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Abstract: Dung’s abstract argumentation framework is a popular formalism in formal argumentation.
The present work develops paraconsistent labeling semantics for abstract argumentation such that the
incomplete and inconsistent information can be expressed, and it introduces a Hilbert-style axiomatic
system which is proven to be sound and complete. Additionally, we make a comparison between the
logic developed in the present work and some relevant theories of abstract argumentation.
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1. Introduction

Formal argumentation is an important research field in artificial intelligence (cf., e.g., [1–4]).
Dung’s theory of abstract argumentation framework is useful for dealing with disputes between
agents. This framework is simple but has powerful expressiveness (cf. [5]). An argumentation
framework (AF) is a pair (A, R) where A is a set of arguments and R a binary attack relation
on A. For all a, b ∈ A, aRb means that the argument a attacks b.

There are various kinds of semantics such as grounded, complete, preferred, stable
and semi-stable semantics defined for AF in the literature (cf., e.g., [5,6]). For the purpose
of representing different kinds of information, AF has been extended to many forms such
as AF with uncertain information [4,7–9], bipolar AF [10–12], AF with preferences [13,14]
and AF with constrains [15,16]. In particular, there are two ways to extend AF to represent
uncertain information: one is incomplete AF (iAF) where arguments and attacks may be
uncertain [7,8], and the other is probabilistic AF (PrAF) where arguments and attacks are
associated with probabilities [4,9].

This paper uses AAF to deal with uncertain (incomplete) and paraconsistent infor-
mation by introducing paraconsistent (four-valued) labeling semantics without utilizing
probability. This differs from iAF in the following sense: the attack relation is certain, and
the semantics is changed into a bilateral one such that an argument can accept (support) or
reject a proposition. Thus, given an argument a and proposition φ, there are four possibili-
ties: (C1) a accepts φ; (C2) a rejects φ; (C3) a both accepts and rejects φ; and (C4) a neither
accepts nor rejects φ. Here, (C1) means that φ is certainly true for a; (C2) means that φ is
certainly not true for a; (C3) means that φ is a contradictory information for a; and (C4)
means that φ is irrelevant with a.

The paraconsistent approach given in the present paper puts uncertainties on the satis-
faction relation but not on the attack relation. Dung said, “an argument is an abstract entity
whose role is solely determined by its relations to other arguments. No special attention
is paid to the internal structure of the arguments” [5]. In our framework, an argument
is an abstract entity whose role is determined both by its relations to other arguments
and its relations to properties or propositions (supporting or rejecting). This is due to
the fact that two arguments may attack the same arguments, but they are given based on
different reasons. Belnap [17,18] and Dunn [19,20] proposed the four-valued semantics for
modeling different states of information. In the present paper, the paraconsistent labeling
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semantics is used to deal with incomplete and paraconsistent information. After we present
the bilateral semantics, we will introduce a sound and complete Hilbert-style axiomatic
system. Finally, we will compare this kind of semantics with some relevant theories of
abstract argumentation.

Some logicians (cf., e.g., [21,22]) have considered paraconsistency both at the level
of propositional symbol and at the level of accessibility relation. The present paper has
considered paraconsistency only at the level of the propositional symbol, but we generalize
four-valued paraconsistent modal logic in a different direction: we generalize a single
accessibility relation to bi-directional accessibility relations. Indeed, we use a four-valued
paraconsistent tense logic with a global modality. Hence, the logic in the present paper can
talk about the relations of both attacking and being attacked.

The structure of this paper is as follows. Section 2 introduces the formal language
and paraconsistent labeling semantics. Section 3 gives a Hilbert-style axiomatic system
and proves its soundness and completeness. Section 4 gives the comparison between our
semantics and other theories. Section 5 gives some concluding remarks and directions of
future work.

2. Paraconsistent Labeling Semantics

This section introduces the formal language and the paraconsistent labeling semantics.
The modal logic of abstract argumentation under this kind of semantics is introduced.

Definition 1. An abstract argumentation framework (AAF) is a pair F = (A, R) where A ̸= ∅
is a set of arguments, and R is a binary relation on A which is called the attack relation. The inverse
of R is defined as R̆ = {⟨a, b⟩ : bRa}. For every argument a ∈ A, we define

R(a) = {b ∈ A : aRb} and R̆(a) = {b ∈ A : bRa}.

Here, R(a) is the set of all arguments that a attacks, and R̆(a) is the set of all arguments that
attack a. For every set of arguments X ⊆ A, the set of all arguments that arguments in X attack is
defined as R[X] =

⋃
a∈X R(a). The set of all arguments that attack arguments in X is defined as

R̆[X] =
⋃

a∈X R̆(a). For n ≥ 0, the set Rn(a) of all arguments reachable from a in n-steps of attack
is defined inductively by R0(a) = {a} and Rn+1 = R[Rn(a)]. The set R̆n(a) of all arguments that
can reach a in n-steps of attack is defined inductively by R̆0(a) = {a} and R̆n+1 = R̆[R̆n(a)].

