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Abstract: In this paper, we develop explicit three-derivative two-step Runge-Kutta (ThDTSRK)
schemes, and propose a simpler general form of the order accuracy conditions (p < 7) by Albrecht’s
approach, compared to the order conditions in terms of rooted trees. The parameters of the general
high-order ThDTSRK methods are determined by utilizing the order conditions. We establish a
theory for the A-stability property of ThNDTSRK methods and identify optimal stability coefficients.
Moreover, ThDTSRK methods can achieve the intended order of convergence using fewer stages than
other schemes, making them cost-effective for solving the ordinary differential equations.
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1. Introduction

The Runge-Kutta (RK) methods [1-3] are the most widely employed numerical
schemes for solving ordinary differential equations (ODEs) and partial differential equa-
tions (PDEs). With the increasing demand for high-order accuracy methods, the classical
high-order Runge-Kutta methods have exhibited some unavoidable shortcomings [4], such
as the increased number of stages and computational time. Additionally, the numerical
stability of the discretization method is also a primary focus.

In recent decades, there has been a concentrated effort to develop explicit stability-
preserving discretization methods, while also achieving high-order convergence and su-
perior computational efficiency. The discretization methods [5-7] that incorporate a com-
bination of multistage, multistep, and multiderivative schemes offer an efficient pathway
toward reaching these objectives. The main focus lies in establishing order conditions and
ensuring numerical stability. Butcher [8,9] and Albrecht [10] proposed different devices
to build the order conditions for the time-stepping schemes. Concerning numerical stabil-
ity, temporal methods depend on the characteristics of A-stability or L-stability [11,12] to
ensure numerical stability when solving ODEs. The two-derivative Runge-Kutta (TDRK)
methods [13] are developed by rooted trees theory, and the higher-order TDRK schemes
require fewer stages compared to the RK methods. The three-derivative Runge-Kutta
(ThDRK) methods [14] are presented and stability theory is constructed by the A-stability
condition. Moreover, the multiderivative RK methods combining multistep schemes pro-
vide additional options for building higher-order discretization schemes. Several successful
methods have been developed by following this approach, such as the two-step Runge—
Kutta (TSRK) schemes [15], two-derivative two-step Runge-Kutta (TDTSRK) methods [16],
multistep RK (MSRK) schemes [17], and two-derivative multistep (TDMS) methods [18].

In this study, we derive the three-derivative two-step Runge-Kutta (ThDTSRK) schemes,
which combine the benefits of multiderivative RK methods and multistep RK methods.
We propose a simpler general form of the order accuracy conditions (p < 7) by Albrecht’s
approach [10], compared to the order conditions in terms of rooted trees. As a result, the
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ThDTSRK methods can achieve the desired order of accuracy by using fewer stages than
other schemes, making them more efficient for solving ODEs. The organization of this
paper is as follows. Section 2 proposes the structure of ThDTSRK Methods. Section 3
presents the order conditions that ensure accuracy preservation for TRDTSRK methods.
Section 4 introduces the A-stability property of ThDTSRK methods and exhibits the optimal
coefficients for the high-order ThRDTSRK methods. In Section 5, we test the order accuracy
of ThDTSRK methods using several numerical experiments. Finally, some conclusions and
future work plans are given in Section 6.

2. Structure of ThHDTSRK Methods
We consider the ordinary differential equation as

y' =G(y), v =H(y). )

The structure of s-stage ThDTSRK methods is depicted in Figure 1, and the fixed time
step size At is used to discretize the time interval. The explicit s-stage ThRDTSRK schemes
are given as follows:

i1 i-1 i~1
Y=y 4 A Z% aiF(Y]™1) + Ar? Z% a;G(Y] ) + AP Z% aH(Y! ),
1= = j=

i—1 i—1 i—1
Yl-n :yn + At E Lli]'F(Y]n) + Atz Z LAll]G(Y]n) + Ats E ﬂ_l]H(Y]n),
=1 =1 j=1
s
=10y + oy Ay (aF(Y) +w ()
i=1

