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Abstract: In the field of reliability engineering, covariate information shared among product units
within a specific group (e.g., a manufacturing batch, an operating region), such as operating conditions
and design settings, exerts substantial influence on product lifetime prediction. The covariates shared
within each group may be missing due to sensing limitations and data privacy issues. The missing
covariates shared within the same group commonly encompass a variety of attribute types, such as
discrete types, continuous types, or mixed types. Existing studies have mainly considered single-type
missing covariates at the individual level, and they have failed to thoroughly investigate the influence
of multi-type group-shared missing covariates. Ignoring the multi-type group-shared missing
covariates may result in biased estimates and inaccurate predictions of product lifetime, subsequently
leading to suboptimal maintenance decisions with increased costs. To account for the influence of
the group-shared missing covariates with different structures, a new flexible lifetime model with
multi-type group-shared latent heterogeneity is proposed. We further develop a Bayesian estimation
algorithm with data augmentation that jointly quantifies the influence of both observed and multi-
type group-shared missing covariates on lifetime prediction. A tripartite method is then developed to
examine the existence, identify the correct type, and quantify the influence of group-shared missing
covariates. To demonstrate the effectiveness of the proposed approach, a comprehensive simulation
study is carried out. A real case study involving tensile testing of molding material units is conducted
to validate the proposed approach and demonstrate its practical applicability.

Keywords: group-shared latent heterogeneity; reliability modeling; multi-type missing covariates;
Bayesian estimation; lifetime prediction

MSC: 90B25

1. Introduction

Product reliability analysis and lifetime prediction are essential in the life cycle as-
sessment of engineering systems or components. Various types of covariate information,
including external environmental conditions (e.g., temperature, humidity) and internal
material properties (e.g., strength, stiffness), exert a significant impact on product lifetime
prediction [1]. In real practice, some covariates are shared within the same group, such
as material variables of product units within the same production batch [2] and working
conditions of product units within the same operating region [3]. These covariates are
termed group-shared covariates in this paper. Attributed to the effects of the group-shared
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covariates, product units often exhibit a consistent failure mechanism within the same
group, while the lifetime may vary considerably among different groups [4].

In real-world applications, it is common that some influential group-shared covariates
are missing [5]. First, due to limited sensing resources or technical measurement restric-
tions, the covariate information shared within each group may not be readily available.
For instance, machine settings shared within the same production batch and operating
workload profiles shared within the same operational region could be unavailable due to
technical limitations [6]. Second, continuously monitoring certain covariates in a dynamic
and complex environment can be expensive and time-consuming throughout the reliability
assessment period, leading to missing covariate information. For example, the under-
ground soil conditions at the stage of drainage pipe operation in the same region may not
be feasible due to resource-intensive real-time monitoring [7]. Third, due to data privacy
issues or confidentiality concerns, there may be restrictions on the sharing of certain covari-
ate information. For example, the proprietary information (e.g., design settings, quality
indicators of material suppliers) and manufacturing process variables (e.g., production
speed and machine settings) for a group of vehicles produced on a particular assembly line
may not be accessible from warranty data [8]. Last but not least, for many new materials or
products with evolving technology, some influential covariates may not be known due to
limited knowledge [9].

Due to the above various causes of missing information, the missing covariates often
demonstrate multiple types of attributes, including qualitative, quantitative, or a combina-
tion of both [10]. For instance, the covariates may be qualitative by taking nominal values,
such as various descriptors related to materials and diverse configurations pertaining to
design [8]; or ordinal levels, such as various levels of material quality and diverse usage
conditions [11]. Moreover, the covariates may also be quantitative factors that take numeri-
cal values on a continuous scale, such as manufacturing process conditions (e.g., pressure,
humidity, flow rates) during the manufacturing phase [12] or environment conditions (e.g.,
loading, temperature) at the operation stage [13]. In more general and complex scenarios,
the covariates may be mixed type and characterized by a blend of both qualitative and
quantitative factors [14]. These multi-type missing covariates shared within the same group
significantly affect product lifetime estimation, and their influences on the product lifetime
are termed group-shared latent heterogeneity (GSLH). The GSLH quantifies the aggregate
effects of group-shared missing covariates on product lifetime, which may be negative
values, such as the effects of group-shared operating temperature due to the nature of
chemical reactions [15]; or positive values, such as the effects of ambient temperature
shared within the same manufacturing batch [16]. Neglecting the multi-type GSLH may
result in biased estimates and inaccurate predictions of product lifetime, subsequently
leading to non-optimal maintenance decisions or ineffective product design [17].

To handle the issue of missing information in lifetime modeling when the covariate
values are partially observed, some existing studies developed various imputation methods
that created plausible imputations for those missing values [6,18]. Si et al. developed a life-
time estimation model for repairable systems when the failure counting process is partially
observed [19]. Zhou et al. used data augmentation techniques and developed an estimation
approach to analyze failure time data with missing covariates at random [20]. Nevertheless,
when some specific covariates are fully unobserved, reliability analysis becomes more
challenging. Some existing methods quantified the influence of missing covariates via sta-
tistical models with latent variables while maintaining data privacy [21,22]. Slimacek et al.
developed a frailty approach to analyze wind turbine reliability and found that individual
frailties could capture the effects of unobserved factors [23]. These methods mainly focused
on capturing the unit-to-unit variation based on the frailty model and its multivariate
variants with different specifications, such as gamma frailty [24], and generalized inverse
Gaussian frailty [25]. However, these existing studies typically considered single-type
missing covariates, such as continuous types [26] or discrete types [27]. None of the
aforementioned studies considered multi-type group-shared missing covariates in product
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lifetime prediction, and none of them examined the model robustness. When multi-type
GSLH is presented, there is a critical need to develop a new lifetime prediction model with
estimation algorithms that can take the influence of multi-type missing covariates shared
within each group into account. Such a lifetime modeling approach can finally achieve
accurate product reliability assessments and cost-effective decisions during the stages of
product design, manufacturing, and field operation.

To address the research gaps, a new lifetime modeling and prediction framework is
proposed, which incorporates multi-type missing information shared within each group.
Specifically, we first propose a new flexible lifetime model with multi-type GSLH that si-
multaneously accounts for different structures of group-shared missing covariates. The pro-
posed model is general and can incorporate several widely used model specifications in
lifetime analysis, such as log-normal and Weibull models. Based on the proposed lifetime
model, a Bayesian estimation algorithm is developed to jointly quantify the influence of
both observed covariates and multi-type group-shared missing covariates. The developed
algorithm can achieve reliable estimates under the scenarios of limited sample size and
unknown subpopulation membership. On the basis of the proposed model and estimation
algorithm, a tripartite method is developed to examine the existence of GSLH, identify
its correct type, and further quantify its impact on product lifetime. Moreover, a com-
prehensive simulation study is conducted to illustrate the effectiveness of the proposed
approach and investigate its robustness across various misspecification scenarios. A real
case study is also presented to demonstrate the practical applicability of the proposed work.
The proposed approach can unveil the underlying patterns of missing information and
mitigate the impact of group-shared missing information on product reliability analysis.

The rest of this paper is organized as follows. Section 2 presents the proposed frame-
work for lifetime modeling and prediction in the presence of multi-type group-shared
missing covariates. Within the framework, a new lifetime model which incorporates multi-
type GSLH is developed and demonstrated in Section 3. In Section 4, the model estimation
algorithm is developed and inference details are elaborated. In Section 5, a numerical study
is presented to demonstrate the effectiveness and investigate the robustness of the proposed
framework. A real case study is further conducted to illustrate the practical applicability.
Section 6 draws the conclusive remarks.