Let V = {pi : i ∈ ω} be a denumerable set of propositional variables. We assume that
V is denumerable, and in practical scenarios, V can be finite. Let P(V) be the powerset
of V. In the standard labeling in an AAF, a set of propositional variables is assigned to
each argument. Here, we assign each argument a pair of sets of propositional variables,
namely, each argument a takes an element in the product P(V)×P(V) as its label. For each
argument a, the label l(a) consists of a pair of sets ⟨l+(a), l−(a)⟩ where l+(a) is the set of all
propositional variables that a accepts, and l−(a) is the set of all propositional variables that
a rejects. The two sets of propositional variables have four cases in the following diagram:

V
l+(a) l−(a)

III
I II IV

The region (I) consists of propositional variables which a accepts; (II) consists of proposi-
tional variables which a rejects; (III) consists of propositional variables which a accepts and
rejects; and (IV) consists of propositional variables which a neither accepts nor rejects. Now,
we give the formal definition of labeling and model as follows.
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Definition 2. Let F = (A, R) be an AAF. A labeling in F is the function l : A → P(V)×P(V).
A model is M = (F , l) where F is an AAF, and l is a labeling in F . For every model M =
(A, R, l) and a ∈ A, the pair l(a) = ⟨l+(a), l−(a)⟩ is given the label of a. The label l(a) is
consistent if l+(a) ∩ l−(a) = ∅; l(a) is inconsistent if l(a) is not consistent; l(a) is complete if
l+(a) ∪ l−(a) = V; and l(a) is incomplete if it is not complete.

Example 1. Consider the following AAF F = (A, R):

a b c

Clearly, R(a) = {a, b, c} and R̆(c) = {a, b}. Note that aRa means a attacks itself, namely, a
is contradictory. Moreover, {b, c} ⊆ Rn(a) for all n ≥ 1. Let l be the labeling in F such that
l+(a) = {q} and l−(a) = {q, r}. Then, l(a) is both inconsistent and incomplete.

Properties of arguments are expressed by formulas built from propositional variables
using logical operators. In the present paper, we shall consider the following logical
operators: ¬ (classical negation), ∼ (paraconsistent negation), ∨ (disjunction), ♢ (future
possibility), ♦ (past possibility) and E (existential modality).

Definition 3. The set of all formulas Fm is defined inductively as follows:

Fm ∋ φ ::= p | ¬φ | ∼φ | (φ1 ∨ φ2) | ♦φ | ♢φ | Eφ

where p ∈ V. The complexity of a formula φ, denoted by c(φ), is defined inductively as follows:

c(p) = 0

c(◦φ) = c(φ) + 1, where ◦ ∈ {¬,∼,♦,♢,E}.

c(φ ∨ ψ) = max{c(φ), c(ψ)}+ 1

We use the following abbreviations:

⊤ := p ∨ ¬ p (true)

⊥ := p ∧ ¬ p (falsum)

φ ∧ ψ := ¬(¬φ ∨ ¬ψ) (conjunction)

φ → ψ := ¬φ ∨ ψ (condition)

φ ↔ ψ := (φ → ψ) ∧ (ψ → φ) (equivalence)

□φ := ∼♢∼φ (future necessity)

■φ := ∼♦∼φ (past necessity)

Uφ := ∼E∼φ (universal modality)

For φ ∈ Fm, let var(φ) be the set of all propositional variables appearing in φ. For ⊙ ∈
{¬,∼,♦,♢,■,□,E,U} and n ≥ 0, the formula ⊙n φ is defined inductively by ⊙0 φ = φ and
⊙n+1 φ = ⊙⊙n φ. For ⊙ = ♢, ♦ or E, the dual of ⊙ is the operator ⊙∂ = □, ■ or U, respectively.

Let a be an argument a in a model and φ a formula. We give the acceptance relation
a |=+ φ and the rejection relation a |=− φ to show the paraconsistent labeling semantics.

Definition 4. Let M = (A, R, l) be a model, a ∈ A and φ ∈ Fm. The acceptance relation
M, a |=+ φ and rejection relation M, a |=− φ are defined simultaneously by induction as follows:

M, a |=+ p if and only if p ∈ l+(a).
M, a |=− p if and only if p ∈ l−(a).
M, a |=+ ¬φ if and only if M, a ̸|=+ φ.
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M, a |=− ¬φ if and only if M, a ̸|=− φ.
M, a |=+ ∼φ if and only if M, a |=− φ.
M, a |=− ∼φ if and only if M, a |=+ φ.
M, a |=+ φ ∨ ψ if and only if M, a |=+ φ or M, a |=+ ψ.
M, a |=− φ ∨ ψ if and only if M, a |=− φ and M, a |=− ψ.
M, a |=+ ♢φ if and only if M, b |=+ φ for some b ∈ R(a).
M, a |=− ♢φ if and only if M, b |=− φ for any b ∈ R(a).
M, a |=+ ♦φ if and only if M, b |=+ φ for some b ∈ R̆(a).
M, a |=− ♦φ if and only if M, b |=− φ for any b ∈ R̆(a).
M, a |=+ Eφ if and only if M, b |=+ φ for some b ∈ A.
M, a |=− Eφ if and only if M, b |=− φ for any b ∈ A.

For every φ ∈ Fm, let Arg+(φ) = {a ∈ A : M, a |=+ φ} and Arg−(φ) = {a ∈ A : M, a |=−

φ}. Let Arg(φ) = ⟨Arg+(φ), Arg−(φ)⟩ be the meaning of φ in the model M.

Lemma 1. For every model M = (A, R, l) and φ ∈ Fm, the following hold:

