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Abstract: Semantic segmentation of remote sensing (RS) images is vital in various practical appli-
cations, including urban construction planning, natural disaster monitoring, and land resources
investigation. However, RS images are captured by airplanes or satellites at high altitudes and long
distances, resulting in ground objects of the same category being scattered in various corners of the
image. Moreover, objects of different sizes appear simultaneously in RS images. For example, some
objects occupy a large area in urban scenes, while others only have small regions. Technically, the
above two universal situations pose significant challenges to the segmentation with a high quality
for RS images. Based on these observations, this paper proposes a Mask2Former with an improved
query (IQ2Former) for this task. The fundamental motivation behind the IQ2Former is to enhance
the capability of the query of Mask2Former by exploiting the characteristics of RS images well. First,
we propose the Query Scenario Module (QSM), which aims to learn and group the queries from
feature maps, allowing the selection of distinct scenarios such as the urban and rural areas, building
clusters, and parking lots. Second, we design the query position module (QPM), which is developed
to assign the image position information to each query without increasing the number of parameters,
thereby enhancing the model’s sensitivity to small targets in complex scenarios. Finally, we propose
the query attention module (QAM), which is constructed to leverage the characteristics of query
attention to extract valuable features from the preceding queries. Being positioned between the dupli-
cated transformer decoder layers, QAM ensures the comprehensive utilization of the supervisory
information and the exploitation of those fine-grained details. Architecturally, the QSM, QPM, and
QAM as well as an end-to-end model are assembled to achieve high-quality semantic segmentation.
In comparison to the classical or state-of-the-art models (FCN, PSPNet, DeepLabV3+, OCRNet,
UPerNet, MaskFormer, Mask2Former), IQ2Former has demonstrated exceptional performance across
three publicly challenging remote-sensing image datasets, 83.59 mIoU on the Vaihingen dataset,
87.89 mIoU on Potsdam dataset, and 56.31 mIoU on LoveDA dataset. Additionally, overall accuracy,
ablation experiment, and visualization segmentation results all indicate IQ2Former validity.

Keywords: semantic segmentation; remote-sensing image; transformer; Mask2Former; query

MSC: 68T45

1. Introduction

With the rapid development of remote-sensing technology, a large number of RS
images are captured daily by satellites, airplanes, or drones. Understanding the content in
RS images has become an increasingly urgent practical need. In the field of computer vision,
natural images (e.g., COCO [1,2], ADE20K [3], Cityscapes [4] and Mapillary Vistas [5]) are
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captured within a local region at or near the ground level for specific purposes, which
render a visual center, and have spatially contiguous distributions for the same categories.
In contrast, RS images (e.g., ISPRS [6] and LoveDA [7]) are taken from a high-altitude
perspective, causing ground objects to be scattered in various corners of the image. In
addition, objects of different sizes appear simultaneously in RS images. This situation can
be witnessed in urban scenes where some occupy large areas, and some have only small
regions. For instance, road surfaces usually occupy a large area, while cars only occupy a
minimal space. Recently, the techniques for understanding natural images have become
rich in the field of computer vision. However, practices have demonstrated that directly
applying those existing models to complex RS images could not yield satisfactory results
due to the significant difference between their visual appearances.

Semantic segmentation is a fundamental image understanding method to determine
specific class labels at the pixel level. It is a delicate yet challenging task, especially for those
sophisticated high-resolution RS images with rich ground details and many multi-scale
objects. Recently, the techniques for this task have been primarily advanced by follow-
ing those in the field of deep learning for natural images. Since the fully convolutional
network [8] was first proposed, convolution has been used as the most common basic
operation to construct the neuron layer for semantic segmentation models for quite a long
time, such as the well-known PSPNet [9], UNet [10], and DeepLabv3+ [11], and so on.
However, the emergence of vision transformer [12] has changed this paradigm. A large
amount of transformer-based work has become the state-of-the-art semantic segmentation
models, such as MaskFormer [13], and Mask2Former [14], and so on. Most notably, Mask-
Former [13] rethinks the per-pixel classification as the mask classification with learnable
queries facilitated by a DETR-like [15] architecture. Later, Mask2Former [14] has further in-
corporated together the masked attention mechanisms and multi-scale features, rendering
a powerful capability for visual representation. This observation motivates us in this study
to investigate its ability with an improved model to segment complex RS images.

More specifically, the purpose of this study is to design an improved model by exploit-
ing the query of the Mask2Former [14] to capture well the characteristics of remote-sensing
images for achieving higher segmentation performance. In this study, the query will be
improved in three pathways to adapt to the RS scenes, which yields a new model given
neural architectural design. First, we propose a query scenario module. Considering the
complexity of RS scenes, such as those in the clusters of buildings, field landscapes, and
road scenarios, it is intuitively suggested that different scenarios should be associated with
various queries. Additionally, the substantial number of classes in natural scenes inevitably
results in many learnable queries, which increases the computational load and the number
of parameters in the model in the original Mask2Former [14]. Such an increase could be
more significant in query due to the various scenarios of multi-scale objects scattered in
the RS images. Therefore, we design the QSM to enhance the model’s adaptability to
distinguish various scenarios adaptively. Technically, this module can decrease the number
of queries, thereby reducing the computational load and the number of parameters in the
model. Simultaneously, it can select the queries suitable for different scenarios and thus
help adjust the scene adaptability of the model.

Second, we introduce a query position module. The motivation for designing this
module is to consider the variations in the spatial information of the targets in RS images.
For instance, in natural scene images, cars and pedestrians are typically located in the
bottom half of the image, while the sky and trees are generally found in the upper region.
In contrast, in RS images, the target positions are not fixed; for example, the car may
appear at any position in the image. Consequently, compared to natural images, the spatial
information of the target holds greater significance for transformer-based models in remote-
sensing scenarios. However, in conventional transformer-based models, only the simple
encoding like the cosine position encoding is incorporated into the image features [12],
while a learnable embedding is added later to the queries. For the queries to be learned,
this could result in insufficient position awareness of the images. To this end, the QPM is
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proposed to address this issue, which integrates the cosine position encoding of the input
image feature together into the queries. This enhancement aims to increase the model’s
position sensitivity in RS images, thereby improving the segmentation performance.

Finally, we propose a query attention module since mining effective information from
visual features, such as those in the channel or spatial domain, has been demonstrated
to be a practical approach for addressing a variety of visual tasks [16–20]. Inspired by
the ODConv [16], we believe that the model’s performance can be enhanced by explic-
itly incorporating learnable feature-attention modules into the learnable queries of the
transformer-based model [14]. Based on this justification, the QAM is developed to spatially
position those discriminative features between the duplicate transformer decoder layers.
As a result, QAM can ensure the comprehensive utilization of the supervisory information
and the exploitation of those fine-grained details, and thus help extract the pertinent query
features. From the model performance perspective, by introducing the QAM, our model
can be trained to improve the representation quality of the learnable queries in the initial
stages of the transformer decoder layers. In the subsequent transformer decoder layers, the
QAM can effectively calibrate and accumulate pertinent information from queries, thereby
enhancing the model’s response to varying image features.

The key of our model lies in the innovation of the queries in the Mask2Former [14],
taking into account the differences between RS scenes and natural ones. The main contribu-
tions and primary work can be summarized as follows:

• We introduce the query scenario module. Considering the diversity of scenarios and
the finite categories within RS datasets, we adaptively select effective queries as the in-
put for the transformer decoder layer. This approach aims to enhance the model’s per-
formance while reducing the number of model parameters and computational load.

• We introduce the query position module. Regarding the complexity of positions
in remote-sensing images, we incorporate the position encoding of image features
into queries. This strategy is intended to further enhance the model’s capacity to
perceive targets.

• We propose the query attention module. We incorporate attention modules between
duplicate transformer decoder layers to better mine valuable information from learn-
able queries. This approach is specifically designed to augment the extraction of valid
query features.

