . . ,

where

λ±
1kmn =iac−2π

(
2n ± 1

2

)
,

cλ±
2kmn =

1
2
(2 − a2)c−2π2

(
2n ± 1

2

)2

− ia2c−2π

(
2n ± 1

2

)
+ 4d1 −

1
2

σ2
1 π2

(
2m ± 1

2

)2

−

− 1
4
(k ± θzm)

2.

The set of Euler solutions of the linear boundary value problem (15), (16)

u±(t, x, ε) =
∞

∑
k,m,n=−∞

ξ±kmn exp
[

i
(

π

(
2m ± 1

2

)
ε−1 ± θzm + k

)
x + λ±

kmn(ε)t
]

can be written in the form

u±(t, x, ε) =E±(t, x)
∞

∑
k,m,n=−∞

ξ±kmn(τ) exp
[

ikx + 2iπnc−1x1 + 2iπmy
]
=

= ξ±(τ, x, x1, y). (86)

Here,

E±(t, x) = exp
[
± i

π

2

(
c−1(1 − εac−1)t + (ε−1 + θzm)x

)]
,

ξ±kmn(τ) = ξ±kmn exp
(
λ±

2kmn + O(ε)τ
)
, y = xε−1, x1 = (1 + εac−1)t.
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Given that E−(t, x) = E+
(t, x), we will look for solutions of the nonlinear boundary value

problem (14), (16) in the form of

u(t, x) = ε

(
E(t, x)ξ(τ, x, x1, y) + cc

)
+ ε3u3(τ, x, x1, y) + . . . . (87)

Substituting (87) into (14) and performing the standard steps, we arrive at the boundary
value problem for determining the unknown function ξ(τ, x, y, x1):

c
∂ξ

∂τ
= −

(
1 − 1

2
a2
)

∂2ξ

∂x2
1
+

∂ξ

∂x1

(
a2

c
− iπ

c

(
1 − 1

2
a2
))

+
∂2ξ

∂x2 + iθz ·
∂ξ

∂x
−

σ2
1
2

· ∂2ξ

∂y2 +

+ iσ2
1 π2 · ∂ξ

∂y
+

(
2d1 +

π2

4c2

(
1 − 1

2
a2
)
+ i

a2π2

c2 − 1
2

θ2
z −

1
8

σ2
1 π2

)
ξ + b1ξ|ξ|2, (88)

ξ(τ, x + 2π, x1, y) ≡ ξ(τ, x, x1, y) ≡ ξ(τ, x, x1 + c, y) ≡ ξ(τ, x, x1, y + 1). (89)

As a result of the above constructions, we come to the justification of the following result.

Theorem 9. Let conditions (53), (54) and (85) be satisfied. Let θz0 ∈ [0, 1) be arbitrarily fixed, and let
ξ(τ, x, x1, y) be a bounded solution of the boundary value problem (88)–(89) as τ → ∞, x ∈ [0, 2π],
y ∈ [0, 1], x1 ∈ [0, c]. Then, for the sequence εs(θz(εs(θz0) = θz0), the function

u(t, x) = ε
(
E(t, x)ξ(τ, x, x1, y) + cc

)
+ ε3u3(τ, x, x1, y)

satisfies the boundary value problem of (14), (16) up to o(ε3
s) at θz = θz0.

3.5.2. Building Quasinormal Forms under the Conditions Φ(s) = Φ2(s), σ = εσ1
and A2 > 2

The values of the parameter z for which the critical cases are realized are determined
by the following relation:

zm = π(2m + 1); m = 0,±1,±2, . . . .

Thus, γ0(zm) = −2 and p0 = 1, ω0 = Ω0 = 0, d0 = 1/2. It follows from the condition
ε = 2πN−1 that

θz = θzm =

0, if N − even,
1
2

, if N − odd.

Below, we separately consider the cases where θz = 0 and where θz = 1/2.

