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Abstract: This paper concerns an improved model-free adaptive fractional-order control with a
high-order pseudo-partial derivative for uncertain discrete-time nonlinear systems. Firstly, a new
equivalent model is obtained by employing the Grünwald–Letnikov (G-L) fractional-order difference
of the input in a compact-form dynamic linearization. Then, the pseudo-partial derivative (PPD) is
derived using a high-order estimation algorithm, which provides more PPD information than the
previous time. A discrete-time model-free adaptive fractional-order controller is proposed, which
utilizes more past input–output data information. The ultimate uniform boundedness of the tracking
errors are demonstrated through formal analysis. Finally, the simulation results demonstrate the
effectiveness of the proposed method.
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1. Introduction

Recently, the model-free adaptive control (MFAC) method has attracted extensive
attention; it does not need the specific dynamic characteristics of the control system,
only input and output data [1]. Thanks to its fewer identification parameters and fewer
calculations, as well as its wide range of applications, MFAC plays an important role in
many fields and applications [2].

Different from the existing stability analysis for discrete-time (stochastic) systems [3–5],
the main idea of MFAC is to use the concept of a pseudo-gradient to replace the general
discrete-time nonlinear system with a series of dynamic linear time-varying models. In
MFAC, the dynamic linear time-varying model has three main forms, namely, compact-
form dynamic linearization (CFDL) [6], partial-form dynamic linearization (PFDL) [7], and
full-form dynamic linearization (FFDL) [8]. In particular, by utilizing only input–output
data information, equivalent models can be derived by means of the concept of a pseudo-
partial derivative (PPD). Thus, the learning law can be established by treating the PPD as a
time-varying parameter [9,10].

Using a virtual equivalent dynamic linearization data model, the time-varying PPD
estimation algorithm was designed in [11], where the internal stability of the FFDL
linearization-based MFAC scheme was rigorously presented. In [12], a new type of MFAC
method based on an adaptive forgetting factor was proposed. In [13], by taking the affine
structure of the ultra-local model and the extended state observer (ESO), a local PFDL-based
ESO-MFAC was proposed to improve control performance. In order to make the MFAC
scheme have a better performance, a PID-like MFAC with discrete (ESO) sparked interest
in [14]. It is worth pointing out that the above-mentioned work did not consider high-order
PPD estimation.

High-order MFAC is an important branch of MFAC which uses more information to
further improve control performance. In [15], a high-order estimation algorithm was used
to estimate the value of PPD. An improved high-order MFAC method was proposed in [16],
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which not only considered more control knowledge than the previous time, but also used
more information from the previous time in the estimation algorithm.

Fractional-order control is popular in controlling nonlinear systems [17]. In [18], a
data driven model has been established and a discrete time fractional order reaching law
was studied. In [19], a fractional order data-driven model was proposed, which related
the first variation of the output signal with the fractional order variation of the input
one. A fractional data-driven model was presented in [20], where the instantaneous gain
from the fractional output variation to the input one was computed by means of a fuzzy
inference system.

These observations motivate our current study. The main contributions of this paper
can be summarized into two aspects: (1) both the error and its rate of change are introduced
in the control input criterion function, which incorporates a fractional-order operator. Three
weighting coefficients are executed to enhance the system capacity of track abrupt signals
and mitigate sudden external disturbance; (2) by using the high-order PPD estimation
scheme based on previous input and output data, a fractional-order MFAC with high order
estimation to enhance convergence is developed.

The rest of this paper is organized as follows: some preliminaries and the problem
formulation are presented in Section 2. The data-driven control algorithm is given in
Section 3. A theoretical analysis of the enhanced convergent condition is derived in
Section 4. Section 5 provides numerical simulations to illustrate the validity of the designed
method. Finally, some conclusions are drawn in Section 6.

2. System Description

In this paper, we consider the following uncertain discrete-time nonlinear system:

y(k + 1) = f (k, y(k), . . . , y(k − ny), u(k), . . . , u(k − nu)), (1)

where k ∈ {0, 1 · · · , T} indexes the discrete time and T is the terminal time instant. u(k) ∈
R is the control input at time instant k and y(k) ∈ R is the system output at time instant k.
ny, nu ∈ N are two unknown positive integers.