2. Methodology Framework

To handle the group-shared missing covariates that may exist in product lifetime
estimation, we propose a new and flexible lifetime modeling and prediction framework,
as shown in Figure 1, which consists of three interconnected components. First, we propose
a new lifetime model with multi-type GSLH to consider the influence of multi-type group-
shared missing covariates with different structures. Subsequently, we develop a Bayesian
estimation algorithm with data augmentation to jointly quantify the influence of observed
covariates and multi-type GSLH. Based on the proposed model and estimation method,
a tripartite method is further developed for real-world product lifetime estimation in the
presence of multi-type missing information shared within each group. More specifically,
in Step I of the tripartite method, the existence of multi-type GSLH is examined via deviance
information criterion (DIC) [28]. If the multi-type group-shared missing information exists,
the correct type of GSLH is then identified via model selection in Step II. Furthermore,
in Step III, the effects of such group-shared missing covariates will be quantified for product
lifetime prediction. The above procedures are iteratively executed until all potential group-
shared missing covariates are identified. The tripartite method can assist in data selection
during knowledge discovery and improve modeling accuracy. In this paper, we utilize
the lifetime data collected from the lab test with group information (e.g., batch, region) for
demonstration purposes. Section 3 will present the new lifetime model with multi-type
GSLH and discuss the modeling features. Section 4 will develop the details of Bayesian
estimation and inference, which take various structures of group-shared missing covariates
into account. Subsequently, explanations of the tripartite method will be provided.
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√ generic formulation
√ flexible representation of group-shared missing covariates

√ jointly quantifying effects of observed and missing covariates
√ simultaneously obtaining both point and interval estimates
√ modeling capability with even a small sample size

Figure 1. The proposed lifetime modeling and prediction framework.

3. Lifetime Modeling with Multi-Type GSLH

We propose a new lifetime model with multi-type GSLH to account for the influence
of group-shared missing covariates with different structures. Considering n groups of
product units (e.g., items produced in n manufacturing lines), each group i, ∀i = 1, . . . , n
consists of mi product lifespan observations. For lifetime modeling, an accelerated failure
time (AFT) model framework [29] is adopted because of its modeling adaptability and
ease of interpretation. Moreover, the AFT model is mainly used to study the reliability of
industrial products and can be specified using different distributions, such as exponential,
Weibull, and log-normal distributions. The AFT model can be an interesting alternative to
the Cox proportional hazards model when the assumption of proportional hazards does
not hold in analyzing product lifetime. The overall structure of the original AFT model can
be written as

log(Tij) = β0 + βTxij + ϵij, i = 1, . . . , n, j = 1, . . . , mi (1)

where xij represents a vector of covariates for the unit j within the group i, and β signifies
a vector of corresponding coefficients on a logarithmic scale. β0 symbolizes the average
time to failure in the absence of the covariates on a logarithmic scale. ϵij denotes the
measurement error of the unit j within the group i, which is assumed to be an independent
variable with a zero mean and a finite variance. By employing distinct settings of ϵij,
the AFT model can incorporate various lifetime models, such as the widely used log-
normal and Weibull models in the existing literature [13], which are also considered in this
paper. In the AFT model, the covariates xij are used to explain the lifetime variation.

In practice, some of the covariates xij shared within the group i become missing due
to the various aforementioned reasons. The covariates xij then embrace the observed
covariates x̃ij (such as the measured stress factors during the operation stage) and the
multi-type group-shared missing covariates (such as the design settings of product units in
the same batch or the quality indicators of product material suppliers in the same region,
which cannot be obtained from warranty data owing to confidential concerns). We denote
such missing covariates shared within the group i as Zi. The proposed lifetime model can
then be formulated as

log(Tij) = β0 + βT x̃ij + αTZi + ϵij, i = 1, . . . , n, j = 1, . . . , mi (2)
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where α is a vector of the coefficients for group-shared missing covariates on a logarithmic
scale. βT x̃ij characterizes the impact of observed covariates on the lifespan of the unit j
within the group i on a logarithmic scale. Furthermore, we introduce Wi = αTZi to quantify
the aggregate effects of the missing covariates shared within the group i. Herein, we can
specify different covariate structures for Zi. As a result, Wi can be captured by multiple
different types of random quantities as follows.

(i) When all instances of Zi become qualitative random attributes with K distinct values,
such as the missing K-tiered indicators of material quality from various vendors within
the same region during the production stage, Wi can then be captured by a discrete
random variable which follows a categorical distribution, i.e., Wi ∼ Categ(K, p),
where Categ(K, p) signifies a categorical distribution characterized by a parameter
K for K distinct discrete values, i.e., dk, ∀k = 1, . . . , K; and a parameter p for a vector
of probabilities, i.e., p = [p1, . . . , pK]

T, such that ∑K
k=1 pk = 1. The discrete variant of

GSLH is designated as GSLH-D.
(ii) When all instances of Zi become quantitative random attributes, such as the missing

ambient temperature of items produced within the same batch during the manu-
facturing process, the random variable Wi then follows a continuous distribution,
i.e., Wi ∼ G(·), where G(·) refers to an arbitrary continuous density function with
hyper-parameter ψ, whose specification can be determined via model selection meth-
ods. The continuous type of GSLH is designated as GSLH-C.

(iii) When Zi comprises a blend of both qualitative and quantitative attributes, such as
the missing levels of hotness along with various continuous operating conditions,
the random variable Wi then becomes a mixed type (a combination of continuous
and discrete types), i.e., Wi ∼ Gk(·) with probability qk, ∀k = 1, . . . , K, such that
∑K

k=1 qk = 1. Gk(·) represents a continuous density for subpopulation k with hyper-
parameter ϕk. The specification of each Gk(·) and the number of subpopulations K
can be determined via model selection methods. The mixed-type GSLH is annotated
as GSLH-M.

The hierarchy of the proposed lifetime model with multi-type GSLH is illustrated
in Figure 2. When only a solitary subpopulation is present within the entire population,
the model with mixed-type GSLH is equivalent to the model with continuous GSLH.
On the other hand, when the whole population consists of several subpopulations and
the randomness of Wi within each subpopulation degenerates (i.e., Wi becomes close to
a constant value), the model with mixed-type GSLH then approximates to the model
with discrete GSLH. The proposed lifetime model, as shown in Equation (2), is general
and flexible to handle diverse structures of missing covariates shared within each group
by specifying various types of Wi in a generic formulation. The proposed model can be
viewed as encompassing several traditional models as special instances. For example, when
the type of GSLH is purely continuous, the proposed lifetime model would be reduced
to the frailty model [21]. When the type of GSLH is discrete, the proposed lifetime model
would be reduced to the mixture model [27].

Figure 2. Hierarchy of proposed lifetime model with multi-type GSLH.
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4. Model Estimation and Inference

The lifetime prediction performance of the proposed model depends on the parameters
Θ and all instances of Wi as well as the hyper-parameters. We propose a Bayesian estimation
approach to derive these parameter estimates and develop model inferences, given lifetime
data and the observed covariates information.

