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Abstract: The problem of the approximation of the coefficients of the objective function of a scheduling
problem for a single machine is considered. It is necessary to minimize the total weighted completion
times of jobs with unknown weight coefficients when a set of problem instances with known optimal
schedules is given. It is shown that the approximation problem can be reduced to finding a solution
to a system of linear inequalities for weight coefficients. For the case of simultaneous job release times,
a method for solving the corresponding system of inequalities has been developed. Based on it, a
polynomial algorithm for finding values of weight coefficients that satisfy the given optimal schedules
was constructed. The complexity of the algorithm is O(n2(N + n)) operations, where n is the number
of jobs and N is the number of given instances with known optimal schedules. The accuracy of the

algorithm is estimated by experimentally measuring the function ε(N, n) = 1
n ∑n

j=1
|wj−w0

j |
w0

j
, which is

an indicator of the average modulus of the relative deviation of the found values wj from the true
values w0

j . An analysis of the results shows a high correlation between the dependence ε(N, n) and a
function of the form α(n)/N, where α(n) is a decreasing function of n.
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1. Introduction

Scheduling theory is a branch of discrete optimization devoted to planning oper-
ations over time. The problems of scheduling theory are diverse, including, but not
limited to, production scheduling, including human-robot collaborations [1], classical
Resource-Constrained Project Scheduling Problem (RCPSP) [2], creating smart planning
eco-systems [3], distributed scheduling problems [4], and dynamic systems [5]. However,
classical problems for a single machine remain relevant, still capture the attention of the
scientific community [6] and are also used in modern approaches of Industry 4.0 [7].

In the classical single-machine scheduling problem, there is a set of jobs with given
release times, processing times and due dates. The goal is to schedule the jobs to proceed
on the machine, minimizing some objective functions. A wide variety of studies of this
problem can be found for such objective functions as the total or maximum lateness [8,9],
the weighted number of tardy jobs [10], the total (weighted) completion time [11,12] or any
arbitrary non-decreasing function of the completion time [13]. The idea is that the objective
function is known and should be maximized or minimized.

In practice, the quality criterion and, therefore, the objective function are not defined
for some applied scheduling problems. Let some optimal schedules be pre-given. The
goal is to construct an optimal schedule for the new input data and to estimate unknown
objective function. To apply the methods of scheduling theory to this problem, it is necessary
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to determine the objective function. The task of the objective function approximation arises
as a sub-task in the scheduling automation process, so the approximation algorithm must
be fast enough compared to the required frequency of scheduling. An indicator of the
quality of the approximation algorithm is the quality of the schedule obtained for the
approximated objective function.

A linear approximation for a single-machine scheduling problem is considered: it is
assumed that there exists an objective function that is linear in job-weighted completion
times, and the previously constructed schedules are optimal with respect to this objective
function. The initial problem is reduced to solving a system of linear inequalities with
respect to the unknown values of the weight coefficients of the objective function. A detailed
review of the results of the algebraic theory of linear inequalities was given by [14], which
also includes an algorithm for finding a general formula for non-negative solutions of [15],
based on the principle of boundary solutions. General results on this topic were also
presented by [16,17], who also used some properties of convex cones in the solution space.
Refs. [18,19] obtained results for a set of solutions (redundancy and dimension) of a certain
class of systems of inequalities–normal systems.

The main contribution of this paper is an algorithm for approximating the weight
coefficients for the case of simultaneous job release times. The system of linear inequalities
in this case has a sparse matrix (most of the elements are zero), which contains a significant
number of dependent inequalities. The solution method is primarily based on the exclusion
of dependent inequalities from the system and using some general properties of linear
inequality systems.

The structure of this paper is organized as follows. In Section 2 the mathematical formu-
lation of the problem 1 || ∑ wjCj will be given and thereupon mathematical statement of the
problem of approximation of objective function weight coefficients is formulated; in Section 3 a
method for solving the problem is proposed; in Section 4 a numerical study of the constructed
approximation algorithm is carried out and its final complexity is calculated. Section 5 contains
a brief conclusion.