• The performance of IQ2Former for segmenting RS images has been assessed on three
challenging public datasets, including the Vaihingen dataset, the Potsdam dataset, and
the LoveDA dataset. The comprehensive experimental results and ablation studies
demonstrate the effectiveness of the proposed model, including numerical scores and
visual segmentation.

The remaining chapters are structured as follows: Section 1 describes the background
information, motivation, objectives, and hypotheses of this study. Section 2 reviews the
related works. Details of the proposed method are provided in Section 3. Experimental
results are presented in Section 4. Discussions can be found in Section 5, followed by
conclusions in Section 6.

2. Related work
2.1. Transformer for Semantic Segmentation

Semantic segmentation is a fundamental computer vision task that performs pixel-level
classification. Currently, there are two mainstream mechanisms for semantic segmentation:
CNN-based and Transformer-based semantic segmentation. In the early research on semantic
segmentation with the CNN-based mechanism, researchers took a technical roadmap along
the fully convolutional networks (FCNs) [8] as the dominant approach and focused on aggre-
gating the long-range context in the feature map. This mechanism has enriched the methods
for image semantic segmentation. Some famous models were developed, including the De-
convNet [21], RefineNet [22], PSPNet [9], UNet [10], OCRNet [23], and DeepLabv3+ [11],
HRNet series [24–26], and so on. These models were all developed based on the encod-
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ing and decoding frameworks with convolution operations. Subsequently, image semantic
segmentation based on these frameworks has been greatly developed and widely used in
many applications.

With the proposal of the transformer [27], the transformer-based model became the
mainstream mechanism of deep learning technology. As for semantic segmentation, main-
stream methods [28–30] gradually replaced those traditional CNN-based backbones with
transformer-based architectures. Segmenter [28] was the first architecture to extend the
vision transformer [12] into the semantic segmentation task. Later, SETR (segmentation
transformer) [30] utilized the self-attention mechanism of the transformer to establish global
contextual relationships. SegFormer [29] employs the transformer to construct the encoder
to enhance the feature representation ability for semantic segmentation. As a whole, the
transformer employs a multi-layer perceptron to aggregate information from different
layers, which renders a new mechanism that fully utilizes global and local attention to
increase the ability of representation learning. However, the above methods only focus
on replacing the backbone with the transformer-based architecture and lack the targeted
research on segmentation task with the transformer-based mechanism.

Interestingly, MaskFormer [13] and Mask2Former [14] present a mask classifier with
learnable queries and specialized designs for mask prediction under transformer-based
semantic segmentation. Later, based on the Mask2Former [14], OneFormer [31] presented
a universal image segmentation framework that unified segmentation with a multi-task
train-once design. Recently, Segment Anything (SAM) [32] first explored transformer-based
interactive open-world segmentation. Semantic SAM [33] further extended SAM into open
vocabulary segmentation, and Faster Segment Anything [34] applied the SAM to mobile
applications by replacing the heavyweight transformer encoder with a lightweight one.
However, the above methods only focus on natural scenes, lack consideration for RS scenes,
and cannot effectively perform segmentation in specific RS images. Given that semantic
segmentation is one of the essential sub-tasks for RS images, these methodologies have
significantly contributed to our work.

2.2. Semantic Segmentation for RS Images

For ordinary natural images taken at or near the ground level, researchers have
devoted tremendous efforts and achieved remarkable success in semantic segmentation.
While for RS-type semantic segmentation, there is still much worthy of research efforts to
achieve higher superior performance to RS images [35].

Regarding chronological order, the first surging method is based on CNN models.
FCN [8] is the pioneering work in semantic segmentation in the era of deep learning,
followed by [9–11,23,36]. With the usage of encoder/decoder backbones, some variants
have been constructed for this issue [37–41]. For example, the cascaded network with
context information fusion is developed to extract confusing human-made objects [40],
and the shuffling network is employed to enhance the feature learning ability [38]. Later,
Guo et al. [41] adopted a learnable gate mechanism during feature fusion, further improv-
ing the fitting ability of the model. Additionally, a multi-level aggregation network [42]
extracts deep global features by learning the inter-relationships of all positions in the context
and filters redundant channel information as well enhances the model’s ability to recover
detailed information. These research studies have primarily enhanced the performance of
the semantic segmentation for RS images.

Subsequently, more complex models have been considered for segmenting RS im-
ages. Specifically, Diakogiannis et al. [43] developed an encoder–decoder method with
multi-tasking inference sequentially on object boundary, segmentation masks, and the
reconstruction of the input. Zhang et al. [44] employed the high-resolution network with
different branches to extract features at both the local and global levels. Xu et al. [45]
constructed a high-resolution context extraction network to fuse multi-scale contextual
information. Later, attention modules in different views [46–48] were designed for fine
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segmentation. These models achieved good segmentation in different ways for local, global,
and multi-scale feature fusion.

There are a few works on the semantic segmentation of RS images under the neural
architecture search (NAS) frameworks in the literature. Typically, Zhang et al. [49] em-
ployed a directed acyclic graph with tricks of Gumbel-max operations under a differentiable
searching framework. RS images include various scenes such as cities, rural areas, urban
villages, farms, etc., which are suitable for domain adaptation models to save annotation
resources. Accordingly, Shi et al. [50] tackled the domain shift problem by employing
adversarial learning to tune the semantic segmentation network to obtain similar outputs
for input images from different domains adaptively. Later, Wang et al. [51] proposed the
decoupling NAS framework with a hierarchical search space at the path level, connection
level, and cell level for RS objects. Broni-Bediako et al. [52] developed an evolutionary
NAS method for this task. In their framework, gene expression programming and cellular
encoding are employed to represent the encoding scheme for block-building. More recently,
Guo et al. [26] used HRNet [24] as the supernet and accelerated proximal optimization
algorithm in the search to obtain a better-performing pruning model. However, although
these approaches achieved a good performance, high computational complexity degrades
their real-world applications.

Recently, the models based on the transformer have also achieved great success in
RS images. Wang et al. [53] introduced the Swin Transformer [54] as the backbone to
extract the context information and design a novel decoder of the densely connected
feature aggregation module to restore the resolution and produce the segmentation map.
Subsequently, the transformer was also employed as the backbone in this task [53,55]. Later,
Ye et al. [56] constructed modules to segment the different scales of RS objects with the
transformer and multi-scale feature representation.

Technically, the work that combines CNN and transformer can use both to complement
each other’s strengths and weaknesses. He et al. [57] embedded the Swin Transformer [54]
into the classical CNN-based UNet [10]. The encoder of [58] was used to extract features
to achieve a better long-range spatial dependencies modeling, and the decoder was used
to draw on some effective blocks and successful strategies of CNN-based models in RS
image segmentation.

In summary, architecturally, almost all of the methods developed for RS images inherit
the general framework of semantic segmentation for natural images by modifying or
adding some modules that can utilize the knowledge about the RS scenes or the objects
themselves. Although these semantic segmentation approaches for natural images have
achieved a good performance in terms of accuracy, directly applying them to RS images
could not yield satisfactory results. This is largely due to the complexity of the RS images,
which contain multi-scale objects with different visual appearances and spatial resolutions.

3. Methods

The section will first revisit the procedure of MaskFormer [13] and the core innovation
of Mask2Former [14] in Section 3.1. Then, the overall framework of our methods will be
presented in Section 3.2, which is explicitly designed for semantic segmentation of RS images.
Architecturally, our model comprises a query scenario module, a query position module, and
a query attention module, which will be introduced, respectively, in Sections 3.2.1–3.2.3.

3.1. Preliminary

Transformer [12] has demonstrated a powerful learning ability for visual represen-
tation. Some variants of the transformer have been developed to perform specific visual
tasks [13,29,30,54,59]. Here, we briefly introduce the highly realized MaskFomer and
Mask2Former for clarity.