Suppose there are mi observations of product lifespan within group i, along with the
observed covariates x̃ij, ∀i = 1, . . . , n, j = 1, . . . , mi. The available data can be denoted
as D = {Tij, δij, x̃ij, ∀i = 1, . . . , n, j = 1, . . . , mi}, where δij is a binary indicator of right-
censoring for the lifespan observation of the jth unit in the ith group. When δij takes the
value of one, the lifetime Tij denotes the duration that elapses prior to the occurrence of a
critical event (e.g., product failure) within the data collection period. Otherwise, Tij signifies
the entire duration of the data collection period when δij equals zero. The model’s unknown
parameters are designated as Θ. The marginal likelihood L(Θ | D) can be written as

L(Θ | D) =
n

∏
i=1

∫ ∞

−∞

mi

∏
j=1

[
f (Tij | Θ, Wi)

]δij ·
[
R(Tij | Θ, Wi)

]1−δij · fw(Wi)dWi (3)

where f (Tij | Θ, Wi) represents the probability density function characterizing the lifetime

distribution of the product unit j within the group i and R(Tij | Θ, Wi) = 1−
∫ Tij

0 f (s |
Θ, Wi)ds represents the reliability function. fw(·) is the probability density or mass function
for GSLH. As δij is the censoring indicator for the unit j within the group i, it equals one if
the failure time is actually observed; otherwise, it is zero. In the traditional non-Bayesian
estimation procedures, including the maximum likelihood estimation (MLE) method [30],
Wi will be integrated out and cannot be estimated, as shown in Equation (3). Nevertheless,
the instances of Wi all carry important information of multi-type GSLH.

To address the shortcomings of the traditional marginalized methods, the Bayesian
estimation framework is employed for the development of an estimation algorithm, at-
tributed to its enhanced estimation capability and adaptability [31]. It becomes feasible to
simultaneously estimate both the unknown parameters Θ and all instances of Wi, facilitat-
ing exact inferences for both. Specifically, the joint prior density for unknown parameters is
designated as π(Θ), reflecting the prior information pertaining to all unknown parameters.
Furthermore, we use Φ to represent the hyper-parameters for Wi and designate the prior
density of Wi as π(Wi | Φ). We then derive the joint posterior as

π(Θ, {Wi}n
i=1, Φ | D) ∝ L(Θ, {Wi}n

i=1 | D) · π(Θ) ·
n

∏
i=1

π(Wi | Φ)π(Φ)

=
n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ) ·
n

∏
i=1

π(Wi | Φ)π(Φ) (4)

where L(Θ, {Wi}n
i=1 | D) is the joint likelihood function. In Equation (4), Lij(Θ, Wi | Dij)

can be further expressed as Lij(Θ, Wi | Dij) = f (Tij | Θ, Wi)
δij · R(Tij | Θ, Wi)

1−δij , where
Dij signifies the available data for the product unit j within the group i.

Based on Equation (4), the influence of multi-type GSLH on lifetime estimation can fur-
ther be quantified. Herein, the GSLH is assumed to be uncorrelated among different groups.
In Sections 4.1–4.3, we will develop exact inferences of multi-type Wi and hyper-parameters
Φ as well as unknown model parameters Θ in the presence of discrete, continuous, and
mixed-type GSLH, respectively.

4.1. Discrete Type of GSLH: GSLH-D

The group-shared missing covariates with discrete structures are first investigated.
The corresponding GSLH can be characterized by a discrete random quantity. Specifically,
a categorical distribution can be specified for Wi, which involves K discrete values dk for K
mutually exclusive categories and a vector p = [p1, . . . , pK]

T for the probabilities associated
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with each category, i.e., Pr(Wi = dk) = pk, ∀k = 1, . . . , K, such that ∑K
k=1 pk = 1. When Wi

takes value from the support {d1, . . . , dK}, its probability mass function is expressed as
fw(Wi | p) = ∏K

k=1 pI(Wi=dk)
k , where we denote I(·) as an indicator function. Otherwise,

fw(Wi | p) = 0 when Wi /∈ {d1, . . . , dK}. In other words, fw(Wi | p) = pk when Wi
equals dk, ∀k = 1, . . . , K, which leads to the same result when using the Dirac delta function.
The advantage of this formulation lies in its simplicity for expressing the likelihood function
of a set of independent identically distributed categorical variables. The density of lifetime
can be represented as f (Tij | Θ, Wi) = ∏K

k=1 fk(Tij | Θ, Wi = dk)
I(Wi=dk). We can then

derive the joint posterior density as

π(Θ, {Wi}n
i=1, p | D) ∝

n

∏
i=1

mi

∏
j=1

[
K

∏
k=1

(
fk(Tij|Θ, Wi = dk)

)I(Wi=dk)]δij

· [1−
∫ Tij

0

K

∏
k=1

fk(s|Θ, Wi = dk)
I(Wi=dk)ds]1−δij π(Θ)

n

∏
i=1

fw(Wi|p)π(p)

∝
mi

∏
j=1

K

∏
k=1

∏
i∈sk

[
( fk(Tij|Θ, Wi = dk)

]δij
[
Rk(Tij|Θ, Wi = dk)

]1−δij π(Θ)
K

∏
k=1

p|sk |
k π(p) (5)

where sk = {i : Wi = dk}, ∀k = 1, . . . , K represents the index set of subpopulation k.
The size of the kth index set is expressed as |sk| = ∑n

i=1 I(Wi = dk), such that ∑K
k=1|sk| = n,

where |·| refers to the size operator. Rk(Tij | Θ, Wi = dk) = 1−
∫ Tij

0 fk(s | Θ, Wi = dk)ds
represents the reliability function for all product units within the groups that pertain to
the same subpopulation k. Furthermore, when multiple independent instances of Wi are
involved, categorical random variables constitute a multinomial likelihood, which is a
generalized version of binomial likelihood on K dimensions (K > 2). To facilitate Bayesian
estimation, the Dirichlet prior, a generalization of the beta prior, is further considered for
probability quantities in the multinomial likelihood. The Dirichlet–multinomial relationship
is a generalization of beta–binomial conjugate relationship in K dimensions (K > 2) and
will foster the computational convenience of the developed Bayesian sampling algorithm.
Therefore, the Dirichlet prior can be assigned to the hyper-parameter p, which is a com-
monly used conjugate prior for categorical distribution [27], i.e., p ∼ Dirichlet(ν), where
ν = [ν1, . . . , νK]

T refers to the parameter for Dirichlet distribution. For the hyper-parameter
p, we can obtain the conditional posterior density as

π(p | D, {Wi}n
i=1, Θ) ∝

n

∏
i=1

fw(Wi | p)π(p) ∝
K

∏
k=1

p|sk |+νk−1
k (6)

Based on Equation (6), the conditional posterior of p becomes a Dirichlet distribu-
tion with parameters ν + b, where b = [|s1|, . . . , |sK|]T. With the hyper-parameter p, we
derive the conditional posterior density of all instances of Wi that pertain to the same
subpopulation k as

π({Wi}∀i:Wi=dk
| Θ, D, p) ∝ ∏

i∈sk

[
mi

∏
j=1

Lij(Θ, Wi = dk | Dij)

]
· π(Wi = dk | p) (7)

Based on Equation (7), any Wi taking the value dk is conditionally independent of
Wj, ∀j /∈ sk. Given the lower degree of correlation in the structure and the reduction in
the computational complexity, all instances of Wi can be sampled efficiently. Moreover,
the conditional posterior density of Θ is derived as

π(Θ | {Wi}n
i=1, D, p) ∝

mi

∏
j=1

K

∏
k=1

∏
i∈sk

Lij(Θ, Wi = dk | Dij) · π(Θ) (8)
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The derived conditional posterior densities can be used to draw the samples of Θ and
all instances of Wi with a discrete type as well as hyper-parameter p efficiently.

