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Abstract: Nowadays, medical imaging has become an indispensable tool for the diagnosis of some
pathologies and as a health prevention instrument. In addition, medical images are transmitted
over all types of computer networks, many of them insecure or susceptible to intervention, making
sensitive patient information vulnerable. Thus, image watermarking is a popular approach to embed
copyright protection, Electronic Patient Information (EPR), institution information, or other digital
image into medical images. However, in the medical field, the watermark must preserve the quality
of the image for diagnosis purposes. In addition, the inserted watermark must be robust both
to intentional and unintentional attacks, which try to delete or weaken it. This work presents a
bio-inspired watermarking algorithm applied to retinal fundus images used in computer-aided
retinopathy diagnosis. The proposed system uses the Steered Hermite Transform (SHT), an image
model inspired by the Human Vision System (HVS), as a spread spectrum watermarking technique,
by leveraging its bio-inspired nature to give imperceptibility to the watermark. In addition, the
Singular Value Decomposition (SVD) is used to incorporate the robustness of the watermark against
attacks. Moreover, the watermark is embedded into the RGB fundus images through the blood
vessel patterns extracted by the SHT and using the luma band of Y’CbCr color model. Also, the
watermark was encrypted using the Jigsaw Transform (JST) to incorporate an extra level of security.
The proposed approach was tested using the image public dataset MESSIDOR-2, which contains
1748 8-bit color images of different sizes and presenting different Diabetic Retinopathy (DR). Thus, on
the one hand, in the experiments we evaluate the proposed bio-inspired watermarking method over
the entire MESSIDOR-2 dataset, showing that the embedding process does not affect the quality of the
fundus images and the extracted watermark, by obtaining average Peak Signal-to-Noise Ratio (PSNR)
values higher to 53 dB for the watermarked images and average PSNR values higher to 32 dB to the
extracted watermark for the entire dataset. Also, we tested the method against image processing
and geometric attacks successfully extracting the watermarking. A comparison of the proposed
method against state-of-the-art was performed, obtaining competitive results. On the other hand,
we classified the DR grade of the fundus image dataset using four trained deep learning models
(VGG16, ResNet50, InceptionV3, and YOLOv8) to evaluate the inference results using the originals
and marked images. Thus, the results show that DR grading remains both in the non-marked and
marked images.

Keywords: image watermarking; Steered Hermite transform; Jigsaw transform; singular value
decomposition; spread spectrum; fundus images; retinopathy; convolutional neural networks; YOLO;
information security
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1. Introduction

The World Health Organization (WHO) classifies visual impairment into two groups
(International Classification of Diseases 11 (2018)): visual impairment of distance and near
presentation. For the distance vision disability group, blindness is considered when the
person has a visual acuity of less than 3/60, considering a normal visual acuity of 20/20 [1].

Globally, at least 2.2 billion people have near or far vision impairment, whereas in
at least 1 billion people the vision impairment could have been prevented or has not yet
been treated. In addition, of these 1 billion people, about 3.9 million people have Diabetic
Retinopathy (DR) as the main cause of their visual impairment [1].

In general, the term retinopathy is a generic term used to refer to any non-inflammatory
disease affecting the retina, being used to group a set of different conditions, each with its
characteristics. The most common retinopathies are retinopathy of prematurity, diabetic
retinopathy, hypertensive retinopathy, and central serous retinopathy [2].

In Latin America and the Caribbean, there is a high prevalence of diabetes, in 2015 it was
estimated that 29.6 million people were living with diabetes. In addition, it is estimated that
more than 75% of patients who have had diabetes mellitus for more than 20 years will have
some form of diabetic retinopathy, which is responsible for 2.6% of blindness worldwide. On
the other hand, it is estimated that after 15 years of diabetes, approximately 2% of patients
will become blind and 10% will develop severe visual impairment [3,4]. Particularly, it is
estimated that in Mexico there is a 71% of DR incidence in diabetic patients [5].

Currently, some treatments can significantly reduce the risks of blindness and mod-
erate vision loss by more than 90% [3]. In this sense, fluor angiography is one of the
techniques that has contributed to the understanding, diagnosis, and treatment of many
chorioretinal diseases [6], which consists of the intravenous administration of a dye sub-
stance called fluorescein and photographs are taken, using a special camera, of the back of
the eye to assess how the dye flows in the arteries, capillaries, and veins of the inner part of
the eye, known as fundus images. However, there is the possibility of developing adverse
reactions such as urticaria, fever, and chills that correspond to individual susceptibility [6].
On the other hand, retinography is a lower cost non-invasive diagnostic technique that
does not use contrast agents in the acquisition process avoiding possible reactions. This
technique produces RGB fundus images that can be used to detect some of the most distinc-
tive structures that characterize retinopathies, such as neovascularization, hemorrhages,
exudates, and microaneurysms [7].

Fundus imaging is a process in which the 3D structure of the retina is projected onto
the 2D plane. The intensity of the image represents the amount of reflected light. The
fundus camera consists of a low-power microscope and a camera attached to the top of
the microscope. The camera can capture the retinal area at an angle of 30° to 50° with a
magnification of 2.5× (5× using auxiliary lenses). Color filters, fluorescein, and indocyanine
green dyes are used to obtain the fundus image. There are mainly three modalities for
fundus photography of the retina [8]:

1. Fundus photography (red-free): A wavelength band is used to capture the amount of
reflected light.

2. RGB fundus photography: The red (R), green (G), and blue (B) wavelength bands are
used to capture the amount of reflected light.

3. Fluorescein angiography (fluorangiography) and indocyanine: The image is generated
from the amount of photons emitted by the fluorescein and indocyanine dyes injected
into the patient.

Another area of study in recent years is the vulnerability of patient digital information,
hence, copyright protection. For example, steganography and image watermarking have
been widely used to hide digital information in a cover image. In the case of watermarking,
several methods have been developed with the objective of these methods to insert infor-
mation into the cover image. Depending on the application, each method uses different
tools to achieve its goal and they must consider the requirements to design the algorithm:
imperceptibility, robustness, legibility, ambiguity, and security. However, discerning when
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a watermarking method is focused on medical images is also very important to preserve the
diagnosis after, including the watermark and protecting the watermark. In this case, gener-
ally, the watermark includes is information about the patient, i.e., the Electronic Patients
Record (EPR), but in some cases, authors use QR codes, logos, etc., as a watermark. So,
to achieve these elements, designing an imperceptible watermarking algorithm is usually
required. The state-of-the-art indicated that the proposals can be designed in the spatial
domain, the transform domain, and in recent years with hybrid techniques. The spatial
domain techniques have the advantage of low computational cost, but because pixels are
directly modified, the images suffer visible modifications, altering the diagnosis. So it is
preferable to design a method in the transform domain or combine different transforms
(hybrid method). The most popular transforms employed are the Discrete Fourier Trans-
form (DFT), Discrete Cosine Transform (DCT), and Discrete Wavelet Transform (DWT).
In addition, when algorithms are focused on medical images, the state-of-the-art indi-
cates classified methods. According to [9], medical image watermarking methods can be
classified as Region Of Interest (ROI)-based watermarking, reversible watermarking, and
imperceptible watermarking. In [10], the authors indicated the next classification: ROI,
reversible watermarking, and zero watermarking. Finally, the authors of [11] indicated that
the watermark algorithms for medical images could be classified as Region Of No Interest
(RONI), reversible watermarking, and conventional digital watermarking. As we can see,
there are algorithms focused on determining the region of interest to insert the watermark.
So, different proposals to watermark digital images consider the classification to define their
algorithm as a hybrid because they combine it, i.e., the proposals that combine RONI with
a reversible schema sometimes are not successful because trying to recover the watermark
fails in the manipulated areas by protecting the integrity of the image.

Regarding the watermarking of medical images, a very important point is not only to
evaluate a watermarking method in terms of robustness, security, and imperceptibility but
also to evaluate the proposal with real medical images and determine if the real diagnosis
changes or not. Different watermark algorithms use retinal fundus images and evaluate if
the method modified the diagnosis or not. For example, ref. [9] presents an imperceptible
watermark method for medical images and the authors include tests demonstrating that it
does not affect computer vision-based automated diagnosis of retinal diseases. On the other
hand, Dey et al. [12] reported a watermarking algorithm for fundus images by inserting
patient information, and evaluated that the embedding watermark process slightly modifies
the blood vessel extraction.

In this work, we propose a hybrid watermark method based on the Steered Hermite
Transform (SHT), the Singular Value Decomposition (SVD), and the Jigsaw Transform
(JST) applied to a public dataset of RGB fundus images presenting a grade of diabetic
retinopathy. Thus, the SHT, a bio-inspired image model, is used as a spatial frequency
decomposition tool to embed the watermark, providing its imperceptibility; the JST, a
popular image scrambling technique, is used to increase the security; and the SVD generates
robust watermarks against attacks. Additionally, we evaluate, through a deep learning
classification strategy, if the watermarking algorithm applied to these medical images
modifies the diagnosis.

The rest of the document is structured as follows: Section 2 presents a revision of the
state-of-the-art works, both those for watermarking applied to medical images, in particular
to fundus images and those deep learning-based works used as support to the diagnosis
of diabetic retinopathy. Section 3 reports the fundus image dataset and the watermark
used to test the watermarking approach and used to classify the DR grade through deep
learning models. In addition, this section presents an overview of the proposed method
and introduces the Steered Hermite transform, the Jigsaw transform, the SVD, and the basis
of the Convolutional Neural Networks (CNN). On the other hand, Section 4 describes the
proposed bio-inspired watermarking method, reporting both the insertion and extraction
processes, as well as the trained deep learning models used to classify the DR grade
presented in the images. Later, Section 5 shows first the metrics used to evaluate the
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performance of the proposal and a sensitivity analysis of the scaling factor. Moreover, this
section reports the watermarking performance over the whole fundus image dataset, the
robustness against image processing and geometric attacks, a comparison of the proposed
watermarking method versus other state-of-the-art works, and an evaluation of the DR
diagnosis of both marked and non-marked images. Finally, Section 6 discusses the results
of the present work, followed by the conclusions and future work given in Section 7.

2. Related Work

Storing patient information is becoming easier with digital medical records. These
records can hold text data about the patient and their medical images, all in one secure
digital file. One way to achieve this is by using digital watermarking, where patient
information is hidden within the medical images themselves. However, this process must
not alter the original medical images, as any changes could affect diagnosis. Therefore, a
key measure of success for this technology is to guarantee the original diagnosis accuracy
of the images after watermarking them.

In this section, first, we report the recent watermarking algorithms in the transform
domain and those applied to fundus images. Secondly, we present the deep learning
approaches used for DR classification in this kind of image.

2.1. Watermarking Algorithms

In [13], the authors describe a watermarking method to store and transmit digital
fundus images with patient information. The authors used as a watermark the patient data.
They calculated the histogram from the medical image, to determine a zero point and then
a peak point because the number of pixels that are associated with the peak point is the
number of bits that it is possible to insert. Klington et al. [14] developed a watermarking
algorithm to authenticate the digital fundus images using SVD and DWT. As a watermark,
the authors used textual information about the fundus images and the original image.
According to the results, the maximum capacity to insert is 329,960 bits, and with the
jittering attack, the algorithm modifies 43% of the total number of embedded pixels. The
authors indicate that they used the green channel of the original image to generate the
watermark, and the other channels (red and blue) were used to embed the watermark.
In [12], Dey et al. presented a watermarking method applied to fundus images to insert
an EPR into the blood vessels extracted using K-means segmentation. Additionally, the
authors evaluated and found a percentage difference in accuracy (0.25%) in blood vessel
extraction before and after watermarking. On the other hand, Singh et al. [15] reported a
watermarking approach to insert a unique identification code into the blood vessels. The
blood vessels are detected through the matched filter and derivative of Gaussian and the
pattern found formed the personal identification code.