Rather than formulating semantic segmentation as a per-pixel classification task,
MaskFormer [13] predicts a set of binary masks, each corresponding to a single global class
label prediction. Under this framework, the query in MaskFormer [13] plays a crucial role
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in successfully segmenting images, ensuring that the order of binary masks is always the
same as the order of the predicted class results. As a result, the queries are also associated
with the intermediate results, which are then taken as the input of the next decoder layer in
the transformer hierarchically for further abstract representation.

A recent study [59] has shown that cross attention could require much training time to
learn to pay attention to local object regions. To remedy this drawback, Mask2Former [14]
was developed in terms of masked attention. Methodologically, it is actually a variant
of cross-attention that only focuses on the foreground region of the predicted mask for
each query. Mathematically, the masked attention is achieved by performing the follow-
ing operation:

Masked-Attention(Q, K, V) = softmax
(
M+

Q KT
√

dk

)
V, (1)

where Q ∈ RN×D refers to N D-dimensional query features. K, V ∈ RHW×dk represents
HW dk-dimensional keys and value features, respectively. In Equation (1), H and W
denoted the spatial resolution of the image features. The mask M at the feature location
(x, y) is then determined as follows:

M(x, y) =

{
0, i f M(x, y) = 1
−∞, otherwise,

(2)

where M ∈ {0, 1}N×HlWl represents the binarized output of the resized mask prediction of
the previous transformer decoder layer. It is worth noting that Equation (1) turns out to be
the standard cross attention when omitting M.

3.2. Overview of Our Method

The overall framework of our model is depicted in Figure 1, which is named IQ2Former
for convenience. Architecturally, it inherits the encoder/decoder meta-architecture in the
Mask2Former [14]. In Mask2Former [14], the image first passes through the image encoder
and pixel decoder in sequence, and then the first three feature maps generated by the pixel
decoder are sent to the transformer decoder to generate the mask and class corresponding
to each query. Then, the last feature maps of the mask and pixel decoder are multiplied
to obtain the foreground feature maps, and each foreground feature map and class are
multiplied to obtain the final segmentation result. With this backbone, we propose three
improvements to the query to achieve higher performance in RS images.

First, to improve the adaptability of our model to various RS scenes, the query scenario
module is designed in Section 3.2.1. This module aims to select an appropriate number
of queries and perceive several common scenarios for RS images. Second, to intensify the
sensitivity of our model to the positions of the objects in RS images, the query position
module was developed in Section 3.2.2. This module integrates together the cosine position
encoding and the input image feature into the queries. Finally, to further enhance the ability
of our model to extract the valid features of the queries, the query attention module is
proposed in Section 3.2.3. Being positioned between the duplicate transformer decoder
layers, this module aimed to help strengthen the extraction of the pertinent query features
and weaken the impact of the redundant features.

As a whole, the three queries obtained from the above three independent modules
are formally named Query∗QSM, Query∗QPM, and Query∗QAM in the following subsections.
Because all improvements are based on queries, our model is named IQ2Former, and the
abbreviation of Mask2Former with improved query.
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Figure 1. The overview of the IQ2Former. The top-right corner is the legend, which shows the full
names of our three improvement modules.

3.2.1. Query Scenario Module

In contrast to traditional transformer models such as SegFormer [29], the first query
in the MaskFormer [13,14] is randomly initialized and not derived from image features.
To remedy this problem, we take one layer feature of the pixel decoder as the input of the
query scenario module to utilize the image’s information fully. As illustrated in Figure 1,
assuming X ∈ RC×H×W is the input image, we can obtain the consecutive four output
features Featurei, i = 1, 2, 3, 4 in the pixel decoder. The size of the feature Featurei is
Ci × H

2i+1 × W
2i+1 , where Ci represents the dimensions of the i-th stage output features. As

shown in Figure 2, the last layer Feature1 ∈ RC1× H
4 ×W

4 with high resolution is employed as
the input of the QSM since it contains the most image detail information in pixel decoder.

SoftM
ax

Linear

R
eLU

Linear

G
AP ...

Figure 2. The details of the query scenario module. The block marked as 1/4 is the last layer from the
pixel decoder.

For the natural image database ADE20K-Full [3], where there are a total of 847 classes,
as demonstrated in Mask2Former [14], each query needs to memorize 8.47 classes on
average. The substantial number of classes in natural scenes inevitably leads to a large
number of learnable queries, thereby increasing the computational load and the number
of parameters. On the contrary, remote scenes typically have fewer classes. Theoretically,
this allows us to employ fewer queries for computation reduction. However, using fewer
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queries may directly result in a decrease in performance, as demonstrated in [14]. Based on
the observation of different kinds of datasets and the analysis of the trial results mentioned
above, we innovatively split a large number of queries in Mask2Former [14] into several
groups of a small number of queries. As shown in Figure 2, the operation can be formatted
as follows:

w = SoftMax(Linear2(ReLU(Linear1(GAP(Feature1))))), (3)

where GAP stands for global average pooling, and is responsible for transforming Feature1
from a spatial tensor to a vector with a length equal into the number of channels C1.
Assuming the output dimension of Linear2 is n, we can obtain the selection weights
w = {w1, w2, . . . , wn} ( ∑n

i=1 wi = 1 ) through the SoftMax function, and then weight
learnable sub-queries q = {q1, q2, . . . qn} with fewer numbers using w. The ultimate query
is expressed by:

Query∗QSM =
n

∑
i=1

wq = w1q1 + w2q2 + . . . + wnqn, (4)

where qi ∈ RN×D, i ∈ 1, 2, . . . , n. Here, N refers to the number of each sub-query, and D
represents the dimension of each query. The final query obtained by the query scenario
module is Query∗QSM.

It should be emphasized that the strategy of the query grouping is only performed in
the first round of querying. Each remaining transformer decoder adopts the same query
passing strategy of the Mask2Former [14], but the query length is still N. In summary,
our QSM can technically adapt to various scenarios with fewer queries according to the
characteristics of different RS scenarios. The discussion in Section 5 also confirms our
hypothesis in detail.

3.2.2. Query Position Module

Natural images are captured using vanilla mobile devices for specific purposes, usually
with a visual center, and the distribution of the same categories in the images is often
contiguous. On the contrary, RS satellites capture all the information on ground appearance
from a high-altitude perspective, causing ground objects to be scattered in various corners
of RS images.

Compared with natural images, significant differences in target positions in RS scenes
can increase the difficulty of semantic segmentation. Therefore, we construct the query
position module to strengthen the IQ2Former’s sensitivity to the position of the target
in the remote scene. This is achieved by incorporating an additional image and spatial
position information into the learnable query, as depicted in Figure 3. Specifically, we
define fQ, fK, and fV as a linear transformation of the given queries Query and the visual
features Featurei, i = 2, 3, 4 outputted by the pixel decoder. Consequently, Q = fQ(Query),
K = fK(Featurei), and V = fV(Featurei), i = 2, 3, 4, represent the query, key, and value
features, respectively.

To further incorporate additional image features into the learnable query, we first
obtain the mixed intermediate features, which contain the image features. This is achieved
through the dot product of the query feature Q and key feature K. The formula is presented
as follows:

Wattention = QKT = fQ(Queryb + POSQueryb) · fK(Featurei + POSFeature)
T , i = 2, 3, 4, (5)

where POSQueryb represents a learnable query position embedding with the same dimen-
sions as Queryb, and POSFeature denotes a cosine position encoding with the same dimen-
sions as Featurei. The intermediate attention weight of the mask-attention is expressed as

Wattention ∈ RN× HW
22i+2 , where N is the number of queries.