2. Mathematical Problem Formulation

The problem studied in this article is in some way the inverse of one of the classic
problems in scheduling theory, the problem of minimizing the total weighted completion
time 1 | rj | ∑ wjCj. To describe the main problem, problem 1 | rj | ∑ wjCj should be
introduced first. There is a single machine and a set J = {1, 2, . . . , n} of n jobs that need
to be processed on the machine. For each job j ∈ J, the release time rj and processing
time pj are given. There are no precedence relations of jobs, and interruptions of the job
processing are prohibited. The order in which the jobs (j1, . . . , jn) are processed is called a
schedule. In problem 1 | rj | ∑ wjCj, it is necessary to find a schedule π0 minimizing the
total weighted completion time ∑ wjCj, where Cj is the completion time of job j, and wj > 0
is a weight coefficient of the completion time of the corresponding job j. Completion times
of jobs under schedule π = (j1, . . . , jn) are defined as follows:

Cj1(π) = rj1 + pj1 ;

Cjk (π) = max{rjk , Cjk−1
(π)}+ pjk , k = 2, . . . , n.

Remark 1. The case of problem 1 | rj | ∑ wjCj with zero weight coefficients can be solved trivially:
all corresponding jobs are processed last and are excluded from the consideration. The case with
negative weight coefficients does not make sense from a practical point of view. In this regard, it is
assumed in this paper that all weight coefficients are positive.

Remark 2. Note, that the problem 1 | rj | ∑ wjLj about the total weighted lateness Lj = Cj − dj,
where dj is the due date for job j ∈ J, is equivalent to problem 1 | rj | ∑ wjCj and the optimal
schedule π0 in problem 1 | rj | ∑ wjLj does not depend on the values of due dates dj. Further,



Mathematics 2024, 12, 699 3 of 16

the problem 1 | rj | ∑ wjCj will be considered, implying that all the results obtained can be applied
to the problem 1 | rj | ∑ wjLj.

Definition 1. A set of job release times and processing times I = {r1, . . . , rn, p1, . . . , pn} is called
a problem instance I of problem 1 | rj | ∑ wjCj.

The general case of problem 1 | rj | ∑ wjCj with weight coefficients wj is NP-hard in
the strong sense [20]. An analysis of the approaches and methods for solving single-machine
scheduling problems can be found in [21]. According to generalized Smith theorem [22],
a polynomially solvable special case of problem 1 | rj | ∑ wjCj is problem 1 || ∑ wjCj,
in which, despite the general case, a simultaneous release times r1 = . . . = rn = r are
assumed. An optimal schedule in this case will be a schedule constructed in order of
non-decreasing values pj/wj, j ∈ J.

Definition 2. A set of job processing times I = {p1, . . . , pn} is called a problem instance I of
problem 1 || ∑ wjCj.

Now, the problem of approximation of objective function weight coefficients can be
formulated as follows.

Problem 1. N instances Ik, k = 1, . . . , N, of the problem 1 || ∑ wjCj (or the problem 1 | rj |
∑ wjCj in the general case) are given, and corresponding optimal schedules π0

k are known. The goal
is to approximate values of unknown weight coefficients wj, j ∈ J.

Thus, the problem considered in this paper is inverse to the problem 1 || ∑ wjCj. A
linear approximation is considered for the problem for a single machine: it is assumed that
there is an objective function that is linear with respect to the completion times, the optimal
schedule is known, but the weight coefficients of the objective function are unknown. This
problem may arise, for example, at the initial stages of automating individual processes
at enterprises where there is a long experience in scheduling “manually”, but modeling
the entire production process and the analytical formulation of the optimality criterion is,
for some reason, impossible or not obvious.

3. Approximation Problem Solving Method

The method for solving the problem of approximating weight coefficients (both for
general and for particular cases) is based on determining the optimality of schedules
π0

k , k = 1, 2, . . . , N:
n

∑
j=1

Ck
j (π)wj ≥

n

∑
j=1

Ck
j (π

0
k)wj, ∀π.

Therefore,
n

∑
j=1

(
Ck

j (π)− Ck
j (π

0
k)
)

wj ≥ 0, ∀π, k = 1, 2, . . . , N. (1)

Thus, the values of wj are generally determined by a system of N(n! − 1) inequalities
of the form (1), i.e., the dependence of the number of inequalities in the system on the
number of jobs is not polynomial, because for any instance there are n! possible schedules.
The non-polynomial complexity of the approximation algorithm can be avoided if among
the N(n! − 1) inequalities there is a polynomial number m of independent ones, while the
remaining inequalities are consequences of these m inequalities.

