
Citation: Porzio, M.M. The Role of

Data on the Regularity of Solutions to

Some Evolution Equations.

Mathematics 2024, 12, 761. https://

doi.org/10.3390/math12050761

Academic Editor: Yu Tian

Received: 23 January 2024

Revised: 18 February 2024

Accepted: 26 February 2024

Published: 4 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Role of Data on the Regularity of Solutions to Some
Evolution Equations
Maria Michaela Porzio

Dipartimento di Pianificazione, Design, Tecnologia dell’Architettura, Sapienza Universitá di Roma,
via Flaminia 72, 00196 Roma, Italy; mariamichaela.porzio@uniroma1.it

Abstract: In this paper, we study the influence of the initial data and the forcing terms on the regularity
of solutions to a class of evolution equations including linear and semilinear parabolic equations
as the model cases, together with the nonlinear p-Laplacian equation. We focus our study on the
regularity (in terms of belonging to appropriate Lebesgue spaces) of the gradient of the solutions. We
prove that there are cases where the regularity of the solutions as soon as t > 0 is not influenced at all
by the initial data. We also derive estimates for the gradient of these solutions that are independent
of the initial data and reveal, once again, that for this class of evolution problems, the real “actors of
the regularity” are the forcing terms.
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1. Introduction

Let us consider the following evolution problem
ut − div(a(x, t,∇u)) = f (x, t) in ΩT ≡ Ω × (0, T),
u = 0 on ∂Ω × (0, T),
u(x, 0) = u0(x) on Ω,

(1)

where Ω is an open bounded set of RN with ∂Ω regular (for example, satisfying the property
of positive geometric density), N ≥ 3, and T > 0.

Here, the function a(x, t, ξ) : Ω × (0, T)×RN → RN is a Caratheodory function (i.e.,
it is continuous with respect to ξ for almost every (x, t) ∈ ΩT , and measurable with respect
to (x, t) for every ξ ∈ RN), satisfying, for a.e. (x, t) ∈ ΩT and for every ξ and η ∈ RN , the
following structure conditions

a(x, t, ξ)ξ ≥ α|ξ|p , (2)

[a(x, t, ξ)− a(x, t, η)][ξ − η] ≥ α|ξ − η|p , α > 0 , 2 ≤ p < N , (3)

and
|a(x, t, ξ)| ≤ β[|ξ|p−1 + h(x, t)], β > 0, h ∈ Lp′(ΩT)

1
p
+

1
p′

= 1 . (4)

The typical model cases included in this class of problems are as follows
ut − ∆u = f (x, t) in ΩT ,
u = 0 on ∂Ω × (0, T),
u(x, 0) = u0(x) on Ω ,

i.e., the heat equation with a forcing term f , with all its linear slight modifications as follows
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ut − div(A(x, t)∇u) = f (x, t) in ΩT ,
u = 0 on ∂Ω × (0, T),
u(x, 0) = u0(x) on Ω ,

(5)

where A is a bounded matrix satisfying the coercivity condition

(A(x, t)ξ, ξ) ≥ α|ξ|2 ,

together with the nonlinear version (1) with p = 2 and the p-Laplacian equation
ut − div(|∇u|p−2∇u) = f (x, t) in ΩT ,
u = 0 on ∂Ω × (0, T),
u(x, 0) = u0(x) on Ω .

(6)

Because of the numerous physical applications of this class of problems, there is extensive
literature on these evolution problems, starting from the sixties up until today, and it is
difficult to provide an exhaustive bibliography. The initial works have become milestones,
like the papers of Nash, Moser, Ladyženskaja, Solonnikov, Ural’ceva, J.L. Lions, Aronson,
and Serrin (see [1–5] and the references therein). Many interesting results can be found in
more recent papers, for example [6–22] (see also the references therein).

The aim of this paper is to study the influence of the initial datum u0 and the reaction
term f on the regularity of the solution gradient, as soon as t > 0.