In other papers, the authors use all channels. For example, in the paper An Impercep-
tible Semi-blind Color Image Watermarking Using RDWT and SVD [16], the authors use
the RGB color space and employ the three channels to insert the watermark. Also, they
used Redundant Discrete Wavelet Transform (RDWT) and SVD. One of the advantages
of this method is the amount of information to use as a watermark because the original
image and the watermark are the same size. In [17], the authors used a hybrid method
to design a robust and imperceptible watermark method for digital images. The authors
combine Lifting Wavelet Transform (LWT), Schur Decomposition, and SVD. The watermark
employed is a QR code of size 256 × 256. According to the results, the method has better
robustness in comparison with other techniques. A novel hybrid watermarking algorithm
is described in [10]. The authors present a brief review of the state-of-the-art and describe
their proposal. It consists of a hybrid reversible-zero watermarking to verify the copyright
and authenticity of medical images. This kind of scheme has the advantage of no distortion
in the medical image because the copyright information is not directly embedded in it.
The proposal is focused on a distortion-free method because in this way the accuracy of
medical diagnosis is better. The results show that the watermark is recovered efficiently
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and the authors compare their proposal with zero watermarking schemes and reversible
watermarking algorithms.

In [18], the authors describe their method as the first algorithm in which ROI and RONI
are divided only for watermark generation, not for watermark embedding. To embed the
watermark they use Slantlet Transform (SLT)-SVD and Recursive Dither Modulation (RDM).
Their results demonstrate a robust method for Average Filter, Gaussian Blurring, Gaussian
Noise, JPEG Compression, Median Filter, Crop, Salt and Noise, Resizing, and Wiener Filter.
Another hybrid method is [19]. In this paper, the authors present a method that uses Fast
Discrete Curvelet Transform (FDCuT), DCT, SVD, and Arnold cat map. To increase security
they employed the Arnold cat map because the original image is distorted to encrypt it
and does not change its intensity. The hybrid method is focused on applications in medical
images because of their imperceptibility and high resistance. They use different datasets to
probe their algorithm, including [20,21]. The problem is the authors do not compare their
method with other similar ones, even though their results are good in the insertion process
and extraction process. The Peak Signal-to-Noise Ratio (PSNR) is close to 50 dB and the
correlation is 1.00. A method to protect biometric images is presented in [22]. This method
uses DWT, and SVD with Chaotic encryption. As a watermark, they use fingerprints and
gait biometrics (20,000) and 1000 fundus images of different categories as original images,
but also the authors probe their algorithm with common images. Their results are good in
terms of imperceptibility because when using medical images PSNR = 50.43 dB, and when
they used common images PSNR = 52.97 dB. The method was tested with different attacks:
Gamma Correction, Resize, Rotate, Crop, Sharp, Speckle Noise, Adjust, and Salt and Pepper
Noise, but they do not indicate the parameter values of each attack. Finally, they test their
algorithm with different techniques to demonstrate their high imperceptibility.

2.2. Deep Learning Classification Algorithms

On the other hand, there is a lot of research focused on DR detection using Artificial
Neural Networks (ANN) or some variants, with some using different techniques. The
state-of-the-art is very extensive because the authors try to develop the best technique for
DR detection or some similar conditions, for example in [23], Kapoor and Arora presented
a set of steps for DR detection and degree classification using deep CNNs. The authors
applied the Enhance Local Contrast (CLAHE) method to obtain noise-free images from
the Kaggle DR dataset [24], allowing the lesions to be visible, they classified the images
using the Deep CNN. On the other hand, Radha et al. [25] presented a study of fundus eyes
images, including the normalization of shape and size, segmentation, and automatic retinal
lesion classification using the Atrous Convolutional Neural Network (ACNN) to extract the
relevant features. Dutta et al. [26] proposed a feature extraction method from retinal images
to perform binary and multi-class classification through various machine learning models.
The authors used a variant of CNN using a transfer learning approach and hyper-parameter
tuning of the VGG-19 model. Gayathri et al. [27] developed an automated DR grading
method from the fundus images. A Multipath Convolutional Neural Network (M-CNN)
was used for global and local feature extraction from images, and the machine learning
classifiers Support Vector Machine (SVM), Random Forest, and J48 were used to categorize
the input according to the severity. The model was evaluated across the publicly available
databases IDRiD, Kaggle, and MESSIDOR. In [28], the authors Chetoui and Akhloufi
presented a study to develop a deep learning algorithm capable of detecting DR on retinal
fundus images. Also, the proposed deep learning algorithm fine-tunes a pre-trained deep
CNN for DR detection. A new variant of fully convolutional networks, with its expansive
path redesigned, is Lesion-Net [29]. A dual loss that leverages both semantic segmentation
and image classification losses is introduced. Lastly, the authors have built a multi-task
network that employs Lesion-Net as a side-attention branch for both DR grading and result
interpretation. In [30], Ni et al. presented a deep convolutional neural network for DR stage
classification, trained and evaluated. In addition, the model uses high-resolution retinal
fundus images as inputs to take advantage of more detailed retinal lesion information in
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images and a strong correlation between both eyes. Randive et al. [31], made a model that
includes preprocessing, feature extraction using Spherical Directional Local Ternary Pattern
(SDLTP), and classification using traditional distance measure and learning-based distance
measure using ANN. Also, the SDLTP was used for extracting the directional feature
in the 3D plane and to reduce the feature vector length. Loheswaran [32] developed a
classification system using Fuzzy C-Means and a Recurrent Neural Network (RNN). Other
proposals use different techniques or methods. In [33], Shorfuzzaman et al. presented an
explainable deep learning ensemble model by fusing the weights from different models
into a single model. It extracts salient features from various retinal lesions found on retinal
fundus images. Then, the extracted features were fed to a custom classifier to obtain a
DR severity level. The model was trained on the APTOS dataset and was tested using the
APTOS, MESSIDOR, and IDRiD datasets. Suresh et al. [34] presented a screening technique
that relies on the texture analysis of the retinal background using Local Ternary Patterns
(LTP). Also, it compared the results obtained using the proposed approach with Local
Binary Patterns (LBP) instead of LTP. They performed three experiments separating, DR
from normal, Age-related Macular Degeneration (AMD) from normal, and DR from AMD.
Sharif and Shah [35] presented an automatic design for the retinal lesions screening to
grade the DR system. Also, the system is comprised of a preprocessing determination of
biomarkers and formulation of a profile set for classification. In [36], Wang et al. presented
a method requiring only a series of normal and abnormal retinal images without the need
to specifically annotate their locations and types. Additionally, the proposed method
encodes both the background knowledge of fundus images and the background noise
into one unique model. On the other hand, Kaur and Mittal [37] presented a reliable
segmentation of lesions that have been performed using iterative clustering irrespective
of associated heterogeneity, and bright and faint edges. Afterwards, a computer-aided
severity level detection method that they proposed to diagnose non-proliferative diabetic
retinopathy. DelaPava et al. [38] designed a model for automatic DR classification on eye
fundus images. The approach that has identifies the main ocular lesions related to DR and
subsequently diagnoses the illness. Additionally, the Kaggle EyePACS subset is used as a
training set, and the MESSIDOR-2 as a test set for lesions and DR classification models. A
comprehensive machine learning computer-aided diagnosis (CAD) system based on deep
learning techniques [39], eliminates noise, enhances quality, and standardizes the sizes
of the retinal images. Also, it distinguishes between healthy and DR cases. Finally, the
proposal automatically extracts the four changes: exudates, microaneurysms, hemorrhages,
and blood vessels. Biswas et al. [40] developed a model called intelligent system for
diabetic retinopathy for early detection of DR using a SVM.

3. Materials and Methods

In this section, the database of retinal fundus images used in the proposed water-
marking method is introduced. Moreover, the fundamentals of the SHT, JT, and SVD are
given. In addition, the theory of the CNN and the transfer learning strategy are explained
in detail.

3.1. Fundus Image Dataset and Watermark Image

The proposed image watermarking and classification method of DR uses the im-
age public dataset MESSIDOR-2 [20,21]. MESSIDOR stands for “Methods to Evaluate
Segmentation and Indexing Techniques in the Field of Retinal Ophthalmology” (from
french: Méthodes d’Évaluation de Systèmes de Segmentation et d’Indexation Dédiées
à l’Ophtalmologie Rétinienne). The main objective of MESSIDOR project is to compare
and evaluate segmentation algorithms for detecting lesions in retinal RGB images and to
facilitate computer-assisted diagnoses of DR.

The MESSIDOR dataset is a collection of DR examinations, each one consisting of two
macula-centered eye fundus RGB images. The MESSIDOR-original dataset was provided
by the MESSIDOR program partners, containing 1058 images in PNG format (529 exami-
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nations). The MESSIDOR-Extension dataset includes examinations from Brest University
Hospital. It contains 690 images in JPEG format (345 examinations).

The MESSIDOR-2 dataset contains 1748 8-bit color images (874 examinations) of
different sizes (1440 × 960 and 2240 × 1488 pixels). It includes the MESSIDOR-original and
the MESSIDOR-Extension. This dataset comes with a list containing image pairing and it
does not contain annotations of DR. However, there are third parties that include these
annotations. Currently, the MESSIDOR-2 dataset has errors from its site, and the dataset
used in this work was downloaded from the Kaggle public dataset MESSIDOR-2: https:
//www.kaggle.com/datasets/geracollante/messidor2/, (accessed on 10 August 2023).

In addition, in [41], Krause et al. reported the DR grades (0, 1, 2, 3, 4) and Diabetic
Macular Edema (DME) presence (0, 1) for the MESSIDOR-2 fundus image dataset, which
is publicly available at: https://www.kaggle.com/datasets/google-brain/messidor2-dr-
grades, (accessed on 10 August 2023). The grades of the images were adjudicated by a
panel of specialists. This is because the authors of the original MESSIDOR-2 dataset did
not include any diabetic retinopathy ground truth. Figure 1 shows 25 examples of the
MESSIDOR-2 fundus image dataset.

Figure 1. The 25 examples of the MESSIDOR-2 fundus image dataset.

As a watermark, we use the medicine symbol Caduceus, a Greek symbol representing
the staff carried by the deity Hermes. The image of the symbol Caduceus used in this work
is a gray-scale image of 256 × 256 pixels as is shown in Figure 2:

Figure 2. Medicine symbol Caduceus used as watermark.

3.2. Overview of the Proposed Bio-Inspired Watermarking Method

The proposed bio-inspired watermarking algorithm is shown in Figure 3. It is based on
the Steered Hermite transform, Singular Value Decomposition, and Jigsaw transform. Our

https://www.kaggle.com/datasets/geracollante/messidor2/
https://www.kaggle.com/datasets/geracollante/messidor2/
https://www.kaggle.com/datasets/google-brain/messidor2-dr-grades
https://www.kaggle.com/datasets/google-brain/messidor2-dr-grades
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proposal consists of an insertion process to embed a watermark image into the MESSIDOR-
2 fundus image dataset and an extraction process to recover the watermark. In addition,
a CNN model is used to estimate the DR grading. This parameter allows us to define if
the original diagnosis is modified because of the watermark. We detail each method in the
following sections.

Figure 3. Proposed hybrid watermarking algorithm.