Definition 1 ([21]). The fractional discrete approximation of the G-L derivative for u(k) is de-
fined as

∆nu(k) =
1
hn

k

∑
v=0

(−1)v
(

n
v

)
u(k − v), (2)

where n ∈ R is the fractional order, R is the set of real numbers, h is set to 1 as a sampling time,
and k ∈ N is a number of samples for which the approximation of the derivative is calculated.

The fractional binomial term in (2) can be obtained from the following relation:(
n
v

)
=

{
1 for v = 0

n(n−1)···(n−v+1)
v! for v > 0

(3)

The following assumptions are considered for the system (1).

Assumption 1. There exist positive constants uM and yM such that |∆nu(k)| ≤ uM and |y(k)| ≤ yM.

Assumption 2. For any k ∈ {0, 1, · · · , T} , the nonlinear function f (·, · · · , ·) satisfies the
Lipschitz condition, that is,

|∆y(k + 1)| ≤ l|∆nu(k)|, (4)

where ∆y(k + 1) = y(k + 1)− y(k), l is a Lipschitz constant.

Remark 1. The above assumptions are rather standard, and they are taken for granted by several
schemes for the control of discrete-time systems. Assumption 1 gives a limit on the system input and
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output change rate. From a practical point of view, Assumption 2 implies that the output variation
depends linearly on the input variation.

By virtue of the second assumption, the dynamic model of (1) can be expressed as

∆y(k + 1) = ϕ(k)∆nu(k), (5)

where ϕ(k) satisfies |ϕ(k)| ≤ l. ϕ(k) establishes a dynamic relationship between the
input and output data of the system. Therefore, the rapid identification of ϕ(k) becomes
particularly crucial. This issue will be addressed in the next section. In this paper, we
exclusively address the case of n ∈ (0, 1].

Remark 2. When n = 1, ∆un(k) degenerates to the conventional integer-order cases. ϕ(k) aligns
with the standard pseudo-partial derivative in CFDL. For n ∈ (0, 1), due to the short-memory
characteristics of a fractional-order operator [21], the controller compensates for more information
from the previous time; therefore, the robustness of the system’s equivalent model can be enhanced.
This contributes to a smoother execution of dynamic linearization, enabling a faster convergence of
the estimated ϕ̂(k) to the desired ϕ(k).

Assumption 3. For any k ∈ {0, 1 · · · , T}, the PPD satisfies ε ≤ ϕ(k) (or ϕ(k) ≤ −ε ), where ε
is a relatively small positive constant.

Remark 3. Most of the plants, in practice, can satisfy Assumption 3. Its practical meaning is
obvious, that is, the plant output should increase (or decrease) when the corresponding control input
increases.

3. Design of Model-Free Adaptive Fractional-Order Controller

The following improved calculation criteria are considered:

J(u(k)) =
[
eT(k + 1) ∆eT(k + 1)

]
Qe

[
e(k + 1)

∆e(k + 1)

]
+ λ

∣∣∆nu(k)
∣∣2, (6)

where
e(k + 1) = yd(k + 1)− y(k + 1)

and
∆e(k + 1) = e(k + 1)− e(k)

represent the tracking error and its rate of change, respectively. yd(k) is the desired trajectory.
Qe1 and Qe2 ∈ R are positive weight coefficients in Qe = diag{Qe1, Qe2}. λ > 0 is a penalty
factor, which is used in order to limit the control input variation.

Remark 4. In the input criterion function (6), the first term is the square of the output error. The
second term is the rate of change of the error at two adjacent moments. This is used to reduce the
impact of excessive changes in the criterion function calculation by the output data.

Substituting (5) into the criterion function (6), we can obtain

J(u(k)) = Qe1|yd(k + 1)− y(k)− ϕ(k)∆nu(k)|2 + Qe2|yd(k + 1)− y(k)− ϕ(k)∆nu(k)− e(k)|2

+ λ
∣∣∆nu(k)

∣∣2. (7)

Through calculating, this yields

1
2

∂J(u(k))
∂u(k)

= −Qe1ϕ(k)(yd(k + 1)− y(k)− ϕ(k)∆nu(k))

− Qe2ϕ(k)(yd(k + 1)− y(k)− ϕ(k)∆nu(k)− e(k)) + λ∆nu(k). (8)
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Using the optimal technique, one can have