We recall that in the absence of the forcing term f , it is well known that, even if
the initial datum is only a summable function, there exists a solution of (1) that becomes
immediately bounded (see [20] if u0 ∈ L2(Ω) and [23] in the general case u0 ∈ L1(Ω)).
Moreover, this solution satisfies the following decay estimate

∥u(t)∥L∞(Ω) ≤ c
∥u0∥

p
N(p−2)+p

L1(Ω)

t
N

N(p−2)+p
(7)

(see [23] and the references therein). Notice that the previous bound is exactly the same
bound that is satisfied in the p-Laplacian case (6) (see [9,10,22,24–26] if N = 1, [23] and the
references therein).

It is of note that if u0 is in L1(Ω), then the solutions of (1), even when f ≡ 0, are
not unique. Despite this, it is unique the solution that immediately becomes bounded
(see Theorem 1.7 in [27]) and this solution is also the unique solution constructed by
approximation.

This immediate regularization of solution u in L∞(Ω), as soon as t > 0, produces an
immediate regularization of its gradient. In detail, it results in ∇u ∈ (Lp(Ω × (t, T)))N for
every 0 < t < T (see [27]).

Here, we want to understand what happens in the presence of a forcing term f ̸≡ 0.
If the forcing term is not sufficiently regular, even in the presence of bounded initial

data, we cannot expect to have bounded solutions for (1). As a matter of fact, from the
classical theory, we know that the sharp condition on f to have bounded solutions is the
following condition

f ∈ Lm(0, T; Ls(Ω)) with
1
m

+
N
ps

< 1 . (8)

Moreover, it is well known that unbounded solutions of (1) exist with gradient belong-
ing to (Lp(ΩT))

N (and hence to (Lp(Ω × (t, T)))N for every 0 < t < T) even if f doesn’t
satisfied (8).

In addition, even if u0 is regular (for example the null function u0 ≡ 0), solutions of (1)
exist with a gradient that does not belong to (Lp(ΩT))

N if f is not sufficiently summable.
Hence, the aim of this paper is to understand the role of the initial datum u0 and of

the forcing term f on the regularity of the gradient for the solutions of (1).
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To gain a better understanding of what happens, we decided to study the worst case in
terms of the regularity of u0, i.e., to directly consider the case of only summable initial data.

As discussed above, in this case, the solutions of (1) were not unique without further
requirements of the solutions. Hence, we focus our study on the unique solution of (1),
which is constructed by approximation, not only because when f ≡ 0 it coincides with the
unique solution that becomes immediately bounded, but above all because it is the most
natural way to build solutions.

The main result proven in this paper is that if f is a function satisfying

f ∈ Lm(0, T; Ls(Ω)) with s ≥ 1 , m ≥ 1 , (9)

even if on the initial datum u0, we assume only that

u0 ∈ L1(Ω) (10)

then the unique solution u of (1) constructed by approximation immediately increases its
regularity reaching the same summability properties of the gradient of the unique solution
u0 obtained by approximation of the following problem

(u0)t − div(a(x, t,∇u0)) = f (x, t) in ΩT ,
u0 = 0 on ∂Ω × (0, T),
u0(x, 0) = 0 on Ω.

(11)

Thus, for every t ∈ (0, T), it results

∇u0 ∈ (Lq(Ω × (t, T)))N =⇒ ∇u ∈ (Lq(Ω × (t, T)))N . (12)

Moreover, we derive estimates on ∇u in (Lq(Ω × (t, T)))N , which become universal esti-
mates when p > 2. To our knowledge, this regularizing phenomenon and these estimates
are not known in the literature.

We recall that in [28], (if p > 2), and in [29], (if p = 2), we prove that under the
previous assumptions (9) and (10) on the data of f and u0, the unique solution u of (1) that
is constructed by approximation immediately increases its regularity, reaching the same
summability properties of the unique solution of u0 obtained by the approximation of (11),
i.e., for every t ∈ (0, T), it results

u0 ∈ Lδ(t, T; Lν(Ω)) =⇒ u ∈ Lδ(t, T; Lν(Ω)) .