3.5.3. Building Quasinormal Forms for θz = 0

For the roots λkmn(ε) (k, m, n = 0,±1,±2, . . .) of the characteristic Equation (17) whose
real parts tend to zero as ε → 0, the following asymptotic equality takes place:

λkmn(ε) = iπ(2n + 1) + ελ1kmn + ε2λ2kmn + . . . , (90)

λ1kmn = −iac−2π(2n + 1) +
1
2

ic−1k,

cλ2kmn =

(
1 − 1

2
a2
)
(π(2n + 1)c−1)2 − 1

8
k2 − 1

2
σ2

1 (π(2m + 1))2 − 1
2

aπ(2n + 1)k+

+ ia2c−1π(2n + 1)− ia(2c)−1k + 2d1.
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The solutions of the linear boundary value problem (15), (16) can then be written in the form

u(t, x) =
∞

∑
k,m,n=−∞

ξkmn exp
[
iπ(2m + 1)ε−1x + kx +

(
iπ(2n + 1)(1 − εac−1)−

− εa(2c)−1k
)
t + (λ2kmn + O(ε))τ

]
=

=
∞

∑
k,m,n=−∞

ξkmn(τ) exp
[
iπ(2m + 1)y + iπ(2n + 1)x1 + ikx2

]
=

= ξ(τ, x1, x2, y), (91)

where
ξkmn(τ) = ξkmn · exp[(λ2kmn + O(ε))τ],

x1 = (1 − εac−1)t, x2 = x − εa(2c)−1t, y = xε−1.
(92)

Based on equality (91), we seek solutions to the nonlinear boundary value problem (14),
(16) of the form

u(t, x, ε) = εξ(τ, x1, x2, y) + εu3(τ, x1, x2, y) + . . . .

Substituting this expression into (14) and performing the standard steps, we arrive at the
parabolic boundary value problem for finding a real function ξ(τ, x1, x2, y):

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+

1
8

∂2ξ

∂x2
2
+

σ2
1

2
· ∂2ξ

∂y2 − 1
2

∂2ξ

∂x1∂x2
+ ac−1 ∂ξ

∂x1
−

− a(2c)−1 ∂ξ

∂x2
+ 2d1ξ + b1ξ|ξ|2, (93)

with the boundary conditions

−ξ(τ, x1 + c, x2, y) ≡ ξ(τ, x1, x2, y) ≡ ξ(τ, x1, x2 + 2π, y), (94)

−ξ(τ, x1, x2, y + 1) ≡ ξ(τ, x1, x2, y). (95)

This boundary value problem is a quasinormal form in the considered case.

3.5.4. Quasinormal Form for θz = 1/2

In this case, let us give the following formulas for the elements of λ1kmn and λ2kmn :

λ1kmn = −iac−2π(2n + 1) +
1
2

ic−1
(

1
2
+ k

)
,

cλ2kmn =

(
1 − 1

2
a2
)
(π(2n + 1)c−1)2 − 1

8
k2 − 1

2
σ2

1 (π(2m + 1))2−

− 1
2

aπ(2n + 1)c−1
(

1
2
+ k

)
+ ia2c−2π(2n + 1)− ia(2c)−1

(
1
2
+ k

)
+ 2d1.

The “critical” solutions of the linear boundary value problem (15), (16) can be written in
the form

u(t, x) =E(t, x)
∞

∑
k,m,n=−∞

ξkmn exp
[
iπ(2m + 1)y + iπ(2n + 1)x1 + ikx2

]
=

= E(t, x)ξ(τ, x1, x2, y),

where

E(t, x) = exp
[

i
1
2
(x + ε(2c)−1t)

]
= exp

[
i
1
2

x2

]
.



Mathematics 2024, 12, 790 25 of 28

Therefore, solutions of the nonlinear boundary value problem (14), (16) are sought in
the form

u(t, x, ε) = ε
(
E(t, x)ξ(τ, x1, x2, y) + cc

)
+ ε3u3(t, τ, x1, x2, y) + . . . .

Let us substitute this expression into (14). After straightforward calculations, we obtain a
parabolic boundary value problem, namely, a quasinormal form, for finding the complex
function ξ(τ, x1, x2, y):

c
∂ξ

∂τ
=

(
1
2

a2 − 1
)

∂2ξ

∂x2
1
+

1
8

∂2ξ

∂x2
2
+

σ2
1

2
· ∂2ξ

∂y2 − 1
2

∂2ξ

∂x1∂x2
+

(
i
a
2
+ ac−1

)
∂ξ

∂x1
+

+

(
i
8
− a(2c)−1

)
∂ξ

∂x2
+

(
2d1 −

1
32

− ia
4c

)
ξ + 3b1ξ|ξ|2 (96)

with boundary conditions (94) and (95).
Let us make one remark. In the right part of (96), there is no term of the form

Const · E2(t, x)ξ3. This is due to the fact that

E(t, x) = exp
[

i
1
2
(x + (2cε)−1τ)

]
.