The watermarking insertion process has as input the color MESSIDOR-2 fundus image
dataset IRGB(x, y, z)i and the watermark W(x, y), where i = 1, . . . , 1748 is the image index,
x, y represent the spatial coordinates, and z = 1, 2, 3 the color band (Red, Green, Blue).
Thus, the insertion process generates a set of watermarked fundus images IRGB(x, y, z)i. In
addition, the watermarking process produces some elements, which are stored in the Key
Area (yellow-shaded rectangle) and that will be used later in the extraction process.

On the other hand, the watermarking extraction process recovers the set of extracted
watermarks ÎRGB(x, y, z)i. Later, invisibility of the watermark, and robustness against
attacks is performed over the watermarked dataset.

Finally, a CNN model is independently trained either with the original image dataset
IRGB(x, y, z)i (dashed red line) or the watermarked image dataset ÎRGB(x, y, z)i (dash-dotted
blue line). Thus, both trained CNN models estimate the DR grading and are compared to
evaluate whether the watermarking process modifies the DR diagnosis.

3.3. Steered Hermite Transform

The Steered Hermite transform is obtained by rotating the image decomposition of
the Hermite Transform (HT) [42], a bio-inspired image model used for a spatial-frequency
decomposition of the digital image. Figure 4 shows the steps to calculate the SHT:

Figure 4. Steered Hermite transform schema.
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First, the Cartesian Hermite coefficients (Im,n−m(x, y)) are obtained by convoluting
a gray-scale image (2D image) (I(x, y)) with the Hermite analysis filters (Dm,n−m), as is
shown in Equation (1), followed by sub-sampling with factor T.

Im,n−m(x0, y0) = ∑
(x0,y0)∈S

I(x, y)Dm,n−m(x0 − x, y0 − y), (1)

where m and n − m represents the decomposition order in the spatial directions x and y,
respectively, with m = 0 . . . n and n = 0 . . . D, D is the maximum order of the expansion,
and (x0, y0) is the spatial position in the discrete sampling lattice S.

The Hermite analysis filters (Dm,n−m) are obtained by the Equation (2):

Dm,n−m(x, y) = Km,n−m(−x,−y)ω2(−x,−y), (2)

where ω2(x, y) represents the 2D version of a binomial window function:

ω(x) =
1

2N Cx
N , x = 0, 1, . . . , N − 1,

Cx
N is the binomial function:

Cx
N =

N!
(N − x)!

x!, x = 0, 1, . . . , N − 1,

Km,n−m are the orthogonal polynomials associated with the binomial window ω2(x, y):

Kn[x] =
1√
Cn

N

n

∑
k=0

(−1)n−kCn−k
N−xCk

x, (3)

and N + 1 is the size of the binomial window, and it is related to the size of the Gaussian
window spread (σ), so that defines the discrete sampling lattice S. Moreover, the maximum
order of the expansion must fulfill the relationship D ≤ 2 ∗ N.

Then, the steered Hermite coefficients (In,θ(x, y)) are calculated by rotating the Carte-
sian Hermite coefficients towards an angle θ (Equation (4)):

In,θ(x0, y0) =
n

∑
k=0

(
Ik,n−k(x0, y0)

)(
ϕk,n−k(θ)

)
, (4)

where ϕm,n−m(θ) are the angular functions, of order n, which are defined by Equation (5):

ϕm,n−m(θ) =

√( n
m

)(
cosm(θ)

)(
sinn−m(θ)

)
, (5)

where θ is an angle of maximum energy, e.g., the gradient angle.
The gradient angle could be approximated using the I0,1(x, y) and I1,0(x, y) Cartesian

Hermite coefficients, which represent the edges in the horizontal and vertical directions of
the image I(x, y), respectively. Equation (6) shows the approximation of the angle θ:

θ(x, y) = tg−1
[

I0,1(x, y)
I1,0(x, y)

]
. (6)

On the other hand, to reconstruct the original image the Inverse Steered Hermite
Transform (ISHT) is applied as is shown in Figure 5:



Mathematics 2024, 12, 734 10 of 40

Figure 5. Inverse Steered Hermite transform schema.

The Cartesian Hermite coefficients (Im,n−m(x, y)) are recovered by inversely rotating
the steered Hermite coefficients (In,θ(x, y)), by applying Equations (4) and (6) with the
stored angles (−θ(x, y)).

Next, the original image is reconstructed by calculating the Inverse Hermite Transform
(IHT) through Equation (7). Before performing the reconstruction, an over-sampling with
factor T is applied to the Cartesian Hermite coefficients.

I(x, y) =
N

∑
n

n

∑
m=0

∑
(x0,y0)∈S

Im,n−m(x0, y0)Pm,n−n(x − x0, y − y0), (7)

where Pm,n−n are the Hermite synthesis filters given by Equation (8):

Pm,n−m(x, y) =
Dm,n−m(x, y)

W(x, y)
, (8)

and W(x, y) is a weight function:

V(x, y) = ∑
(x0,y0)∈S

ω2(x − x0, y − y0) ̸= 0.

For multi-dimensional images (e.g., RGB images), the SHT is obtained by applying
the HT to each band and then rotating the coefficients, generating a set of coefficients per
band. Moreover, it is possible to decompose the whole color image using 3-D Hermite
filters and then steering the Cartesian Hermite coefficients towards two local orientation
angles (θ and ϕ). See Mira et al. [43] for more details.

3.4. Jigsaw Transform

The Jigsaw transform is a popular scrambling technique used to hide visual informa-
tion on digital images. It is calculated by relocating blocks of pixels of fixed size [44]. Thus,
a digital image (I(x, y)) of X × Y pixels could be divided into k × l blocks of s1 × s2 pixels
each one, so that k = X/s1 and l = Y/s2. A random number generator defines the new
location of the j-th block, with j = 1, . . . , k × l, and the original positions of each block are
stored to recover the original image. Thus, the encryption/decryption process is symmetric
and can be applied to both RGB and gray-scale images.

Figure 6 shows a fundus image of 960 × 11,140 pixels, and the JST results, applied to
each color band of the RGB image, varying the number of blocks (k × l) and the size of each
one (s1 × s2).
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(a) (b) (c)

(d) (e) (f)
Figure 6. Examples of the JST a fundus image of 960 × 1140 pixels, the number of blocks (N) and
the size of each one (s1 × s2) were varied. (a) Fundus image. (b) k × l = 96 and s1 × s2 = 120 × 120.
(c) k × l = 384 and s1 × s2 = 60 × 60. (d) k × l = 1536 and s1 × s2 = 30 × 30. (e) k × l = 6144 and
s1 × s2 = 15 × 15. (f) k × l = 1536 and s1 × s2 = 30 × 30. k × l = 1,382,400 and s1 × s2 = 1 × 1.

3.5. Singular Value Decomposition

Singular Value Decomposition is a mathematical tool used to determine the intrinsic
algebra present in a matrix. For example, let I a gray-scale image of X × Y, the SVD
decomposed it into three matrices as is shown in Equation (9):

I =
r

∑
i=1

σiuivT
i = USVT , (9)

where U ∈ RY×Y, V ∈ RX×X are orthogonal matrices and S ∈ RX×Y is diagonal:

S =


σ1 0 . . . 0
0 σ2 . . . 0

0 0
. . . 0

0 0 . . . σr

, (10)

and the values σ1 ≥ σ2 ≥ · · · ≥ σr are unique, and are the singular values of I. The number
r ≤ min(X, Y) is equal to the rank of I.

In image processing, SVD has been applied to several problems, such as compression,
noise reduction, and watermarking [45]. One interesting property of SVD in images is
related to the singular values, which do not change when the image is altered, for example,
by image processing operations.

3.6. Convolutional Neural Networks

Nowadays, the convolutional neural network is a novelty approach that has obtained
efficient results in different fields of science and technology, such as computer vision, illness
detection, image segmentation, self-driving, biometric authentication, and the entertain-
ment industry.

The basis of CNNs is convolutional layers that extract local features (e.g., edges and
textures) from a set of input images through several convolution kernels [46]. The 2-D
kernels or filters are represented by matrices, and layers output is known as a feature
map. Thus, each convolutional layer could be trained to detect determinate local features,
generating a output feature map. In addition, pooling layers (or down-sampling layer) are
used to reduce the dimension of the output of each convolutional layer, decreasing the
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number of neurons and reducing in consequence overfitting and computational complexity.
computational complexity. Max-pooling layer, min-pooling layer, and average-pooling
layer are three classes of pooling layers, being the max-pooling layer the most commonly
used. Figure 7 shows a classical architecture of a CNN, consisting of various convolutional-
pooling layer pairs for feature extraction. Moreover, fully connected layers are used for
classification tasks, and in the final process an activation function generated the output
classification labels.

Figure 7. Classic architecture of a convolutional neural network.

The unknown parameters of a CNN model are the weights and biases of the connec-
tions. Thus, an iterative training process adjusts these weights for a later classification
process [46]. In a typical training process, a high number of training samples are used. For
example, ImageNet [47] is a dataset containing more than 14 million images in 1000 classes.
However, in those cases where a large set of samples is not available, the transfer learning
approach is an alternative. This method transfers the weights of a pre-trained network,
with many samples, to the desired network to be trained by performing a fine-tuning [48].
Thus, the transfer learning replaces the last fully connected layer of the pre-trained CNN
with a specific fully connected layer of the problem to be resolved [46].

For many classification problems, a fine-tuning of the last layers is performed, whereas
the first layers remain without changes. However, if there is a significant difference between
the data source of the pre-trained network and the data source of the current network, a
fine-tuning of the first layers could contribute to extracting primitive features (gray levels,
edges, colors, etc.) of the desired data samples [49].

Regarding pre-trained networks, VGG16, Inception-v3, and ResNet50 are three rel-
evant networks used on medical image problems by applied transfer learning. These
networks obtained the highest performing CNNs on the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC2014) [50]. On the other hand, YOLO (You Only Look
Once) is a real-time object detection algorithm that has gained popularity since 2016, when
YOLOv2 was released [51].

On the one hand, VGG-16 is a network with 16 convolutional layers, two fully-
connected layers, a softmax classifier, 3 × 3 convolutional filters, and 2 × 2 max-pooling
operations [52]. Inception-v3 CNN contains 48 convolutional layers and incorporates the
so-called “Inception modules”, which reduce the number of parameters while holding the
network efficiency [53]. On the other hand, ResNet50 contains 50 convolutional layers into
five blocks and it uses residual blocks by the so-called “identity shortcut connection” that
skips one or more layers. The first block is composed of a convolutional and a pooling layer.
The following four blocks use a layer stack of 1 × 1, 3 × 3, and 1 × 1 convolutional filter
size, respectively, with three, four, six, and three layers for each block.

In addition, YOLOv8 from Ultralytics [54] incorporates anchor boxes from Faster
R-CNN, which are used to size and shape real-time prediction of the objects [51]. It has two
main parts: the backbone and the head. The backbone of YOLOv8 is a modified version of
the CSPDarknet53 architecture, consisting of 53 convolutional layers that use cross-stage
partial connections to improve information flow between the layers. The head of YOLOv8
consists of multiple convolutional layers followed by a series of fully connected layers.
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These layers are responsible for predicting bounding boxes, objectness scores, and class
probabilities for the objects detected in an image. Finally, YOLOv8 can perform multi-scaled
object detection using a feature pyramid network to detect objects of different sizes and
scales within an image.