In case N = 1 the following approximation problem can be considered: one instance I
of problem 1 | rj | ∑ wjCj of dimension n is given, i.e., for n jobs, the release times rj and
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processing times pj are defined, and the optimal schedule π0 is also known. Then, for an
arbitrary acceptable schedule π the following inequality holds:

n

∑
j=1

(
Cj(π)− Cj(π

0)
)

wj ≥ 0. (2)

Repeating the arguments about the non-polynomial number of inequalities, the fol-
lowing proposition can be formulated. The proposition is sufficient for the polynomial
approximation algorithm.

Proposition 1. For an arbitrary instance I of problem 1 | rj | ∑ wjCj in a system of (n! − 1)
inequalities of the form (2) there is a subsystem of m inequalities, the solution of which coincides
with the solution of the initial system, and the number m depends polynomially on n.

Each of the strict inequalities of the form (2) corresponds to some non-optimal sched-
ule π. In this case, Proposition 1 means that among (n! − 1) non-optimal schedules there
are m schedules Π = {π1, . . . , πm} such that the solution of this system of inequalities of
the form (2) corresponding to the schedules πi, i = 1, . . . , m, coincides with the solution of
the initial system, and the number m depends polynomially on n. In other words, for any
schedule π /∈ Π, an inequality of the form (2) corresponding to schedule π is a consequence
of the system of inequalities corresponding to schedules πi, i = 1, . . . , m. Finding proof (or
inconsistency) of the Proposition 1 is the key to solving the approximation problem for the
1 | rj | ∑ wjCj.

3.1. The Initial and Efficient System of Inequalities for the Problem 1 || ∑ wjCj

Consider approximating the weight coefficients of the problem 1 || ∑ wjCj. According
to the generalized Smith theorem [22], for problem instance I = {p1, . . . , pn} of 1 || ∑ wjCj
there exists an optimal schedule π∗ = (j1, j2, . . . , jn), for which

pj1
wj1

≤
pj2
wj2

≤ . . . ≤
pjn
wjn

. (3)

Remark 3. If one or more adjacent non-strict inequalities of set (3) turn into equality, that is,
the ratios

pj
wj

are equal for jobs j ∈ {jk, . . . , jk+l}, all those schedules π̃∗ are also optimal, in which

the jobs jk, . . . , jk+l are placed in any other arbitrary order σ(jk, . . . , jk+l):

π∗ =
(

j1, . . . , jk−1, jk, . . . , jk+l , jk+l+1, . . . , jn
)

,

π̃∗ =
(

j1, . . . , jk−1, σ(jk, . . . , jk+l), jk+l+1, . . . , jn
)

,

∑ wjCj(π̃
∗) = ∑ wjCj(π

∗) = min
π

∑ wjCj(π).

An inequality of the form (3) is valid for all N given instances Ik = {pk
1, . . . , pk

n} of the
problem and the corresponding optimal schedules π0

k = (jk
1, jk

2, .., jk
n), k = 1, . . . , N.

Definition 3. The system of inequalities for weight coefficients wj

pk
j1

wjk1

≤
pk

j2
wjk2

≤ . . . ≤
pk

jn
wjkn

, k = 1, . . . , N, (4)

we will call the initial system of inequalities of the problem of approximation of weight coefficients
for the case r1= . . . = rn.



Mathematics 2024, 12, 699 5 of 16

The initial system (4) contains N(n − 1) inequalities. To reconstruct the system to a
more convenient form for solving, the following notation will be used.

Let K = {1, . . . , N} be the set of indices k ∈ K corresponding to the given pairs (Ik, π0
k)

of problem instances and their optimal schedules, and let K̃ ⊂ K be some subset of the set
K. Further, the record of the form

min
k∈K̃

(or max
k∈K̃

)

will mean the minimum (maximum) for all possible pairs (Ik, π0
k) such that k ∈ K̃.

For an arbitrary pair of jobs i, j ∈ {1, . . . , n}, i ̸= j, the set K can be divided into two
subsets Ki,j and Kj,i depending on the relative position of the jobs i, j in the schedule π0

k :

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)},

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)}.