∆nu(k) =
ρϕ(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |
√

Qe1 + Qe2ϕ(k)|2
,

where, as a step factor, ρ is designed to make the controller more universal [22].
Note that

∆nu(k) =
k

∑
v=1

(−1)v
(

n
v

)
u(k − v) + u(k). (9)

Thus, an improved model-free adaptive fractional-order controller (I-MFAFOC) can
be expressed by

u(k) =
ρϕ(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |
√

Qe1 + Qe2ϕ(k)|2
−

k

∑
v=1

(−1)v
(

n
v

)
u(k − v). (10)

Remark 5. Unlike other high-order algorithms designed based on the control input [13,14,16], the
I-MFAFOC algorithm (10) uses yd(k + 1) to update the control input u(k). On the other hand,
compared to the algorithm in [16], the improved algorithm does not need to set the weight coefficients
for the previous control inputs u(k − v), v = 1, · · · , k.

Since ϕ(k) is unknown, the following universal criteria function with the estimated
parameter are defined:

J(ϕ(k)) = |∆y(k)− ϕ(k)∆nu(k − 1)|2 + µ
∣∣ϕ(k)− ϕ̂(k − 1)

∣∣2, (11)

where µ is the weight factor. ϕ̂(k) is the estimated value of ϕ(k). Equation (11) indicates
that the target-constrained input should be minimized, while the tracking error converges
to a minimum; this implies that ϕ̂(k) will converge to ϕ(k).

In this paper, for enhancing tracking performance, a high-order parameter estimation
algorithm for PPD (HOPPD) is proposed here by updating the criterion function (11)
as follows:

J(ϕ(k)) = |∆y(k)− ϕ(k)∆nu(k − 1)|2 + µ

∣∣∣∣∣ϕ(k)− m

∑
j=1

αjϕ̂(k − j)

∣∣∣∣∣
2

, (12)

where m ∈ N+ is the high-order degree and αj are weighting coefficients with ∑m
j=1 αj = 1.

Based on the derivation of (12), as below, and ∂J(ϕ(k))/∂ϕ(k) = 0, the estimation
algorithm is expressed by (13)

ϕ̂(k) =
∆nu(k − 1)∆y(k)

µ + |∆nu(k − 1)|2
+

µη

µ + |∆nu(k − 1)|2
m

∑
j=1

αjϕ̂(k − j), (13)

where η is the step length to make the algorithm more flexible [22].
To ensure that the dynamic linearization model is always true, the following reset

algorithm is applied:

ϕ̂(k) = ϕ̂(1), if ϕ̂(k) ≤ ε or
∣∣∣∆nu(k − 1)

∣∣∣ ≤ ε. (14)
ϕ̂(k) = ϕ̂(k − 1) + η∆nu(k−1)

µ+|∆nu(k−1)|2
(∆y(k)− ϕ̂(k − 1)∆nu(k − 1)), 2 ≤ k < m

ϕ̂(k) = ∆nu(k−1)∆y(k)
µ+|∆nu(k−1)|2

+ µη

µ+|∆nu(k−1)|2 ∑m
j=1 αjϕ̂(k − j), k ≥ m

(15)
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u(k) =
ρϕ̂(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))

λ + |
√

Qe1 + Qe2ϕ̂(k)|2
−

k

∑
v=1

(−1)v
(

n
v

)
u(k − v). (16)

Therefore, the overall control strategy of the proposed high-order PPD-based im-
proved model-free adaptive fractional-order controller (HOPPD-I-MFAFOC) is delineated
in Equations (14)–(16). The controller diagram is depicted in Figure 1 with the following
two key points. (1) The PPD is derived using a high-order estimation algorithm. (2) The
fractional-order controller is used to provide a better performance.

Figure 1. Block diagram of the proposed HOPPD-I-MFAFOC.

In comparison with traditional MFAC, HOPPD-I-MFAFOC incorporates more histor-
ical input and output data, enriching the gain parameters by involving ϕ̂(k) due to the
inclusion of a fractional-order and high-order algorithm.

Remark 6. For practical realization, the number of samples taken into consideration has to be
reduced to the predefined number L ∈ {0, 1, · · · , N} and N < T in the experiment [23].