4. Proposed Method for Image Watermarking

The present article is an extension of a previous work published in [55]. In that work,
we proposed a hybrid watermark method based on the SHT, SVD, and JST. The original
algorithm uses the SHT because it is possible to insert the watermark in oriented structures.
This has the advantage that the watermark is more imperceptible to the Human Vision
System (HVS). On the other hand, we employ SVD because we ensure more robustness to
different attacks using the second level of SVD. In addition, the algorithm was tested with
chest X-ray gray-scale images extracted from the Kaggle public dataset COVID-19 Radiogra-
phy Dataset (https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-
database/, (accessed on 14 February 2022)). The results showed that medical images do
not suffer visual alterations reporting PSNR values up to 30 dB, Mean Structure Similarity
Index (MSIM) values are within 0.9800, and Normalized Crossed-Correlation (NCC) values
equal to 0.9900.

In this paper, we propose to use a variation of the algorithm presented in [55], applied
to RGB fundus images, and evaluate whether the watermark insertion process modifies the
DR diagnosis.

Thus, the main differences with the previous work are listed as follows: (i) The pro-
posed watermarking method was adapted and tested on RGB fundus images instead of
gray-scale images, as was reported in [55]. (ii) The fundus images were first transformed
into the Y’CbCr color model, then the luma channel was selected to insert the watermark,
and the SHT for 2D images (Equations (1) and (4)) was applied. (iii) The watermark was em-
bedded into the blood vessel patterns extracted by the SHT in the luma channel, obtaining
in consequence a natural and automatic ROI-based watermarking method, and differing
from [55] where the watermark is embedded in the whole image. (iv) The encryption
security of the watermark was increased by using blocks of 1 × 1 of the JST. (v) The water-
marking method was tested over 1748 8-bit color images of different sizes (1440 × 960 and
2240× 1488 pixels). (vi) A complete robust analysis was performed by applying 11 different
attacks instead only of six attacks from the previous work. (vii) A classification task using
different deep learning architectures was carried out to identify diagnosis changes in the
watermarked images. Finally, (viii), with the proposed modifications we overcome the
evaluation metrics of the previous work.

4.1. Watermarking Insertion Process

Figure 8 shows the details of the proposed watermarking insertion schema using
the steered Hermite transform and the SVD technique. The solid blue line corresponds
to steps for the color model conversion of the cover fundus image, its spatial-frequency
decomposition using the SHT and the SVD, and the watermarking embedding step. On
the other hand, the dashed red line represents the following steps for pre-processing and
encrypting the watermark using the JST. In addition, the green dotted line shows steps
to reconstruct the watermarked fundus image using the inverse SVD, the ISHT, and the
color model conversion. Finally, the yellow-shaded ellipses correspond to those elements
stored in the Key Area used in the extraction process, and the symbols ∗ and + represent
the multiplication and addition operations, respectively.

https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database/


Mathematics 2024, 12, 734 14 of 40

Figure 8. Watermarking insertion schema.

Thus, the steps of embedding the watermark (W(x, y)) are described below:

1. Input the RGB fundus image IRGB(x, y, z).
2. Convert the fundus image IRGB(x, y, z) from the RGB model to the Y’CbCr (Y rep-

resents the luma component or the brightness in an image, Cb and Cr are the blue-
difference and red-difference chrome components, respectively). In the Equation (11)
we present this conversion as is described in [56]: IY′(x, y)

ICb(x, y)
ICr(x, y)

 =

 16
128
128

+

 65.481 128.553 24.966
−37.797 −74.203 112

112 −93.786 −18.214

 ·

IR(x, y)
IG(x, y)
IB(x, y)

, (11)

where IR(x, y), IG(x, y) and IB(x, y) correspond to the color bands of the image
IRGB(x, y), and IY′(x, y), ICb(x, y) and ICr(x, y) correspond to the components of the
image IY′CbCr(x, y).

3. Select the luma band IY′(x, y) of IY′CbCr(x, y). We found that the Y’ component is the
band most suitable to embed the watermark.

4. Calculate the SHT for 2D images (Equations (1) and (4)) to the luma band IY′(x, y),
obtaining the steered Hermite coefficients In,θ(x, y). The parameters used are N = 2,
D = 2 ∗ N, and T = 2.

5. Select the steered Hermite coefficient Ij,θ(x, y) for embedding the watermark.
6. Apply the SVD to Ij,θ(x, y) obtaining the matrices U1(x, y), S1(x, y) and V1(x, y). Store

the diagonal matrix of singular values S1(x, y) into the Key Area.
7. Input the watermark image W(x, y).
8. Resize W(x, y) to have the same size of Ij,θ(x, y).
9. Encrypt the resized matrix W(x, y) by applying the JST, by dividing the resized water-

mark into k × l = X × Y blocks of s1 × s2 = 1 × 1 pixels each one, and obtaining the
matrix WJST(x, y). The original indexes Idx of the blocks are stored in the Key Area.

10. Embed the encrypted watermark WJST(x, y) in the matrix S1(x, y) applying the
Equation (12):

SW(x, y) = S1(x, y) + α ∗ WJST(x, y), (12)
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where α is a scaling factor, which defines the imperceptibility of the watermark image.
11. Apply a second SVD to SW(x, y) abstaining the matrices U2(x, y), S2(x, y) and V2(x, y).

Store the left and right singular matrices U2(x, y) and V2(x, y) into the Key Area.
12. Apply the inverse SVD using the matrices S2(x, y), U1(x, y) and V1(x, y) obtaining

the marked steered Hermite coefficient Îj,θ(x, y).
13. Perform the assembly of the steered Hermite coefficients using the coefficients In,θ(x, y)

(step 4) and including the marked coefficient Îj,θ(x, y) (step 12).
14. Calculate the ISHT (Equation (4) with θ(x, y)′ = −θ(x, y) and Equation (7)), obtaining

the marked luma band ÎY′(x, y).
15. Finally, using the bands ICb(x, y) and ICr(x, y) of IY′CbCr(x, y, z) (step 2) and the

marked luma band ÎY′(x, y), convert from the Y’CbCr color model to the RGB model
obtaining the marked fundus image ÎRGB(x, y, z). Equation (13) show this conver-
sion [56]:IR(x, y)

IG(x, y)
IB(x, y)

 =

0.00456621 0 0.00625893
0.00456621 −0.00153632 −0.00318811
0.00456621 0.00791071 0

 ·

 IY′(x, y)
ICb(x, y)
ICr(x, y)

−

 16
128
128

. (13)

An important factor in the proposed watermarking method corresponds to the selec-
tion of the steered Hermite coefficient Ij,θ(x, y) for embedding the watermark because is
important to have robustness and imperceptibility. So, we performed several tests and we
selected the coefficient I2,θ(x, y). Figure 9 shows the luma component IY′(x, y) (Figure 9a)
of a fundus image and its corresponding coefficient I2,θ(x, y) (Figure 9b).

(a) (b)
Figure 9. (a) Luma component (IY′ (x, y)). (b) Selected Steered Hermite coefficient (I2,θ(x, y)).

The selected coefficient allows for inserting the watermark into the blood vessel pat-
terns, giving a natural and automatic ROI-based watermarking method. Thus, the proposed
method is an alternative to Dey et al. [12], where the blood vessels are first extracted using
K-means segmentation and then the EPR is hidden into them using interpolation and
trigonometric functions. Also, our approach differs from the work of Singh et al. [15],
where a unique identification code is inserted into the blood vessels detected in fundus im-
ages. In that work, the blood vessels are detected through the matched filter and derivative
of Gaussian, and these patterns, unique per patient, represent the identification code.

4.2. Watermarking Extraction Process

In Figure 10, we can see the proposed watermarking extraction schema. It is composed
of two stages. First, the solid blue line corresponds to the decomposition of the marked
fundus image using the SHT and SVD, followed by the operations to extract the watermark.
Second, the dashed red line represents the decryption steps, using the inverse JST and the
post-processing operations to recover the watermark. On the other hand, the yellow-shaded
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ellipses are those elements stored in the Key Area in the insertion phase and used to recover
the watermark.

Figure 10. Watermarking extraction schema.

The extraction process is described below:

1. Input the marked fundus image ÎRGB(x, y).
2. Convert the marked fundus image ÎRGB(x, y) to the Y’CbCr color model (Equation (11)),

obtaining the image ÎY′CbCr(x, y).
3. Select the luma band of ÎY′CbCr(x, y).
4. Calculate the SHT for 2D images (Equations (1) and (4)) to the luma band ÎY′(x, y),

with the same parameters employed in the insertion process, obtaining the steered
Hermite coefficients În,θ(x, y).

5. Select the steered Hermite coefficient Îj,θ(x, y) to extract the watermark.
6. Calculate the SVD to Îj,θ(x, y) obtaining the matrices Û1(x, y), Ŝ1(x, y) and V̂1(x, y).
7. Calculate a second SVD to the matrix Ŝ1(x, y) obtaining the matrices Û2(x, y), Ŝ2(x, y)

and V̂2(x, y).
8. Read the left and right singular matrices U2(x, y) and V2(x, y) from the Key Area

(yellow-shaded rectangle).
9. Apply an inverse SVD decomposition using matrices Ŝ2(x, y), U2(x, y), and U2(x, y)

to obtain the diagonal matrix of singular values ŜW(x, y).
10. Read the diagonal matrix of singular values S1(x, y) from the Key Area (yellow-shaded

rectangle).
11. To extract the first version of the watermark we apply the Equation (14):

ŴJST(x, y) =
ŜW(x, y)− S1(x, y)

α
. (14)

12. Read the indexes Idx from the Key Area (yellow-shaded rectangle) used in the JST of
the insertion process.
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13. Apply the inverse Jigsaw transform to ŴJST(x, y), using the indexes Idx, to obtain the
original position of the pixels, and recover the watermark image.

14. Finally, the extracted watermark is resized to its original dimensions to obtain the
final watermark image Ŵ(x, y).

4.3. Network Architectures for DR Classification

For the DR classification of the images present in MESSIDOR-2 dataset we used the
CNN architectures VGG16, ResNet50, and InceptionV3 through Tesorflow-Keras [57,58]. In
addition, we used the YOLOv8 network due to its simplicity, speed, and accuracy through
the implementation of Ultralytics [54].

As to VGG16, ResNet50, and InceptionV3, we used their standard Keras Implementa-
tion as defined in the “tf.keras.applications” module [58] and as it is shown in Table 1:

Table 1. VGG16, ResNet50, and InceptionV3 CNN implementation.

Network Number of Layers Type of Filters Residual Connections

VGG16 16 3 × 3 No

InceptionV3 48 1 × 1, 3 × 3, 5 × 5 No

ResNet50 50 3 × 3 Yes

For the YOLOv8 architecture, we selected the YOLOv8n variant, which is the smallest
and simplest one.

The MESSIDOR-2 dataset was divided into two parts: 80% for training and 20% for
testing. Tools like Keras and YOLO offer straightforward methods to create classes without
manual annotation. However, data should be organized in a specific file structure.

The root directory contains sub-folders named with class identifiers (0, 1, 2, . . . ). Each
sub-folder corresponds to a class and contains images (img1.jpg, img2.jpg, . . . ) belonging to
that class. This structure is effective as each image features a retinal image and is associated
with only one class:
root/
|– 0/
| |– img1.jpg
| |– img2.jpg
| |– . . .
|
|– 1/
| |– img3.jpg
| |– img4.jpg
| |– . . .
|
|– 2/
| |– img5.jpg
| |– img6.jpg
| |– . . .
|
|– . . .

Regarding the classification categories, we utilized the “adjudicated DR Grade” from
the MESSIDOR-2 DR Grades dataset [41] as the basis for our classes. This classification is
crucial for evaluating how watermarking affects the neural network’s ability to correctly
identify classes.