Hence, this paper completes the previous known results, showing that the gradient of u
immediately inherits the same regularity as the gradient of u0.

Another interesting property of the solutions of (1) that we will prove here is that if v
is the unique solution obtained by the approximation of the following problem

vt − div(a(x, t,∇v)) = f (x, t) in ΩT ,
v = 0 on ∂Ω × (0, T),
v(x, 0) = v0(x) on Ω,

(13)

(i.e., v solves (1), but with a different initial datum v0) then, even if the data f , u0 and v0 are
only summable functions, it results

∇(u − v) ∈ (Lp(Ω × (t, T))N , for every 0 < t < T . (14)

It is important to note that (14) is truly surprising given that neither of the two functions
∇u and ∇v belongs to (Lp(Ω × (t, T)))N .

The paper is organized as follows: in the next section, we state all of our results in
detail and, then, in the following Section 3, we provide all the proofs.
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2. Statement of Results

Before stating our results we recall our notion of solution and global solution of (1).

Definition 1. Assume that the data f and u0 satisfy

f ∈ L1(ΩT) , u0 ∈ L1(Ω) . (15)

A measurable function u ∈ L∞(0, T; L1(Ω))∩ L1(0, T; W1,1
0 (Ω)) is a solution of (1), if a(x, t,∇u)

∈ (L1(ΩT))
N and∫∫

ΩT

[
−u

∂φ

∂t
+ a(x, t,∇u)∇φ

]
dxdt =

∫
Ω

u0 φ(0)dx +
∫∫

ΩT

f φ, (16)

for every φ ∈ W1,∞(0, T; L∞(Ω)) ∩ L∞(0, T; W1,∞
0 (Ω)) satisfying φ(T) = 0.

We observe that under the structure assumptions (2)–(4), if the data satisfy (15) there
exists at least one solution u of (1) (see [7]). Moreover, this solution satisfies

∇u ∈ (Lq(ΩT))
N , for every q <

N(p − 1) + p
N + 1

, (17)

and is a solution constructed by approximation. Here, a solution constructed by approxi-
mation means the following.

Definition 2. A solution u of (1), (according to the above definition 1), is obtained by the approx-
imation (sola) if it is the a.e. limit in ΩT of the solutions un ∈ L∞(ΩT) ∩ C([0, T]; L2(Ω)) ∩
Lp(0, T; W1,p

0 (Ω)) (denoted as “approximating solutions”) for the following (approximating) problems
(un)t − div(a(x, t,∇un)) = fn(x, t) in ΩT ,
un = 0 on ∂Ω × (0, T),
un(x, 0) = u0,n on Ω ,

(18)

where fn and u0,n satisfy

fn ∈ L∞(ΩT) , fn → f in L1(ΩT) , (19)

u0,n ∈ L∞(Ω) , u0,n → u0 in L1(Ω) . (20)

The solutions of (1) are not unique. Anyway, under further requirements of the so-
lutions, for example that u is a solution constructed by approximation (according to the
above definition 2), such a solution becomes unique, i.e., only one solution of (1) exists,
which is constructed by approximation (see [16]). Indeed, some of our results concern the
global solutions of (1); hence, we recall what we mean here by global solutions.

Definition 3. Assume that the data f and u0 satisfy (15) for every T > 0. We say that u is a global
solution of (1), or equivalently, that u is a solution of

ut − div(a(x, t,∇u)) = f (x, t) in Ω∞ ≡ Ω × (0,+∞),
u = 0 on ∂Ω × (0,+∞),
u(x, 0) = u0(x) on Ω,

(21)

if u is a solution of (1) for every T > 0. Finally, u is a global solution constructed by approximation
of (1), (or equivalently u is a solution constructed by approximation of (21)), if u is a solution
constructed by approximation of (1) for every T > 0.