Remark 7. In the first instance, an initial value needs to be assigned to ϕ̂(1). Since the calculation
of ϕ̂(k) relies on the previous m instances, it can only be computed when k ≥ m. Therefore, the
high-order estimation algorithm (15) is applied for k ≥ m. However, in the case of 2 ≤ k < m,
where no previous instances are available, the original estimation algorithm in (16) is utilized.

Remark 8. The application of weighting coefficients αj in the high-order estimation algorithm (15)
is analogous to the use of a forgetting factor. Consequently, they can set α1 ≥ α2 ≥ · · · ≥ αm.

4. Convergence Analysis

The following theorem can be obtained.

Theorem 1. For system (1), if Assumptions 1 and 2 hold, then for k ∈ {0, 1, 2, · · · , T}, ϕ̂(k) is
bounded with η ∈ (0, 1].

Proof. When 2 ≤ k < m, the original estimation algorithm in (15) can be rewritten as

ϕ̂(k) =
(

1 − η
|∆nu(k − 1)|2

µ + |∆nu(k − 1)|2

)
ϕ̂(k − 1) + η

∆nu(k − 1)∆y(k)
µ + |∆nu(k − 1)|2 . (17)

From the assumptions of system (1), one has that

−∞ < η

(
∆nu(k − 1)∆y(k)
µ + |∆nu(k − 1)|2

)
< ∞, (18)
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whenever |∆nu(k − 1)∆y(k)| < ∞ since 0 < µ < µ + |∆nu(k − 1)|2. Thus, using the
triangle inequality, we have

|∆nu(k − 1)∆y(k)| ≤ l|∆nu(k − 1)|2, (19)

consequently, according to Assumption 2, we have∣∣∣∣ ∆nu(k − 1)∆y(k)
µ + |∆nu(k − 1)|2

∣∣∣∣ ≤ l|∆nu(k − 1)|2
µ + |∆nu(k − 1)|2 ≤ la1 < ∞. (20)

It is worth noting that |∆nu(k−1)|2

µ+|∆nu(k−1)|2
is monotonically increasing and bounded about

|∆nu(k − 1)|. Set

a1 = sup
k∈[0,T]

{
|∆nu(k − 1)|2

µ + |∆nu(k − 1)|2

}
. (21)

Then, there is a relation that satisfies

0 ≤
∣∣∣∣1 − η

|∆nu(k − 1)|2
µ + |∆nu(k − 1)|2

∣∣∣∣ ≤ 1 − ηa2 < 1, (22)

where

a2 = inf
k∈[0,T]

{
|∆nu(k − 1)|2

µ + |∆nu(k − 1)|2

}
.

When k ≥ m, by taking the absolute value on both sides, we obtain from (15) that

|ϕ̂(k)| =

∣∣∣∣∣∆nu(k − 1)2∆y(k)

µ + |∆nu(k − 1)|2
+

µη ∑m
j=1 αjϕ̂(k − j)

µ + |∆nu(k − 1)|2

∣∣∣∣∣ ≤ la1 + |η|
∣∣∣∣∣1 − |∆nu(k − 1)|2

µ + |∆nu(k − 1)|2

∣∣∣∣∣
∣∣∣∣∣ m

∑
j=1

αjϕ̂(k − j)

∣∣∣∣∣
≤ la1 + (η − η2a2)

∣∣∣∣∣ m

∑
j=1

αjϕ̂(k − j)

∣∣∣∣∣, (23)

where (η − η2a2) ∈ (0, 1), since the boundedness of ∑m
j=1 αjϕ̂(k − j) has been demonstrated

before. Therefore, ϕ̂(k) is uniformly ultimately bounded, as demonstrated in the above
proof. Given that ϕ(k) is bounded, it follows that ϕ̂(k) is bounded as well. Additionally,
the PPD estimation error ϕ̃(k) = ϕ̂(k)− ϕ(k) is also bounded. The proof is completed.

Theorem 2. For system (1) with the help of the HOPPD-I-MFAFOC scheme (15) and (16), if
Assumptions 1 and 2 are satisfied and

√
λ >

ερQe1

2
√

Qe1 + Qe2
,

then an error convergence rate 0 < M < 1 is introduced, ensuring that the tracking error e(k)
converges to zero as k → ∞ with 0 < ρ ≤ 1.