As per described previously, the categories used for classification (adjudicated_dr_grade)
are as follows, according to the five-point International Clinical Diabetic Retinopathy
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(ICDR) grade:
0 = None
1 = Mild DR
2 = Moderate DR
3 = Severe DR
4 = PDR

5. Experiments and Results
5.1. Experimental Setup

We implemented the proposed watermarking algorithm in a Dell laptop Inspiron 7380
(Dell, Inc., Round Rock, TX, USA) on an Intel Core i7 @ 1.6 GHz (Intel Corporation, Santa
Clara, CA, USA) with 16 GB RAM. The method was programmed in a non-optimized
script in MATLAB R2018b (MathWorks, Natick, MA, USA) without a parallel configuration.
The parameters used were: (i) For the SHT an analysis window size N = 2, a maximum
expansion order D = 2 ∗ N = 4, and a sub-sampling factor T = 2. (ii) Blocks of size
s1 × s2 = 1 × 1 pixels for the JST. (iii) A scaling factor α = 1 × 10−5 (see Section 5.3).

Alternatively, the CNN architectures were developed on a personal custom built
computer operating with Manjaro Linux KDE Edition (Manjaro GmbH & Co. KG, Grafing
b. München, Bavaria, Germany). This system was equipped with a Ryzen 5 3600 processor
(Advanced Micro Devices, Inc., Santa Clara, CA, USA), an NVIDIA GeForce RTX 3070 8 GB
graphics card (Nvidia Corporation, Santa Clara, CA, USA), and 32 GB of RAM.

The watermarking algorithm has a time-consumption of 0.67061 s for the insertion
stage and 0.78226 s for the extraction using images of 2240 × 1488 pixels. These times were
obtained without the JST step, which is the stage that consumes more time when small size
blocks are used (1 × 1, 2 × 2, 3 × 3, etc.).

5.2. Evaluation Metrics

In this section, we describe two sets of evaluation metrics. First, we reported the
watermarking metrics to measure the quality of the watermarked images and the extracted
watermark. Secondly, we presented the metric used to test the influence of the watermark
on the diagnosis of DR.

5.2.1. Watermarking Metrics

To evaluate the algorithm we use different metrics that are commonly used in water-
marking. Some of them are focused on evaluating image quality and others on determining
if the image has suffered modifications compared with the original. Considering the images
I1 (original image), I2 (watermarked image), with X × Y size, and x and y represent the
spatial coordinates we define the metrics as follow:

• Mean Square Error (MSE) is a quality criterion in image processing. It evaluates the
similarity between two images (I1, I2). See Equation (15):

MSE =
1

XY

X

∑
x=1

Y

∑
y=1

[
I1(x, y)− I2(x, y)

]2
. (15)

• PSNR is an objective metric to compare two images, using numerical criteria [59]. In
Equation (16) it is defined:

PSNR = 10 log10

(
2552

MSE

)
. (16)

Close values to zero of MSE and higher values of PSNR correspond to a better quality
of the watermarked image.
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• NCC has been used as a metric to evaluate the degree of similarity between two images.
Compared with ordinary cross-correlation, it is less sensitive to linear changes in the
amplitude of illumination in two images [60]. We calculated it using Equation (17).

NCC =

X

∑
x

Y

∑
y

(
I1(x, y)− Ī1

)(
I2(x, y)− Ī2

)
([ X

∑
x

Y

∑
y

(
I1(x, y)− Ī1

)2
][ X

∑
x

Y

∑
y

(
I2(x, y)− Ī2

)2
])1/2

, (17)

where Ī∗ represents the average value of I∗.
Close to one value of NCC corresponds to a watermarked image of better quality.

• Structural Similarity Index (SSIM) is a quality metric to measure the similarity between
two images. It is considered to be correlated with the quality perception of the
HVS [59]. It takes into account three factors: loss of correlation, luminance distortion,
and contrast distortion. It is defined by Equation (18).

SSIM(I, Î) =
(2µIµ Î + C1)(2σI Î + C2)

(µ2
I + µ2

Î
+ C1)(σ

2
I + σ2

Î
+ C2)

, (18)

where I and Î correspond to the original and the distorted image, respectively. The
averages of I and Î are given by µI and µ Î , respectively, and their standard deviations
are given by σI and σÎ , the covariance between both images is represented by σI Î , and
the constants C1 and C2 are used to prevent instability if the denominator happens to
have a value close to zero.

• MSSIM represents the SSIM mean. Is calculated as we show in Equation (19).

MSSIM(I, Î) =
1
M

M

∑
j=1

SSIM(Ij, Îj), (19)

where Ij and Îj represent their j-th local window, and M stands for the number of local
windows of the image. In the case that Ij and Îj have no negative values.
A better quality of the watermarked image is achieved for close to one value of SSIM
and MSSIM metrics.

5.2.2. Classification Metrics

To evaluate how the watermark embedding process affects the DR diagnosis in the
fundus images, the accuracy classification metric was used as a support metric for the
tests in all architectures (YOLOv8, VGG16, InceptionV3, and ResNet50), as it is shown in
Equation (20):

Accuracy =
TP + TN

TP + TN + FP + FN
, (20)

where TP, TN, FP, and FN correspond to the True Positive, True Negative, False Positive,
and False Negative values, respectively.

Accuracy is measured within the range [0, 1], with 0 as the worst and 1 as the best
possible score.

5.3. Sensitivity Analysis of the Scaling Factor

The scaling factor α, used in the insertion and extraction process, defines the imper-
ceptibility of the watermark and its robustness against attacks. In this sense, low values
give imperceptibility but decrease robustness. On the other hand, high values of the scaling
factor provide robustness but affect the quality of the watermarked image. Therefore, a
sensitivity analysis of the scaling factor was performed by marking with different values
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of α a set of ten images from the image dataset and randomly selected. The values of the
scaling factor varied from 1 × 10−6 to 1 × 10−4 with steps of 1 × 10−6, generating 100 dif-
ferent results per image. Thus, we marked a total of 1000 images and we calculated the
watermarking metrics reported in Section 5.2. Table 2 shows the average metrics obtained
over the selected image set by varying the scale factor.

Table 2. Average performance metrics for the extracted watermark by varying the scale factor.

MSE PSNR (dB) NCC SSIM MSSIM

4.87209 × 10−6 53.50373 0.99936 0.99330 0.99354

The metrics shown in Table 2 mean that the scale factor α does not affect the quality of
the watermarked image in the insertion process.

On the other hand, Figure 11 shows the PSNR and the SSIM metrics of each selected
image (A–J images) by varying the scale factor α. In addition, we graph the threshold scale
factor αth = 1 × 10−5 (vertical black dotted line) which shows that a scale factor below αth,
the PSNR value (Figure 11a) of some images decrease. In the case of the SSIM (Figure 11b),
the same behavior occurs for values below αth.
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Figure 11. Sensitivity analysis of the scaling factor α, for the ten selected images (A–J images), by
varying the scale factor. (a) PSNR values. (b) SSIM values.

In Figure 12, we show the images used for sensitivity analysis of Figure 11 (A–J images).
We can see that for images B, C, D, G, I, and J, the PSNR and SSIM values remain constants
for the values range of α. In addition, for images A and E metrics increase and then hold
constant for values of α ≥ αth. On the other hand, for images F and H, The metrics show
higher values for α ≤ αth and lower performance for values αth ≤ α ≤ 5 × 10−5, which
corresponds to those images where blood vessel are not visible or are very subtle. Thus, we
fixed the scaling factor to α = 1 × 10−5 for all images of the dataset, which ensures both a
high quality of the marked images and a successful extraction of the watermark.

A B C D E

F G H I J

Figure 12. Images used for sensitivity analysis of Figure 11: images (A–J).
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5.4. Watermarking Performance Analysis

The proposed watermarking method was tested using the complete image public
dataset MESSIDOR-2 [20,21]. The Caduceus symbol (Figure 2) was embedded following
the steps presented in Section 4.1. Below we present the performance measures of the
proposed method.

Table 3 presents the average performance metrics for the watermarked images (inser-
tion stage) and the recovered watermarks (extraction stage).

Table 3. Average performance metrics using the 1748 fundus images of the MESSIDOR-2 dataset.
The insertion section corresponds to the watermarked images and the extraction section to the
recovered watermarks.

Insertion Extraction

MSE PSNR (dB) NCC SSIM MSSIM MSE PSNR (dB) NCC SSIM MSSIM

4.6976 × 10−6 53.8638 0.9993 0.9937 0.9938 0.0007 32.0690 0.9975 0.9937 0.9943

On the other hand, Figure 13 shows some of the best examples of the insertion and
extraction process. The left column corresponds to the original fundus images. The
middle columns show the watermarked images and the right column shows the extracted
watermarks, with their PSNR value, respectively. As we can see, these results show a good
balance between the invisibility of the watermarks and the quality of the watermarked
images, with high PSNR values of the watermarked images, and the quality of the extracted
watermarks with high PSNR values.

(a) (b) PSNR = 53.7637 dB (c) PSNR = 34.4575 dB

(d) (e) PSNR = 53.4574 dB (f) PSNR = 34.0773 dB

(g) (h) PSNR = 54.7317 dB (i) PSNR = 33.6248 dB

Figure 13. Best results examples. Original images: (a,d,g). Watermarked images: (b,e,h). Recovery
watermark: (c,f,i).

In addition, Figure 14 shows some results with worse performance in the extracted
watermark process, but with high metrics in the watermarked image. Thus, the original
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fundus images are shown in the left column. The middle column shows the watermark
images and the right column shows the extracted watermarks with their PSNR values,
respectively. In these results, the PSNR values of the extracted watermarks decrease
a bit. However, the high PSNR values of the watermarked images demonstrate that
the invisibility of the watermarks and the quality of the watermarked images remain
unchanging compared with the best results.

(a) (b) PSNR = 54.4497 dB (c) PSNR = 30.7617 dB

(d) (e) PSNR = 53.9139 dB (f) PSNR = 26.68216 dB

(g) (h) PSNR = 53.6334 dB (i) PSNR = 21.7458 dB

Figure 14. Worst results examples. Original images: (a,d,g). Watermarked images: (b,e,h). Recovery
watermark: (c,f,i).

Comparing Figures 13 and 14, we can see that visually original and watermark images
do not suffer alterations, and even though recovery watermarks in Figure 14 have PSNR
values from 20 to 30 dB the images are clear. Therefore, a critical point studied and reported
later is to determine if the DR grade diagnosis is modified in the watermarked images
respecting the originals.

5.5. Watermarking Robustness against Attacks

To measure the robustness of the present watermarking approach, we applied different
attacks to the watermarked images of the complete dataset. To this aim, we vary the
parameter that defines the operation in each attack. Following, in Table 4 we list the type of
attack, the operation name, and the corresponding parameter that was applied:
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Table 4. Definition of the attacks applied and their corresponding parameters.

Attack Type Operation Name Parameter Name Parameter Value

Image Processing

Gaussian Filter (GF) Filter size N × N
Median Filter (MF) Window size N × N
Gaussian Noise (GN) Variance σ
Salt and Pepper Noise (SP) Noise density d
Contrast Enhancement (CE) Percent saturation PCE (%)
Histogram Equalization (EQ) Equalization Levels number LV
JPEG Compression (JPEGC) Quality Percentage QP (%)
Image Scaling (SC) Scaling factor SF

Geometric
Rotation (ROT) Rotation angle ϕ (◦)
Cropping (CROP) Cropping percentage PCR (%)
Translation (TRAN) Displaced pixels number ∆x, ∆y

In Table 5, we show the average results of the completed dataset by applying the
following image processing operations to the watermarked image: Gaussian filter, Median
Filter, Gaussian Noise, and Salt and Pepper Noise.