5 S
+ AP Z (zﬁiG(yi”) 4 wiG(yin—l)> + AP Z (171'H(Y,'n) I LTJI'H(YZ.”_l)),
i=1 i=1
where "1, 4", and y"*! are the solution values at time steps t" !, t*, t"*+1, and Yin—ll and
Y]' (2 < i < s) denote the intermediate stage values at time steps t"=1 " We also define

first-stage values equal to the time step values Yl”*1 = y" 1, YI' = y". The ThDTSRK
methods can be rewritten in the matrix form
Y = ey 1+ ALAF"T + APAGTT + APAH T,
Y" = ey" + AtAF" + A*AG" + AP AH",
yn+1 _ (1 79)yn +9yn—1 +At(vTFn erTFn—l)
+AP(0TG" + @' G" ) + AP (3"H' + @' H' ),
where e is a vector of one, A is the RK matrix, A is the TDRK matrix, and A is the ThDRK

matrix. v, 9, 9, w, W, and @ are weight vectors, and Y"1 and Y" are vectors of time stage
values, which are defined by
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0 o --- 0 0 0 0 0 0 0
a; 0 - 0 . a1 O 0 _ a1 0 0
A= | ) , A= A= p
as1 s 0 41 As2 0 g1 ds2 0
Yln_l Yln U1 01
n—1 n PN
n—1 __ Y2 n YZ 02 P 02
Y - . 7 - . 7 0 = 7 0 = 7
Y1 Y! Vs Os
01 w1 (] w1
0 wy Wy Wy
17 - . 7 w - . 7 7/’(\) - . 7 w - .
Ts Ws Ws W

A I
e T P S R AL R
F(Y) Pt G(v2)
oy H(Y)) H(Yp )
gt [COFD| [HO) L HOE Y
GO H (YD) H(yz )

The size of the matrices is s x s and the size of the vectors is s x 1. The time-levels for
discretization methods are referred to as the abscissas ¢, which can be computed by ¢ = Ae.
The ThDTSRK methods in Equation (3) can be represented by the extended Butcher tableau:

c ‘ AlA|A
ol | 0T | a7 ®)
wl | T | @7
ThDTSRK
t A )\
|‘ At ;:4 At k|
) >l >
—= O— 0 = O— 0 = >
n—1 n—1 n—1 n n n n+l
t t! "t t t"

Figure 1. The structure of the s-stage ThNDTSRK methods. (The solid square represents time step, and
the hollow square represents time stage).

3. Order Conditions of ThDTSRK Methods

In this section, we develop a general form of the order accuracy conditions following
Albrecht’s approach [10]; the detailed proof of order conditions for ThDTSRK methods is
provided below.

First, the abscissas c are utilized to characterize the time stage vectors ¢ and -1
and the expressions are given as #" = t"e + cAt and t"~! = "~ le + cAt. By considering
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the truncation error t"*! and stage truncation errors t"* and 7"~!, the exact solution of
ThDTSRK methods in Equation (4) can be expressed as follows:

yn-1 _ ey~ L AAE™ T £ ARPAG ! + ABAR 4 o7
Y" = e + AtAF" + At*AG" + APAA" + 1",
ynﬂ = (1—0)" + 05"~ 1 +At(vT13vn +wTF 1)

+At2(ﬁT(~;n JrzbTGn—l) +At3(Z7THn +ZT)TI:IH_1) +Tn+1,

where the tilde superscript denotes the exact values of the variables. Then, we expand
truncation errors and exact stage values to the Taylor series expansions at the time step t"

ARG, T = Y Al B, = Y Ak,

'-l
=
L
[
[1e

k=1 k=1 k=1
Yl”‘l _ i (At(c; — 1))kgn(k), Yi” _ i Atkci'{gn(k), yntl — i Aitkm(k),
= k! = K = K
vn—1y _ - (At(cl 1)) vy = Atkilcfil ~n(k)
o 2 (At(c; — 1)) - o Aph=2ck=2
G(Yr 1) = (— ), (Y =Y =i gk,
¥ k:zz (k—2)! () k; k—2)r 7
vn—1y _ - (At(cl 1)) AN = Atk73ci'<73 ~n(k)
H(Y; )_k;) (k—3)! ! H(Yi)_k; (k—3)! ¥

Taking Equation (7) into Equation (6), we obtain

& Ad! Ack2 Ack—3

K (k—=1)! (k—2)! (k—=3)V
ol 1— 9(_1)k B ol k-1 wT(c— e)kfl B 0T k2
k! (k—1)! (k—1)! (k—2)!
®7 (c — e)kfz 5T k=3 wT(c —e)k3
(k—2)! (k=3)!  (k—3)!