Then, from the inequalities (4) of the initial system for the corresponding weight coefficients
wi, wj the following inequalities can be constructed:

pk
i

wi
≤

pk
j

wj
, k ∈ Ki,j,

pk
j

wj
≤

pk
i

wi
, k ∈ Kj,i,

or, more conveniently,
wj

wi
≤

pk
j

pk
i

, k ∈ Ki,j, (5a)

wj

wi
≥

pk
j

pk
i

, k ∈ Kj,i. (5b)

Remark 4. Obviously, Ki,j ∩ Kj,i = ∅, Ki,j ∪ Kj,i = K for all i, j ∈ J, i ̸= j. Consequently,
in inequalities (5a) and (5b) all inequalities of the initial system related to wi, wj occurred.

Let

Y(i, j) = min
k∈Ki,j

( pk
j

pk
i

)
,

X(i, j) = max
k∈Kj,i

( pk
j

pk
i

)
,

then the system of inequalities (5a) and (5b) for the chosen i, j is equivalent to the double
inequality:

X(i, j) ≤
wj

wi
≤ Y(i, j). (6)

Remark 5. Consider the case when one of the sets Ki,j, Kj,i is empty. Let, for example, Ki,j = ∅,
that is, there were no inequalities of the form (5a) in the initial system. In this case, it will be
assumed that Y(i, j) = ∞ for the uniformity of the algorithm, and the inequality (6) will have form

X(i, j) ≤
wj

wi
< ∞.
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Similarly, if Kj,i = ∅, then it will be assumed that X(i, j) = 0 and the inequality (6) will have form

0 ≤
wj

wi
≤ Y(i, j).

Jobs i, j were chosen arbitrarily; therefore, the inequality (6) can be written for any pair
of different jobs i, j ∈ J.

Definition 4. A system of inequalities

X(i, j) ≤
wj

wi
≤ Y(i, j), (7)

where:

X(i, j) = max
k∈Kj,i

( pk
j

pk
i

)
,

Y(i, j) = min
k∈Ki,j

( pk
j

pk
i

)
,

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)},

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)},

i, j ∈ J, i ̸= j,
we call the efficient system of inequalities of the weight coefficient approximation problem for the
case r1= . . . = rn.

Lemma 1. The initial and efficient systems of inequalities (4) and (7) are equivalent.

Proof. The efficient system is the result of equivalent transformations of the inequalities of
the initial system and, taking into account the Remark 4, includes all the inequalities of the
initial system related to wi, wj for all possible pairs i, j ∈ J, i ̸= j, that is, it contains all the
inequalities of the initial system. Therefore, the efficient system of inequalities is equivalent
to the initial system.

Thus, the solution sets of the efficient and initial systems will coincide. Lemma 1
allows us to turn to the efficient system consisting of n(n − 1) inequalities of the form (6)
from the initial system consisting of N inequalities of the form (4). To find solutions to an
efficient system, the following two lemmas are necessary.

Lemma 2. The set of solutions of the initial (and efficient) system is a convex polyhedral cone in
n-dimensional space.

Proof. The initial system for the case rj = r, j ∈ J, consists of inequalities of the form (4):

pk
j1

wjk1

≤
pk

j2
wjk2

≤ . . . ≤
pk

jn
wjkn

, k = 1, . . . , N.

Thus, the initial system of inequalities is a system of N(n − 1) linear inequalities. The gen-
eral solution of this system, as well as a solution of any system of linear inequalities, is a
convex cone with a finite number of faces.

Corollary 1. Any plane section of the set of solutions is also a convex set as the intersection of two
convex sets: the solution of the initial system and the cutting plane.