4.2. Continuous Type of GSLH: GSLH-C

Furthermore, we explore the continuous structure of the missing covariates shared
within each group. The corresponding GSLH can be characterized by a continuous random
quantity, i.e., Wi ∼ G(·), where G(·) refers to an arbitrary continuous density function with
the hyper-parameter ψ. The joint posterior density then becomes

π(Θ, {Wi}n
i=1, ψ | D) ∝

n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ) ·
n

∏
i=1

G(Wi | ψ)π(ψ) (9)

The conditional posteriors of Wi and hyper-parameter ψ as well as the unknown
model parameters Θ can further be derived as

π(ψ | {Wi}n
i=1, Θ, D) ∝

n

∏
i=1

G(Wi | ψ) · [π(ψ)]n (10)

π(Wi | Θ, ψ, D) ∝
mi

∏
j=1

Lij(Θ, Wi | Dij) · G(Wi | ψ) (11)

π(Θ | {Wi}n
i=1, ψ, D) ∝

n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ) (12)

Several distributions commonly used in reliability engineering, such as gamma and
exponential densities, can be considered as potential candidates for G(·). The final specifi-
cation of G(·) can be determined via the model selection method.

4.3. Mixed-Type GSLH: GSLH-M

Moreover, we investigate a more complex structure of the missing covariates shared
within each group, which is a blend of both discrete and continuous types. The mixed-type
GSLH can be expressed as Wi ∼ Gk(·) with probability qk, such that ∑K

k=1 qk = 1. Each
Gk(·) signifies a continuous density function with the hyper-parameter ϕk for all instances
of Wi that pertain to the subpopulation k, ∀k = 1, . . . , K. The joint posterior is derived as

π(Θ, {Wi}n
i=1, q, {ϕk}K

k=1 | D) ∝
n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ)

·
n

∏
i=1

(
K

∑
k=1

qkGk(Wi | ϕk)

)
π(q)

K

∏
k=1

π(ϕk) (13)

where q = [q1, . . . , qK]
T. As shown in Equation (13), generating samples for all instances of

Wi would become mathematically intractable, as the priors for all cases of Wi encompass
Kn additive components. To tackle the practical challenges related to analytical complex-
ity and boost computational efficiency, a data augmentation technique [32] is adopted.
Specifically, an augmented variable ξi is introduced to signify the subpopulation affili-
ation of each Wi, ∀i = 1, . . . , n. If group i is a member of the subpopulation k, ξi then
equals k, i.e., Wi | ξi = k ∼ Gk(·). The probability mass function for ξi is expressed as
f (ξi | q) = ∏K

k=1 qI(ξi=k)
k , where I(·) refers to an indicator function. The conditional density

of Wi can then be expressed as f (Wi | ξi, {ϕk}K
k=1) = ∏K

k=1 Gk(Wi | ϕk)
I(ξi=k). We further

use Ik = {i : ξi = k} to represent the index set of subpopulation k, ∀k = 1, . . . , K, along
with |Ik| = ∑n

i=1 I(ξi = k), such that ∑K
k=1|Ik| = n, where |·| is the size operator. We can

then derive the joint posterior as



Mathematics 2024, 12, 740 9 of 22

π(Θ, {Wi}n
i=1, q, {ϕk}K

k=1, {ξi}n
i=1 | D)

∝
n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ) ·
n

∏
i=1

f (Wi | ξi, {ϕk}K
k=1) f (ξi | q)π(q)

K

∏
k=1

π(ϕk)

∝
n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ) ·
K

∏
k=1

∏
i∈Ik

Gk(Wi | ϕk) ·
K

∏
k=1

q|Ik |
k π(q)π(ϕk) (14)

We can assign the Dirichlet conjugate prior for q, i.e., q ∼ Dirichlet(ζ), where
ζ = [ζ1, . . . , ζK]

T refers to the parameter of the Dirichlet distribution. We can further ob-
tain the conditional posterior of q as

π(q | D, {ξi}n
i=1, {Wi}n

i=1, Θ, {ϕk}K
k=1) ∝

K

∏
k=1

qζk+|Ik |−1
k (15)

The conditional posterior of q then becomes a Dirichlet distribution with parameter
ζ + c, where c = [|I1|, . . . , |IK|]T. The conditional posterior of the augmented variable ξi is
then derived as

π(ξi |Wi, D, q, {ϕk}K
k=1, Θ) ∝ f (Wi|ξi, {ϕk}K

k=1) f (ξi|q) ∝
K

∏
k=1

[qkGk(Wi|ϕk)]
I(ξi=k) (16)

The conditional posteriors of subpopulation-specific hyper-parameter ϕk and mixed-
type GSLH Wi as well as unknown model parameters Θ can further be derived as

π(ϕk | {Wi}n
i=1, {ξi}n

i=1, D, Θ, q) ∝ ∏
i∈Ik

Gk(Wi | ϕk) · [π(ϕk)]
|Ik | (17)

π(Wi | ξi = k, Θ, D, ϕk, q) ∝
mi

∏
j=1

Lij(Θ, Wi | Dij) · Gk(Wi | ϕk) (18)

π(Θ | D, {ξi}n
i=1, {Wi}n

i=1, {ϕk}K
k=1, q) ∝

n

∏
i=1

mi

∏
j=1

Lij(Θ, Wi | Dij) · π(Θ) (19)

Based on the derived conditional posterior of hyper-parameter q, the subpopulations
can be obtained easily with the proportion information. For each subpopulation k, the pos-
terior samples of hyper-parameter ϕk and subpopulation-specific cases of Wi can be drawn
efficiently based on the derived conditional posteriors.

4.4. Estimation Algorithm

Based on the derivation details in Sections 4.1–4.3, we develop a generalized estimation
algorithm under the Gibbs sampling framework [33] for the proposed lifetime model with
multi-type GSLH. The detailed procedures are summarized in Algorithm 1. Specifically,
τmax refers to the maximum number of iterations. We employ the improved Gelman–
Rubin method [34] to ensure the convergence of the sampling procedure. The improved
Gelman–Rubin method is an alternative rank-based diagnostic that addresses the issues
when dealing with heavy-tailed chains or varying variances across chains.

Without any prior information about the hyper-parameter p (or q), the prior can be
specified through the elicitation process from a non-informative Dirichlet conjugate prior,
e.g., Jeffreys prior [27] with parameter ν = 0.5 (or ζ = 0.5). In the sampling procedures
of unknown parameters Θ, the hyper-parameters ψ (or {ϕk}K

k=1) and all instances of Wi,
the posterior samples can be readily obtained if a conjugate prior is accessible. On the
other hand, when a conjugate prior is unavailable, we can employ the Metropolis–Hasting
algorithm [35] to facilitate the generation of these posterior samples.
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Algorithm 1 Sampling algorithm for the proposed approach.