The vectors Y"1, F"~1, H"~! and G"~! can be expanded using Taylor series expansions
at the time step +"~!. By substituting these expansions into Equation (7), we can compute
7! using the following expressions:

1= Y Ay, 9)
k=1

The derivatives 7"~ (%) can be expanded by Taylor series expansions at the time step t",

and we have 7" 1K) = y* %g““”ﬂ, so the stage truncation errors 7/~ ! can be
devised by

At k=j
T (10)

1oy G
=
After determining the truncation error ! and stage truncation errors 7" and "1, the
subsequent task is to define the global error of the ThDTSRK methods by subtracting the
exact value from the discretized numerical value. The specific procedure entails subtracting
Equation (6) from Equation (4); we have
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€'l =ee" 4 AtAS"T + APAG T + AP Ay — 7L,
"= ee" + AtAS" + AP A" + AP AR — "
el = (1-0)e" + 0" + At(vT 8" +wTs" )
+At2(ﬁT¢r”+wTU" 1) +At3(v ’7 +wTﬂn 1) Tn+1,

(11)

where the global error ¢, the global stage errors €, and the derivatives §, o, and # can be
described as

G:y—]],e:Y—f/,(S:F—F/g-:G_G,,]:H_ITL (12)
The above global errors and derivatives are power series in At:

|4 P
=Y e At o), e =Y efatt oA,
k=1 k=1
p—1 p—1
=Y oA O(Ar), 8" = Y SIAF+O(AF),
k=1 k=1 (13)

p—2
1= Zag—lAtk+O(AtP h, o= Za AtF+O(AtP7Y),

Zq AL o(AT?), ot —ZI]Afk-i-OAtp 2).
Substituting Equations (7) and (13) into Equation (11) yields
p—1 p—2 p—3
e —ee" 14+ Y ASITIAF 4+ Y AchTIART2 1Y At tlAR
k=1 k=1 k=1

p
= Y g WAk 4 eo(ar Y,
k=1
p-1 p=2 p=3
e" =ee" + Z ASIARTT 4 N AP A2+ Y A Ater?
= k=1 k=1 (14)
' 7" KA 1 eO (AP,

M‘u

el (1—9)6 +he 1+ Z T§k+wT5n 1) tk+1+ Z ﬁTlT;:-‘rﬁ)T(T;: 1)Atk+2

p—3
+ Z (v 11 + 7I)T”n 1)Atk+3 _ Z TknJrlyn(k)Atk + O(Athrl).
k=1 k=1

Then, we analyze the global error €"*! for the ThDTSRK methods. Since the previous
time discretization format was the p-order accuracy method, we can deduce the p-order
conditions for the ThRDTSRK methods:

l:1+1 0
oTol  +wlsp =0, 15)
z‘)T(T,’f_z + wTa;g 21 0

ol s+ @y 3 =0.
To complete the order conditions for the ThDTSRK methods, we need to establish the
vectors J;, o, and 7. Indeed, these vectors can be recursively derived from the global
stage errors €. By employing the Taylor series expansions at the exact stage values §j, the
interrelation between the derivatives and the global stage errors of derivatives can be
revealed as
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F:F+;@%@yf® J:P—ﬁ:g;%@yﬁm
G= G+Z}’i1%g(€)]'é(j) = o= G—G:Z]?’iljl!(e)f-é(f) (16)
H:H+):;";1jl,(e)f-ﬁ(/'> ,,:H_ﬁzz;iljl,(e)j.ﬁ(j)

Here, the dot product represents component-wise multiplication, and the vectors of deriva-
tions are given as

s _ [VE(h) 9F(h)  IE(Y)]
LN (Y)Y (aYS)J} ’
o) _ [6(T) I6(H)  IG(%)]

L @Y (@Yy)l T (9Ys)i } ’

T

<) _ [H(1) IH(Ys) I H(Ys)
L (1)) " (0Ya) T (9Ys) ]

Similarly, we derive expressions for EU), GU), and H') of Equation (16) by employing the
Taylor series expansions at time step "

Gr-10) = Y —(c— e) . Gmuh, Gnli) = Z n(ib), (17)

a-10) = Y = (c— e) - qg"UN, A0 = Z -

FUD _ IR IR, IHE(Yy) |
@R @) @h) @) @) (o) ]

con_ [@T6m)  aem)  aive) |
V) (am)! (@Ya) (atm)l” T (9Ye) (atn)! |

Ao [AVHOW  9HT)  aET) ]
—L@n) () (@Ya) (9! (aYs)T (at)!