Lemma 3. Let P be a rectangular parallelepiped in n-dimensional space Rn, n ∈ N. Let a convex
set M ⊂ Rn of hyperspace points touch each face of P . Then, the center O of the parallelepiped P is
an interior point of the set M.
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Proof. Obviously, the proof must be based on the property of convexity of the set M. If the
assertion of Lemma 3 for the subset M′ of the set M, which is limited only by the tangency
points of the hyperspace by the initial set will be proved, then it will also be proved for the
whole set M. Next, consider arbitrary n tangency points of the hyperspace by the set M′.
The hyperplane drawn through these points will always “cut off” part of the hyperspace
without its center. Thus, no matter what points are chosen, the center of the hyperspace
will always be in the “non-cut-off” part, and therefore, will be an internal point of the set
M′. Figure 1 shows an illustration for the lemma in space R3. The statement of the lemma
in this case takes the following form: the center of the parallelepiped, inside which there is
a convex figure touching each of the sides of the parallelepiped, is an interior point of this
figure. As can be seen from the figure, the points of contact of the convex set K, L and M
form a plane that “cuts” the initial parallelepiped into two parts, one of which contains its
center O. Since the convex set is tangent to each side of the parallelepiped, the point O will
always be interior.

Figure 1. Illustration for Lemma 3 in space R3.

3.2. Method for Solving the Efficient System of Inequalities

Details of the efficient system of inequalities solution method are described in this
section. Input is a system n(n−1)

2 of double inequalities of the form

X(i, j) ≤
wj

wi
≤ Y(i, j), i, j ∈ J, i ̸= j. (8)

This system can also be written as n(n − 1) simple linear inequalities:{
wj − Y(i, j)wi ≤ 0,
−wj + X(i, j)wi ≤ 0,

i, j ∈ J, i ̸= j,
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Thus, the approximation problem has been reduced to a system of linear homogeneous
inequalities. For such systems, there are many algorithms for finding a system of generating
vectors sufficient to write a general formula for non-negative solutions. However, the re-
sulting system has a special form, significantly different from the general one. In addition,
the goal of the approximation problem is not to find all possible solutions to the system.
Thus, a fast algorithm for finding a particular solution to the system of inequalities of the
obtained form will be described.

The inequality (8) for three pairs formed from the jobs { f , g, h}will take the following form:

X( f , g) ≤
wg

w f
≤ Y( f , g), (9a)

X(g, h) ≤ wh
wg

≤ Y(g, h), (9b)

X(h, f ) ≤
w f

wh
≤ Y(h, f ). (9c)

The idea of the method is that one or more of the inequalities from (9a)–(9c) can be
strengthened using the others. For example, multiplying the inequalities (9a) and (9b) gives:

X( f , g)X(g, h) ≤ wh
w f

≤ Y( f , g)Y(g, h)

or
1

Y( f , g)Y(g, h)
≤

w f

wh
≤ 1

X( f , g)X(g, h)
. (10)

So, the inequality (10), which is a consequence of the inequalities (9a) and (9b), can
improve the estimate of the ratio w f /wh in the inequality (9c). Indeed, if the values
X(h, f ), Y( f , g), Y(g, h) are such, that

X(h, f ) ≤ 1
Y( f , g)Y(g, h)

,

then the inequality (9c) can be transformed by setting

X(h, f ) =
1

Y( f , g)Y(g, h)
.

We use the definition of matrices from the efficient system of inequalities:

1
X(i, j)

=
1

max
k∈Kj,i

( pk
j

pk
i

) = min
k∈Kj,i

( pk
i

pk
j

)
= Y(j, i). (11)

If X(h, f ) ≤ X(h, g)X(g, f ), then, taking into account the ratio (11), the inequality
(9c) can be strengthened, setting X(h, f ) = X(h, g)X(g, f ), as a result of which the set of
solutions of the system (9) and the efficient system of inequalities remain unchanged.

Similarly, all the inequalities of the efficient system can be strengthened:

X(i, j) := max
{

X(i, j); max
l=1,...,n,l ̸=i,l ̸=j

{X(i, l)X(l, j)}
}

, i, j ∈ J, i ̸= j. (12)

The procedure (12) must be repeated for all possible pairs of jobs i, j. On some steps after
the change of X(i, j) it can appear that some of X(k, j) or X(i, k) can also be updated, and the
inequality with X(i, j) can be strengthened again, where k = 1, . . . , n, i ̸= k ̸= j. Therefore, it is
necessary to repeat the procedure (12) until none of the inequalities of the efficient system can
be strengthened during the whole iteration. As will be shown in Section 4.3.3, this procedure
will need to be repeated not more than O(n3) times. After that, the values of Y(j, i) must also be
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updated according to the relation (11). The matrices X, Y obtained after a sufficient number of
repetitions of the procedure (12) will be denoted by X̃, Ỹ.