We recall that if (2)–(4) and (15) are satisfied for every T > 0, then there exists one and
only one global solution constructed by approximation of (1) (see [30]).



Mathematics 2024, 12, 761 5 of 12

Theorem 1. Let (2)–(4) hold true. Assume f ∈ L1(ΩT), u0 ∈ L1(Ω), and that u and u0 are the
unique solutions constructed by approximation of (1) and (11), respectively. If ∇u0 belongs to
(Lq(t, T; Lm(Ω)))N , for some t ∈ (0, T), q ∈ [1, p] and m ∈ [1, p], then it results

∇u ∈ (Lq(t, T; Lm(Ω)))N , (22)

and the following estimate holds true

∥|∇u|∥Lq(t,T;Lm(Ω)) ≤ c0

∥u0∥
2

N(p−2)+p

L1(Ω)
(T − t)

1
q −

1
p

t
2N

p[N(p−2)+p]
+ ∥|∇u0|∥Lq(t,T;Lm(Ω)) (23)

where c0 = C
1
p

0 |Ω|
1
m − 1

p depends only on N, p, m, α, and |Ω| (see Formula (54) for the definition
of C0).

Moreover, if p > 2, the following universal estimate holds true

∥|∇u|∥Lq(t,T;Lm(Ω)) ≤ C∗ (T − t)
1
q −

1
p

t
2

p(p−2)

+ ∥|∇u0|∥Lq(t,T;Lm(Ω)) (24)

where C∗ = (C∗)
1
p |Ω|

1
m − 1

p depends only on N, p, m, α and |Ω| (see Formula (50) for the definition
of C∗).

Finally, if p = 2, the following exponential estimate holds

∥|∇u|∥Lq(t,T;Lm(Ω)) ≤ c1
∥u0∥L1(Ω)(T − t)

1
q −

1
2

t
N
2 eσt

+ ∥|∇u0|∥Lq(t,T;Lm(Ω)) (25)

where c1 =
√

C1|Ω|
1
m − 1

p depends only on N, p, α, m and |Ω| (see Formula (52) for the definition
of C1) and σ = c(N)α|Ω|− 2

N .

Remark 1. Theorem 1 reveals that, as soon as t > 0, the summability of the initial datum doesn’t
influence the summability of the gradient of u since it has the same summability of the gradient of
the solution u0 whose initial datum is the null function.

Notice that estimate (24) on ∇u in (Lq(t, T; Lm(Ω)))N is a universal estimate as it does
not depend on u0. Hence, when p > 2, the initial datum u0 affects neither the regularity nor the
estimates of the gradient of the solution u.

Remark 2. We point out that it results

2N
p[N(p − 2) + p]

<
2

p(p − 2)
if p > 2 ,

and
2N

p[N(p − 2) + p]
=

N
2

if p = 2 .

Hence, estimate (23) becomes interesting when ∇u ̸∈ (Lq(0, T; Lm(Ω)))N , as it allows for affirm-
ing that for t → 0, the blow-up of the norm of ∇u in (Lq(t, T; Lm(Ω)))N is controlled by the power

t−
2N

p[N(p−2)+p] . Finally, estimate (25) becomes significant when t is large, as the exponential function
eσt surpasses every power of t when t is large.

Corollary 1. Let (2)–(4) hold true. Assume f ∈ Lσ(ΩT), σ ≥ 1, u0 ∈ L1(Ω), and that u is the
unique solution constructed by approximation of (1). If it results

σ ≥
(

p
N + 2

N

)′
, (26)
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then for every 0 < t < T we have

∇u ∈ (Lp(Ω × (t, T)))N . (27)

If otherwise it results

1 < σ <

(
p

N + 2
N

)′
, (28)

then for every 0 < t < T we have

∇u ∈ (Lm(Ω × (t, T)))N , m =
[N(p − 1) + p]σ

N + 2 − σ
. (29)

Remark 3. Notice that it results

lim
σ→1

[N(p − 1) + p]σ
N + 2 − σ

=
N(p − 1) + p

N + 1
,

and hence the result of the previous limit is exactly the value that appears in (17) when σ = 1.