(1) M, a |=+ ⊤ and M, a ̸|=− ⊤.
(2) M, a ̸|=+ ⊥ and M, a |=− ⊥.
(3) M, a |=+ φ ∧ ψ if and only if M, a |=+ φ and M, a |=+ φ.
(4) M, a |=− φ ∧ ψ if and only if M, a |=− φ or M, a |=− ψ.
(5) M, a |=+ φ → ψ if and only if M, a ̸|=+ φ or M, a |=+ φ.
(6) M, a |=− φ → ψ if and only if M, a ̸|=− φ and M, a |=− ψ.
(7) M, a |=+ □φ if and only if M, b |=+ φ for all b ∈ R(a).
(8) M, a |=− □φ if and only if M, b |=− φ for some b ∈ R(a).
(9) M, a |=+ ■φ if and only if M, b |=+ φ for all b ∈ R̆(a).
(10) M, a |=− ■φ if and only if M, b |=− φ for some b ∈ R̆(a).
(11) M, a |=+ Uφ if and only if M, b |=+ φ for all b ∈ A.
(12) M, a |=− Uφ if and only if M, b |=− φ for some b ∈ A.
(13) M, a |=+ □φ if and only if M, b |=+ ¬♢¬φ.
(14) M, a |=− □φ if and only if M, b |=− ¬♢¬φ.
(15) M, a |=+ ■φ if and only if M, b |=+ ¬♦¬φ.
(16) M, a |=− ■φ if and only if M, b |=− ¬♦¬φ.
(17) M, a |=+ Uφ if and only if M, b |=+ ¬E¬φ.
(18) M, a |=− Uφ if and only if M, b |=− ¬E¬φ.

Proof. We only prove the following items, and the proof of others is omitted.
(3) M, a |=+ φ ∧ ψ if and only if M, a |=+ ¬(¬φ ∨ ¬ψ), if and only if M, a ̸|=+

¬φ ∨ ¬ψ, if and only if M, a ̸|=+ ¬φ and M, a ̸|=+ ¬ψ, if and only if M, a |=+ φ and
M, a |=+ ψ.

(5) M, a |=+ φ → ψ if and only if M, a |=+ ¬φ ∨ ψ, if and only if M, a |=+ ¬φ or
M, a |=+ ψ, if and only if M, a ̸|=+ φ or M, a |=+ ψ.

(7) M, a |=+ □φ if and only if M, a |=+ ∼♢∼φ, if and only if M, a |=− ♢∼φ, if and
only if M, b |=− ∼φ for all b ∈ R(a), if and only if M, b |=+ φ for all b ∈ R(a).

(12) M, a |=− Uφ if and only if M, a |=− ∼E∼φ, if and only if M, a |=+ E∼φ, if and
only if M, b |=+ ∼φ for some b ∈ A, if and only if M, b |=− φ for some b ∈ A.

(13) M, a |=+ □φ if and only if M, b |=+ φ for all b ∈ R(a) by (7), if and only if
M, b ̸|=+ ¬φ for all b ∈ R(a), if and only if M, a ̸|=+ ♢¬φ, if and only if M, a |=+ ¬♢¬φ.

(14) M, a |=− □φ if and only if M, b |=− φ for some b ∈ R(a) by (8), if and only
if M, b ̸|=− ¬φ for some b ∈ R(a), if and only if M, a ̸|=− ♢¬φ, if and only if M, a |=−

¬♢¬φ.

Definition 5. Let F = (A, R) be an AAF and Γ ∪ φ ⊆ Fm. Let M = (F , l) be a model on F .

• φ is true at a in M (notation: M, a |= φ) if M, a |=+ φ and M, a ̸|=− φ.
• φ is valid in F (notation: F |= φ) if F , l, a |= φ for every labeling l in F and a ∈ A.
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• φ is valid (notation: |= φ) if F |= φ for each AAF F .

The paraconsistent modal logic for abstract argumentation PML = {φ ∈ Fm : |= φ}. We write
M, a |=+ Γ if M, a |=+ ψ for all ψ ∈ Γ; and M, a |=− Γ if M, a |=− ψ for some ψ ∈ Γ. A
formula φ is a semantical consequence of Γ (notation: Γ |= φ) if for every model M = (A, R, l)
and a ∈ A, (i) if M, a |=+ Γ, then M, a |=+ φ; and (ii) if M, a |=− φ, then M, a |=− Γ.

Here, we have defined the paraconsistent modal logic PML which is the logic of
argumentation under the paraconsistent labeling semantics. In the next section, we will
give a Hilbert-style axiomatization of PML.

3. Hilbert-Style Axiomatic System

In this section, we shall present a Hilbert-style axiomatic system S for the logic PML of
abstract argumentation. We shall prove the soundness and completeness of S. Let CL be
the classical propositional logic in the language {¬,∨}.

Definition 6. The axiomatic system S consists of the following axiom schemata and inference rules:

(1) Axiom schemata:

(A1) All instances of CL.
(A2) φ ↔ ∼∼φ
(A3) ¬∼φ ↔ ∼¬φ
(A4) ∼φ ∧∼ψ → ∼(φ ∨ ψ)

(A5) ⊙φ ↔ ¬⊙∂ ¬φ where ⊙ ∈ {♢,♦,E} and ⊙∂ is the dual of ⊙.
(A6) ⊙(φ → ψ) → (⊙φ → ⊙ψ) where ⊙ ∈ {□,■,U}.
(A7) φ → Eφ
(A8) EEφ → Eφ
(A9) φ → UEφ
(A10)Uφ → □φ
(A11)Uφ → ■φ
(A12) φ → □♦φ
(A13) φ → ■♢φ

(2) Inference rules:

φ → ψ φ

ψ
(MP)

φ → ψ

∼ψ → ∼φ
(CP)

φ

⊙φ
(Gen⊙), where ⊙ ∈ {□,■,U}.

A proof of a formula φ in S a finite sequence of formulas φ1, . . . , φn such that φn = φ and each φi is
either an axiom or derived from previous formulas by an inference rule. A formula φ is provable (or
a theorem) in S (notation: ⊢S φ) if there exists a proof of φ in S. A formula φ is derivable from a set
of formulas Γ in S (notation: Γ ⊢S φ) if there exists a finite subset ∆ ⊆ Γ such that ⊢S

∧
∆ → φ.

Here,
∧

∆ is the conjunction of all formulas in ∆. In particular,
∧
∅ = ⊤.