Table 5. Average performance metrics for the extracted watermark using the 1748 fundus images of
the MESSIDOR-2 dataset and applying the attacks: GF, MF, GN, and SP.

Attack/Parameter Parameter Value MSE PSNR (dB) NCC SSIM MSSIM

GF/(N × N)

3 × 3 6.9476 × 10−4 32.14117 0.99766 0.99409 0.99457
5 × 5 7.2134 × 10−4 32.06983 0.99757 0.99383 0.99442
7 × 7 3.4721 × 10−3 30.06335 0.98959 0.96675 0.97031
9 × 9 2.2502 × 10−1 18.69012 0.71425 0.66672 0.67248

Average 5.7477 × 10−2 28.24112 0.92477 0.90535 0.90795

MF/(N × N)

2 × 2 5.7127 × 10−4 32.69945 0.99808 0.99533 0.99534
3 × 3 5.5048 × 10−4 32.83169 0.99815 0.99551 0.99550
4 × 4 5.5852 × 10−4 32.78804 0.99812 0.99545 0.99544
5 × 5 5.9831 × 10−4 32.77550 0.99800 0.99501 0.99502

Average 5.6965 × 10−4 32.77367 0.99809 0.99532 0.99532

GN/(σ)

0.10 2.3761 × 10−3 31.78001 0.99546 0.99108 0.99191
0.20 3.1808 × 10−3 31.59209 0.99437 0.98949 0.99052
0.40 3.2338 × 10−3 31.44154 0.99417 0.98885 0.99010
0.50 3.2449 × 10−3 31.40980 0.99413 0.98869 0.98998

Average 3.0089 × 10−3 31.55586 0.99453 0.98952 0.99063

SP/(d)

0.20 3.2188 × 10−3 31.49094 0.99422 0.98898 0.99016
0.40 3.2418 × 10−3 31.43030 0.99416 0.98877 0.99002
0.60 3.2713 × 10−3 31.37093 0.99407 0.98852 0.98987
0.75 3.2793 × 10−3 31.33329 0.99404 0.98840 0.98979

Average 3.2528 × 10−3 31.40636 0.99412 0.98867 0.98996

In Table 6, we show the average results of the completed dataset by applying the
following image processing operations to the watermarked image: Contrast Enhancement,
Histogram Equalization, JPEG Compression, and Image Scaling.
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Table 6. Average performance metrics for the extracted watermark using the 1748 fundus images of
the MESSIDOR-2 dataset and applying the attacks: CE, EQ, JPEG, and SC.

Attack/Parameter Parameter Value MSE PSNR (dB) NCC SSIM MSSIM

CE/(PCE)

0.5% 3.5275 × 10−2 28.50771 0.94652 0.91186 0.91404
1.0% 2.9811 × 10−2 29.82147 0.95742 0.93547 0.93700
2.0% 4.4006 × 10−2 29.35476 0.93853 0.91139 0.91290
3.0% 4.0111 × 10−2 29.32348 0.94157 0.90969 0.91140
4.0% 3.6314 × 10−2 29.48612 0.94682 0.91629 0.91815

Average 3.7104 × 10−2 29.29871 0.94617 0.91694 0.91870

EQ/(LV)

8 6.6205 × 10−4 32.06528 0.99777 0.99460 0.99466
32 7.5019 × 10−4 31.51311 0.99747 0.99392 0.99397
64 7.6718 × 10−4 31.41761 0.99742 0.99378 0.99384

128 7.7192 × 10−4 31.39045 0.99740 0.99374 0.99380
256 7.7103 × 10−4 31.39286 0.99740 0.99375 0.99381

Average 7.4448 × 10−4 31.55586 0.99749 0.99396 0.99402

JPEGC/(QP)

90% 8.5412 × 10−4 31.39271 0.99713 0.99252 0.99359
80% 2.4153 × 10−2 24.04904 0.94505 0.88227 0.89217
70% 9.7825 × 10−2 19.76781 0.83312 0.71775 0.72688
60% 1.5889 × 10−1 18.57334 0.76277 0.65339 0.66094
50% 1.5515 × 10−1 17.74861 0.76366 0.64656 0.65428

Average 8.7375 × 10−2 22.30630 0.86034 0.77850 0.78557

SC/(SF)

0.25× 8.1853 × 10−1 0.86967 0.00346 0.13062 0.13400
0.50× 5.9573 × 10−1 5.24181 0.39417 0.26875 0.27398
1.50× 1.8756 × 10−3 30.87795 0.99413 0.98253 0.98540
1.75× 2.1085 × 10−3 30.73933 0.99347 0.98017 0.98318
2.00× 3.9879 × 10−3 30.09281 0.98853 0.96374 0.96752

Average 2.8445 × 10−1 19.56431 0.67475 0.66516 0.66882

In Table 7, we present the average results of the completed dataset by applying the
following geometric attacks: Rotation, Cropping, and Translation.

Table 7. Average performance metrics for the extracted watermark using the 1748 fundus images of
the MESSIDOR-2 dataset and applying the attacks: ROT, CROP and TRAN.

Attack/Parameter Parameter Value MSE PSNR (dB) NCC SSIM MSSIM

ROT/(ϕ)

5◦ 9.9763 × 10−4 31.91858 0.99669 0.99097 0.99239
15◦ 1.0727 × 10−3 31.87668 0.99649 0.99033 0.99181
45◦ 1.1402 × 10−3 31.52496 0.99628 0.98954 0.99103
65◦ 7.9339 × 10−4 32.11663 0.99734 0.99301 0.99383
90◦ 1.4098 × 10−3 28.80135 0.99527 0.98668 0.99021

190◦ 7.0773 × 10−4 32.11481 0.99763 0.99391 0.99438
Average 1.0202 × 10−3 31.39217 0.99662 0.99074 0.99227

CROP/(PCR)

10% 5.3050 × 10−4 33.01504 0.99821 0.99569 0.99565
20% 5.3289 × 10−4 33.00432 0.99821 0.99567 0.99563
30% 5.5777 × 10−4 32.78566 0.99812 0.99545 0.99545
40% 1.4770 × 10−3 28.49738 0.99505 0.98599 0.98966
50% 9.0257 × 10−3 21.70704 0.97144 0.89202 0.90520
60% 1.0349 × 10−1 12.06025 0.78417 0.47157 0.48271

Average 1.9270 × 10−2 26.84495 0.95753 0.88940 0.89405

TRAN/(∆x, ∆y)

(100, 100) px 5.4622 × 10−4 32.88275 0.99816 0.99555 0.99553
(250, 250) px 5.4341 × 10−4 32.89609 0.99817 0.99558 0.99555
(400, 400) px 5.4083 × 10−4 32.93044 0.99818 0.99560 0.99557
(550, 550) px 5.3478 × 10−4 32.99304 0.99820 0.99566 0.99562

Average 5.4131 × 10−4 32.92558 0.99818 0.99560 0.99557
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On the other hand, Figures 15–17 show some results of the watermarked and attacked
images and the corresponding extracted watermark. The first two columns in each fig-
ure correspond to some satisfying examples of extracting the watermark, whereas the
last two columns represent those cases where the extracted watermark presented worse
performance. Moreover, each row corresponds to a different attack.

(a) GF (3 × 3)

(b)

(c) GF (9 × 9)

(d)

(e) MF (3 × 3)

(f)

(g) MF (5 × 5)

(h)

(i) GN (σ = 0.1)

(j)

(k) GN (σ = 0.5)

(l)

(m) SP (d = 0.6)

(n)

(o) SP (d = 0.75)

(p)

Figure 15. Results examples of the watermarked and attacked images (GF, MF, GN, SP) and the corre-
sponding extracted watermark, showing satisfying results (b,f,j,n) and those with worse performance
(d,h,l,p).

In addition, Tables 8–10, show the metrics obtained of the extracted watermarks for
each attack of Figures 15, 16 and 17, respectively, both the most satisfying and worst
performance result. It is essential to mention that the extracted watermarks are visually
recognizable in most cases in the worse-performance results (the last two columns).
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(a) CE (PCE = 4%)

(b)

(c) CE (PCE = 4%)

(d)

(e) EQ (LV = 128)

(f)

(g) EQ (LV = 8)

(h)

(i) JPEGC (QP = 90%)

(j)

(k) JPEGC (QP = 50%)

(l)

(m) SC (SF = 1.50×)

(n)

(o) SC (SF = 0.25×)

(p)

Figure 16. Results examples of the watermarked and attacked images (CE, EQ, JPEGC, SC) and
the corresponding extracted watermark, showing satisfying results (b,f,j,n) and those with worse
performance (d,h,l,p).

Table 8. Metrics of the extracted watermarks for attacked images from Figure 15.

Attack/Parameter Row (Figure 15) Parameter Value PSNR (dB) NCC MSSIM

GF/(N × N) 1 (left) 3 × 3 34.44387 0.99879 0.99697
1 (right) 9 × 9 16.77039 0.93424 0.77541

MF/(N × N) 2 (left) 3 × 3 34.40309 0.99878 0.99694
2 (right) 5 × 5 27.85757 0.99449 0.98804

GN/(σ) 3 (left) 0.1 34.37611 0.99877 0.99692
3 (right) 0.5 21.46712 0.97659 0.92703

SP/(d) 4 (left) 0.6 34.26986 0.99874 0.99685
4 (right) 0.75 16.62360 0.93240 0.72361
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(a) ROT (ϕ = 45◦)

(b)

(c) ROT (ϕ = 15◦)

(d)

(e) CROP (PCE = 10%)

(f)

(g) CROP (PCE = 50%)

(h)

(i) TRAN
(∆x, ∆y) = (550, 550) px

(j)
(k) TRAN (∆x, ∆y) =

(100, 100) px

(l)

Figure 17. Results examples of the watermarked and attacked images (CE, EQ, JPEGC, SC) and
the corresponding extracted watermark, showing satisfying results (b,f,j) and those with worse
performance (d,h,l).

Table 9. Metrics of the extracted watermarks for attacked images from Figure 16.

Attack/Parameter Row (Figure 16) Parameter Value PSNR (dB) NCC MSSIM

CE/(PCE) 1 (left) 4% 34.49884 0.99881 0.99701
1 (right) 4% 12.99699 0.85736 0.51012

EQ/(LV) 2 (left) 128 34.40309 0.99878 0.99694
2 (right) 8 28.03774 0.99472 0.98875

JPEGC/(QP) 3 (left) 90% 34.44387 0.99879 0.99697
3 (right) 50% 13.45755 0.86972 0.69389

SC/(SF) 4 (left) 1.50x 34.40309 0.99878 0.99694
4 (right) 0.25x 0.86910 0.03747 0.14016

Table 10. Metrics of the extracted watermarks for attacked images from Figure 17.

Attack/Parameter Row (Figure 17) Parameter Value PSNR (dB) NCC MSSIM

ROT/(ϕ) 1 (left) 45◦ 34.45754 0.99880 0.99698
1 (right) 15◦ 9.70583 0.73919 0.30531

CROP/(PCR) 2 (left) 10% 34.55452 0.99882 0.99705
2 (right) 50% 24.33087 0.98773 0.97136

TRAN/(∆x, ∆y) 3 (left) (550, 550) px 34.52659 0.99882 0.99703
3 (right) (100, 100) px 29.46397 0.99619 0.99115

5.6. Comparison with Other Watermarking Methods

An important point to define the effectiveness of our proposal is to compare it with
other similar algorithms, focusing on medical images. As we present in Section 5, our
proposal was tested using fundus images, so this is an element to consider to selecting
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the approaches to compare. In Table 11, we present the comparison values of different
watermarking schemes [9,14,16–19,22]. We present the results indicated in each paper
using fundus images. In Table 12 we indicated the type of watermarking and the dataset
repository that each algorithm uses.