According to Equations (16) and (17), we ultimately deduce the intended expansion:

co o Atl 1 l X Atl 1
Zz]m e 1y 1Y Z"Z’]'l' B,

s i j=11=0

Z Z rC (€GN, ot = Ny (e - 6, 18)
j=11=0 I’ j=1i=0/

At ‘l e~ 1 n(]l) n -
Yy ALy i, = Y

j=1i=0/" j=11=0

where C and C are diagonal matrices composed of vectors c and ¢ — e.

Finally, the terms of vectors §, o, , and e are provided in Appendix A. Based on
Equation (15), the order conditions for the ThDTSRK schemes are presented in Table 1.
Moreover, further information can be obtained from our source code [19].
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Table 1. Order conditions (p < 7) for the ThDTSRK schemes.

p Conditions

1 vle+wle=1+0.

2 vlc+oTe+wl(c—e) +wle =152,

3 Te2+20Tc+26Te + w'(c —e)? + 27 (c —e) + 2w e = 10,

(vT +wT)(}c? — Ac— Ae) = 0.

4 A +3072 + 657+ w'(c—e)® + 307 (c —e)? + 6w (c—e) = 177,
( TC+wTC)( 2—Ac—Ae) =0, (vTA+wTA)(1® — Ac—Ae) =0,
(T )(1 S —1Ac? — Ac— Ae) —wT(1c® — Ac— Ae) = 0.

( @')(3¢% — Ac— Ae) =0,

5 c+407c3 + 1267 ¢ + wT(c — e)* + 4T (c — e)® + 1207 (c — e)? = 1L,
% —Ac—Ae=0, (vTC+wTC)(tc®—L1Ac?— Ac—Ae) =0,
(vTA+wTA)(;c® — JA2 — Ac— Ae) =0, (8T +@T)(Lc® — Ac® — Ac— Ae) =0,
(0T + wT)(Fet — AP — JA2 — Ac) —wT (Lc® — JA? — Ac — Ae) = 0.

6 vTc® +507c +2087c + wl(c —e)® + 57 (c — e)* + 20w (c —e)® = 122,
(vTA? + wTA%)( 3 — JA? — Ac — Ae) =0,

(vTCA+wTCA)(:c® — 1Ac2 — Ac— Ae) =0,

(vTAC+wTAC)(3c® — 1A — Ac— Ae) =0,

(07 C? + w' C? )(%03 FAc* — Ac—Ae) =0,

(vTA+wTA)(Lc3 - %Ac —Ac—Ae) =0,

(0TA+WwTA)(:c® — 1Ac2 — Ac— Ae) =0,

(0TC+wTC) (3> — LA — Ac—Ae) =0, (87 +@T)(ic® — JA? — Ac— Ae) =0,
(0TC+wTC) (et — tAP — LAc? — Ac) —wTC(3c® — 1A — Ac— Ae) =0,
(vTA +wTA)(Lc* %Ac 1Ac — Ac) —wTA(l® — A? — Ac— Ae) =0,
(0T + wT) (Gt — AP — 1Ac2 — Ac) —wT(L® — JA? — Ac— Ae) =0,

(0T + wT)(gh5e® — At — LA — JAP?) —wT(Fet — LA — LA — Ac)
+%wT(% 3 —1Ac? — Ac— Ae) =0.

7 ®+607c> + 3057 c* +wT(c —e)® + 6T (c —e)® + 30w (c — e)* = 132,

®\>—~ Q‘

— 1A —Ac—Ae=0, (vTA?+wTA?)(Lc* — 1A —1Ac2— Ac) =0,
AC—i—wTAC)( et —1Ac% - 1A% - Ac) =0,
vTCA+wTCA)(%¢ 4—€Ac — 3Ac® — Ac) =0,
oI C? + wTC2)(24c tAS — JA — Ac) =0,
vTA+wlA) (4t — AP — A — Ac) =0,
6TA + szA)(24c 1A - JA? - Ac) =0,
C) (et — 1A — JA? — Ac) =0,
51 + wT)(214c4 — A% — JAc? - Ac) =
vTA+ wTA)(éOc5 — 21—4Ac4 — %Acg’ —

S]
bs]
0
_|_
S
bs]
\/I
—~~
|
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4. Stability Analysis
4.1. A-Stability Property