Thus, if wj/wi = z ∈ [X̃(i, j); Ỹ(i, j)] for any pair i, j ∈ J, i ̸= j, then among the
inequalities of the system remaining after the corresponding simplifications, there are
no pairs that contradict each other. Therefore, for each z ∈ [X̃(i, j); Ỹ(i, j)] there exists a
solution to the initial system (4) of inequalities such that wj/wi = z.

The solution of the system, as shown in Lemma 2, is a convex cone. Therefore,
the weight coefficients can be scaled: problems 1 || ∑ wjCj and 1 || ∑(γwj)Cj, where γ > 0,
are equivalent, and if the set of coefficients w = {w1, . . . , wn} is a solution of a system
of inequalities (initial or efficient), then the coefficients γw = {γw1, . . . , γwn} are also
a solution to this system. Due to this fact, one of the weight coefficients can be chosen
arbitrarily, then the system can be solved for the remaining weight coefficients, and the
resulting solution can be scaled. The resulting solution will correspond to the solution of
the initial system of inequalities.

Let, for example, w1 = 1. By Corollary 1 the cross section of the set of solutions of the
initial system by the plane w1 = 1 is also a convex set. Then, for arbitrary j ∈ {2, . . . , n} a
parallelepiped in a hyperspace of dimension (n − 1) can be described:

X̃(1, j) ≤ wj ≤ Ỹ(1, j). (13)

Moreover, as was proved above, for all wj and z ∈ [X̃(1, j); Ỹ(1, j)] there exists a
solution to the system such that wj/w1 = z or wj = z. In particular, for w1 = 1 there exists
a solution such that wj = X̃(1, j) and such that wj = Ỹ(1, j). In other words, the section
of the set of solutions by the plane w1 = 1 lies inside the parallelepiped described by
the inequalities (13) and has at least one common point with each of its faces. Therefore,
by Lemma 3 the center of this parallelepiped is an interior point of the set of solutions to
the initial system of inequalities and is a solution to the initial system.

The discussion given above can be summarized as the following theorem.

Theorem 1. A vector w = (w1, . . . , wj, . . . , wn), where

wj =

{
1, j = l;
(X̃(l, j) + Ỹ(l, j))/2, j ̸= l,

is a solution of the efficient system (7) of inequalities (index l can be chosen arbitrarily).

Any value within the interval [X̃(l, j); Ỹ(l, j)] can be taken as wj, j ∈ J. We used the
value in the middle of the interval wj = (X̃(l, j) + Ỹ(l, j))/2.

3.3. Algorithm for Solving the Approximation Problem

This section describes the algorithm for solving the problem 1 || ∑ wjCj, j ∈ J, with
unknown weight coefficients wj. N instances of this problem are given: Ik = {pk

1, . . . , pk
n},

k ∈ N, and for each instance the optimal schedule π0
k = (jk1, jk

2, .., jk
n) is known. It is

necessary to approximate unknown values of the weight coefficients wj, j ∈ J.
The algorithm for approximating the weight coefficients of the objective function is

based on solving the efficient system of inequalities:

X(i, j) ≤
wj

wi
≤ Y(i, j), (14)

where:

X(i, j) = max
k∈Kj,i

( pk
j

pk
i

)
, (15)
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Y(i, j) = min
k∈Ki,j

( pk
j

pk
i

)
, (16)

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)}, (17)

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)}, (18)

i, j ∈ J, i ̸= j.

To approximate the coefficients wj it is necessary:

1. construct sets Ki,j, Kj,i according to Formulas (17) and (18);
2. construct matrices X and Y according to Formulas (15) and (16);
3. calculate matrices X̃ and Ỹ by repeating procedure (12) as it is described in Section 3.2;

4. calculate wj =

{
1, j = l
(X̃(l, j) + Ỹ(l, j))/2, j ̸= l

, where index l is chosen arbitrarily.