Additionally, to inject the cosine position encoding into the learnable query, we then
multiply the position encoding of the input image features with the attention weight
Wattention. The ultimate query can be represented as follows:
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Query∗QPM = Wattention · POSFeature + Queryb+1, b = 1, 2, . . . , B − 1, (6)

where B is the total number of blocks in the pixel decoder. The final query obtained by the
query position module is Query∗QPM.

The QPM was subtly conceived, where Wattention records patches that each query is
interested in. After multiplying by POSFeature, the position encoding of the patch of interest
in each query is recorded. By coincidence, the shape of the final product is the same as the
query, which is the basis for the addition of Equation (6).

As can be seen from the formulation in Equation (6), the position information is
explicitly embedded into the learning process. In this way, the location diversity of the
target in RS scenes could help improve segmentations with high quality. As a result, after
the above QPM is performed, the query learned by the IQ2Former could be more sensitive
to the mask features in different locations.

Notably, Wattention is a part of Equation (1) that already exists, and POSFeature is also a
variable that was already used. Therefore, there is no increase in the number of parameters
in our QPM, and the convergence speed of the mask attention was unaffected.

Fe
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ur
es

Im
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e 
Po

si
tio

n

Q
ue

ry
 P

os
iti

on 

FFN

self-attention

masked attention  attention weight 

mask

Image
Position

Figure 3. The details of query position module. The image position in the dashed box is identical to
that in the solid box, drawn this way to minimize the mess caused by overlapping lines.

3.2.3. Query Attention Module

Enormous and tiny objects appear simultaneously in RS images, which poses a chal-
lenge for the segmentation of distinct objects. For example, road surfaces usually occupy a
large area, while cars only occupy a minimal region. Therefore, low-level image features
that contain rich detail information are actually crucial for fulfilling the segmentation of
RS images. However, Mask2Former [14] feeds the successive feature maps from the pixel
decoder directly into the transformer decoder in a round-robin fashion. For example, in the
original Mask2Former, query learning in the transformer–decoder layer takes the visual
features with a resolution of 1/8 as its last input features in the current transformer–decoder
layer while employing those with 1/32 as the first input features in the next transformer–
decoder layer. Thus, the large-scale span in visual information between the repeated
transformer–decoder layers could lead to difficulty in capturing the details of the visual
information. Furthermore, previous research [13] has demonstrated that a single-layer
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transformer decoder can also deliver competitive performance. This fact indicates that it is
unnecessary to design highly hierarchical layers to fulfill this task.

Based on the above reasons, we introduce the query attention module, designed to
augment the model’s capacity to extract valid features from the queries while weakening
the influence of superfluous features. Specifically, as demonstrated in Figure 1, the QAM
will be positioned parallel between the duplicated transformer–decoder layers to help
extract more fine-grained visual features. As a result, the information transformation is
always kept within the features of high resolution without being transformed from low
resolution to high resolution.

However, traditional convolution is not appropriate to process queries. In addition, due
to the different heights and widths of images, the two dimensions of the query are totally
different in essence. Drawing inspiration from the ODconv [16], our QAM introduces a multi-
dimensional attention mechanism, employing a parallel strategy to learn diverse attentions
for the learnable queries from different dimensions. Furthermore, the sigmoid operation is
capable of ensuring that the weight assigned to the previous transformer decoder layer is
between 0 and 1, which means that the current transformer decoder layer dominates more
in the fused query. As illustrated in Figure 4, the weight along each direction is computed
by GAP + Linear + ReLU + Linear + Sigmoid operations. Considering that learnable queries
Query ∈ RN×D have two dimensions, the query fusion is then designed as follows:

Query∗QAM = (α1Query1, :
l + α2Query2, :

l + . . . + αNQueryN, :
l ) ⊙

(β1Query :, 1
l + β2Query :, 2

l + . . . + βDQuery :, D
l ) + QueryN

l+1,

l = 1, 2, . . . , L − 1,

(7)

where ⊙ denotes the multiplication operations along different dimensions of the Query.
Two dimensions of Query i, j

l are dimension i ∈ [1, N] and dimension j ∈ [1, D]. The
attentions introduced in Equation (7) are α = [α1, α2, . . . , αN ] and β = [β1, β2, . . . , βD]. In
addition, L is the total number of layers in the transformer–decoder. Thus, in this way, the
final query obtained by the QAM can be taken as Query∗QAM for further query fusion.

GAP

Linear

ReLU

Linear

Sigmoid

Linear

Sigmoid

... ...

QPM QPMQPM

Figure 4. The details of the query attention module. The query in the dashed box is identical to
Queryl in the solid box, drawn this way to minimize the mess caused by overlapping lines.
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As can be seen from the formulation in Equation (7), the QAM could mine effective
information from the latent visual features, such as those in the channel or spatial domain.
Therefore, our QAM can ensure the comprehensive utilization of the supervisory informa-
tion and the exploitation of those fine-grained details, and thus help extract the pertinent
query features for a higher performance. Furthermore, we take zero initialization for the
linear in QAM inspired by ControlNet [60]. To this end, our QAM can identify the relevant
features within the query in a gradual process without extra supervisory information.

4. Experiment
4.1. Data Description

The performance of the proposed IQ2Former has been evaluated on three public
challenging benchmark datasets, which all focus on the semantic segmentation of remote
sensing images. The details about these datasets are described in Table 1. The Vaihingen [6]
and Potsdam [6] datasets ceased updating in 2018, forming the appearance we see now.
The paper of LoveDA dataset [7] was published in 2021. The ground truth of the Vaihin-
gen [6] and Potsdam [6] datasets encompasses six categories: impervious surface, building,
low vegetation, tree, car, and cluster/background. We omit the segmentation results of
meaningless cluster/background. The ground truth of the LoveDA dataset consists of
seven categories: building, road, water, barren, forest, agriculture, and background.

Table 1. Comparison of the dataset used. # represents numbers.

Dataset Year GSD DSM # Classes # Images # Pixels # Croped Pixels # Traning # Testing

Vaihingen [6] 2018 9 cm 71.02 5 33 2494 × 2064 512 × 512 344 398
Potsdam [6] 2018 5 cm 71.48 5 38 6000 × 6000 512 × 512 3456 2016
LoveDA [7] 2021 30 cm 78.23 7 5987 1024 × 1024 1024 × 1024 2522 1669

4.2. Baseline Model Description

• FCN: Fully convolutional network [8] is the pioneering work in semantic segmentation
in the deep learning era. FCN replaces fully connected layers with convolutional layers,
enabling the network to process input images of arbitrary sizes and generate output
with the exact spatial dimensions. Nowadays, FCN is the most crucial baseline in
semantic segmentation tasks.

• PSPNet: Pyramid scene parsing network [9] utilizes a pyramid pooling module
that gathers contextual information from the diverse areas of an image, enabling
the network to have a holistic understanding of the scene. This module effectively
captures both local and global contexts by hierarchically partitioning the input feature
map and performing spatial pyramid pooling operations.

• DeepLabV3+: DeepLabv3+ [11] uses dilated convolution to effectively enlarge the
receptive field of filters, allowing the network to capture more contextual information.
Additionally, the feature pyramid network [61] is introduced to combine features at
various spatial resolutions. DeepLabV3+ was almost the most advanced algorithm in
semantic segmentation before the advent of transformer.

• OCRNet: Object-contextual representations network [23] obtains coarse segmentation
results from a general backbone and object region representation from gathering pixel
embeddings in it. The second step is computing the relationship between each pixel
and each object region. The final acceptable segmentation result was obtained by
enhancing the expression of each pixel with the object-contextual representation.

• UPerNet: Unified perceptual parsing network [62] mimics the human recognition of
multiple levels of the visual world and unifies the datasets containing various scenes,
objects, parts, materials, and textures. Using a feature pyramid network [61] and
different detection heads, UPerNet can be applied to multi-task learning in addition
to semantic segmentation.