To investigate the A-stability property of the ThDTSRK methods, the classical test
equation y’ = Ay is utilized, where A is a complex parameter. The ThRDTSRK methods in
Equation (4) can be expressed in a compact matrix form:

AtF(T)
T ] [A; By C Di]|AG(T) 19)
y"t1] 7 |Ay By C Dy| |APH(T)|’
n
y
where the vectors T, ", and y" ! are specified by
n—1 n
Yt n Ynfl n+1 Yn
T= n |0 Y = |Y r Y =1 Yy | (20)
Y yn yn+1

and the matrices Ay, Ay, By, By, C1, Cz, Dy, D; are given by

(A 0 A 0 A 0
Alf -0 A:lr Bl* |: ":|/ Cl* |:0 Ail/
- 0 A 0 A
D, = g g 2} Ay=|0 o, B.=]0 0], 2
L wT UT Z'DT ’UAT
[0 A Osxs  0Osx1 e
CG=|0 0|, Dy=|0;4s O 1
Ko 01 6 1—96

Based on the stability theory for TSRK schemes [20], the recurrence relation can be
given by y"*! = M(z)y" and the stability matrix M(z) can be determined as

-1
M(z) = D, + (zAz +2%By + z3C2) (125 — A, — 2°B; — Z3C1) Dy, 22)

where z = AAt, and the stability polynomial f(«,z) of the TRDTSRK schemes Equation (19)
is defined by

f(a,z) = det(alsir — M(2)). (23)
Then, we compute the roots of equation f(«,z) = 0 and obtain the expression of the roots
as « = g(z). The region of absolute stability DD is the definition that all roots are inside the
unit circle; we have

D={zeC:lar|=| g(z)|<1, k=12,---,s+2}. (24)

4.2. Optimal ThDTSRK Schemes

By employing stability theory, A-stability preserving ThDTSRK;, methods have been
proposed, in which the subscript denotes the p-order scheme with s-stage. Here, we display
the ThDTSRK schemes with two stages; the stability polynomial f(«, z) is expressed as
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fla,z) = o (4 = gra— g2),
1
@1 =1+ (v1 +02)z + (agva + 01 + 02)2> + (Eaglvz + ay 0y + 0y + 52) 20+

1 1, _ 15, 15 _ 14
(6“%102 + 5“%102 +an )zt + (gaglvz + Eaglvz)z‘g + gaglvzzé -0, (25)

1
(0] Z(w1 + ZU2)Z + (1121ZIJ2 + 1 + ZT)2)Zz + (511%1ZU2 + ay1Wy + W1 + ZT)z)ZB—I—
(1a3w+1a2A n -)4+(13A +12-)5+13- 649
6 21 2 2 21w2 a21w2 zZ 6a21w2 2021?/02 ya 6021?/022 .

Next, we calculate the roots of equation f(«,z) = 0 and the expression of the roots is

shown as
a1 = (g1 + /93 +492),
Xy = %(4)1 - 47% +4(P2)/ (26)
a3 =0,
Ny = 0.

Utilizing Equations (24) and (26), we can obtain the region of absolute stability and deter-
mine the optimal corresponding parameters for the ThDTSRK schemes. The aim of this
optimization process is to construct ThDTSRK methods with large region intervals [£, 0] of
absolute stability. Here, we define the intersection £ of the absolute stability region with
the negative real line. Similarly to the authors of reference [21], this will be carried out by
solving the optimization problem to find the optimal ThDTSRK schemes with the largest
value of | L|.
(1) Two-Stage Fifth-Order ThDTSRK Scheme (ThDTSRK(35)

The coefficients of the general two-stage fifth-order ThDTSRK method are then
given as a eight-parameter system, depending on 0, ay1, w1, wa, 02, W, o, W2, which are
related through

1 =1—w+6; vy =—wy; Ay =0a3/2; An =ay/6;

01 =(3 — 200, + 60a3, 07 4 40a3, 07 + 120a2, 7, + 12043, 7 + 10wy + 10w+
20ay w0y — 40a3, Wy — 60a3, Wy + 40a3, @y — 12041, + 120a3, @, — 76) /20;

W1 =(1—0)/2 4w +wy — 01 — 0y — Dy;

71 =(23 — 60ay 0y — 120a3, 0 — 60a3, 0 — 607, — 240417, — 180a3,55 — 5wy — 5w+
30a3, w0y + 60a3,w, + 60a3, W — 60a3,W; + 120a1 @, — 18043, + 36) /60;

W1 =(8 — 60a3,0, — 60a3, 0, — 120ay5, — 180a3, 5y + 5wy + 5wy — 30a3,w, + 60a3,wy—
60ay, Wy + 120a3, @, — 603,y — 60w, + 240ay @, — 180a3,@, — 26) /60.