Lemma 2. For all formulas φ, ψ1 and ψ2, if ⊢S ψ1 ↔ ψ2, then ⊢S φ ↔ φ(ψ1/ψ2) where
φ(ψ1/ψ2) is obtained from φ by substituting ψ2 for one or more occurrences of ψ1 in φ.

Proof. The proof proceeds by induction on the complexity c(φ). The case φ = p ∈ V
is trivial. Suppose that φ = ¬ψ. By induction hypothesis, ⊢ ψ ↔ ψ(ψ1/ψ2). By (A1)
and (MP), ⊢ ¬ψ ↔ ¬ψ(ψ1/ψ2). Suppose that φ = ∼ψ. By induction hypothesis, ⊢
ψ ↔ ψ(ψ1/ψ2). By (CP) and (A1), ⊢ ∼ψ ↔ ∼ψ(ψ1/ψ2). Suppose that φ = ♢ψ, ♦ψ or
Eψ. These cases are similar, and we show only the first case. By induction hypothesis,
⊢ ψ ↔ ψ(ψ1/ψ2). By (A1), ⊢ ¬ψ ↔ ¬ψ(ψ1/ψ2). By (Gen□), (MP) and (A6), ⊢ □¬ψ ↔
□¬ψ(ψ1/ψ2). By (A1), ⊢ ¬□¬ψ ↔ ¬□¬ψ(ψ1/ψ2). Then, ⊢ ♢ψ ↔ ♢ψ(ψ1/ψ2) by (A5)
and (A1). Suppose that φ is ψ ∨ χ. By induction hypothesis, ⊢ ψ ↔ ψ(ψ1/ψ2) and
⊢ χ ↔ χ(ψ1/ψ2). By (A1) and (MP), ⊢ ψ ∨ χ ↔ ψ(ψ1/ψ2) ∨ χ(ψ1/ψ2). Hence, ⊢ ψ ∨ χ ↔
(ψ ∨ χ)(ψ1/ψ2).
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Lemma 3. The following hold in S:

(1) ⊢S ¬⊙∼φ ↔ ∼⊙¬φ where ⊙ ∈ {□,■,U,♢,♦,E}.
(2) ⊢S ♢φ → Eφ and ⊢S ♦φ → Eφ.
(3) if ⊢S φ → ψ, then ⊢S ⊙φ → ⊙ψ where ⊙ ∈ {□,■,U,♢,♦,E}.
(4) ⊢S ♢■φ → φ and ⊢S ♦□φ → φ.
(5) ⊢S ♢φ → ψ if and only if ⊢S φ → ■ψ.
(6) ⊢S ♦φ → ψ if and only if ⊢S φ → □ψ.

Proof. For (1), we only prove the case for □. By the definition of □, ⊢S ¬□∼φ ↔
¬∼♢∼∼φ. By (A2) and Lemma 2, ⊢S ¬□∼φ ↔ ¬∼♢φ. By (A3), ⊢S ¬∼♢φ ↔ ∼¬♢φ.
By (A5), (A1) and Lemma 2, ⊢S ∼¬♢φ ↔ ∼□¬φ. By (A1), ⊢S ¬□∼φ ↔ ∼□¬φ. For (2),
we show only the case for ♢. By (A10), ⊢S U∼φ → □∼φ. By (CP), ⊢S ∼□∼φ → ∼U∼φ.
By (A2) and Lemma 2, ⊢S ♢φ → Eφ. For (3), we show only the case for □. Assume
that ⊢S φ → ψ. By (Gen□), ⊢S □(φ → ψ). By (A6) and (MP), ⊢S □φ → □ψ. For (4),
by (A12) and (CP), ⊢S ∼□♦∼φ → ∼∼φ. Then, ⊢S ∼∼♢∼♦∼φ → ∼∼φ. By (A2) and
(MP), ⊢S ♢■φ → φ. Similarly, ⊢S ♦□φ → φ. For (5), assume that ⊢S ♢φ → ψ. By (3),
⊢S ■♢φ → ■ψ. By (A13), (A1) and (MP), ⊢S φ → ■ψ. Assume that ⊢S φ → ■ψ. By (3),
⊢S ♢φ → ♢■ψ. By (4), (A1) and (MP), ⊢S ♢φ → ψ. The item (6) is shown similarly.

Lemma 4. The following hold in S:

(1) ⊢S ¬♢φ ↔ □¬φ; ⊢S ¬♦φ ↔ ■¬φ and ⊢S ¬Eφ ↔ U¬φ.
(2) ⊢S ∼(φ ∨ ψ) ↔ ∼φ ∧∼ψ and ⊢S ∼(φ ∧ ψ) ↔ ∼φ ∨∼ψ.
(3) ⊢S ⊙(φ ∨ ψ) ↔ ⊙φ ∨⊙ψ and ⊢S ⊙(φ ∧ ψ) → ⊙φ ∧⊙ψ for ⊙ ∈ {♢,♦,E}.
(4) ⊢S ⊙φ ∨⊙ψ → ⊙(φ ∨ ψ) and ⊢S ⊙(φ ∧ ψ) ↔ ⊙φ ∧⊙ψ for ⊙ ∈ {□,■,U}.
(5) ⊢S □φ ∧♢ψ → ♢(φ ∧ ψ); ⊢S ■φ ∧♦ψ → ♦(φ ∧ ψ) and ⊢S Uφ ∧ Eψ → E(φ ∧ ψ).

Proof. (1) By (A1) and Lemma 2, ⊢S ¬♢φ ↔ ¬♢¬¬φ. By (A5), (A1) and Lemma 2,
⊢S ¬♢φ ↔ □¬φ. Similarly, we have ⊢S ¬♦φ ↔ ■¬φ and ⊢S ¬Eφ ↔ U¬φ.