As a result of the principle of averaging over a rapidly oscillating periodic argument τ (see,
e.g., [16,17]), the corresponding term in the principal term vanishes.

3.6. Building a Quasinormal Form under the Conditions Φ(s) = Φ2(s), σ = εσ1, 0 < a2 < 2

We first give the values of the coefficients λ1,2,kmn in formula (90) for the asymptotic rep-
resentation of the roots λkmn(ε) (k, m, n = 0,±1,±2, . . .) of the characteristic Equation (17):

λ1kmn = −2i(ac)−1R + i(2c)−1(θz + k),

cλ2kmn = −1
2
(
2a−1R +

1
2
(θz + k)

)2
+

1
2
(
2a−1R − 1

2
(θz + k)

)
(θz + k)−

− c−1(θz + k)2 + (p0 exp(iΩ0))
−1R2 + 2ω0

(
2a−1R − 1

2
(θz + k)

)
−

− 2ic−1R + ia(2c)−1(θz + k)− 1
2

σ2
1
(
π(2m + 1)

)2
+ 2d1 p−1

0 ,

where R = (θω − Ω0 + π(2n + 1))c−1.
Let us write the “critical” solutions of the linear boundary value problem (15), (16) in

the form

u(t, x) =E(t, x)
∞

∑
k,m,n=−∞

ξkmn exp
[
iπ(2n + 1)x1 + ikx2 + iπ(2m + 1)y

]
=

= E(t, x)ξ(τ, x1, x2, y),

where

E(t, x) = exp
[
i(ω0ε−1 + (θω − Ω0)c−1(1 − 2εac−1) + εc−1θz)t + iθzx

]
,

and for x1,2 and y, the relations in (92) hold. Then, the solutions of the nonlinear boundary
value problem (14), (16) are found in the form

u(t, x, ε) = ε
(
E(t, x)ξ(τ, x1, x2, y) + cc

)
+ ε3u3(t, τ, x1, x2, y) + . . . , (97)

and the dependence on t, x1, x2 and y is periodic. Let us substitute (97) into (14), and in the
resulting formal identity, we will successively equate the coefficients of the same powers of
ε. As a result, we arrive at an equation for u3, from the solvability condition of which we
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obtain a boundary value problem for determining the unknown amplitude ξ(τ, x1, x2, y) in
the specified class of functions:

c
∂ξ

∂τ
=H1

∂2ξ

∂x2
1
+ H2

∂ξ

∂x1
− 1

8
∂2ξ

∂x2
2
+ H3

∂ξ

∂x2
+

(
1
4
− a−1

)
∂2ξ

∂x1∂x2
+

+
1
2

σ2
1

∂2ξ

∂y2 + H4ξ + 3βξ|ξ|2 (98)

with boundary conditions (94) and (95), where

H1 = −κ−1 +
1
2
(ia − 2ω0)

2κ−2,

H2 = c−1
[
− 2(κ−1 − 1

2
(ia − 2ω0)

2κ−2(θω − Ω0)) + cκ−22ω0(2ω0 − ia)+

+ c2κ−1a(θω − Ω0)

]
,

H3 = i
[
2θz −

(
− (2a)−1(θω − Ω0) + a−1 − ω0 + ia(2c)−1)],

H4 = −1
2

(
2(θω − Ω0) +

1
2

θz

)2

+
1
2

(
2a−1(θω − Ω0)−

1
2

θz

)
θz − c−1θ2

z+

+

(
p0 exp(iΩ0)

−1(θω − Ω0) + 2ω0(2a−1(θω − Ω0)−
1
2

θz

)
+ 2ic−1(θω − Ω0)+

+ ia(2c)−1θz + 2d1 p−1
0 ,

β =b1 + iω0b2 − ω2
0b3 − iω3

0b4.

Recall that, depending on the evenness or oddness of N, the value of θz takes a value of 0
or 1/2.

The main result is that the boundary value problem (94), (95), (98) obtained here plays
the role of a quasinormal form for the boundary value problem (14), (16) in the above
critical case.