Proof. Using model (5), we have

|e(k + 1)| =
∣∣∆yd(k + 1)− ϕ̂(k)∆nu(k) + e(k)

∣∣. (24)

Substituting Equation (9) into the Equation (25), this yields
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|e(k + 1)| = |∆yd(k + 1) + e(k)

− ρϕ(k)ϕ̂(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))
λ + |

√
Qe1 + Qe2ϕ̂(k)|2

|

≤
∣∣∣∣(1 − ρQe1ϕ(k)ϕ̂(k)

λ + |
√

Qe1 + Qe2ϕ̂(k)|2
)e(k)

∣∣∣∣
≤

∣∣∣∣1 − ρQe1ϕ(k)ϕ̂(k)
λ + |

√
Qe1 + Qe2ϕ̂(k)|2

∣∣∣∣|e(k)|. (25)

From Assumption 2 and the reset algorithm (15), the inequality ϕ(k)ϕ̂(k) ≥ 0 is
obtained. Furthermore, one has that

[
√

λ ±
√

Qe1 + Qe2ϕ̂(k)]2 = λ + (Qe1 + Qe2)[ϕ̂(k)]2 ± 2
√

λ(Qe1 + Qe2)ϕ̂(k) ≥ 0,

and consequently

2
√

λ(Qe1 + Qe2)|ϕ̂(k)| ≤ λ + (Qe1 + Qe2)[ϕ̂(k)]2.

Then, ∣∣∣∣1 − ρQe1ϕ(k)|ϕ̂(k)|
λ + |

√
Qe1 + Qe2ϕ̂(k)|2

∣∣∣∣|e(k)|
≤

∣∣∣∣∣1 − ρQe1ϕ(k)
2
√

λ(Qe1 + Qe2)

∣∣∣∣∣|e(k)|
≤ (1 − εd)2|e(k − 1)| ≤ (1 − εd)3|e(k − 2)|
≤ · · · ≤ (1 − εd)k|e(1)|, (26)

where
d =

ρQe1

2
√

λmin(Qe1 + Qe2)

is a bounded constant. Therefore, there exists a constant

M = (1 − εd) = sup
k∈[0,T]

{∣∣∣∣1 − ρQe1ϕ(k)|ϕ̂(k)|
λmin + |

√
Qe1 + Qe2ϕ̂(k)|2

∣∣∣∣}
that represents the rate of error convergence. The proof is completed.

Theorem 3. For k ∈ {0, 1, 2, · · · , T}, u(k) and y(k) are bounded, indicating that the closed-loop
system is BIBO stable.

Proof. The following equation is obtained from Equation (9):∣∣∣∆nu(k)| =

∣∣∣∣ρϕ(k)((Qe1 + Qe2)∆yd(k + 1) + Qe1e(k))
λ + |

√
Qe1 + Qe2ϕ(k)|2

∣∣∣∣ (27)

≤
∣∣∣∣∣ ρQe1

2
√

λ(Qe1 + Qe2)

∣∣∣∣∣|e(k)|
≤ d|(e(k)|. (28)
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Apply absolute values to both sides of Equation (2):

|∆nu(k)| =
∣∣∣∣∣ k

∑
v=0

(−1)v
(

n
v

)
u(k − v)

∣∣∣∣∣. (29)

Let

ψ(v) = (−1)v
(

n
v

)
be a function of v, where

−1 < {ψ(1), ψ(2), ψ(3), . . . , ψ(k)} < 0.

The following relation can be derived from (27) and (29):

|∆nu(k)| =
∣∣∣[ψ(0) ψ(1) ψ(2) · · · ψ(k − 1)

]⊤[u(k) u(k − 1) u(k − 2) · · · u(1)
]∣∣∣

≤d|(e(k)|.
(30)

Note that

|u(k)| =|ψ(0)u(k) + ψ(1)u(k − 1)− ψ(1)u(k − 1)|
≤|ψ(0)u(k) + ψ(1)u(k − 1)|+ |ψ(1)u(k − 1)|
≤|ψ(0)u(k) + ψ(1)u(k − 1) + ψ(2)u(k − 2)|
+|ψ(1)u(k − 1)|+ |ψ(2)u(k − 2)|