Table 11. Comparison values of different algorithms.

Watermarking Technique PSNR (dB) NCC SSIM MSE

Anushikha Singh et al. [9] 158.4183 1.0000 - -

Zhen Dai et al. [10] 46.9631 - - -

A. George Klington et al. [14] 54.1572 - - -

Ranjana Dwivedi et al. [16] 46.8600 - 0.9914 -

Divyanshu Awasthi et al. [17] 39.4581 0.9957 0.9986 5.0534 × 10−5

67.1475 1.0000 1.0000 8.2033 × 10−8

Xiyao Liu et al. [18] 41.2995 0.9607 - -

Muhammad Fachri et al. [19] 50.5228 0.9607 - -

Payal Garg et al. [22] 51.7040 - - -

Proposed scheme 53.8638 0.9993 0.9937 4.6976 × 10−6

Table 12. Comparison of different algorithms about dataset and type of watermarking.

Technique Image Dataset Watermark Type Capacity (Size)

Anushikha Singh et al. [9] 42 Digital patient ID -

Zhen Dai et al. [10] 40 Binary image 32 × 32

A. George Klington et al. [14] 1000 Fundus image & textual information 329,960 bits

Ranjana Dwivedi et al. [16] 10 Color image 512 × 512

Divyanshu Awasthi et al. [17] 1 QR code 256 × 256

Xiyao Liu et al. [18] 40 Hospital logo 32 × 32

Muhammad Fachri et al. [19] - Binary image 64 × 64

Payal Garg et al. [22] 1000 Fingerprints and gait images -

Proposed scheme 1748 Binary image 256 × 256

It is important to remark on some points of values reported by each method. In the
method [14], the authors evaluated the three channels RGB, because the green channel is
used for generating the watermark, and the other channels (blue and red) are used to insert
the watermark. So in Table 11, we included the average value of red and blue channels.
The paper [16] presents its results using different types of images, but the authors report
their values metrics separately, so we only include the values referring to fundus images.
The authors of the algorithm [17] used the LWT and tested their proposal using sub-bands
LL and sub-bands HH, which is the reason why in Table 11 we present both results. The
first row corresponds to sub-band LL and the second row is the value of sub-band HH. The
methods [10,18] were evaluated with CT images, MRI images, ultrasound images, X-ray
images, and fundus images and their results are the average of all of them, in these cases,
we present this average. The authors of [10] indicated that used a total of 200 medical
images, but we reported only the fundus images (40) that they used, in Table 12.

According to Tables 11 and 12, we can see, on the one hand, the authors do not calculate
all metrics to evaluate their algorithm, so if we consider only PSNR values, even though
the algorithms [9,14,17] have better PSNR values, our technique has a good result too. Also,
considering the NCC value our technique is competitive because these values demonstrate
that the image does not suffer visual modifications. In addition, the MSE is very low and
SSIM is very close to one, so with these values, we reinforce the imperceptibility of the
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watermark. On the other hand, to probe the effectiveness of an algorithm, it is necessary
to use a considerable amount of data, in this case, our dataset is bigger than the others,
and the capacity to hide information as a watermark is competitive compared to other
state-of-the-art works. Finally, is important to compare taking into account the robustness
of each one.

Particularly, the method described in [9] was not evaluated to probe its robustness, so
this method has the highest value of PSNR (Table 11) but this does not facilitate guaranteed
success against attacks. This paper only evaluates if the watermark affects the original
diagnosis. According to its results, all tests are satisfactory indicating that the diagnosis
does not change with the watermark.

Regarding the method reported by A. George Klington et al. [14], they only applied the
jittering attack. They concluded that the proposed algorithm changes 43% of the original
watermark bits against this attack. In the case of the method presented in [10], the metric
they used to compare with other algorithms is mean BER (Bit Error Rate).

With the rest of the methods it is not easy to make a comparison because the authors
do not use the same attacks or in some cases the parameters of each attack are different.
In Table 13, Table 14 and Table 15 we include the results after applying the Median Filter
attack, JPEG Compression, and Cropping attack, respectively.

Table 13. Comparison of different algorithms with our algorithm using Median Filter.

Technique Parameter Value NCC

Ranjana Dwivedi et al. [16] 2 × 2 0.9937
3 × 3 0.8945

Xiyao Liu et al. [18] 3 × 3 0.9759
5 × 5 0.9215

Proposed scheme
2 × 2 0.9980
3 × 3 0.9981
5 × 5 0.9980

Table 14. Comparison of different algorithms with our algorithm using JPEG Compression.

Technique Parameter Value NCC

Ranjana Dwivedi et al. [16] 90% 0.9988

Xiyao Liu et al. [18] 80% 0.9982
70% 0.9939

Proposed scheme
90% 0.9971
80% 0.9450
70% 0.8331

Table 15. Comparison between Xiyao Liu et al. [18] and our algorithm after Cropping attack.

Technique Parameter Value NCC

Xiyao Liu et al. [18] 10% 1.0000
20% 0.9803

Proposed scheme 10% 0.9982
20% 0.9982

As we can see from Table 13, in all cases, our algorithm has the best results after
applying the Median Filter. Concerning JPEGC, our results are low compared with other
proposals ([16,18]), however, the metric values demonstrate that it is possible to recover
the watermark and it is clear, as we demonstrate in Section 5. In the case of the Cropping
attack, the method presented by Xiyao Liu et al. [18] has a better performance than our
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algorithm, the values indicated that the extracted watermark is very similar to the original
watermark. So with this experiment, we demonstrated that our method is competitive
with other similar methods. Regarding the attacks such as Gaussian Noise, and Salt and
Pepper Noise, the parameters that we use to test our method are more strict as we can see
in Table 5. While methods [16,17] use Salt and Pepper densities of 0.05, 0.01, and 0.02. For
Gaussian Noise, they use values of 0.01 and 0.02 or 0.03. So, according to our results, our
method is robust against attacks.

5.7. Analysis of the Influence of the Watermark on the Diagnosis of Diabetic Retinopathy

In this section, we evaluate the influence of the watermarking process on DR diagnosis
using a deep learning approach. Thus, accuracy is reported as a support metric, as the
main focus remains on the effects of the watermarking on the inference produced by the
different models.

5.7.1. Yolov8 Model Results

In the evaluation of YoloV8, it was observed that the model’s top 1 prediction accuracy
averaged 0.736. This is visually represented in the accompanying figure (Figure 18).

Figure 18. YOLOv8 top 1 accuracy.

Notably, the inference performance of this model was exemplary, accurately classifying
the majority of data into their respective classes as delineated description files of the dataset,
which specifies the class to which each image belongs. This high level of accuracy is further
evidenced by the model’s ability to generate consistent inference matrices for both marked
and non-marked images, as illustrated in Figure 19.

(a) (b)

Original - Severe DR [1.0]

Marked - Severe DR [1.0]

(c)
Figure 19. YoloV8 (a) Original image. (b) Watermarked image. (c) Inference match.

The inference results for an original image (Figure 19a) and its watermarked coun-
terpart (Figure 19b) are particularly revealing. The original and the watermarked images
were classified as class 3 (severe). Both classifications align accurately with the DR grades
assigned in the dataset labels (see Figure 19c). Crucially, the similarity in the inference
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matrices for both the marked and non-marked images demonstrates that watermarking
does not adversely affect the model’s inference capabilities on this architecture.

Therefore, the YoloV8 model exhibits high accuracy in its top 1 predictions and main-
tains consistent performance in classifying both watermarked and non-watermarked im-
ages, thereby proving that watermarking does not affect the predicted class.

5.7.2. VGG16 Model Results

The VGG16 model achieved a peak accuracy of 58.31% as we demonstrated in the
results. However, this accuracy level did not show any improvement after the initial
two epochs. This stagnation in performance is clearly illustrated in Figure 20, where the
graphical representations of the model’s accuracy and loss are presented.

(a) (b)

Figure 20. VGGC16 inference results. (a) VGG16 Accuracy. (b) VGG16 Loss.

Further analysis of the VGG16 model was conducted to assess the impact of image
watermarking on the classification performance. The comparison involved using both
watermarked and non-watermarked images in the inference process. The results, as
depicted in Figure 21, indicate that watermarking does not adversely affect the model’s
ability to correctly classify images for computer-aided DR diagnosis. Both watermarked
and non-watermarked images yielded identical confidence levels in the predicted class, in
the example class 0 (NO DR).

(a) (b)

Original - No DR [0.5844002]

Marked - No DR [0.5844002]

(c)
Figure 21. VGG16 inference results. (a) Original image. (b) Watermarked image. (c) Inference match.

5.7.3. InceptionV3 Model Results

In Figure 22, we present the performance metrics for the InceptionV3 model. This
figure is divided into two parts: Figure 22a illustrates the accuracy of the InceptionV3
model, and Figure 22b displays its loss metrics. Both sub-figures provide a comprehensive
view of the model’s performance characteristics.
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(a) (b)

Figure 22. InceptionV3 inference results. (a) InceptionV3 Accuracy. (b) InceptionV3 Loss.

The InceptionV3 inference results indicate a slight but notable variation in the confi-
dence level of the predicted class for certain images, with a deviation of ∆E = ±1.9941%.
Despite this fluctuation, the classification accuracy remains high, as evidenced in Figure 23.
It is important to note that while there is a minor difference in confidence values for certain
images, the model consistently produces high-confidence results. This variation does not
significantly impact the overall accuracy, as demonstrated in the comparative analysis of
marked and non-marked images.

(a) (b)

Original - No DR [0.9847147]

Marked - No DR [0.9650715]

(c)
Figure 23. InceptionV3 inference results. (a) Original image. (b) Watermarked image. (c) Inference
mismatch.

Further analysis, as shown in Figure 23, confirms the aforementioned slight discrep-
ancy in the confidence levels between marked and non-marked images. While this variance
is minimal and does not affect the correct classification of images, it is an interesting obser-
vation that non-marked images tend to exhibit marginally higher confidence levels. This
pattern is not consistent across all images, as some show identical inference results for both
their marked and non-marked versions as the one presented in Figure 24.

(a) (b)

Original - Severe DR [1.0]

Marked - Severe DR [1.0]

(c)
Figure 24. InceptionV3 inference results. (a) Original image. (b) Watermarked image. (c) Infer-
ence match.

5.7.4. ResNet50 Model Results

The ResNet50 model, trained over 100 epochs, achieved an outstanding accuracy of
1.0. An analysis of the inference matrix for both marked and non-marked images revealed
a minuscule average difference (∆E = ±0.002%), indicating a negligible impact of wa-
termarking on the model’s performance. Notably, ResNet50 demonstrated exceptional
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confidence in its predictions, averaging a 99.2% confidence level for the top predicted class.
Remarkably, some images were classified with a perfect confidence score of 100%. The
performance metrics for the ResNet50 model, including accuracy and loss, are comprehen-
sively detailed in Figure 25.

(a) (b)

Figure 25. ResNet50 inference results. (a) ResNet50 Accuracy. (b) ResNet50 Loss.

Figures 26 and 27 further elucidate the effect of watermarking on the inference pro-
cess. In these figures, we observe the minimal impact of watermarking on the inference
matrix, as well as instances where watermarking has no perceivable effect on the model’s
inference accuracy.