(2) For ⊢S ∼(φ ∨ ψ) ↔ ∼φ ∧ ∼ψ, it suffices to show ⊢S ∼(φ ∨ ψ) → ∼φ ∧ ∼ψ by
(A4). By (A1), ⊢S φ → φ ∨ ψ and ⊢S ψ → φ ∨ ψ. Then by (CP), ⊢S ∼(φ ∨ ψ) → ∼φ
and ⊢S ∼(φ ∨ ψ) → ∼ψ. Hence, ⊢S ∼(φ ∨ ψ) → ∼φ ∧ ∼ψ by (A1). For ⊢S ∼(φ ∧ ψ) ↔
∼φ ∨∼ψ, clearly ⊢S ∼(φ ∧ ψ) ↔ ∼¬(¬φ ∨ ¬ψ). By (A3), ⊢S ∼¬(¬φ ∨ ¬ψ) ↔ ¬∼(¬φ ∨
¬ψ). By Lemma 2 and ⊢S ∼(¬φ ∨ ¬ψ) ↔ ∼¬φ ∧ ∼¬ψ which we have just proven,
⊢S ¬∼(¬φ ∨ ¬ψ) ↔ ¬(∼¬φ ∧ ∼¬ψ). By (A3), ⊢S ¬(∼¬φ ∧ ∼¬ψ) ↔ ¬(¬∼φ ∧ ¬∼ψ).
By (A1), ⊢S ¬(¬∼φ ∧ ¬∼ψ) ↔ (∼φ ∨∼ψ). By (A1), ⊢S ∼(φ ∧ ψ) ↔ (∼φ ∨∼ψ).

(3) Clearly, ⊢S φ → φ ∨ ψ and ⊢S ψ → φ ∨ ψ. By Lemma 3 (3), ⊢S ♢φ → ♢(φ ∨ ψ) and
⊢S ♢ψ → ♢(φ ∨ ψ). By (A1), ⊢S (♢φ ∨♢ψ) → ♢(φ ∨ ψ). Clearly, ⊢S ¬φ → (¬ψ → ¬(φ ∨
ψ)). By (Gen□), (A6) and (MP), ⊢S □¬φ → □(¬ψ → ¬(φ ∨ ψ)). By (A6), ⊢S □(¬ψ →
¬(φ ∨ ψ)) → (□¬ψ → □¬(φ ∨ ψ)). By (A1), ⊢S □¬φ → (□¬ψ → □¬(φ ∨ ψ)). By (A1),
⊢S □¬φ ∧□¬ψ → □¬(φ ∨ ψ). Again by (A1), ⊢S ¬□¬(φ ∨ ψ) → ¬(□¬φ ∧□¬ψ). Again
By (A1), ⊢S ¬□¬(φ∨ψ) → ¬□¬φ∨¬□¬ψ. Hence, by (A5) and Lemma 2, ⊢S ♢(φ∨ψ) →
♢φ ∨ ♢ψ. Similarly, ⊢S ♦(φ ∨ ψ) ↔ (♦φ ∨ ♦ψ) and ⊢S E(φ ∨ ψ) ↔ (Eφ ∨ Eψ). Clearly,
⊢S φ ∧ ψ → φ and ⊢S φ ∧ ψ → ψ. For ⊙ ∈ {♢,♦,E}, by Lemma 3 (3), ⊢S ⊙(φ ∧ ψ) → ⊙φ
and ⊢S ⊙(φ ∧ ψ) → ⊙ψ. Hence, ⊢S ⊙(φ ∧ ψ) → ⊙φ ∧⊙ψ.

(4) Clearly, ⊢S φ → (φ ∨ ψ) and ⊢S ψ → (φ ∨ ψ). For ⊙ ∈ {□,■,U}, by Lemma 3
(3), ⊢S ⊙φ → ⊙(φ ∨ ψ) and ⊢S ⊙ψ → ⊙(φ ∨ ψ). Then, ⊢S (⊙φ ∨ ⊙ψ) → ⊙(φ ∨ ψ).
By (A5) and (A1), ⊢S □(φ ∧ ψ) ↔ ¬♢¬(φ ∧ ψ). By (A1) and Lemma 2, ⊢S ¬♢¬(φ ∧ ψ) ↔
¬♢(¬φ∨¬ψ). By (3), ⊢S ¬♢(¬φ∨¬ψ) ↔ ¬(♢¬φ∨♢¬ψ). By (A1), ⊢S ¬(♢¬φ∨♢¬ψ) ↔
(¬♢¬φ∧¬♢¬ψ). By (A5) and (A1), ⊢S (¬♢¬φ∧¬♢¬ψ) ↔ (□φ∧□ψ). By (A1), ⊢S □(φ∧
ψ) ↔ (□φ ∧□ψ). Similarly, ⊢S ■(φ ∧ ψ) ↔ (■φ ∧■ψ) and ⊢S U(φ ∧ ψ) ↔ (Uφ ∧Uψ).

(5) By (A5) and (A1), ⊢S □φ ∧ ♢ψ → □φ ∧ ¬□¬ψ. By (A1), ⊢S (□φ ∧ ¬□¬ψ) →
¬(□φ → □¬ψ). By (A6) and (A1), ⊢S ¬(□φ → □¬ψ) → ¬□(φ → ¬ψ). By (A5) and (A1),
⊢S ¬□(φ → ¬ψ) → ♢¬(φ → ¬ψ). By (A1) and Lemma 2, ⊢S ♢¬(φ → ¬ψ) → ♢(φ ∧ ψ).
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Hence, ⊢S □φ ∧ ♢ψ → ♢(φ ∧ ψ) by (A1). Similarly, ⊢S ■φ ∧ ♦ψ → ♦(φ ∧ ψ) and
⊢S Uφ ∧ Eψ → E(φ ∧ ψ).