• MaskFormer: Rather than predicting the class of each pixel point, MaskFormer [13] is
first proposed to predict a set of binary masks associated with a single global class label
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prediction. Under the supervision of both mask loss and category loss, MaskFormer
has achieved excellent performance in both semantic and panoptic segmentation tasks
under the supervision of both mask and category loss.

• Mask2Former: The critical component of Mask2Former [14] is masked attention,
which extracts local features by confining cross-attention within the predicted mask
regions. In this way, the research effort is reduced by at least three times while
improving performance by a significant margin. Mask2Former is capable of addressing
all image segmentation tasks, including the panoptic, instance, or semantic ones.

4.3. Experiment Details

Backbone: Our IQ2Fomer is compatible with any backbone architecture. For a fair
comparison, the standard convolution-based ResNet with 50 layers, ResNet with 101 layers,
and the transformer-based Swin-transformer (Swin-L) are used as our visual backbone. All
backbones are pre-trained on the ImageNet-1K [63] if not stated otherwise.

Pixel decoder: As shown in Figure 1, four different resolution outputs of the pixel
decoder are expressed as Fi, where i = 1, 2, 3, 4. They are feature maps with resolutions
1/32, 1/16, 1/8, and 1/4, respectively, in our experiments. Similarly to Mask2Former [14],
the same multi-scale deformable attention transformer (MSDeformAttn) [64] is utilized as
our pixel decoder.

Transformer decoder: Totally, there are three consecutive transformer decoders in
our IQ2Former (i.e., nine layers as a whole). the QSM is the input of the first transformer
decoder of our IQ2Former. Note that the number of queries in the Vaihingen dataset
and Potsdam dataset is set to 20, while the number of queries in the LovaDA dataset is
taken as 40. The reason for this phenomenon is discussed in Section 5. Each transformer
decoder contains three QPMs and one QAM. Among them, the role of the QPM is to
enhance the query’s perception ability of image position. An auxiliary loss is added to
every intermediate transformer decoder layer, and a competitive query can be obtained.
Therefore, the proposed QAM is used to explore the query output capability of the previous
layer of the transformer decoder further.

Losses: The comprehensive training loss has two components: the classification loss
and the mask loss. The classification loss is formulated by a cross-entropy loss, denoted
by Lcls = Lce. The mask loss integrates the binary cross-entropy loss and the dice loss [65],
which is depicted as Lmask = Lbce + Ldice for clarity. The overall training loss can be
expressed as L = λclsLcls + λmaskLmask, where λcls and λmask are the hyper-parameters.
According to the default settings of Mask2Former [14], in our study, we also set the balance
weight of the overall training loss to be λcls = 2.0 and λmask = 5.0, respectively.

Inference: Assuming that Ocls ∈ RN×(K+1) and Omask ∈ RN×H×W are predicted per-
pixel embeddings and binary masks, respectively. Here, K represents the total number of
object classes, and N is the number of object queries. O = Ocls × Omask, O ∈ R(K+1)×H×W

performs matrix multiplication and sums on the dimension of the query. In this way,
the dimension of the query is eliminated, and a probability distribution is obtained for
each pixel of the output feature. The ultimate segmentation results are argmax O, without
considering the no-object class ∅.

Batch size and learning rate: In our experiments, the batch size is set to 8, and all
models are trained for 80 k iterations. The AdamW [66] and the poly [67] learning rate
schedule with an initial learning rate of e−4 and a weight decay of 0.05 were adopted for
both ResNet and Swin-transformer backbones.

Data augmentation: During the stage of training, random scale jittering (between 0.5
and 2.0), random horizontal flipping, random cropping, as well as random color jittering
are used to perform data augmentation. During the stage of testing, test-time augmentation
(TTA) was utilized in our experiments. Specifically, it creates multiple augmented copies
for each image in the test set, allowing the model to make predictions for each image, and
then returns the set of these predictions and the final results with the highest number of
votes. Random flip and multi-scale testing are adopted in this paper.
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Metric: IoU (intersection over union) is the quotient of the intersection and union
between the predicted segmentation and annotation regions. mIoU (i.e., mean intersection
over union) is the mean IoU of all classes. OA (overall accuracy, also known as pixel
accuracy) is all correctly classified pixels divided by all pixels.

Environment: All models are trained with four A100-PCIE graphics cards with a
memory capacity of 40 GB. The conda environmental configuration is as follows: Python
3.8.17, NumPy 1.24.3, PyTorch 2.0.0, TorchVision 0.15.0, CUDA version 11.7, MMCV [68]
2.0.1, and MMSegmentation [69] 1.1.0.

4.4. Experiment Results

To provide a thorough comparison of the models, we list the numerical scores of the
OA and mIoU obtained by the eight models on the Vaihingen, Potsdam, and LoveDA
datasets in Tables 2–4, respectively. All the values are obtained from the corresponding
test images and are then averaged across all categories. Note that the two methods are
adopted to output the final performance. The first method is to directly calculate OA and
mIoU on the images in the test dataset. The second method is to calculate OA and mIoU
via test-time augmentation, which augments multiple copies for each testing image by
randomly flipping and resizing.

As can be seen from the results of the comparisons in these tables, our IQ2Former
model outperforms other baseline models to a large extent, both in the ResNet [70] and
Swin [54] backbones.

Table 2. Results of quantitative comparison on the Vaihingen testing set. The numbers are the percent
scores (%). † indicates that the scores are acquired via the flip and MS testing. Bold font means the
highest performance of that class.

Backbone Models Imp. Surf. Building Low Veg. Tree Car OA mIOU OA † mIOU †

ResNet-50
MaskFormer [13] 84.67 90.64 70.01 79.37 69.52 89.50 78.84 90.29 80.82
Mask2Former [14] 85.49 90.69 71.54 80.08 73.49 90.01 80.26 90.86 82.05
IQ2Former(ours) 85.92 92.00 71.24 79.99 77.32 90.22 81.29 90.76 82.23

ResNet-101

FCN [8] 84.99 91.31 70.31 79.57 76.18 89.76 80.47 90.34 81.87
PSPNet [9] 85.83 91.49 71.37 79.90 75.14 90.16 80.75 90.76 82.39
DeepLabV3+ [11] 86.20 91.61 71.43 79.74 75.18 90.23 80.83 90.81 82.19
OCRNet [23] 84.70 90.57 69.74 78.83 66.71 89.36 78.11 90.23 79.99
UPerNet [62] 85.81 91.66 70.94 79.96 76.46 90.14 80.97 90.79 82.48
MaskFormer [13] 85.38 91.26 71.16 79.96 70.08 89.96 79.57 90.63 81.11
Mask2Former [14] 85.77 91.24 70.95 79.74 75.23 90.03 80.59 90.60 81.66
IQ2Former(ours) 86.71 91.79 72.63 80.43 76.51 90.57 81.61 91.18 82.98

Swin-L
UPerNet [62] 86.98 92.32 72.56 80.51 78.70 90.74 82.21 91.21 83.28
MaskFormer [13] 85.58 91.62 71.91 78.96 76.44 90.03 80.90 91.39 82.88
Mask2Former [14] 86.47 92.00 72.36 80.59 78.61 90.56 82.01 90.94 82.68
IQ2Former(ours) 87.09 92.71 73.13 81.03 81.74 90.99 83.14 91.44 83.59

Note: (1) Imp. surf. is the abbreviation for impervious surface; (2) Low veg. is the abbreviation for low vegetation.

Table 3. Results of quantitative comparison on the Potsdam testing set. The numbers are the percent
scores (%). † indicates that the scores are acquired via the flip and MS testing. Bold font means the
highest performance of that class.