Indeed, the regularity (27) is achieved in the following more general case.

Corollary 2. Let (2)–(4) hold true. Assume u0 ∈ L1(Ω) and f ∈ Lr(0, T; Lσ(Ω)), with r and σ
satisfying

p <
N
σ

+
p
r
≤ N

r

(
1 − p

2

)
+

Np + 2p − N
2

, (30)

1 ≤ r < p′ σ ≥ 1 . (31)

If u is the unique solution constructed by approximation of (1), then, for every 0 < t < T, we have

∇u ∈ (Lp(Ω × (t, T)))N . (32)

Remark 4. Notice that if r = σ, it results

N
σ

+
p
r
≤ N

r

(
1 − p

2

)
+

Np + 2p − N
2

⇐⇒ σ ≥
(

p
N + 2

N

)′
.

Moreover, being r < p′, it follows that f ̸∈ Lp′(0, T; W−1,p′(Ω)).

Remark 5. We recall that when u0 belongs to L1(Ω), the regularity (Lp(Ω × (t, T)))N of ∇u
was already proven in [27] when f ≡ 0, in [29] when p = 2 and f ∈ L2(0, T; H−1(Ω)), and in
[28] when p > 2 and f ∈ Lp′(0, T; W−1,p′(Ω)).

Theorem 2. Let (2)–(4) hold true. Assume f ∈ L1(ΩT), u0 ∈ L1(Ω), and v0 ∈ L1(Ω). If u and
v are the unique solutions constructed by approximation of (1) and (13), respectively, then for every
t ∈ (0, T), it results

∇(u − v) ∈ (Lp(Ω × (t, T)))N , (33)

and the following estimate holds true

∫ T

t

∫
Ω
|∇(u − v)|p ≤ C0

∥u0 − v0∥
2p

N(p−2)+p

L1(Ω)

t
2N

N(p−2)+p
, (34)

where C0 depends only on N, p, α, and |Ω| (see Formula (54)).
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Moreover, if p > 2 for every t ∈ (0, T) it results∫ T

t

∫
Ω
|∇(u − v)|p ≤ C∗

t
2

p−2
, (35)

where the constant C∗ depends only on N, p, α, and |Ω| (see Formula (50)).
Otherwise, if p = 2, for every t ∈ (0, T), we have the following bound

∫ T

t

∫
Ω
|∇(u − v)|2 ≤ C1

∥u0 − v0∥2
L1(Ω)

tNeσ0t , (36)

where C1 depends only on N, p, α, and |Ω| (see Formula (52)) and σ0 = C(N)α|Ω|− 2
N .

Finally, if assumptions (2)–(4) and f ∈ L1(ΩT) are satisfied for every T > 0, and u and v
are the unique global solutions constructed by approximation of (1) and (13), respectively, then for
every t > 0, it results

∇(u − v) ∈ (Lp(Ω × (t,+∞)))N , (37)

and ∫ +∞

t

∫
Ω
|∇(u − v)|p ≤ C0

∥u0 − v0∥
2p

N(p−2)+p

L1(Ω)

t
2N

N(p−2)+p
, (38)

where C0 is the same as in (34).
Moreover, if p > 2 the following estimate holds true for every t > 0∫ +∞

t

∫
Ω
|∇(u − v)|p ≤ C∗

t
2

p−2
, (39)

where the constant C∗ is as in (35), while if p = 2, it results (for every t > 0)

∫ +∞

t

∫
Ω
|∇(u − v)|2 ≤ C1

∥u0 − v0∥2
L1(Ω)

tNeσ0t , (40)

where C1 and σ0 are the same as in (36).

Remark 6. The previous result is rather surprising as it reveals that when the data of f and
u0 are only summable functions, even if both the gradients of the solutions u and v are not in
(Lp(Ω × (t,+∞)))N , their difference ∇(u − v) belongs to (Lp(Ω × (t,+∞)))N . In addition, for
p > 2, it is also possible to obtain an estimate for ∇(u − v), which is independent of both the initial
data of u0 and v0.