4. Numerical Study
4.1. Description of Numerical Experiment

To study the efficiency of the constructed method for approximating the objective
function of problem 1 || ∑ wjCj, the solution algorithm described in Section 3.3 was
programmed in a Python environment and computational experiments were carried out
for various numbers of jobs n and numbers of given instances N with known optimal
schedules. For each experiment, n ∈ {10, 50, 100, 150, 200, 250} weight coefficients w0

j , j ∈ J

and N ∈ [5, 100] (with a step of 5) problem instances Ik = {pk
1, . . . , pk

n}, k=1, . . . , N, (values
pk

j and w0
j have a uniform distribution on the interval [0; 1]) were generated, and the

constructed approximation algorithm was executed. The algorithm output is a set of the
weight coefficients wj, j ∈ J. To compare the found values of wj and the true weight
coefficients w0

j , both sets are normalized (scaling is allowed due to the linearity of the
objective function):

|| w ||=

√√√√ n

∑
j=1

w2
j ,

wj :=
wj

|| w || , w0
j :=

w0
j

|| w0 || .

Measure of efficiency ε(N, n) of the algorithm is the modulus of the relative deviation of the
found normalized values wj (averaged over j ∈ J) from their true normalized values w0

j :

ε(N, n) =
1
n

n

∑
j=1

| wj − w0
j |

w0
j

. (19)

The results of a series of experiments for the dependence of the approximation effi-
ciency measure ε(N, n) on N for different values of n are shown in Figures 2–5.
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Figure 2. Modelling results, n = 10.

Figure 3. Modelling results, n = 50.
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Figure 4. Modelling results, n = 100.

Figure 5. Modelling results, n = 250.

4.2. Analysis of Experiment Results

Function ε(N, n) decreases as the number of known optimal schedules N increases.
Moreover, the least squares (LSM) approximation of the dependence of 1/ε on N by the line
y = ax in all cases with a sufficiently large number of repetitions of the experiment, gives
a high linear correlation coefficient r > 0.9. In Figure 6 a graphical representation of the
result of a linear approximation with a linear correlation coefficient of r = 0.93 is presented.
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Figure 6. Modelling results, n = 200.

Due to the described correlation, the following hypothesis about the type of depen-
dence ε(N, n) is made:

ε(N, n) =
a(n)

N
. (20)

This hypothesis possibly depends on the distribution of the input parameters with the
growth of the number n of jobs and number N of given instances with known optimal sched-
ules.

Moreover, as can be seen from the diagrams above, with a greater number of jobs n,
more accurate results of the algorithm can be obtained. That is, the function a(n) tends
to be decreasing. For accurate statistical verification of the hypothesis, it is necessary to
conduct a large number of computational experiments.

4.3. Computational Complexity Estimation

The approximation algorithm consists of four sequential procedures:

1. construction of sets Ki,j, Kj,i;
2. calculation of matrices X and Y;
3. calculation of matrices X̃ and Ỹ;
4. calculation of wj.

The computational complexity of each of these procedures will be as follows.

4.3.1. Construction of Sets Ki,j, Kj,i

As it was described in Section 3.1, sets Ki,j and Kj,i are defined as follows:

Ki,j = {k ∈ K : π0
k = (. . . , i, . . . , j, . . .)},

Kj,i = {k ∈ K : π0
k = (. . . , j, . . . , i, . . .)}.
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To construct these sets, it is necessary to determine the position of each requirement j ∈ J in
each schedule π0

k , k=1, . . . , N. Then, for each pair of different jobs i, j ∈ J it is necessary to
compare their positions in schedule π0

k . Therefore, the construction of sets Ki,j, Kj,i requires
the following number of operations:

N ·
(

O(n) + O
(n(n − 1)

2
))

= O(n2N),

where n is a number of jobs, N is a number of schedules.

4.3.2. Calculation of Matrices X and Y

The n × n matrices X and Y are calculated as follows:

X(i, j) = max
k∈Kj,i

( pk
j

pk
i

)
, Y(i, j) = min

k∈Ki,j

( pk
j

pk
i

)
, i, j ∈ J, i ̸= j.

For each instance Ik of the problem and all possible pairs (i, j), i ̸= j, the ratio pk
j /pk

i is
calculated, which requires O

(
Nn(n − 1)

)
operations. Then, for each set Kj,i, the largest

value is chosen, which is placed in X(i, j), which requires O
(
n(n − 1) · O(N)

)
operations.

After all, finding Y(i, j) taking into account the relation (11) requires O
(
n(n− 1)

)
operations.