· · ·
≤|∆nu(k)|+ |ψ(1)u(k − 1)|+ |ψ(2)u(k − 2)|
+ · · ·+ |ψ(k − 1)u(1)|
≤d|(e(k)|+ |ψ(1)u(k − 1)|+ |ψ(2)u(k − 2)|
+ · · ·+ |ψ(k − 1)u(1)|
≤d|(e(k)|+ |ψ(1)||u(k − 1)|+ |ψ(2)||u(k − 2)|
+ · · ·+ |ψ(k − 1)||u(1)|

≤d|(e(k)|+
k−1

∑
p=1

|u(k − p)|,

(31)

where {|ψ(1)|, |ψ(2)|, · · · , |ψ(k)|} < 1. This sequence, through a recursive relation, ex-
presses |u(k)| as a function of the input and error at previous time steps. According to
Equation (31), the following sequence of inequalities is obtained at other times:

|u(k − 1)| ≤ d|(e(k − 1)|+ ∑k−1
p=2|u(k − p)|

|u(k − 2)| ≤ d|(e(k − 2)|+ ∑k−1
p=3|u(k − p)|

· · ·
|u(2)| ≤ d|(e(2)|+ |u(1)|.

(32)

By combining the inequality sequences (31) and (32), (31) can be reformulated as follows:

|u(k)| ≤d|e(k)|+ d|e(k − 1)|+
k−1

∑
p=2

|u(k − p)|

· · ·
≤d|e(k)|+ d|e(k − 1)|+ · · ·+ d|e(1)|+ |u(1)|
≤d(Mk−1|e(1)|+ Mk−2|e(1)|+ · · ·+ M|e(1)|+ |u(1)|

<d
M

1 − M
|e(1)|+ |u(1)|.

(33)
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This implies that u(k) is bounded.The proof is completed.

5. Numerical Examples

In this section, to validate the effectiveness of the proposed method, two numerical
examples are presented.

Example 1. An unknown plant replaced by a differencing equation is represented as follows:

y(k + 1) = 0.3y(k) + 0.6y(k − 1) + 0.6 sin(πu(k)) + 0.3 sin(3πu(k)) + 0.1 sin(5πu(k)). (34)

The tracking trajectory is given as

yd(k) =

{
2, 0 ≤ k ≤ 150
4, 150 < k ≤ 300

. (35)

The controller parameters are λ = 0.1, ρ = 0.2, µ = 0.01, and η = 0.8. The predefined
number is fixed at L = 100. The fractional-order is set as n = 0.8. The high-order estimation
is configured with m = 3, and the weighting coefficients are α1 = 0.4, α2 = 0.4, and α3 = 0.2.
The high-order estimation algorithm commences at k = 4. The initial PPD is uniformly set as
ϕ̂(1) = 10 for all controllers. Moreover, the weighting coefficients is chosen as Qe = diag{1, 0.1}.

Figure 2 illustrates the tracking performance of each controller in response to the
given reference signal. Table 1 presents a comparison of the Sum Square Error (SSE) and
Sum Square Control (SSC) between fractional-order and tuned integer order. The results
indicate that the I-MFAFOC method shortens the response time and reduces SSE to a certain
extent, but requires an increased control effort. The HOPPD-MFAFOC method reduces
the overshoot of the tracking signal and decreases SSC to a certain extent, but increases
SSE. The HOPPD-I-MFAFOC method achieves a reduction in SSE and SSC, to a certain
extent, simultaneously. Moreover, all three fractional-order control methods mentioned
above significantly outperform the traditional MFAC method.
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Figure 2. Comparison of the ability of different controllers to handle abrupt reference signals [16,20].