3. Proofs of the Results

Since in the proof of Theorem 1 we use the results of Theorem 2, we start proving
Theorem 2.

Proof of Theorem 2. Let u and v be the unique solutions constructed by approximation
of (1) and (13), respectively. Hence, u is the a.e. limit in ΩT of the sequence of solutions
un ∈ L∞(ΩT) ∩ C([0, T]; L2(Ω)) ∩ Lp(0, T; W1,p

0 (Ω)) of the following problems
(un)t − div(a(x, t,∇un)) = fn(x, t) in ΩT ,
un = 0 on ∂Ω × (0, T),
un(x, 0) = u0,n(x) on Ω,

(41)

where the data u0,n(x) ∈ L∞(Ω) and fn(x, t) ∈ L∞(ΩT) satisfy

u0,n(x) → u0 in L1(Ω) , (42)
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fn(x, t) → f (x, t) in L1(ΩT) . (43)

Thanks to the fact that by assumption v is the unique solution constructed by approximation
of (13), we can choose in the following construction of the sequence vn that converges a.e.
in ΩT to v the same approximation fn of f in (43)

(vn)t − div(a(x, t,∇vn)) = fn(x, t) in ΩT ,
vn = 0 on ∂Ω × (0, T),
vn(x, 0) = v0,n(x) on Ω,

(44)

where the data v0,n(x) ∈ L∞(Ω) satisfy

v0,n(x) → v0 in L1(Ω) , (45)

Choosing un − vn as the test function in the approximating problems (41) and (44), and
subtracting the equations obtained in this way, we obtain for every 0 < t1 < t2 ≤ T

1
2

∫
Ω
|(un − vn)(t2)|2 −

1
2

∫
Ω
|(un − vn)(t1)|2 +∫ t2

t1

∫
Ω
[a(x, t,∇un)− a(x, t,∇vn)]∇(un − vn) = 0 .

From the previous estimate and (3), it follows

1
2

∫
Ω
|(un − vn)(t2)|2 + α

∫ t2

t1

∫
Ω
|∇(un − vn)|p ≤

1
2

∫
Ω
|(un − vn)(t1)|2 . (46)

Hence, to derive an estimate on the gradient of the function of un − vn, it is sufficient to
estimate the right-hand side of (46). To this aim, we recall that using Gk(un − vn) as a test
function instead of un − vn and proceeding in the same way as above. we obtain for every
0 < t1 < t2 ≤ T

1
2

∫
Ω
|Gk(un − vn)(t2)|2 + α

∫ t2

t1

∫
Ω
|∇Gk(un − vn)|p ≤

1
2

∫
Ω
|Gk(un − vn)(t1)|2 . (47)

Here, Gk(s) is the following function

Gk(s) = (|s| − k)+sign(s) .

Moreover, if p > 2, in [28], using suitable test functions, it is proven that un − vn also
satisfies the following integral inequality for every 0 < t0 < t < T∫

Ω
|Gk(un − vn)|(t) ≤

∫
Ω
|Gk(un − vn)|(t0) .

The previous bound together with (47) allows to apply Theorem 2.2 in [23] (see the
Appendix A) and to conclude that the following estimate holds true for every t ∈ (0, T)