Initialization: Θ(0) and {W(0)
i }

n
i=1

if GSLH-M then q(0) ∼ Dirichlet(ζ) and {ξ(0)i }
n
i=1 ∼ f (ξi|q(0))

end if
procedure DRAWSAMPLES

for τ ← 1, . . . , τmax do
if GSLH-D then

Partition data with s(τ)k = {i : W(τ−1)
i = dk} and set b(τ) = [|s(τ)1 |, . . . , |s(τ)K |]

T

Draw p(τ) from Dirichlet(ν + b(τ))
Draw W(τ)

i from π(Wi | Θ(τ−1), D, p(τ)) by Equation (7)

Draw Θτ from π(Θ | {W(τ)
i }

n
i=1, D, p(τ) by Equation (8)

end if
if GSLH-C then

Draw ψ(τ) from π(ψ | {W(τ−1)
i }n

i=1, Θ(τ−1), D) by Equation (10)

Draw W(τ)
i from π(Wi | Θ(τ−1), ψ(τ), D) by Equation (11)

Draw Θ(τ) from π(Θ | {W(τ)
i }

n
i=1, ψ(τ), D) by Equation (12)

end if
if GSLH-M then

Partition data with I(τ)k = {i : ξ
(τ−1)
i = k} and set c(τ) = [|I(τ)1 |, . . . , |I(τ)K |]

T

Draw q(τ) from Dirichlet(ζ + c(τ))
Draw ξ

(τ)
i from π(ξi |W

(τ−1)
i , D, q(τ), {ϕ(τ−1)

k }K
k=1, Θ(τ−1)) by Equation (16)

Draw ϕ
(τ)
k from π(ϕk | {W

(τ−1)
i }n

i=1, {ξ(τ)i }
n
i=1, D, Θ(τ−1), q(τ)) by Equation (17)

Draw W(τ)
i from π(Wi | ξ

(τ)
i = k, Θ(τ−1), D, ϕ

(τ)
k ) by Equation (18)

Draw Θ(τ) from π(Θ | D, {ξ(τ)i }
n
i=1, {W(τ)

i }
n
i=1, ϕ

(τ)
k , qτ) by Equation (19)

end if
end for

end procedure

Based on the proposed formulation and estimation algorithm, the tripartite method
for handling group-shared missing covariates can be further developed. The existence of
GSLH is examined via comparing the DIC statistics of Markov chain Monte Carlo (MCMC)
simulations between the proposed model and the baseline model which fails to consider
multi-type GSLH. The DIC differences between the proposed model and the baseline
model serve as the estimates of the expected loss differences in prediction. A negative value
indicates that the proposed model with GSLH is more effective at capturing the underlying
patterns of lifetime data; thus, the existence of GSLH should be considered. The correct
type of GSLH can then be identified based on different structures of group-shared missing
covariates. The proposed model with the correct type of GSLH is expected to achieve
the best model-fitting performance. With the identified model, we can derive both point
estimates and interval estimates of model parameters, enabling the quantification of the
influence of both observed and group-shared missing covariates. With the identified
missing information, we can also collaborate with the data provider to pinpoint the group-
shared missing covariates with convincing interpretations based on available domain
knowledge. Such a systematic process is performed iteratively until all group-shared
missing information has been thoroughly explored.

With the derived estimates of unknown model parameters Θ and the cases of multi-
type GSLH Wi as well as hyper-parameters, we can further calculate the reliability function.
Given a test unit l at time Tc, the estimated reliability function can be expressed as R̂(Tc |
Θ, Wl , D) = 1−

∫ Tc
0 f (s | Θ̂, Ŵl , D)ds, where Θ̂ and Ŵl can be drawn from the derived

conditional posteriors, as elaborated in Sections 4.1–4.3.

4.5. Discussion

We can delineate various specifications for the distribution of random error ϵij,
as shown in Equation (2). In this paper, the commonly used normal distribution and
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the extreme value distribution are selected for illustration purposes. By employing the repa-
rameterization technique, the proposed model with a discrete type of GSLH is reduced to
the log-normal mixture model and the Weibull mixture model, respectively [27]. The fol-
lowing proposition clarifies such a model reduction.

Proposition 1. When ϵij is specified with different distributions, the GSLH-D model is reduced
to the log-normal mixture model or the Weibull mixture model with specific unknown parameters
Θk for each subpopulation k, ∀k = 1, . . . , K, i.e., f (t | Θ) = ∑K

k=1 pk fk(t | Θk), where t is
the product lifetime, and fk(·) represents the Weibull density function or the log-normal density
function for the product lifetime of the units belonging to the subpopulation k. Specifically,

1. When ϵij follows a normal distribution, i.e., ϵij = σηij, where ηij is a standard normal
random variable and σ > 0. Furthermore, we denote the unknown parameters related to the
subpopulation k as Θk = {µk, σ2

k }, where µk and σ2
k represent the mean and the variance on

a logarithmic scale, respectively. Then, the GSLH-D model degenerates into the log-normal
mixture model, i.e., f (t) = ∑K

k=1 pkLN(µk = β0 + βT x̃ij + dk, σ2
k = σ2).

2. When ϵij follows an extreme value distribution, i.e., ϵij = σηij, where ηij is a random
variable with standard Gumbel distribution and σ > 0. Furthermore, we denote the unknown
parameters related to the subpopulation k as Θk = {λk, ρk}, where λk and ρk are the rate
and shape parameters, respectively. Then, the GSLH-D model degenerates into the Weibull
mixture model, i.e., f (t) = ∑K

k=1 pkWeib(λk = exp[− 1
σ (β0 + βT x̃ij + dk)], ρk =

1
σ ).

Proposition 1 implies that the baseline hazard, which captures the underlying risk
without considering the influence of any covariates, would become specific to each sub-
population rather than being shared across multiple different subpopulations. The discrete
type of GSLH can then be captured by the subpopulation-specific model parameters Θk.
The detailed proof can be found in Appendix A.

Moreover, with the derived conditional posteriors of multi-type GSLH, we can obtain
the following insights. First, in the GSLH-D model, all data of the same subpopulation
contributes to the estimation of Wi. The Bayesian framework enables information sharing
among different product units from different groups that belong to the same subpopulation,
and a large sample size is not required. On the other hand, only data within the same group
is effective for the estimation of GSLH in the GSLH-C and GSLH-M models. Furthermore,
the GSLH-M model with a more complex covariate structure is closely connected to the
GSLH-D and GSLH-C models. When Wi within each subpopulation approximately follows
a degenerate distribution (i.e., subpopulation-specific Wi is close to a constant value),
the model with a mixed-type GSLH demonstrates similarities to the model with a discrete
type of GSLH. When the entire population consists of a single subpopulation, the model
with a mixed-type GSLH becomes the same as the model with continuous type of GSLH.

5. Case Study

To validate the proposed lifetime modeling and prediction framework with multi-
type GSLH, we conduct a comprehensive simulation study and a real case study in
Sections 5.1 and 5.2, respectively.

5.1. A Simulation Study
5.1.1. Experimental Setting

We first conduct a simulation study using ground truth settings to thoroughly explore
various types of GSLH and assess the performance of the proposed approach in comparison
with alternative approaches. For the purpose of illustrating GSLH, we focus on two distinct
subpopulations (i.e., K = 2) and specify a total proportion of 0.35 for subpopulation 1.
For each type of GSLH, the continuous component is generated randomly based on a
normal distribution. In this work, we investigate two distinct model specifications, namely,
the log-normal and the Weibull models, without losing generality. Figure 3 shows vari-
ous structures of missing covariates shared within each group in the log-normal model.
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The scenarios S1–S3 refer to the simulation scenarios of the discrete type, mixed-type, and
continuous type of group-shared missing covariates, respectively. As shown in Figure 3, it
becomes less identifiable among different subpopulations from S1 to S3, and the discrete
part eventually diminishes in S3. In the simulation study, we consider a single observed
covariate and uniformly generate the covariate data. To demonstrate the modeling effec-
tiveness under small sample size, we create a simulation scenario with ten groups and
five sample units per group using different types of GSLH (i.e., S1, S2, and S3) to examine
the model performance. Furthermore, to investigate the impact of number of groups n and
sample size per group M on the model robustness, we create two more simulation settings
via enlarging n and M, respectively (i.e., n = 100, M = 5 and n = 10, M = 20).

(a) (b) (c)
Figure 3. Different types of group-shared missing covariates in the log-normal model. (a) S1; (b) S2;
(c) S3.