Backbone Models Imp. Surf. Building Low Veg. Tree Car OA mIOU OA † mIOU †

ResNet-50
MaskFormer [13] 85.78 91.61 75.85 78.46 90.84 89.90 84.51 90.65 85.66
Mask2Former [14] 86.32 92.65 76.07 78.58 92.63 90.22 85.25 90.94 86.32
IQ2Former(ours) 87.97 93.98 77.71 80.11 93.54 91.17 86.66 91.57 87.34

ResNet-101

FCN [8] 87.00 93.58 75.77 78.90 92.44 90.44 85.54 90.82 86.23
PSPNet [9] 87.44 94.03 76.64 79.33 93.07 90.80 86.10 91.29 86.81
DeepLabV3+ [11] 87.40 93.82 76.60 79.28 93.07 90.80 86.03 91.27 86.72
OCRNet [23] 85.17 90.22 75.31 76.96 89.83 89.33 83.50 90.21 84.92
UPerNet [62] 87.33 93.61 76.62 79.58 92.39 90.78 85.91 91.38 86.88
MaskFormer [13] 86.46 92.89 76.32 78.82 91.43 90.36 85.18 90.97 86.21
Mask2Former [14] 86.50 93.33 76.51 79.08 92.36 90.48 85.56 91.19 86.64
IQ2Former(ours) 87.61 93.65 78.19 80.61 93.61 91.18 86.74 91.66 87.49
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Table 3. Cont.

Backbone Models Imp. Surf. Building Low Veg. Tree Car OA mIOU OA † mIOU †

Swin-L
UPerNet [62] 88.15 94.50 78.47 80.60 93.20 91.42 86.98 91.75 87.55
MaskFormer [13] 87.41 94.71 78.62 80.16 93.11 91.32 86.80 91.66 87.21
Mask2Former [14] 87.88 94.42 78.97 81.01 93.11 91.60 87.08 91.85 87.58
IQ2Former(ours) 87.88 94.82 79.68 81.17 94.33 91.67 87.58 91.92 87.89

Note: (1) Imp. surf. is the abbreviation for Impervious surface. (2) Low veg. is the abbreviation for Low vegetation.

Table 4. Results of quantitative comparison on the LoveDA testing set. The numbers are the percent
scores (%). † indicates that the scores are acquired via the flip and MS testing. Bold font means the
highest performance of that class.

Backbone Model Back. Build. Road Water Barren Forest Agri. OA mIOU OA † mIOU †

ResNet-50
MaskFormer [13] 52.87 62.42 53.68 68.47 28.08 41.97 48.47 68.71 50.85 69.42 51.37
Mask2Former [14] 53.67 65.13 55.92 66.24 24.58 40.57 50.41 69.33 50.93 69.54 50.97
IQ2Former(ours) 54.95 62.80 53.86 65.54 31.53 42.70 51.93 69.91 51.90 70.19 52.19

ResNet-101

FCN [8] 52.75 62.63 53.62 66.06 22.38 38.97 49.54 68.11 49.42 67.47 48.31
PSPNet [9] 55.14 64.24 55.54 68.03 27.01 41.56 51.53 70.27 51.86 69.98 51.34
DeepLabV3+ [11] 54.19 64.39 55.67 68.14 27.17 41.44 49.29 69.50 51.47 69.60 51.32
OCRNet [23] 53.10 51.79 54.56 59.71 23.70 35.69 46.99 66.56 46.51 65.54 45.21
UPerNet [62] 54.09 64.31 54.51 65.27 25.85 40.02 50.52 69.29 50.65 68.69 49.74
MaskFormer [13] 53.03 63.40 54.86 70.80 29.14 43.96 46.28 68.80 51.64 68.83 51.39
Mask2Former [14] 53.88 64.62 55.57 69.52 27.15 40.27 51.37 69.91 51.77 69.94 51.39
IQ2Former(ours) 54.88 66.08 56.08 70.78 36.67 42.70 49.58 70.34 53.82 70.95 54.11

Swin-L
UPerNet [62] 54.25 67.40 56.74 72.92 29.75 44.31 52.81 71.01 54.03 71.47 54.13
MaskFormer [13] 53.88 66.99 57.53 72.29 28.94 44.47 54.32 71.18 54.06 71.76 54.66
Mask2Former [14] 54.07 68.50 58.31 71.73 29.83 41.19 58.03 71.94 54.52 72.49 54.90
IQ2Former(ours) 54.71 68.43 59.16 72.80 35.08 40.37 54.69 71.50 55.03 72.65 56.31

Note: (1) Back. is the abbreviation for background. (2) Build. is the abbreviation for building. (3) Agri. is the
abbreviation for agriculture.

Figure 5 shows the radar plots using test-time augmentation on the three datasets
to further compare our model with baseline models, category by category. The points
in these plots represent the corresponding mIoU scores, which are obtained via test-time
augmentation tricks on the testing dataset. From these plots, it can be seen that the curves
obtained by our IQ2Former are always located in the external region, indicating that it
achieves a higher performance compared to the baseline models.

(a) Vaihingen. (b) Potsdam. (c) LoveDA.

Figure 5. Category-by-category comparisons on the three datasets via the Radar chart. The digits are
the mIoU scores, obtained via the flip and MS testing. For the sake of fairness, the backbone of all
models is ResNet-101.

For the convenience of comparison, Figures 6–8 show the visual segmentation results of
sample images obtained by all models, including the FCN [8], PSPNet [9], DeepLabv3+ [11],
OCRNet [23], UPerNet [62], MaskFormer [13], Mask2Former [14], IQ2Former. For the sake
of fairness, the backbone of all models is ResNet-101 [70].
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Figure 6. Visual segmentation comparisons between our model and other related models on the
Vaihingen dataset. For the sake of fairness, the backbone of all models is ResNet-101. The label
includes six categories: impervious surface (white), building (blue), low vegetation (cyan), tree
(green), car (yellow), and clutter/background (red).
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Figure 7. Visual segmentation comparisons between our model and other related models on the
Potsdam dataset. For the sake of fairness, the backbone of all models is ResNet-101. The label includes
six categories: impervious surface (white), building (blue), low vegetation (cyan), tree (green), car
(yellow), and clutter/background (red).
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Figure 8. Visual segmentation comparisons between our model and other related models on the
LoveDA dataset. For the sake of fairness, the backbone of all models is ResNet-101. The label includes
six categories: background (white), building (red), road (yellow), water (blue), barren (plum), forest
(green), and agriculture (orange).
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To summarize, the above comparisons demonstrate that our IQ2Former is capable of
successfully segmenting RS images with high resolution.

4.5. Ablation Study

This subsection describes the ablation experiments to evaluate the effectiveness of
the three components proposed in our model. Table 5 illustrates the validity of the query
scenario module in Section 3.2.1, query position module in Section 3.2.2, and query attention
module in Section 3.2.3. It can be seen that performing both fundamental components
helps enhance the performance. It is worth pointing out that there are no increases in the
number of parameters in QPM.

Table 5. Effectiveness analysis of each module. “–” represents the removal of this module. It can
be seen that our method performs better than other variant methods. Bold font means the highest
performance of that class.

Module Imp. Surf. Building Low Veg. Tree Car mIoU OA # Params. FLOPS

IQ2Former(ours) 86.71 91.79 72.63 80.43 76.51 81.61 90.57 63.122 M 80.698 G
– QSM 85.67 91.76 71.02 80.12 76.21 80.96 90.16 63.102 M 80.693 G
– QPM 86.48 91.03 72.27 80.81 76.54 81.43 90.51 63.122 M 80.677 G
– QAM 86.19 91.67 72.37 80.89 75.10 81.25 90.50 63.107 M 80.698 G

– all 3 modules
above 85.77 91.24 70.95 79.74 75.23 80.59 90.03 62.996 M 85.608 G

Note: (1) Imp. surf. is the abbreviation for impervious surface. (2) Low veg. is the abbreviation for low vegetation.
(3) Params. is the abbreviation for parameters.