∥un(t)− vn(t)∥L∞(Ω) ≤
C♯

t
1

p−2
, (48)

where the positive constant C♯ depends only on N, p, and α (for further details, see the
proof of estimate (4.10) in [28]). Thus, by (46) (applied with t1 = t and t2 = T) and (48), we
deduce that for every 0 < t < T
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∫ T

t

∫
Ω
|∇(un − vn)|p ≤ 1

2α

∫
Ω
|(un − vn)(t)|2 ≤

|Ω|
2α

∥un(t)− vn(t)∥2
L∞(Ω) ≤

C∗

t
2

p−2
, (49)

where

C∗ ≡
|Ω|
2α

C2
♯ , (50)

is a positive constant depending only on N, p, α, and |Ω|. Recalling that by construction
the sequence un − vn converges a.e. to u − v in ΩT by (49) we conclude that the following
universal bound holds for every 0 < t < T∫ T

t

∫
Ω
|∇(u − v)|p ≤ C∗

t
2

p−2
,

and, consequently, (33) and (35) hold true if p > 2.
Otherwise, if p = 2, with the same procedure as the degenerate case p > 2 described

above, it is proven in [29] that the following estimate holds true for every 0 < t < T

∥un(t)− vn(t)∥L∞(Ω) ≤ c
∥u0,n − v0,n∥L1(Ω)

t
N
2 eσt

, (51)

where the positive constant c depends only on N, and α and σ = c(N)α|Ω|− 2
N (for further

details, see the proof of estimate (4.22) in [29]). By (46) and (51) (applied again with t1 = t
and t2 = T), we deduce that if p = 2. for every 0 < t < T, it results

∫ T

t

∫
Ω
|∇(un − vn)|2 ≤ C1

∥u0,n − v0,n∥2
L1(Ω)

tNe2σt ,

where

C1 ≡ c2|Ω|
2α

. (52)

Consequently, we can conclude that

∫ T

t

∫
Ω
|∇(u − v)|2 ≤ C1

∥u0 − v0∥2
L1(Ω)

tNeσ0t ,

where σ0 = C(N)α|Ω|− 2
N (C(N) = 2c(N)) and (33) and (36) also follow if p = 2.

Indeed, in [28], applying Theorem 2.1 in [23] instead of Theorem 2.2 (see the Appendix A),
it is also proven that the following estimate holds true for every p ≥ 2 and t ∈ (0, T)

∥un(t)− vn(t)∥L∞(Ω) ≤ c1

∥u0,n − v0,n∥
p

N(p−2)+p

L1(Ω)

t
N

N(p−2)+p
, (53)

where c1 is a positive constant depending only on N, p, and α (for all details, see the proof
of (4.12) in [28]). Hence, by (46) and (53) (applied as above with t1 = t and t2 = T), we
deduce that (34) also holds true with C0, defined as follows

C0 ≡
c2

1|Ω|
2α

. (54)

Finally, if u and v are the unique solutions constructed by approximation of (1) and
(13), respectively, all the other statements follow from estimates (34)–(36).
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Proof of Theorem 1. Let u and u0 be the unique solutions constructed by approximation of,
respectively, (1) and (11). By Theorem 2 (applied with v = u0) we know that ∇(u − u0) ∈
(Lp(Ω × (t, T)))N . Hence, by the triangular inequality

|∇u| ≤ |∇(u − u0)|+ |∇u0| (55)

it follows that if ∇u0 belongs to (Lq(t, T; Lm(Ω)))N , for some q and m in [1, p], then also
∇u belongs to (Lq(t, T; Lm(Ω)))N .

To conclude the proof we show now that estimates (23)–(25) are satisfied. To this aim,
by (55) we deduce that

∥|∇u|∥Lq(t,T;Lm(Ω)) ≤ ∥|∇(u − u0)|∥Lq(t,T;Lm(Ω)) + ∥|∇u0|∥Lq(t,T;Lm(Ω)) ≤

∥|∇(u − u0)|∥Lp(Ω×(t,T))(T − t)
1
q −

1
p |Ω|

1
m − 1

p + ∥|∇u0|∥Lq(t,T;Lm(Ω)) . (56)

Hence, the assertions follow thanks to estimates (34)–(36) of Theorem 2 applied with
v = u0.

Proof of Corollary 1. From Theorem 2.2 in [11], we deduce that if f belongs to Lσ(ΩT),
with σ satisfying (26), then the unique solution u0 constructed by approximation of (11)
satisfies

∇u0 ∈ (Lp(ΩT))
N .