(27)

The coefficients matrices of the optimal ThDTSRKj5 scheme are derived by

6=0 c= || = 0
7 |ea] T [0.1983891070202614 |

R R X
ol = [0.4988123289876567 —0.1677439748133182],
w’ = [0.5011876710123433  0.1677439748133182],
o7 = [—0.0958493173039603  0.6579633161995648],
w! = [-0.8843764374259575 1.4911940843560145],
o1 = [-0.0202481631489146  0.1199846505868748],
@’ = [—0.1160041365433313 0.0621952996182998].
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(2) Two-Stage Sixth-Order ThDTSRK Scheme (ThDTSRK)
The coefficients of the general two-stage sixth-order ThDTSRK method are then given
as a five-parameter system, depending on 6, a1, Wy, 92, W2, which are related through

0y =0; wy =0; 0y = —Wo; Ao = a5,/2; a1 = a3,/6;
01 =(15 — 120ay, 7, — 360a3, 7, — 240a3, 7, + 240a3, vy — 120ay, @+
360a3,@, — 240a3,@> + 6) /2;
w1 =146 —uvq;
61 =(—31 + 360ay, 5, + 960a3, 7, + 600a3, 7 + 10y — 60a3,W, — 600a3, o+
240ay Wy — 84043, + 600a3, @, — 6) /10;

W1 =(—29 + 240ay, 5, + 840a3, 7, + 600a3, 72 — 10, + 60a3, W — 600a3, o+

(28)

360a,1 @, — 960a3, @, + 600a3, @, + ) /10;
71 =(111 — 1205, — 1080517, — 2160a3,7, — 1200a3, 7> + 120ay >+
360a5,wWo + 120043, W — 360a2, @, + 1440a3, @, — 1200a3, @, + 6) /120;
@1 =(—49 + 360ay, 5, + 144043, 7, + 120043, 55 — 120ay W, + 360a3; by —
120043, @y — 1207, + 108041 @, — 2160a3, @, + 120043, @, + 0) /120.

The coefficients matrices of the optimal ThDTSRKj4 scheme are given by

0=0 c=|"|= 0
~ 7“7 |ea] T |05873258965737987 |

N 0 0| . 0 0
:[O O], A= |2 , A= |23 ,
2 0 2 0 20

= [1.0471220060600115 0], w’ = [~0.0471220060600116 0],
= [0.4467995963745828  0.1411691523070592],

= [0.0060783975654054 —0.1411691523070592],

= [0.0482868172625281  0.0243580486114999],

= [0.0052528132887524  —0.0227607642077618).

(3) Two-Stage Seventh-Order ThDTSRK Scheme (ThDTSRKj37)
The coefficients of the general two-stage seventh-order ThRDTSRK method are then
given as a two-parameter system, depending only on 6, a1, which are related through

. — 0 Ba—0 e — 0 Ans — A2 /D For — a3 /6
:0/ wZ_O/ UZ_O/ wZ_O/ 1121—‘17_1/2/ 1121—‘121/6

01 :(105 — 627ay1 4 105043, + 70 4 3a210 + 70a3,60) / (14(1 + 10a3,));

A

w1

)
=(—91 + 627a5; — 910a3; + 70 — 34210 + 70a3,0) / (14(1 + 10a3;));
=(—45 + 627a,1 — 868a5; — 360 — 3a210 — 284a3,60) /(28(1 + 10a3,));
=(—123 + 627a5; — 81243, + 360 — 3,6 + 28a3,0) / (28(1 + 1043, ) );
=(—209 4 300451 — 6270a3; 4 1554043, + 6 + 204216+

30a3,6 + 140a3,6) / (1680(a1 + 10a3;));

(29)

5, =(209 — 0) /(1680(az; 4+ 10a3;)); @y = —0o;

=(209 — 1940ay; + 6270a3; — 686043, — 6 + 20216 —

30a3,60 + 140a3,6) / (1680(az1 + 10a3,)).