For the query scenario module, we already verified that the performance of our
IQ2Former is higher than the Mask2Former [14]. Tables 6 and 7 serve as the foundation
for selecting hyper-parameters in QSM for the Vaihingen and Potsdam datasets. Table 8
is the basis for assigning hyper-parameters in QSM for the LoveDA dataset. The factors
related to the computational efficiency are listed in Table 9, including the number of the
parameters and the number of the floating-point operations (FLOPs) with giga multiplier
accumulators (GMACs) in the model.

Table 6. The choice of four query groups is better than others in terms of performance. The
experiments are conducted using the Vaihingen dataset as an example. The number of queries
is 20 here. Bold font means the highest performance of that class.

Number of
Groups Imp. Surf. Building Low Veg. Tree Car mIoU OA # Params. FLOPS

# 1 85.67 91.76 71.02 80.12 76.21 90.16 80.96 63.102 M 80.693 G
# 2 86.21 91.58 71.48 80.06 76.08 90.26 81.08 63.112 M 80.698 G
# 4 86.71 91.79 72.63 80.43 76.51 90.57 81.61 63.122 M 80.698 G
# 8 86.17 91.37 72.02 80.65 77.59 90.34 81.56 63.142 M 80.698 G

Note: (1) Imp. surf. is the abbreviation for impervious surface. (2) Low veg. is the abbreviation for low vegetation.
(3) Params. is the abbreviation for parameters.

Table 7. The choice of twenty queries is better than others in terms of performance. The experiments
are conducted using the Vaihingen dataset as an example. The number of query groups is four here.
Bold font means the highest performance of that class.

Number of
Queries Imp. Surf. Building Low Veg. Tree Car mIoU OA # Params. FLOPS

# 10 86.30 91.99 72.07 80.58 76.57 81.50 90.51 63.108 M 80.074 G
# 20 86.71 91.79 72.63 80.43 76.51 81.61 90.57 63.122 M 80.698 G
# 50 85.82 91.51 72.20 80.78 76.80 81.42 90.38 63.163 M 82.573 G

# 100 85.63 91.93 71.54 80.06 78.00 81.43 90.21 63.232 M 85.717 G

Note: (1) Imp. surf. is the abbreviation for impervious surface. (2) Low veg. is the abbreviation for low vegetation.
(3) Params. is the abbreviation for parameters.
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Table 8. Performance comparison between 20, 40, and 100 queries in LoveDA datasets. † indicates
that the scores are acquired via the flip and MS testing. Bold font means the highest performance of
that class.

Number of Queries Back. Build. Road Water Barren Forest Agri. OA mIOU OA † mIOU †

# 20 53.57 64.01 57.23 70.65 29.94 41.33 49.00 69.53 52.25 70.00 52.94
# 40 54.88 66.08 56.08 70.78 36.67 42.70 49.58 70.34 53.82 70.95 54.11

# 100 55.92 65.53 53.95 68.13 30.10 40.43 53.69 71.13 52.54 70.65 52.04

Note: (1) Back. is the abbreviation for background. (2) Build. is the abbreviation for building. (3) Agri. is the
abbreviation for agriculture.

Table 9. Comparison of computational efficiency among different models, including the floating-point
operations and the total number of parameters. For the sake of fairness, the backbone of all models is
ResNet-101. The experiments are conducted using the Vaihingen dataset as an example.

Method # Params. FLOPs mIoU (%)

FCN [8] 68.48 M 275.38 G 80.47
PSPNet [9] 67.96 M 256.14 G 80.75

DeepLabV3+ [11] 62.57 M 253.93 G 80.83
OCRNet [23] 55.51 M 230.57 G 78.11
UPerNet [62] 64.04 M 236.99 G 80.97

MaskFormer [13] 60.26 M 70.32 G 79.57
Mask2Former [14] 63.00 M 85.61 G 80.59

IQ2Former (ours) 63.12 M 80.70 G 81.61
Note: (1) Params. is the abbreviation for parameters. (2) FLOPs is the abbreviation for floating-point operations.

5. Discussions
5.1. Discussion about the Number of Queries in the IQ2Former

In our IQ2Former, the number of queries in the Vaihingen and Potsdam datasets is set
to 20, while the number of queries in the LovaDA dataset is taken as 40. There are three
reasons to explain this setting. First, there are two significant categories of scenarios in
the LoveDA dataset, namely rural and urban, which render large differences in the visual
appearances. Second, the amount of data in LoveDA is much more enormous than the
first two datasets, which record many more scenes from different regions. Finally, the
Vaihingen and Potsdam datasets only require the segmentation of five classes of objects,
while LoveDA needs to achieve the segmentation of seven classes of objects. As shown
in Figure 9, urban storied buildings and rural one-story houses are both considered as
building in annotations, the winding paths in rural areas and the wide roads in urban areas
are both considered as road in annotations, and the trees along urban streets and the vast
forests in rural areas are both considered as forest in annotations.

         
(a) Rural example image and annotation.          (b) Urban example image and annotation. 

Figure 9. A comparative example of the LoveDA dataset for rural and urban scenarios. The building
is depicted in red, the road in yellow, and the forest in green.

Therefore, we suppose that more queries for the LoveDA are beneficial to our model.
To validate our hypothesis, we randomly picked two images of the countryside and two of
the city for the query comparison. For clarity, the query in the QSM is visualized by the
normalization of the Query∗QSM for intuitive visualization, which is expressed as follows:
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Query (QSM) =
Query∗QSM − min(Query∗QSM)

max(Query∗QSM)− min(Query∗QSM)
, (8)

where Query∗QSM records the selected queries calculated by Equation (4). Figure 10 illus-
trates the visualization. As shown in Figure 10, the queries for the same scenarios are more
similar to each other (up to about cosine similarity 99.6% for urban scenarios and 99.7% for
rural scenarios). In contrast, the queries for different scenarios are more different from each
other (with an average cosine similarity of 69.4% for various scenarios). The experimental
results in Table 8 also support our hypothesis. The above comparative evaluation indicates
that our IQ2Former has enough flexibility and capability for setting an approximate number
of queries, conveying a powerful learning ability for both simple and complex scenes. This
facilitates its usage for real-world applications.

(a) Rural Scene

Th
e 
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tm
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ag
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Figure 10. A comparison of Query∗QSM heatmaps for rural and urban scenarios in the LoveDA dataset.
The ⃝ indicates the similar features, while the ⃝ represents various query features.

In addition, the original MaskFormer [13] claimed that a total of 100 queries could
consistently perform the best across general image scene datasets and suggested that it
is necessary to adjust the number of queries concerning the number of categories or the
volume of datasets. However, this study indicates that, at least on three RS datasets, it
experimentally proves that 100 queries are not the best and unique choice. In other words,
one can set the number of queries by comprehensively considering the following aspects,
including the complexity of the scenarios, the difference between the scenes recorded in
the images, the volume of the dataset for training, and the number of categories to be
segmented, and so on.

5.2. Implications and Limitations

In this study, we conducted experimental evaluations on the three publicly challenging
datasets. Our IQ2Former mainly aims to improve the model’s performance for semantic
segmentation in RS images with the improved query. Specifically, the main contribution
of the original Mask2Former [14] is to design a Transformer-based architecture for mask
classification, while for the query, it only performs a randomly initialized learnable query,
lacking the design of the query. Based on this, we design three improved query modules,
namely the query scenario module in Section 3.2.1, which is used to implement adap-
tive weighted queries according to different RS scenarios; the query position module in
Section 3.2.2, which enhances the query’s sensitivity to the location information for the
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different positions of objects in the same RS scene; and the query attention module in
Section 3.2.3 for any RS image, to perform additional attention weighting of the query to
enhance the performance of our IQ2Former. Technically, the IQ2Former model we pro-
posed is mainly an improvement to query for effective representation learning. However, it
has several limitations, which are described as follows:

• The QSM uses multiple groups of the query to be adaptively weighted according to
different RS scenarios to obtain a better performance and achieve fewer calculations.
However, since the number of initial query groups of the model is fixed, the number of
parameters is not reduced to a significant degree, as shown in Table 9. In subsequent
research, designing dynamic group numbers of the query for different RS scenarios is
a direction worthy of further research.