Therefore, to calculate the matrices X and Y, it is required to perform the following number
of operations:

O
(

Nn(n − 1)
)
+ O

(
n(n − 1) · O(N)

)
+ O

(
n(n − 1)

)
= O(n2N).

4.3.3. Calculation of Matrices X̃ and Ỹ

Calculation of the matrices X̃ and Ỹ is the most time-consuming part of the algorithm
in terms of computational complexity. Indeed, a procedure of the form (12):

X(i, j) := max
{

X(i, j); max
l∈J,i ̸=l ̸=j

{X(i, l)X(l, j)}
}

, i, j ∈ J, i ̸= j, (21)

for each pair i, j involves (n − 2) computing the product X(i, l)X(l, j) and finding the
maximum of (n − 1) values. Thus, the number of operations required to perform the
procedure (12) once is

O
(
(n − 2) + (n − 1)

)
= O(n).

To find the matrices X̃ and Ỹ, it is necessary to repeat the procedure (12) in a loop for all
possible pairs of jobs i, j until there will be no such pair i, j so that the element X(i, j) can
be increased. However, after each repetition of the procedure, the element X(i, j) either is
increased or unchanged, so the number of repetitions of the procedure can be significantly
reduced. This can be conducted by choosing a special order in which the pairs i, j ∈ J
are considered such that the procedure (12) will be executed for each pair of jobs no more
than two times. In this case, the number of operations required to calculate the matrices
X̃ and Ỹ, is

O
(

2 · n(n − 1)
2

· n
)
= O(n3).

4.3.4. Calculation of wj

Computational complexity of finding all values

wj =

{
1, j = l;
(X̃(l, j) + Ỹ(l, j))/2, j ̸= l,

j ∈ J,

is O(n) operations.
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4.3.5. Resulting Complexity

Thus, the computational complexity of the algorithm can be estimated with the fol-
lowing number of operations:

O(n2N) + O(n2N) + O(n3) + O(n) = O
(
n2N + n3) = O

(
n2(N + n)

)
.

5. Conclusions

The result of the work is an algorithm for approximating the values of the weight
coefficients of the problem 1 || ∑ wjCj using N given instances of the problem with known
optimal schedules. The result of the algorithm is a set of weight coefficients wj, j ∈ J such
that for each of the N given instances, the optimal schedule found for the approximate
values of the weights either is equal to the given optimal schedule corresponding to the
unknown true set of weights w0

j , or has the same objective function value with it. The results
described in this paper are also relevant to the problem 1 || ∑ wjLj.

The computational complexity of the algorithm is limited to O(n2(N + n)) opera-
tions, where n is the number of jobs and N is a number of initial instances with known
optimal schedules.

A numerical experiment was carried out to study the efficiency of the method. All
shown examples have N ∈ [5, 100] given instances of the problem 1 || ∑ wjCj, where
the number of jobs n is the same for all instances in each set and were given from the
interval [10, 250] to check the correlation. The accuracy of the algorithm is estimated by

experimentally measuring the function ε(N, n) = 1
n ∑n

j=1
|wj−w0

j |
w0

j
, which is an indicator of

the average modulus of the relative deviation of the found values wj from the true values
w0

j . An analysis of the results shows a high correlation between the dependence ε(N, n)
and a function of the form α(n)/N, where α(n) is a decreasing function of n. So, based
on the result of the experiment, it is clear that a greater number of jobs n, more accurate
results of the algorithm can be obtained. In Section 4.2 it is shown that the dependence of
1/ε on N is approximated by the line y = ax; the least squares method shows a high linear
correlation coefficient r > 0.9 in all cases with a sufficiently large number of repetitions of
the experiment.

Based on the current results, further work is planned in the following areas:

• searching for a formal proof of the hypothesis about the form of dependence ε(N, n)
from Section 4.2 when rj = const, j ∈ J;

• continue studying the general case 1 | rj | ∑ wjCj, where jobs can have different release
times; it is necessary to find either a subsystem of inequalities with a polynomial
number of inequalities, equivalent to the original system, or the strongest subsystem
with a polynomial number of inequalities with an estimate of the approximation error;

• trying to adapt the results to solve the problem of approximating more complex
objective functions.
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