To implement the proposed estimation algorithm, informative priors are assigned to
the majority of unknown parameters, facilitating the effective learning of data patterns.
We ran two independent MCMC chains with 50,000 iterations each, following a burn-in
period of 10,000 iterations. The convergence of the proposed algorithm is examined via
the potential variance scale reduction factor [34]. The developed algorithm achieves an
approximate convergence with a monitoring value of less than 1.1. The potential scale
reduction factor is a measure indicating how much between-chain variation might decrease
in future simulations. A potential scale reduction factor of 1.1 suggests a limited gain in
inferential precision by prolonging chain runs. However, the dynamics of MCMC mean
that between-chain variance can decrease before increasing. If the initial simulation pulls
all chains to the distribution center, they may disperse again with further simulation.
Furthermore, we implement the tripartite method to handle the group-shared missing
covariates. In this work, the model without considering the influence of group-shared
missing covariates is used as the baseline. The DIC differences between the proposed model
and the baseline model are calculated, and the negative values further imply the existence
of GSLH. We then identify the type of GSLH via comparing model-fitting performances.
The model with the correct type of GSLH is expected to achieve the largest performance
improvement [28]. To specify the density of the continuous component for the GSLH-C
and GSLH-M models, we consider the normal, exponential, and gamma densities, which
are commonly used in reliability analysis [21,24]. We select the density specification
that has the potential to achieve the best model performance. Moreover, the number of
subpopulations for the GSLH-D and GSLH-M models can be determined in a similar
manner. With the identified model structure, we can further quantify the influence of
group-shared missing covariates.

5.1.2. Parameters Estimation and Performance Evaluation

Both the posterior mean and the 95% credible interval of the estimated GSLH with
log-normal and Weibull specifications are calculated and illustrated in Figure 4. As shown
in each graph of Figure 4, the horizontal axis is a group index that is an index representing
the unit j within the group i, and the vertical axis is Wi. The point estimates and the interval
estimates are obtained simultaneously via the developed Bayesian estimation procedure.
As depicted in Figure 4, the posterior means of the estimated GSLH are close to the ground
truth values. Moreover, if the model is correctly specified, it is noteworthy that the 95%
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credible intervals entirely cover the true values. To the contrary, the conventional MLE
approach [30] fails to provide either point estimates or interval estimates for the multi-type
GSLH. Although some marginalized approaches with data augmentation [36] could derive
the approximated interval estimates, they mainly rely on asymptotic approximations with
large samples [37], which may not be practical for real-world scenarios. The proposed
work demonstrates its ability to quantify the exact uncertainty of GSLH and the influence
of multi-type group-shared missing covariates, even under limited sample sizes. Moreover,
the proposed approach can quantify the effects of observed covariates under different
scenarios of missing covariate information, even when the sample size per group is small,
as shown in Figure 5. The posterior mode of the estimated coefficient of the observed
covariate is close to the ground truth value under all simulation scenarios.

(a) Log-normal GSLH-D (b) Log-normal GSLH-M (c) Log-normal GSLH-C

(d) Weibull GSLH-D (e) Weibull GSLH-M (f) Weibull GSLH-C

Figure 4. Influence quantification of group-shared missing covariates with M = 5 and n = 10 for
different scenarios: (a,d) S1; (b,e) S2; (c,f) S3.

(a) (b)
Figure 5. Influence quantification of observed covariate with M = 5 and n = 100. (a) Log-
normal; (b) Weibull.

Furthermore, we investigate how the sample size would affect model estimation
performance. Specifically, we use the GSLH-C model with both log-normal and Weibull
specifications under different settings of sample size in scenario S3 as an illustration
example. As shown in Figure 6, the derived 95% credible intervals completely encompass
the true values in all settings. In the illustrated group, the standard deviation of the
estimated GSLH decreases when sample size per group increases. In addition to the
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improved precision, the posterior mode of the estimated GSLH approaches closer to the
true value when M becomes larger. This is because the group-specific data contributes to
the estimation of GSLH, as shown in Equation (11). The estimation performance among all
groups are further illustrated in Figure 7. When sample size M increases, the estimation
accuracy of GSLH is improved with significantly decreased bias.

(a) (b)
Figure 6. Density plot of the estimated GSLH under different simulation settings. (a) Log-normal
GSLH-C in S3; (b) Weibull GSLH-C in S3.

(a) (b)
Figure 7. Estimation bias of GSLH among all groups under different settings. (a) Log-normal GSLH-C
in S3; (b) Weibull GSLH-C in S3.

5.1.3. Lifetime Prediction and Performance Evaluation

Based on the estimated models, we further conducted lifetime prediction along with
performance evaluation. Specifically, the Kaplan–Meier (K–M) survival curves [38] were
calculated to evaluate the prediction performance of the proposed approach in comparison
with alternative methods. The reliability curve computed from the actual data was used as
the benchmark. To explore the significance of properly handling multi-type missing covari-
ates shared within each group, we compare the predicted reliability curves evaluated at
new values of the observed covariates among the proposed approach and the conventional
methods that neglect group-shared missing information. As illustrated in Figure 8, the pre-
dicted K–M curves based on the proposed approach with both log-normal and Weibull
specifications are close to those of the actual data. On the other hand, the conventional
methods tend to either overestimate or underestimate the reliability curve, as shown in
Figure 8. As compared with the proposed approach, the alternative methods that neglect
the positive effects of group-shared missing covariates lead to an underestimation of the
K–M curve and vice versa. Overall, the proposed framework is demonstrated to achieve
both improved estimation performance and lifetime prediction performance with different
specifications in various simulation scenarios.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Prediction performance comparison with simulation setting M = 5, n = 10, and different
specifications: (a–c) log-normal; (d–f) Weibull. (a) GSLH-D in S1 (W > 0); (b) GSLH-M in S2 (W > 0);
(c) GSLH-C in S3 (W < 0); (d) GSLH-D in S1 (W > 0); (e) GSLH-M in S2 (W < 0); (f) GSLH-C in S3

(W < 0).

5.1.4. Model Robustness Evaluation

Based on the above results, the proposed work demonstrates its effectiveness in
quantifying the influence of group-shared missing covariates with improved performance
given that the underlying covariate structure is correctly specified. However, the missing
covariate information is typically unknown in real-world practice. Therefore, we further
investigate the model robustness in the presence of misspecification issues among different
simulation scenarios and simulation settings. We denote ∆ as the DIC difference between
the baseline homogeneous model and the evaluated model. As a lower DIC value signifies
an improved goodness-of-fit performance, a larger ∆ then implies a better performance
improvement of the assessed model in comparison with the baseline. The empirical
results of the proposed model with log-normal specification are summarized in Table 1.
The adequate model in each scenario (i.e., GSLH-D in S1, GSLH-M in S2, and GSLH-C in
S3) achieves the best goodness-of-fit performance improvement with the largest ∆ among
all evaluated models. Furthermore, the suggested lifetime model would be reduced to
the frailty model [21] under GSLH-C in S3. The proposed work effectively deals with the
multi-type group-shared missing covariates and demonstrates its ability to discern the
accurate type of GSLH, particularly concerning the discrete type and the mixed-type, which
have not been thoroughly investigated in prior research.