Now, we prove the completeness of S by the canonical model method. First, we define
deductive filters and use them to define the canonical model.

Definition 7. A nonempty set of formulas F is an S-deductive filter if φ ∈ F and ⊢S φ → ψ imply
ψ ∈ F. An S-deductive filter F is proper if ⊥ ̸∈ F. The set of all S-deductive filters is denoted by
F (S). A proper S-deductive filter F is prime if φ ∨ ψ ∈ F implies φ ∈ F or ψ ∈ F. The set of all
prime S-deductive filters is denoted by Fp(S).

Lemma 5. Let F ∈ Fp(S). For all formulas φ and ψ, the following hold:

(1) φ ∧ ψ ∈ F if and only if φ ∈ F and ψ ∈ F.
(2) φ ∨ ψ ∈ F if and only if φ ∈ F or ψ ∈ F.
(3) ¬(φ ∧ ψ) ∈ F if and only if ¬φ ∈ F or ¬ψ ∈ F.
(4) ¬(φ ∨ ψ) ∈ F if and only if ¬φ ∈ F and ¬ψ ∈ F.
(5) ∼(φ ∧ ψ) ∈ F if and only if ∼φ ∈ F or ∼ψ ∈ F.
(6) ∼(φ ∨ ψ) ∈ F if and only if ∼φ ∈ F and ∼ψ ∈ F.

Proof. For (1), assume that φ ∧ ψ ∈ F. By ⊢S φ ∧ ψ → φ and ⊢S φ ∧ ψ → ψ, we obtain
φ ∈ F and ψ ∈ F. Conversely, assume that φ ∈ F and ψ ∈ F. By ⊢S φ → (ψ → φ ∧ ψ), we
obtain φ ∧ ψ ∈ F. For (2), assume that φ ∨ ψ ∈ F. Since F is prime, we have φ ∈ F or ψ ∈ F.
Assume that φ ∈ F or ψ ∈ F. By ⊢S φ → (φ ∨ ψ) and ⊢S ψ → (φ ∨ ψ), we have φ ∨ ψ ∈ F.
The items (3) and (4) are shown similarly. By Lemma 4(2) and items (1) and (2), we obtain
(5) and (6).

For a nonempty set of formulas Φ, let [Φ) = {ψ | ∃φ1, . . . , φn ∈ Φ(⊢S φ1 ∧ . . . ∧ φn →
ψ)}. Clearly, [Φ) is an S-deductive filter . If Φ = {φ}, we write [φ) for [{φ}).

Lemma 6. The following hold in S:

(1) If F ∈ F (S) and ψ ̸∈ F, there exists G ∈ Fp(S) such that F ⊆ G and ψ ̸∈ G.
(2) If φ ̸⊢S ψ, then there exists G ∈ Fp(S) such that φ ∈ G and ψ ̸∈ G.

Proof. For (1), assume that F ∈ F (S) and ψ ̸∈ F. Consider the set X = {H ∈ F (S) | F ⊆
H & ψ ̸∈ H}. Note that X ̸= ∅ since F ∈ X. Then, (X,⊆) is a partially ordered set. Let
Y be any ⊆-chain in X. It is easily shown that G′ =

⋃
Y ∈ X is a ⊆-upper bound of Y.

By Zorn’s lemma, there exists a ⊆-maximal element G in X. Clearly, F ⊆ G and ψ ̸∈ G. It
suffices to show that G is prime. For a contradiction, suppose that ψ1 ∨ ψ2 ∈ G, ψ1 ̸∈ G and
ψ2 ̸∈ G. Let H1 = [G ∪ {ψ1}) and H2 = [G ∪ {ψ2}). Since G is ⊆-maximal, H1 ̸∈ X and
H2 ̸∈ X. Then, ψ ∈ H1 and ψ ∈ H2. Then, there exist χ1, χ2 ∈ G such that ⊢S χ1 ∧ ψ1 → ψ
and ⊢S χ2 ∧ ψ2 → ψ. By (A1), ⊢S χ1 ∧ χ2 ∧ ψ1 → ψ and ⊢S χ1 ∧ χ2 ∧ ψ2 → ψ. Again by
(A1), ⊢S (χ1 ∧ χ2) ∧ (ψ1 ∨ ψ2) → ψ. By Lemma 5 (1), (χ1 ∧ χ2) ∧ (ψ1 ∨ ψ2) ∈ G. Then,
ψ ∈ G which contradicts ψ ̸∈ G. For (2), let F = [φ). Then, ψ ̸∈ F and F ∈ F (S). By (1),
there exists G ∈ Fp(S) such that φ ∈ G and ψ ̸∈ G.

Definition 8. For a nonempty set of formulas Φ, let ⊙−Φ = {φ | ⊙φ ∈ Φ} and ⊙Φ =
{⊙φ | φ ∈ Φ} for ⊙ ∈ {□,■,♢,♦,U,E}. The canonical AAF for S is defined as the structure
FS = (WS, RS, RE) where

• WS = Fp(S).
• FRSG if and only if □−F ⊆ G ⊆ ♢−1F and ■−G ⊆ F ⊆ ♦−G.
• FREG if and only if U−F ⊆ G ⊆ E−F.

The canonical model for S is defined as the model MS = (FS, lS) where lS is a labeling given by
l+S (F) = {p ∈ V | p ∈ F} and l−S (F) = {p ∈ V | ∼p ∈ F} for every F ∈ Fp(S).
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The canonical AAF FS consists of two relations RS and RE, and so it is not an AAF
in the sense of Definition 2. Thus, the proof of completeness is not standard. Using the
following Lemma 7, we obtain a submodel MS(F) generated by a point F ∈ WS and so it
will be a model in the sense of Definition 4.