The coefficient matrices of the optimal ThDTSRKj7 scheme are obtained by
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0 o 0 0 - 0 0
owocafi [} aslo G a-[3 o a-[2 )
> 4+ 0 2 0
ol =[5 ]/w [ » 00T =[i o]
wT:[ T ] [7L 2290490} @’ = [*% *%]’

To evaluate the performance of the designed methods, a comparison was conducted
between high-order ThDTSRK methods, TDRK methods [13], and ThDRK methods [14].
The absolute stability regions of high-order ThDTSRK methods are displayed in Figures 2—4.
We define the scaled intersection L£* of absolute stability, which is derived by

cr=Lr,

7S (30)

where v = 2 for two-derivative schemes and y = 3 for three-derivative schemes. In Table 2,
the results indicate that the ThDTSRK methods exhibit a larger scaled intersection £*
compared to other schemes of the same order.

Table 2. The intersection £ and scaled intersection L* of absolute stability for high-order ThDTSRK),,
ThDRKsp, and TDRK;, schemes.

ThDTSRK>5 ThDTSRK 4 ThDTSRK>7
L —8.181 —6.266 —3.610
L* —6.818 —6.266 —4.212
ThDRKj5 ThDRK34 ThDRK3;
L —3.990 —7.263 —5.213
L* —3.325 —4.842 —4.055
TDRKj35 TDRK ¢ TDRKS5y
L —5.144 —4.063 —4.134
L* —4.287 —3.047 —2.894
ThDTSRK 55
L . ThDRK s -
i TDRK 55 T d
2 r ol i

N\,
\\‘ IE
I e P
—4 - o)
: TR IR S ST Y N YT TR SO [N N N IR
-8 -6 -4 -2 0
Re(z)

Figure 2. The stability regions of different fifth-order schemes, including the ThDTSRK scheme,
ThDRK scheme, and TDRK scheme.
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~ [
£ O
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.
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C 1 | - 1 T -

Re(z)

Figure 3. The stability regions of different sixth-order schemes, including the ThDTSRK scheme,
ThDRK scheme, and TDRK scheme.

[ ThDTSRK 7 ———_
gLmmmmmee ThDRK3; =" %
i TDRKs; ¢ i
2F 7 i
r i
—~ B N
N B (]
~ 0F i
»—E' I 1
L v
—2F %
I .
i i
™, H
—4 r ~,~....' ¥
o .'.'\._ —"
L | - | - | - 1 1
-8 -6 -4 -2 0
Re(z)

Figure 4. The stability regions of different seventh-order schemes, including the ThDTSRK scheme,
ThDRK scheme, and TDRK scheme.

5. Numerical Examples
5.1. Prothero—Robinson Problem

We test the order accuracy of ThDTSRK methods using the Prothero-Robinson prob-
lem [13], which is expressed as

¥ (x) = A(y(x) — sin(x)) + cos(x), A = —10. (31)

The exact solution is given by y(x) = sin(x) and the results are integrated to 2.87. In
Figure 5, the results clearly demonstrate that the ThDTSRK methods attain the desired
order accuracy. Additionally, the ThDTSRK methods are more efficient than the classical
high-order Runge-Kutta methods [11,13].

_8 -
H ~10}
8 [ ——— RKgs
ER S
2 e ThDTSRK.:
| —=— ThDTSRK 54
_ 14| —®— ThDTSRK ,,
b 1 L 1 L 1 L 1 L
-0.8 -1.2 -1.6 -2
log, Ax

Figure 5. The error convergence rates of high-order (5 < p < 7) ThDTSRK;, schemes on the
Prothero-Robinson problem, x,,; = 2.87.
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5.2. Kaps Problem

We test the order accuracy of ThDTSRK methods employing the Kaps problem [13],
which is expressed as

v =[]y -1 ] a-w

The exact result is y(x) = [e(~),e(=2¥)], and the solutions integrated up to five are pre-
sented in Figure 6. These results also reveal that the ThDTSRK methods attain the designed
order accuracy. The ThDTSRK methods are more efficient compared with the classical
high-order Runge-Kutta methods in solving ordinary differential equations.

|
—_
=

|
—_
\}

|
ST
|

— — —RKgs

log, |error

— — —RKy
—+— ThDTSRK 55

|
N
~

=@ ThDTSRK ¢
—_— ThDTSRKz—

—1 —1 5 -2
log, Ax

Figure 6. The error convergence rates of high-order (5 < p < 7) ThDTSRK;, schemes on the Kaps
problem, x,,,; = 5.