4. Conclusions

The local dynamics of a system of coupled identical oscillators are considered. The large
number of oscillators gave grounds for the transition to the consideration of the boundary
value problem with a continuous spatial variable. The presence of a large delay in the
couplings made it possible to use special asymptotic methods [20,21].

Critical cases in the problem of the stability of the zero equilibrium state were singled
out. It was shown that all of them have infinite dimensionality, so the known methods of
local analysis based on the use of methods of invariant integral manifolds and methods of
normal forms [22,23] are not directly applicable. This research is based on special infinite
normalization methods [24,25]. The main results include the construction of the analogs of
normal forms—quasinormal forms—nonlinear equations of the parabolic type containing
no small parameters. Their nonlocal dynamics determine the local dynamics of the original
problem. The corresponding quasinormal forms contain two or three spatial variables, so
we can conclude that the dynamics of the problems under consideration are, in general,
complex. Asymptotic formulas linking the solutions of quasinormal forms and solutions of
the original equation were given.

We emphasize that asymptotic approximations were constructed on an infinite time
interval. Therefore, a quasinormal form requires the existence of a bounded solution on
the entire axis. Most often, “quasinormal forms” are boundary value problems of the
parabolic type, which have the property of local solvability. Based on the known results
of the numerical analysis of such problems (see, e.g., [26]), one can often conclude that
solutions bounded on the entire axis exist. However, in the present paper, we do not talk
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about the asymptotics of exact solutions of the original system, but about the asymptotic
approximation of functions satisfying the original system with a certain degree of accuracy.
Of course, one can formulate conclusions about determining the asymptotics of solutions
by means of solutions of a quasinormal form on a finite O(ε−1)-order time-varying interval,
especially since the dependence on the time variable x1 = c−1(1 − εc−1a)t is periodic.

It is interesting to note that, in the case of a2 > 2, the quasinormal forms contain a
coefficient at nonlinearity b1 and do not contain the coefficients of b2, b3 or b4. In the case of
a2 < 2, the quasinormal forms contain all coefficients of the function f .

The parameter a plays an important role in the dynamics of quasinormal forms.
The structure of solutions in the case a2 < 2 is much more complicated than in the case
a2 > 2, because quasinormal forms at a2 < 2 are complex boundary value problems of
the Ginzburg–Landau type, and the solutions contain rapidly oscillating t components.
Explicit formulas are obtained that allow us to trace the role of the parameter c, included in
the delay coefficient (13).

Quasinormal forms do not explicitly contain the parameter ε but depend essentially
on ε through θω and θz. As ε → 0, these quantities run indefinitely from 0 to cω0 and from
0 to 1, respectively. At the same time, unlimited alternations of forward and backward
bifurcations can be observed in quasinormal forms. This indicates the high sensitivity of
the dynamical properties to changes in the parameter ε and, hence, to changes in the values
of N and T. In particular, even changing a large value of N to 1 can significantly affect the
dynamics of the problem.

Cases where the parameter σ is small enough were considered. It was shown that
quasinormal forms become even more complicated, since there appears a third spatial vari-
able, and the dimensionality of the diffusion operator increases. It entails the complication
of the dynamics of the initial problem. It is important to note that the condition σ ≪ 1 is
of special interest: the couplings between elements are more “close” to those that arise at
standard approximations of the diffusion and advection operators (see (11), (12)).

It is interesting to note that, under the condition T ≫ 1, we were able to obtain explicit
formulas for all parameters defining the critical cases.

Let us focus on the most interesting differences in the structure of the solutions
for the cases Φ(s) = Φ1(s) and Φ(s) = Φ2(s). The “critical” modes are adjacent to the
values z0ε−1 + θz, and these values are determined by relations (52) and (61). When
σ is small, these values are also different. In the first case, zm = π(m + 1/2), and in
the second, π(2m + 1) (m = 0,±1,±2, . . .). Not only are the coefficients and even the
number of equations in the corresponding quasinormal forms different, but the boundary
conditions (89) and (94), (95) are also different. Thus, the dynamics, even in the case of
different advective-type couplings, can be essentially different.

The obtained results can be extended to other systems with diffusive, advective or
other couplings (see, for example, [27]). We note that accounting for quadratic nonlinearities
in (14) does not lead to additional difficulties.

It is important to emphasize that the principal terms of the asymptotics of the solu-
tions of the original equation are determined by the solutions of the (nonlocal) quasinor-
mal forms.
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