Lemma 7. RS ⊆ RE and R̆S ⊆ RE.

Proof. Assume that FRSG. We show U−F ⊆ G and G ⊆ E−F. Suppose that Uφ ∈ F.
By (A10), □φ ∈ F. By FRSG, we have φ ∈ G. Hence, U−F ⊆ G. Suppose that φ ∈ G.
By FRSG, we have ♢φ ∈ F. By Lemma 3 (2), Eφ ∈ F. Hence, G ⊆ E−F. Hence, RS ⊆ RE.
Similarly, we have R̆S ⊆ RE.

Definition 9. For the canonical model MS = (WS, RS, RE, lS) and F ∈ WS, the generated
submodel MS(F) = (WF, RF, lF) is defined as follows:

(1) WF =
⋃

n∈N Rn
E(F) where R0

E(F) = {F} and Rn+1
E (F) = RE[Rn

E(F)].
(2) RF = RS

⋂
(WF × WF).

(3) lF(G) = (l+S (G)
⋂

WF, l−S (G)
⋂

WF) for every G ∈ WF.

Lemma 8. Let φ ∈ Fm and G ∈ WF. The following hold:

(1) MS(F), G |=+ φ if and only if MS(G), G |=+ φ.
(2) MS(F), G |=− φ if and only if MS(G), G |=− φ.

Proof. We prove (1) and (2) simultaneously by induction on the the complexity of φ.
The case φ = p,¬ψ,∼ψ or ψ ∨ χ is trivial. Suppose that φ = ♢ψ. For (1), assume
MS(F), G |=+ ♢ψ. Then, MS(F), H |=+ ψ for some H ∈ RF(G). By induction hypothesis,
MS(H), H |=+ ψ. By induction hypothesis and Lemma 7, MS(G), H |=+ ψ. Hence,
MS(G), G |=+ ♢ψ. Conversely, assume that MS(G), G |=+ ♢ψ. Then, MS(G), H |=+ ψ for
some H ∈ RG(G). By induction hypothesis, MS(H), H |=+ ψ. By induction hypothesis and
H ∈ WF, we have MS(F), H |=+ ψ. By GRG H and Lemma 7, MS(F), G |=+ ♢ψ. Similarly,
we can prove (2). The case for φ = ♦ψ or Eψ is shown similarly.

Lemma 9 (Existence Lemma). For every F ∈ Fp(S), the following hold:

(1) ♢φ ∈ F if and only if φ ∈ G for some G ∈ Fp(S) such that FRSG.
(2) ♦φ ∈ F if and only if φ ∈ G for some G ∈ Fp(S) such that GRSF.
(3) Eφ ∈ F if and only if φ ∈ G for some G ∈ Fp(S) such that FREG.
(4) ∼♢φ ∈ F if and only if ∼φ ∈ G for all G ∈ Fp(S) such that FRSG.
(5) ∼♦φ ∈ F if and only if ∼φ ∈ G for all G ∈ Fp(S) such that GRSF.
(6) ∼Eφ ∈ F if and only if ∼φ ∈ G for all G ∈ Fp(S) such that FREG.
(7) ¬♢φ ∈ F if and only if ¬φ ∈ G for all G ∈ Fp(S) such that FRSG.
(8) ¬♦φ ∈ F if and only if ¬φ ∈ G for all G ∈ Fp(S) such that GRSF.
(9) ¬Eφ ∈ F if and only if ¬φ ∈ G for all G ∈ Fp(S) such that GREF.

Proof. (1) The right-to-left direction follows from the definition of RS. Assume that ♢φ ∈ F.
Let F′ = [□−F ∪♦F ∪ {φ}). Consider X = {H ∈ F (S) | F′ ⊆ H & ♢H ⊆ F & ■−H ⊆ F}.

Next, we show F′ ∈ X. Suppose that χ ∈ F′. Then, there exist ψ1, . . . , ψm ∈ □−F
and ♦δ1, . . . ,♦δn ∈ ♦F such that ⊢S (

∧
1≤i≤m ψi) ∧ (

∧
1≤k≤n ♦δk) ∧ φ → χ. By Lemma 3

(3), ⊢S ♢((
∧

1≤i≤m ψi) ∧ (
∧

1≤k≤n ♦δk) ∧ φ) → ♢χ. By Lemma 4 (5), ⊢S □((
∧

1≤i≤m ψi) ∧
(
∧

1≤k≤n ♦δk)) ∧ ♢φ → ♢χ. By Lemma 4 (4), ⊢S (
∧

1≤i≤m □ψi) ∧ (
∧

1≤k≤n □♦δk) ∧ ♢φ →
♢χ. For 1 ≤ k ≤ n, by ♦δk ∈ ♦F and (A12), □♦δk ∈ F. Hence, ♢χ ∈ F since ψi ∈ □−F and
♢φ ∈ F. Hence, ♢F′ ⊆ F. Furthermore, by Lemma 3 (2), Eχ ∈ F and so EF′ ⊆ F. To show
■−F′ ⊆ F, suppose that ■χ′ ∈ F′. Then, ♢■χ′ ∈ F since ♢F′ ⊆ F. By Lemma 3 (4), χ′ ∈ F.
Hence, ■−F′ ⊆ F. Thus, F′ ∈ X, i.e., X ̸= ∅.

Let Y be a ⊆-chain in (X,⊆). Let H′ =
⋃
Y. Clearly, H′ ∈ X is a ⊆-upper bound of Y.