Moreover, we evaluate model-fitting performance under a misspecification issue. We
denote ι(%) as the scaled difference of performance improvements between the evaluated
model and the model with the correct type of GSLH, which indicates the performance
loss due to model misspecification. A smaller ι(%) implies that the evaluated model is
less sensitive to the misspecification issue and can retain more performance improvement.
When the GSLH-D model is misspecified (i.e., in S2 and S3), the performance loss ι(%)
becomes larger when n or M increases. The enlarged subpopulation data that contributes
to the estimation of GSLH makes the GSLH-D model more sensitive to the misspecification
issue and induces more performance loss. Moreover, the GSLH-C model is susceptible to
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the model misspecification issue with significantly large ι(%) in S1 and S2, as shown in
Table 1. When the sample size per group increases, the performance loss of the misspeci-
fied GSLH-C slightly decreases. Moreover, the empirical results show that the GSLH-M
model exhibits more robustness under model misspecification with slightly smaller ι(%)
as compared with the other misspecified model (i.e., GSLH-C in S1 and GSLH-D in S3).
The proposed model with Weibull specification exhibits similar results, as shown in Table 2.
The model with the correct type of GSLH achieves the largest performance improvement.
Furthermore, the GSLH-C and GSLH-D models induce more performance loss as compared
with the GSLH-M model under the misspecification issue. The GSLH-D model exhibits
more vulnerability with increased sample size per group or number of groups. Addition-
ally, the misspecified GSLH-C model exhibits more robustness when the sample size per
group increases.

Table 1. Performance comparison results with log-normal specification.

Settings
GSLH-C GSLH-D GSLH-M

∆ ι (%) ∆ ι (%) ∆ ι (%)

S1

n = 10 M = 5 95.96 75.14 386.03 0 282.12 26.92
n = 10 M = 20 803.15 48.72 1566.12 0 1280.62 18.23
n = 100 M = 5 1718.82 56.28 3931.19 0 3497.82 11.02

S2

n = 10 M = 5 86.31 81.08 209.56 54.07 456.26 0
n = 10 M = 20 758.56 58.87 841.44 54.38 1844.38 0
n = 100 M = 5 1778.96 60.89 1954.08 57.04 4548.78 0

S3

n = 10 M = 5 327.03 0 38.09 88.35 122.54 62.53
n = 10 M = 20 1675.17 0 188.49 88.75 819.64 51.07
n = 100 M = 5 4350.94 0 412.18 90.53 1843.55 57.63

Furthermore, we evaluate the estimation robustness of GSLH in the presence of a
misspecification issue among different settings of n and M. We use the posterior mean error
to evaluate the estimation accuracy of GSLH, which is computed by the average of absolute
differences between the posterior means and the actual values. The empirical results of the
posterior mean error based on the proposed approach with both log-normal and Weibull
specifications in various scenarios under diverse simulation settings are depicted in Figure 9.
The model with the correct type of GSLH achieves the highest estimation accuracy, which
is highlighted in green. For the adequate model in each scenario, the posterior mean error
of the GSLH-D model decreases when either M or n increases, while the posterior mean
error of the GSLH-C or GSLH-M model decreases only when the sample size per group
increases. The misspecified model with the lowest estimation accuracy in each scenario
is highlighted in red, as shown in Figure 9. The GSLH-M model has better estimation
accuracy as compared with the GSLH-C or GSLH-D models when the type of GSLH is
misspecified. We further empirically investigate the impact of n and M on the estimation
accuracy of the assessed model in the presence of a misspecification issue. As shown in
Figure 9, when the GSLH-D model is misspecified in S2, where the ground truth GSLH
involves both discrete and continuous components, a larger M could slightly improve
the estimation accuracy. However, when the ground truth GSLH is purely continuous
in scenario S3, the estimation robustness of the misspecified GSLH-D model deteriorates
with increased subpopulation data. Moreover, when the GSLH-C model is misspecified
(e.g., in S1 and S2), the estimation accuracy could be improved when M becomes larger,
as illustrated in Figure 9. Such an empirical conclusion also holds for the misspecified
GSLH-M model in scenario S1 and S3.
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Table 2. Performance comparison results with Weibull specification.

Settings
GSLH-C GSLH-D GSLH-M

∆ ι (%) ∆ ι (%) ∆ ι (%)

S1

n = 10 M = 5 92.04 53.69 198.78 0 184.02 7.43
n = 10 M = 20 372.74 52.99 792.91 0 781.44 1.45
n = 100 M = 5 1008.19 49.59 2000.04 0 1877.39 6.13

S2

n = 10 M = 5 91.21 50.34 149.29 18.71 183.65 0
n = 10 M = 20 383.41 49.27 556.61 26.35 755.77 0
n = 100 M = 5 963.46 48.61 1233.81 34.18 1874.53 0

S3

n = 10 M = 5 172.21 0 88.06 48.86 152.94 11.19
n = 10 M = 20 800.72 0 359.31 55.13 754.69 5.75
n = 100 M = 5 1811.76 0 503.85 72.19 1253.61 30.81

(a) (b) (c)

(d) (e) (f)

Figure 9. Posterior mean error comparisons under different settings (1: M = 5, n = 10,
2: M = 20, n = 10, 3: M = 5, n = 100) in different scenarios: (a–c) log-normal; (d–f) Weibull.
(a) S1; (b) S2; (c) S3; (d) S1; (e) S2; (f) S3.

5.2. A Real Case Study

To further exemplify the practical applicability of the proposed work, we carried
out a real case study on the lifespan analysis of molding material units. In a tensile test,
the test unit was subjected to the controlled tensile forces, generating stress–strain data.
The data were collected by advanced instrumentation, including strain gauges and load
cells. The stress–strain data captures the unit-level response to the applied strain level and
provides valuable insights into mechanical properties of the material units. A total of 36
tensile tests are conducted, from which we obtain the actual lifespans of the test units using
the stress–strain data [39]. Due to confidentiality concerns, the configuration details of the
tensile tests are not accessible in the initial study.

To examine whether there is missing information shared within each batch, the tri-
partite method is utilized to analyze the lifetime data. The DIC differences between the
proposed approach with multi-type GSLH and the baseline model without considering
GSLH are calculated to examine the existence of group-shared missing covariates. All DIC
differences are smaller than −100 for different types of GSLH, indicating that GSLH should
be considered in the analysis of lifetime data. To further identify the type of GSLH and the
structure of group-shared missing covariates, we compare the model-fitting performance
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among the proposed models with different types of GSLH. The DIC improvements be-
tween the evaluated models and the baseline homogeneous model are calculated as the
identification metric. As shown in Figure 10a, the GSLH-D model achieves the greatest
performance improvement as compared with the others (e.g., GSLH-C and GSLH-M). This
indicates that the underlying missing covariates shared within each batch are more likely
to be categorical. We then consulted domain experts and extracted additional knowledge
about such influential group-shared missing covariates, which tend to be discrete in nature.
We inform that different ordinal levels of tensile forces (i.e., low and high) have been
applied to different batches of test units during the tensile test. By incorporating such
discrete group-shared covariates, we then examine whether there is any other potential
missing covariate information shared within each batch. The slight positive values of DIC
differences between the proposed approach and the baseline model indicate that a sub-
stantial portion of the latent heterogeneity has been explained by the observed covariates,
as shown in Figure 10b. Further incorporation of GSLH does not provide significant values
in uncovering useful patterns of lifetime data.

(a) (b)
Figure 10. Model performance comparison with a multi-type GSLH. (a) Initial investigation without
the inclusion of group-shared covariate information; (b) subsequent analysis with the incorporation
of group-shared covariate information.