6. Conclusions

In this study, we developed the order conditions for the ThDTSRK schemes that en-
sure these methods can achieve theoretical order accuracy. The parameters of the general
high-order ThDTSRK methods were provided by utilizing the order conditions. Addition-
ally, we established the A-stability property theory for ThDTSRK methods to determine
the optimal stability coefficients. By comparing the ThDTSRK methods with ThDRK
and TDRK schemes, the results revealed that the ThDTSRK schemes can maintain the
A-stability property and attain the desired order accuracy while utilizing fewer stages.
This indicates that the ThDTSRK methods are computationally efficient for solving ordi-
nary differential equations. In further studies, our proposed ThDTSRK schemes can be
applied to partial differential equations which are reduced to ordinary differential equation
system using various spatial discretization schemes [5,22]. The TDMSRK methods can
demonstrate high computational efficiency, especially when employing high-order spatial
discretization schemes.
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Appendix A. Order Conditions for ThDTSRK Schemes
First-order:

Condition: 1”“ 0
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Second-order:

€] :0 61’_1 10
Terms
1:0 5{171 :0
Condition: =0
Third-order:
n . n n—=1., n—1
62 : TZ 62 : TZ
n. N n—1. n-1
Terms nT ol g
n. n—1 .
o :0 o] 0
Condition: T3n+1 = 0, UTTS + wTT;l*l — 0
Fourth-order:
n. non n—1 . n—1 _n—1
€3 ATy, T3 ef T AT T, T
n. n n n n—1. /. n—1 n—1 _n—1
Terms: 93 : €, ATy, 3 o3 Cr LAY T, T
' n. n n—1. n—1
n . n—1 .
1 2 0. 0.
=0, oTCt) +wlCt) ' =0, vTAT} +wT ATy 1 =0,
Condition: | * 2 2 2 2
ot +wlt) ' =0, 0T+t ' =0

Fifth-order:

ey AT, T et AT !
T o) : CTi, Aty, T} 52—1 . CTg_l,Arg_l,-rf—l
erms:
o Th o1 . -1
3 : 3 3 . 3
n. n—1 .
1yt 0. 77t
Condition: | & =0 @ =0 vCT +wlCr T =0,
onditaon:
oT AT +wT AT 1 =0, 0Te) + @' ' =0,
T n T n—1 _
vt +tw't, =0
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Sixth-order:

Terms:

el : ACT), A%t} ATl el ACT T, A2,
AT}, Tl A'r;‘_l,ATf_l, 'rg_l

8L C2tf, CAT), Caf el | o8t ), CATY Y,
C’TZ‘_l,e’g_l

n. n n N n—-1., A_n—1 n—1 _n—1
o) : Cty, ATy, ) o,  :Cty AT, Ty

n. n n—1. n—1
T3:73- 13 13 -

Condition:

Tt =0, 0T A2} + wTA27) 1 =0,

vTCAT} + wlCAT) ' =0, vTACT}) + wTACT) ' =0,
0T 2t} + wTC?c) 1 =0, vTA}) +wTATi 1 =0,
oTAT} + wTAT) ' =0, 97Ct} + T Cy ' =0,

o't +wlty =0, oTCt) +wlCt) ' =0,

vTAT) +wTAT) 1 =0, 0T + Tt} 1 =0,

ol + wTTS’“l =0

Seventh-order:

Terms:

€l : ACTf,A2Tf,ATZ, eg_1 : ACTE‘l,AZTf_l,ATf_l,
AT, T} Arg’*l, 12*1
on - CZTn CAT" CT! " 51171 . C"Z.rnfl CATnfl

6 - 47 4, T5, € 6 - 4 4

~-n—1 _n—1
Cty e

n . n non n—1. A n—1 n—1 _n—1
o Ctf, At), T o5 :Ct, At/ , Ty
n . N n—1. n—1

ny:Ty. Mo T -

Condition:

il =0, o =0, vTA%7] +wT A%t 1 =0,

vTAC‘rjl1 + wTAC_"L'i“1 =0, UTCATf + wTCATZ*1 =0,
o C2 )+ wlC?t) 1 =0, oTAT} + wl At 1 =0,
oTAT) + wTAT) 1 =0, oTCt) + @ Cr) ' =0,

't + w1 =0, vTAT + wTATl 1 =0,

oTCtl +wlCrl ' =0, o7l + T ! =0,

ot +wltl =0
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