Table 1. A comparison of SSE and SSC among different controllers.

n CONTROLLER SSE SSC

n = 1.0 MFAC 55.4360 1.2655
n = 0.8 MFAFOC 30.1095 1.2634
n = 0.8 I-MFAFOC 29.8452 ↓ 1.2702 ↑
n = 0.8 HOPPD-MFAFOC 30.1924 ↑ 1.2514 ↓
n = 0.8 HOPPD-I-MFAFOC 29.9294 ↓ 1.2575 ↓
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Example 2. To demonstrate the effectiveness of the proposed control method in tracking smooth
reference signals, a comparative experiment was conducted as follows. The system (36) contains
time-varying parameters and uncertain disturbance κ(k):

y(k + 1) = sin(y(k)) + u(k)[5 + cos(y(k)u(k))] + κ(k). (36)

Define the desired trajectory as

yd(k + 1) = 0.5 sin(k/20) + 0.5 sin(k/40). (37)

The HOPPD-I-MFAFOC method is applied to control the system (37) in simulation
experiments. The controller parameters are λ = 0.01, ρ = 0.9, µ = 0.01, and η = 0.8. The
predefined number is set to L = 100. A comparison between fractional-order and tuned
integer order with respect to SSE and SSC is presented in Table 2. The tracking performance
of each controller is shown in Figure 3.

Table 2. A comparison of SSE and SSC for different orders using HOPPD-I-MFAFOC.

FRACTIONAL-ORDER SSE SSC

0.1 1.3256 0.0313
0.3 1.2478 0.0369
0.5 1.3961 0.0448
0.7 1.8542 0.0612
1.0 4.8235 0.0582
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Figure 3. Comparison of different fractional orders when employing the HOPPD-I-MFAFOC method.

The fractional order is chosen as n = 0.3. The order of the high-order estimation
is specified as m = 3, with weighting coefficients α1 = 0.4, α2 = 0.4, andα3 = 0.2. The
high-order estimation algorithm commences at k = 4. The initial PPD is uniformly set as
ϕ̂(1) = 10 for all controllers, and the weight factor is defined as Qe = diag{1, 0.2}.

Figures 4 and 5 provide a trajectory tracking comparison among the MFAC, MFAFOC,
and HOPPD-I-MFAFOC methods for the ideal case. The MFAC parameters are set to
λ = 0.01, ρ = 0.5, µ = 0.01, and η = 0.5, demonstrating superior performance. Additionally,
performance enhancements are evident when comparing SSE and SSC indices in Table 3.
The results indicate that HOPPD-I-MFAFOC exhibits a 19.46% reduction in SSE and a
13.18% reduction in SSC compared to MFAFOC in tracking the target signal.
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Figure 4. Trajectory tracking results for MFAC, MFAFOC, and HOPPD-I-MFAFOC [19,23].
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Figure 5. Comparison of the tracking error convergence among MFAC, MFAFOC, and HOPPD-I-
MFAFOC [19,23].

Table 3. A comparison of SSE and SSC with different control methods. (κ(k) = 0).

CONTROLLER SSE SSC

MFAC 5.1984 0.0759
MFAFOC [19] 1.5492 0.0425

HOPPD-I-MFAFOC 1.2478 ↓ 0.0369 ↓

Figures 6 and 7 demonstrate the robustness of the method, verified by introducing an
uncertain disturbance based on repeating the experiment described above. The experiment
illustrates the enhanced robustness of the new control method. Additionally, Table 4
provides a comparison between the MFAC, MFAFOC, and HOPPD-I-MFAFOC methods
in terms of SSC and SSE for the case with a disturbance. The results show that HOPPD-I-
MFAFOC exhibits a 26.43% reduction in SSE and a 9.71% reduction in SSC compared to
MFAFOC in tracking the target signal.

Table 4. A comparison of SSE and SSC with different control methods. (κ(k) ̸= 0).

CONTROLLER SSE SSC

MFAC 5.8112 0.0951
MFAFOC [19] 1.8500 0.0546

HOPPD-I-MFAFOC 1.3611 ↓ 0.0493 ↓
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Figure 6. Tracking performance with disturbance κ(k) [19,23].
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Figure 7. Tracking error convergence with disturbance κ(k) [19,23].

6. Conclusions

In this paper, based on the compact-form fractional order dynamic linearization, an
improved controller was applied to uncertain discrete-time nonlinear systems. Utilizing
the fractional-order short-memory characteristics enhances the tracking performance of
the output and the system’s disturbance rejection capability. Additionally, the introduction
of the tracking error rate of change and the incorporation of a high-order estimation
algorithm for PPD complement each other, further improving the controller’s performance.
Our future work may focus on improving the MFAILC protocol, enabling the use of the
fractional-order in the iterative axis and elsewhere in MFAC.
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