Furthermore, we used the proposed approach to quantify the effects of such missing
covariates shared within each batch on lifetime data. As shown in Figure 11, the estimated
quantities of GSLH in the initial study can almost capture the covariate effects in the further
exploration when the covariate information is incorporated. Moreover, we evaluate the ef-
fectiveness of the proposed approach based on the concordance index (C-index) [40], which
is a useful metric for assessing the concordance between the observations and the predic-
tions in time-to-event data analysis. A value exceeding 0.7 implies the appropriateness of
the evaluated model for analyzing lifetime data. As shown in Figure 12a, the C-index of the
proposed model with the identified discrete type of GSLH exceeds 0.8, implying a strong
model for capturing lifetime data patterns, even in the absence of covariate information.
The prediction power of the identified GSLH-D model surpasses those of the other models,
which validates the effectiveness of the proposed approach. Moreover, when the uncovered
group-shared covariates are incorporated into the lifetime model, the prediction power
scores are comparable among the baseline model and the proposed models with different
types of GSLH, as illustrated in Figure 12b. The difference between the proposed model and
the baseline model becomes slight when the covariate information is incorporated. Never-
theless, the uncovered group-shared covariates could only explain part of the variations,
and more investigations are needed to further improve the modeling performance.

Overall, the proposed approach demonstrates its ability to handle group-shared
missing covariates in this pilot study. The empirical results can guide the reliability engineer
in uncovering important missing covariate information and incorporating such group-
shared covariates to improve the reliability assessment. Moreover, the quantified influence
of group-shared missing covariates can shed light on identifying the most appropriate
design changes during the design stage.
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Figure 11. Influences quantification of group-shared missing covariates.

(a) (b)
Figure 12. Prediction power comparisons based on the C-index. (a) Influences quantification of
group-shared missing covariates; (b) subsequent analysis with the incorporation of group-shared
covariate information.

6. Conclusions

We proposed a flexible lifetime modeling and prediction approach with multi-type
GSLH to account for the influence of complex group-shared missing covariates on product
lifetime. Specifically, we first proposed a new lifetime model to comprehensively investi-
gate multiple different structures of group-shared missing covariates. Bayesian estimation
algorithms and inference procedures were further developed to simultaneously quantify
the influence of both observed covariates and multi-type missing covariates shared within
each group. With the generic formulation and effective estimation algorithms, a tripartite
method was then developed to handle the multi-type group-shared missing covariates in a
practical product lifetime analysis. The existence of multi-type group-shared missing co-
variates was first examined via a DIC statistics comparison. The correct type of the detected
missing covariates was further identified, and finally, the influence of the group-shared
missing covariates were quantified. A comprehensive simulation study was conducted
under different scenarios of missing covariate information. The proposed approach show-
cases its effectiveness at handling multi-type group-shared missing covariates, leading to a
substantial enhancement in estimation performance and prediction accuracy. Moreover,
we investigated model robustness in the presence of misspecification issues. Furthermore,
a real case study was presented to illustrate the applicability of the proposed work for
uncovering the potential structure of multi-type group-shared missing covariates and
alleviating the impact of missing covariate information on practical analysis of product life-
time. After further consultation with the data provider based on the identified information,
the group-shared covariates can then be revealed with compelling interpretability.

In this paper, a novel lifetime modeling and prediction approach for a single-component
system was developed. An interesting future research topic is to develop reliability analysis
methods for multi-component systems with the intricate challenges posed by multi-type
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group-shared missing covariates. Moreover, the primary focus of this work centered on
product lifetime analysis in the presence of group-shared missing covariates. Another
promising direction is to develop degradation models for handling such multi-type group-
shared missing information in product degradation analysis. In addition, the proposed
work can be extended to semi-parametric models, such as Cox proportional hazards models
for survival analysis in the future as well.
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Appendix A. Proof of Proposition

Proof. Recall that the proposed reliability model, as shown in Equation (2), can be specified
with a discrete type of GSLH, i.e., P(Wi = dk) = pk, ∀k = 1, . . . , K. Given that Wi is
known and takes the value dk, the lifetime can be quantified by log Tij | Wi = dk =

β0 + βT x̃ij + dk + ϵij. We let yij = log Tij. Furthermore, with different assumptions on the
distribution of ϵij, we can manifest the conditional density fy(yij |Wi = dk).

(1) When ϵ′ ij follows normal distribution, i.e., ϵ′ ij = σηij where ηij follows standard
normal distribution and σ > 0, yij | Wi = dk has normal density, i.e., yij | Wi = dk ∼
N(µk = β0 + βT x̃ij + dk, σ2

k = σ2). With the transformation technique, we can derive the
density for Tij |Wi = dk as

ft(Tij |Wi = dk) = fy(log Tij |Wi = dk) · (log Tij)
′ = 1√

2πσ
exp[− (log Tij−(β0+βT x̃ij+dk))

2

2σ2 ] · 1
Tij

= 1√
2πσTij

exp[− (log Tij−(β0+βT x̃ij+dk))
2

2σ2 ]

Then, we deduce that Tij |Wi = dk is characterized by a log-normal density, i.e., Tij |
Wi = dk ∼ LN(µk = β0 + βT x̃ij + dk, σ2

k = σ2). Furthermore, we derive the density of the
lifetime as

f (t) =
K

∑
k=1

ft(t |Wi = dk)P(Wi = dk) =
K

∑
k=1

pkLN(µk = β0 + βT x̃ij + dk, σ2
k = σ2)

Thus, the lifetime can be quantified by the log-normal mixture regression model.
From the above procedures, we show that when the following conditions hold for the
proposed lifetime model:

(i) With GSLH-D, i.e., P(Wi = dk) = pk, ∀k = 1, . . . , K;
(ii) ϵij = σηij where ηij ∼ N(0, 1),

the proposed model then degenerates to the log-normal mixture model with the subpopulation-
specific mean parameter µk = β0 + βT x̃ij + dk and the variance parameter σ2

k = σ2.
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(2) When ϵ′ ij follows extreme value distribution, i.e., ϵ′ ij = σηij where ηij follows
standard Gumbel distribution and σ > 0, yij | Wi = dk has Gumbel density (minimum)
with the location parameter µk = β0 + βT x̃ij + dk and the scale parameter γk = σ. With the
transformation technique, we can derive the density for Tij |Wi = dk as

ft(Tij |Wi = dk) = fy(log Tij) · (log Tij)
′ =

1
σ

exp

[
log Tij − (β0 + βT x̃ij + dk)

σ
− exp(

log Tij − (β0 + βT x̃ij + dk)

σ
)

]
·

1
Tij

=
1
σ

1
Tij

exp(
log Tij

σ
) · exp(−

β0 + βT x̃ij + dk

σ
) · exp

[
− exp(

log Tij

σ
) · exp(−

β0 + βT x̃ij + dk

σ
)

]
=

1
σ
·

Tij
1
σ−1 · exp(−

β0 + βT x̃ij + dk

σ
) · exp

[
−Tij

1
σ · exp(−

β0 + βT x̃ij + dk

σ
)

]
Then, we obtain that Tij |Wi = dk is characterized by a Weibull density with the rate

parameter λk = exp(− β0+βT x̃ij+dk
σ ) and the shape parameter ρk = 1

σ , i.e., Tij | Wi = dk ∼
Weib(λk, ρk). Furthermore, we derive the density of the lifetime as

f (t) =
K

∑
k=1

ft(t |Wi = dk)P(Wi = dk) =
K

∑
k=1

pkWeib(λk = exp(−
β0 + βT x̃ij + dk

σ
), ρk =

1
σ
)

The lifetime can be quantified by the Weibull mixture regression model. From the
above procedures, we show that when the following conditions hold for the proposed
lifetime model:

(i) With GSLH-D, i.e., P(Wi = dk) = pk, ∀k = 1, . . . , K;
(ii) ϵij = σηij where fη(ηij) = ex−ex

,

the proposed model then degenerates to the Weibull mixture model with the subpopulation-

specific shape parameter ρk =
1
σ and the rate parameter λk = exp(− β0+βT x̃ij+dk

σ ).
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