• The QAM mainly introduces additional attention to learn for querying. However, in
RS semantic segmentation tasks, it is essential to make full use of multi-scale visual
features. This implies that our model can introduce other attention mechanisms and
thoroughly combine them with our querying mechanism used in this study, thereby
expanding its expression ability and performance.

• The three query modules designed in this study can be used not only for RS segmentation
tasks but also as pluggable modules for other query-based transformer architectures.
Future research directions include applying our modules to additional visual tasks and
other types of RS data (like hyper-spectral RS data), offering further experimental vali-
dation for architecture optimization about these query modules, for example, reducing
their computational complexity while keeping their representation ability.

6. Conclusions

This paper has proposed an IQ2Former for semantic segmentation in RS images. Tech-
nically, we have improved the query capability of the model in three aspects. Such an
improvement fulfilled in this study is due to the fact that the embedding of the querying
mechanism largely determines the representational power of the MaskFormer-like models.
For selecting different remote sensing image scenarios, the QSM is designed to learn to group
the queries from feature maps, which serve to select different scenarios such as urban and
rural areas, building clusters, and parking lots. For classifying small targets in complex RS
images, the QPM is constructed to assign the image position information to the query without
increasing the number of parameters. For utilizing lower features ignored by Mask2Former,
the QAM is proposed to be positioned between the duplicate transformer decoder layers,
which mainly utilizes the characteristics of ODConv to extract valuable information from
the previous query. With our QAM, the supervisory information is fully utilized, and the
find-grained information is further exploited to achieve high-quality segmentations.

Comprehensive experiments have been conducted on three publicly challenging RS
image datasets. Our model achieves 91.44% OA and 83.59% mIoU on the Vaihingen dataset.
Our model achieves 91.92% OA and 87.89% mIoU on the Potsdam dataset. Our model
achieves 72.63% OA and 56.31% mIoU on the LoveDA dataset. Additionally, ablation exper-
iments and visual segmentation figures all demonstrate the effectiveness and superiority
of our IQ2Former. In the future, we would like to conduct the research in the following
three directions. First, the design of the query mechanism developed in our model could
be optimized with more powerful attention and lightweight tricks. Second, we could
comprehensively evaluate the performances of our model on the datasets containing RS
images with low resolutions, noise, or a percentage of distortions. Third, we would also like
to extend the applications of our model in the multi-spectral RS images and hyper-spectral
RS data.
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search of neural network for semantic segmentation in remote sensing images. Sensors 2020, 20, 5292. [CrossRef] [PubMed]

50. Shi, Q.; Liu, M.; Liu, X.; Liu, P.; Zhang, P.; Yang, J.; Li, X. Domain adaption for fine-grained urban village extraction from satellite
images. IEEE Geosci. Remote Sens. Lett. 2019, 17, 1430–1434. [CrossRef]

51. Wang, Y.; Li, Y.; Chen, W.; Li, Y.; Dang, B. DNAS: Decoupling Neural Architecture Search for High-Resolution Remote Sensing
Image Semantic Segmentation. Remote Sens. 2022, 14, 3864. [CrossRef]

52. Broni-Bediako, C.; Murata, Y.; Mormille, L.H.; Atsumi, M. Evolutionary NAS for aerial image segmentation with gene expression
programming of cellular encoding. Neural Comput. Appl. 2022, 34, 14185–14204. [CrossRef]

53. Wang, L.; Li, R.; Duan, C.; Zhang, C.; Meng, X.; Fang, S. A novel transformer based semantic segmentation scheme for
fine-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6506105. [CrossRef]

54. Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.; Guo, B. Swin transformer: Hierarchical vision transformer using shifted
windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; pp. 10012–10022.

55. Panboonyuen, T.; Jitkajornwanich, K.; Lawawirojwong, S.; Srestasathiern, P.; Vateekul, P. Transformer-based decoder designs for
semantic segmentation on remotely sensed images. Remote Sens. 2021, 13, 5100. [CrossRef]

56. Ye, W.; Zhang, W.; Lei, W.; Zhang, W.; Chen, X.; Wang, Y. Remote sensing image instance segmentation network with transformer
and multi-scale feature representation. Expert Syst. Appl. 2023, 234, 121007. [CrossRef]

57. He, X.; Zhou, Y.; Zhao, J.; Zhang, D.; Yao, R.; Xue, Y. Swin transformer embedding UNet for remote sensing image semantic
segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408715. [CrossRef]

58. Zhang, C.; Jiang, W.; Zhang, Y.; Wang, W.; Zhao, Q.; Wang, C. Transformer and CNN hybrid deep neural network for semantic
segmentation of very-high-resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4408820. [CrossRef]

59. Sun, Z.; Cao, S.; Yang, Y.; Kitani, K.M. Rethinking transformer-based set prediction for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3611–3620.

60. Zhang, L.; Rao, A.; Agrawala, M. Adding conditional control to text-to-image diffusion models. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Vancouver, BC, Canada, 17–24 June 2023; pp. 3836–3847.

61. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

62. Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified perceptual parsing for scene understanding. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 418–434.

63. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

64. Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; Dai, J. Deformable {DETR}: Deformable Transformers for End-to-End Object Detection. In
Proceedings of the International Conference on Learning Representations, Vienna, Austria, 3–7 May 2021.

65. Milletari, F.; Navab, N.; Ahmadi, S.A. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In
Proceedings of the 2016 Fourth International Conference on 3D vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571.

66. Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101.
67. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional

nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [CrossRef] [PubMed]
68. Contributors, M. MMCV: OpenMMLab Computer Vision Foundation. 2018. Available online: https://github.com/open-mmlab/

mmcv (accessed on 1 February 2024).
69. Contributors, M. MMSegmentation: OpenMMLab Semantic Segmentation Toolbox and Benchmark. 2020. Available online:

https://github.com/open-mmlab/mmsegmentation (accessed on 1 February 2024).
70. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/rs12040701
http://dx.doi.org/10.3390/rs13010071
http://dx.doi.org/10.1109/TGRS.2020.2994150
http://dx.doi.org/10.1109/TGRS.2021.3093977
http://dx.doi.org/10.1109/TGRS.2020.3042202
http://dx.doi.org/10.3390/s20185292
http://www.ncbi.nlm.nih.gov/pubmed/32947860
http://dx.doi.org/10.1109/LGRS.2019.2947473
http://dx.doi.org/10.3390/rs14163864
http://dx.doi.org/10.1007/s00521-021-06564-9
http://dx.doi.org/10.1109/LGRS.2022.3143368
http://dx.doi.org/10.3390/rs13245100
http://dx.doi.org/10.1016/j.eswa.2023.121007
http://dx.doi.org/10.1109/TGRS.2022.3144165
http://dx.doi.org/10.1109/TGRS.2022.3144894
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TPAMI.2017.2699184
http://www.ncbi.nlm.nih.gov/pubmed/28463186
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmcv
https://github.com/open-mmlab/mmsegmentation

	Introduction
	Related work
	Transformer for Semantic Segmentation 
	Semantic Segmentation for RS Images

	Methods
	Preliminary
	Overview of Our Method
	Query Scenario Module
	Query Position Module
	Query Attention Module


	Experiment
	Data Description
	Baseline Model Description
	Experiment Details
	Experiment Results
	Ablation Study 

	Discussions
	Discussion about the Number of Queries in the IQ2Former
	Implications and Limitations

	Conclusions
	References