Hence, from Theorem 1, it follows that if (26) holds, then the unique solution u constructed
by approximation of (1) satisfies (26).

Moreover, from Theorem 2.3 in [11], we deduce that if f belongs to Lσ(ΩT), with σ
satisfying (28), then the unique solution u0 constructed by approximation of (11) satisfies

∇u0 ∈ (Lm(ΩT))
N ,

with m as in (29). Hence, (29) follows from Theorem 1.

Proof of Corollary 2. The proof is similar at all to that of Corollary 1 once observed that if
f ∈ Lr(0, T; Lσ(Ω)), with r and σ satisfying (30), by Theorem 1.3 in [8], it follows that the
unique solution u0 constructed by approximation of (11) satisfies

∇u0 ∈ (Lp(ΩT))
N .
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Appendix A

For the convenience of the reader, we recall here the results of [23] used in the proof of
Theorem 2. In more detail these are results that allow to obtain L∞-estimate for a function
u simply showing that it satisfies suitable integral estimates of “energy type”.

Theorem A1 (Theorem 2.1 in [23]). Assume that

u ∈ C((0, T); Lr(Ω)) ∩ Lb(0, T; Lq(Ω)) ∩ C([0, T); Lr0(Ω)) (A1)

where Ω is an open set of RN , N ≥ 1, 0 < T ≤ +∞ and

1 ≤ r0 < r < q ≤ +∞, b0 < b < q, b0 =
(r − r0)

1 − r0
q

. (A2)
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Suppose that u satisfies the following integral estimates for every k > 0∫
Ω
|Gk(u)|r(t2)dx −

∫
Ω
|Gk(u)|r(t1)dx (A3)

+c1

∫ t2

t1

∥Gk(u)(τ)∥b
Lq(Ω)dτ ≤ 0 for every 0 < t1 < t2 < T

∥Gk(u)(t)∥Lr0 (Ω) ≤ c2∥Gk(u)(t0)∥Lr0 (Ω) for every 0 ≤ t0 < t < T, (A4)

where c1 and c2 are positive constants independent on k and

u0 ≡ u(x, 0) ∈ Lr0(Ω). (A5)

Then there exists a positive constant C1 (see Formula (4.19) in [23]) depending only on N, c1, c2, r,
r0, q and b such that

∥u(t)∥L∞(Ω) ≤ C1

∥u0∥h0
Lr0 (Ω)

th1
for every t ∈ (0, T), (A6)

where

h1 =
1

b − (r − r0)− r0b
q

, h0 = h1

(
1 − b

q

)
r0. (A7)

We recall that here Gk is the same function defined in Section 3, i.e.,

Gk(s) = (|s| − k)+sign(s).

If Ω has finite measure it is possible to prove that universal bounds hold if b > r and that
exponential estimates are satisfied by u if b = r. More in detail we have the following results.

Theorem A2 (Theorem 2.2 in [23]). Let the assumptions of Theorem A1 hold true.
If Ω has finite measureand b > r we have the following universal bound

∥u(t)∥L∞(Ω) ≤
C♯

th2
for every t ∈ (0, T), (A8)

where
h2 = h1 +

h0

b − r
=

1
b − r

, (A9)

and C♯, (see Formula (4.19) in [23]), is a constant depending only on r, r0, q, b, c1, c2 and the
measure of Ω.

Moreover, if Ω has finite measure and b = r the following exponential bound holds

∥u(t)∥L∞(Ω) ≤ C2
∥u0∥Lr0 (Ω)

th1 eσt , for every t ∈ (0, T), (A10)

where C2 is a positive constant depending only on N, c1, c2, r, r0, b and q, h1 is as in (A7) and

σ =
c1κ

4(r − r0)|Ω|1−
b
q

, κ arbitrarily fixed in
(

0, 1 − r0

r

)
. (A11)

We point out that in the previous results u is not assumed to satisfy any partial
differential equation but simply suitable integral inequalities.
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