(a) (b)

Original - Mild DR [0.9999435]

Marked - Mild DR [0.9999615]

(c)
Figure 26. ResNet50 slight inference results. (a) Original image. (b) Watermarked image. (c) Infer-
ence match.

(a) (b)

Original - No DR [1.0]

Marked - No DR [1.0]

(c)
Figure 27. ResNet50 complete inference results. (a) Original image. (b) Watermarked image.
(c) Inference match.

In the evaluation of the ResNet50 model, the model achieved an unmatched accuracy
rate of 100% over 100 epochs. A critical aspect of our analysis was examining the impact
of watermarking on image classification. Remarkably, the ResNet50 model demonstrated
remarkable resilience to watermarking, with an average deviation of just 0.002% in the
inference matrix between marked and non-marked images. This negligible impact un-
derscores the model’s ability to maintain accuracy and reliability in classification, despite
minor alterations in the input data. Furthermore, the model consistently displayed high
confidence in its predictions, with an average confidence level of 99.2% for the top pre-
dicted class, and in some cases, reaching a perfect confidence score of 100%. The minimal



Mathematics 2024, 12, 734 34 of 40

variation in performance, irrespective of watermarking, affirms that watermarking medical
images using the proposed method does not present an effect in computer-aided and
vision-based diagnostics.

6. Discussion

The method described in this paper focuses on a method to watermark digital medical
images (fundus images) and four trained deep-learning models to evaluate if the original
diagnosis is modified by the watermark. To probe the performance of the proposed method,
typical metrics employed to evaluate quantitatively (MSE, PSNR and NCC) and visually
(SSIM and MSSIM) any alteration of the watermarked image and the extracted watermark
were used. Thus, the results reported in Table 3 show that the average performance metrics,
using the 1748 fundus images, present high quality of the watermarked images with
values of the MSE = 4.6976 × 10−6 PSNR = 53.8638 dB, NCC = 0.9993, SSIM = 0.9937, and
MSSIM = 0.9938, demonstrating that the invisibility of the watermarks on the whole image
dataset. On the other hand, the recovered watermarks in all marked images had excellent
performance reporting values of MSE = 7 × 10−4, PSNR = 32.0690 dB, NCC = 0.9975,
SSIM = 0.9937, and MSSIM = 0.9943. This can be verified, in Figures 13 and 14, where are
given some examples of the best and worst performing, respectively. Thus, the reporting
PSNR values, for these watermarked images, were between 53 and 54 dB for both the best
and worst results. Regarding the extracted watermarks, the PSNR values were between
33 and 34 dB for the best results, and they decreased between 21 and 30 dB for the worst
ones, but with extracted watermarks visually clear and discernible.

To evaluate the robustness of the proposed watermarking algorithm, the more common
attacks in this application were applied. Thus, both image processing and geometric attacks
were employed by varying their parameter from low and high effect over the watermarked
images. Among the image processing attacks were applied: Gaussian and Median Filter,
Gaussian and Salt and Pepper Noise, Contrast Enhancement, Histogram Equalization,
JPEG Compression, and Image Scaling. Additionally, Rotation, Cropping, and Translation
operations were applied as geometric attacks. Thus, from Tables 5–7, the average metrics
show that the watermark is successfully extracted for the Median Filter, Gaussian and Salt
and Pepper Noise, Histogram Equalization, Rotation, and Translation attacks, obtaining
PSNR average values between 31.40636 and 32.92558 dB as a quantitative metric and
MSSIM average values between 0.98996 and 0.99557 as a qualitative metric, allowing to
extract the watermark with high visual quality as it is shown in Figures 15–17. For the
Contrast Enhancement attack, average values of PSNR = 29.29871 dB and MSSIM = 0.91870
(edge values) were obtained (see Table 6 and Figure 16). In addition, for the Image Cropping
attack (Table 7 and Figure 17), average values of PSNR = 26.84495 dB and MSSIM = 0.89405
are consistent because up to 60% of the image is removed, destroying the watermark as
a consequence.

On the other hand, worse performance was obtained for the following attacks: Gaussian
Filter (PSNR = 28.24112 dB, MSSIM = 0.90795) and JPEG Compression (PSNR = 22.30630 dB,
MSSIM = 0.78557). However, in both cases it is possible to recover the watermark and distin-
guish the visual information in it for parameters with high effect, as shown in
Figures 15d and 16l, respectively. In the Gaussian Filter case, the low values are caused
by a 9 × 9 window when the edges of the images are considerably affected. For a JPEG
Compression attack, the low values are present for quality percentages less than 70% due to
information loss.

Finally, for Image Scaling, Table 6 shows the lowest average values of PSNR = 19.56431 dB
and MSSIM = 0.66882, which is because the watermark extraction is unsuccessful for scaling
factor values less than 1 or image downsampling (see Figure 16p), affecting the general per-
formance for this attack. Succinctly, in image downsampling, it is not possible to recover the
watermark. This has a similar behavior to the Cropping attack where the information of the
image is also removed.
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To determine if our algorithm is competitive with other similar approaches, we com-
pare it with other methods taking into consideration their use of fundus images, because an
important key of our investigation is to determine if the watermark modifies the original
diagnosis. So as a first step, we compare the different methods [9,10,14,16–19,22] with our
proposal to evaluate the invisibility of the watermarks. The results in Tables 11 and 12
demonstrate that our technique is competitive with the state-of-the-art, including the con-
tribution that our algorithm was tested to determine if the watermark modifies the original
diagnosis. Regarding robustness, we presented the outcomes of the algorithms employing
identical parameters to our proposal, see Tables 10, 14 and 15. The values in these attacks
indicated that our algorithm is robust and it is possible to extract the watermark without
visible modifications, having the worst value when we applied a JPEG Compression of 70%.
In the case of the Median Filter, we have the best results. With the rest of the attacks that we
select to test our algorithm, the parameters employed are more strict than the parameters
used by other proposals, so it demonstrates the robustness of our method. Referring to the
capacity of the watermark, we use a logo and its dimensions are similar to the watermarks
employed in the state-of-the-art.

Regarding the effect of watermarking in diagnosing diabetic retinopathy, we used
various deep-learning models by evaluating their inference capabilities rather than solely
concentrating on accuracy metrics.

Thus, the YoloV8 model displayed noteworthy performance, with a top 1 prediction
accuracy averaging 0.736. This high accuracy level was maintained consistently across both
watermarked and non-watermarked images. The model adeptly classified the majority
of the data into their respective classes, as defined in the dataset description file. An
in-depth examination of the inference results revealed that watermarking did not detri-
mentally affect the model’s ability to accurately classify images, a critical aspect in medical
image diagnostics.

On the other hand, the VGG16 model showed a peak accuracy of 58.31%, a figure
that notably stagnated after the initial two epochs. This stagnation is visually depicted
in the corresponding figures. Despite this, the VGG16 model effectively classified both
watermarked and non-watermarked images, with no significant difference in the confidence
levels of the predicted classes. This finding was vital in understanding the impact of
watermarking in medical image analysis, especially in the context of diabetic retinopathy.

The performance of the InceptionV3 model was also evaluated. Although there
was a slight variation in confidence levels between watermarked and non-watermarked
images, this deviation was minor and did not significantly influence the model’s overall
classification accuracy. The InceptionV3 model successfully managed to maintain high-
confidence results across different image types, thus underscoring its robustness in handling
watermarked medical images.

Lastly, the ResNet50 model demonstrated exceptional performance, achieving a 100%
accuracy rate over 100 epochs. The analysis of the inference matrix for both marked and
non-watermarked images revealed a minuscule average difference, indicating the minimal
impact of watermarking on the model’s performance. The model displayed extraordinary
confidence in its predictions, further affirming its reliability in accurately classifying medical
images irrespective of watermarking.

Additionally, this finding is encouraging for the future of automated medical diagnosis
systems. It suggests that these systems can handle watermarked images without losing
accuracy, which is important for maintaining patient confidence and data protection.

7. Conclusions and Future Work

This study introduces a novel, bio-inspired watermarking algorithm for fundus im-
ages leveraging the transform domain. Our approach integrates a combination of mathe-
matical tools to achieve robust and imperceptible watermarking without compromising
clinical diagnosis.
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Firstly, the Steered Hermite transform acts as a natural detector for blood vessels,
enabling automatic insertion of the watermark within this region of interest. This ensures
imperceptibility while maintaining robustness. We further enhance security by incorporat-
ing the Jigsaw transform, an encryption process that scrambles the watermark information.

Secondly, Singular Value Decomposition bolsters the watermark’s resilience against
various image processing and geometric attacks. Our algorithm’s effectiveness was evalu-
ated on the MESSIDOR-2 dataset, encompassing 1748 RGB fundus images. Results con-
firmed superior invisibility and robustness compared to existing state-of-the-art methods.

Critically, we investigated the impact of watermarking on DR diagnosis. Four deep
learning models (YoloV8, VGG16, InceptionV3, and ResNet50) were trained and tested on
watermarked and original images. Remarkably, the analysis revealed a negligible influence
on both disease classification accuracy and confidence scores. This finding underscores the
compatibility of digital watermarking with computer-aided diagnostic systems, paving the
way for enhanced data security without compromising diagnostic quality.

Looking forward, we aim to explore methods for strengthening the watermark’s
resistance against attacks that manipulate or remove image information, potentially im-
pacting the watermark itself. Additionally, we will delve deeper into blood vessel-based
watermarking to optimize both imperceptibility and robustness.

By integrating these advancements, we can contribute to a future where robust and
secure medical image management coexists seamlessly with accurate clinical diagnosis,
ultimately benefiting patient care and overall healthcare security.
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The following abbreviations are used in this manuscript:
ACNN Atrous Convolutional Neural Network
AMD Age-Related Macular Degeneration
ANN Artificial Neural Network
BER Bit Error Rate
BRB Blood-Retina Barrier
CAD Computer-Aided Diagnosis
CE Contrast Enhancement
CLAHE Enhance Local Contrast
CNN Convolutional Neural Network
CROP Cropping
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DCT Discrete Cosine Transform
DFT Discrete Fourier Transform
DME Diabetic Macular Edema
DR Diabetic Retinopathy
DWT Discrete Wavelet Transform
EPR Electronic Patients Record
EQ Histogram Equalization
FDCuT Fast Discrete Curvelet Transforms
GF Gaussian Filter
GN Gaussian Noise
HT Hermite Transform
HVS Human Vision System
ICDR International Clinical Diabetic Retinopathy
IHT Inverse Hermite Transform
ISHT Inverse Steered Hermite Transform
JPEGC JPEG Compression
JST Jigsaw Transform
LBP Local Binary Patterns
LTP Local Ternary Patterns
LV Equalization Levels number
LWT Lifting Wavelet Transform
M-CNN Multipath Convolutional Neural Network
MF Median Filter
MSE Mean Square Error
MSSIM Mean Structural Similarity Index
NCC Normalized Cross-Correlation
PCE Percent Saturation
PCR Cropping Percentage
PSNR Peak Signal to Noise Ratio
QP Quality Percentage
RDM Recursive Dither Modulation
RDWT Redundant Discrete Wavelet Transform
RNN Recurrent Neural Network
ROI Region Of Interest
RONI Region Of No Interest
ROT Rotation
SC Image Scaling
SDLTP Spherical Directional Local Ternary Pattern
SF Scaling Factor
SHT Steered Hermite Transform
SLT Slantlet Transform
SP Salt and Pepper Noise
SSIM Structural Similarity Index
SVD Singular Value Decomposition
SVM Support Vector Machine
TRAN Translation
WHO World Health Organization
YOLO You Only Look Once
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