By Zorn’s lemma, there exists a maximal ⊆-element G in X. Suppose that ⊥ ∈ G. Then,
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E⊥ ∈ F by G ∈ X and Lemma 3(2). Clearly, ⊢S E⊥ → ⊥. Then, ⊥ ∈ F which contradicts
F ∈ Fp(S). Hence, ⊥ ̸∈ G. Clearly, □−F ⊆ G, ♦F ⊆ G, ♢G ⊆ F and ■−G ⊆ F. It suffices
to show that G is prime.

Assume that χ1 ∨ χ2 ∈ G and χ1 ̸∈ G and χ2 ̸∈ G. For a contradiction, let F1 =
[G ∪ {χ1}) and F2 = [G ∪ {χ2}). Clearly, G ⊊ F1 and G ⊊ F2. By the maximality of G,
F1 ̸∈ X and F2 ̸∈ X. By F′ ⊆ G, we have, for i = 1, 2, ♢Fi ̸⊆ F or ■−Fi ̸⊆ F. We have the
following cases:

(1.1) There exist β1 ∈ F1 and β2 ∈ F2 with ♢β1 ̸∈ F and ♢β2 ̸∈ F. By β1 ∈ F1
and β2 ∈ F2, there exist α1, α2 ∈ G such that ⊢S α1 ∧ χ1 → β1 and ⊢S α2 ∧ χ2 → β2.
Let α = α1 ∧ α2. Clearly, α ∈ G. Then, ⊢S α ∧ χ1 → β1 and ⊢S α ∧ χ2 → β2. Then,
⊢S α ∧ (χ1 ∨ χ2) → β1 ∨ β2. Clearly, α ∧ (χ1 ∨ χ2) ∈ G. Then, β1 ∨ β2 ∈ G. Then,
♢(β1 ∨ β2) ∈ F. By Lemma 4 (3), ♢β1 ∨ ♢β2 ∈ F. Hence, ♢β1 ∈ F or ♢β2 ∈ F, which
contradicts ♢β1,♢β2 ̸∈ F.

(1.2) There exist ■β1 ∈ F1 and ■β2 ∈ F2 such that β1 ̸∈ F and β2 ̸∈ F. By ■β1 ∈ F1
and ■β2 ∈ F2, there exist α1, α2 ∈ G such that ⊢S α1 ∧ χ1 → ■β1 and ⊢S α2 ∧ χ2 → ■β2.
Let α = α1 ∧ α2. Clearly, α ∈ G. Then, ⊢S α ∧ χ1 → ■β1 and ⊢S α ∧ χ2 → ■β2. Then,
⊢S α ∧ (χ1 ∨ χ2) → ■β1 ∨ ■β2. Clearly, α ∧ (χ1 ∨ χ2) ∈ G. Then, ■β1 ∨ ■β2 ∈ G.
Therefore, ♢(■β1 ∨■β2) ∈ F since G ∈ X. Hence, ♢■β1 ∨ ♢■β2 ∈ F by Lemma 4 (3).
Note that ⊢S ♢■β1 ∨♢■β2 → β1 ∨ β2 by Lemma 3 (4). Then, β1 ∨ β2 ∈ F. Hence, β1 ∈ F
or β2 ∈ F which contradicts β1, β2 ̸∈ F.

(1.3) There exist β1 ∈ F1 and ■β2 ∈ F2 such that ♢β1 ̸∈ F and β2 ̸∈ F. In the same way
of case (1.1), we can show that ♢β1 ∈ F or ♢■β2 ∈ F. The latter implies that β2 ∈ F by
Lemma 3 (4). Hence, ♢β1 ∈ F or β2 ∈ F which contradicts ♢β1, β2 ̸∈ F.

(1.4) There exist ■β1 ∈ F1 and β2 ∈ F2 such that β1 ̸∈ F and ♢β2 ̸∈ F. This case can be
shown in the same way of the case (1.3).

The proofs of (2) and (3) are similar to that of (1), and we omit the details.
(4) Assume that ∼♢φ ∈ F. Then, □∼φ ∈ F. By definition of the canonical model,

∼φ ∈ G for all G ∈ Fp(S) such that FRSG. To show the other direction, assume that
∼φ ∈ G for all G ∈ Fp(S) such that FRSG. For a contradiction, suppose that ∼♢φ ̸∈ F.
Then, ¬∼♢φ ∈ F. Then, ♢¬∼φ ∈ F. By (1), ¬∼φ ∈ G for some G ∈ Fp(S) such that FRSG.
Then, ∼φ ̸∈ G which leads to a contradiction.

(5)–(6) are similar to case (4).
(7) Assume that ¬♢φ ∈ F. Then, □¬φ ∈ F by (A5). By definition of canonical model,

¬φ ∈ G for all G ∈ Fp(S) such that FRSG. To show the other direction, assume that
¬φ ∈ G for all G ∈ Fp(S) such that FRSG. For a contradiction, suppose that ¬♢φ ̸∈ F.
Then, ♢φ ∈ F. By (1), φ ∈ G for some G ∈ Fp(S) such that FRSG. Then, ¬φ ̸∈ G which
leads to a contradiction.

(8) and (9) are similar to (7).

Lemma 10 (Truth Lemma). For all F ∈ WS and formula φ, the following hold:

(1) MS(F), F |=+ φ if and only if φ ∈ F.
(2) MS(F), F |=− φ if and only if ∼φ ∈ F.

Proof. We prove (1) and (2) simultaneously by induction on the complexity of φ. The case
that φ is atomic is trivial. We have the following cases:

(i) φ = ♢ψ. For (1), assume that MS(F), F |=+ ♢ψ. Then, MS(F), G |=+ ψ for some
G ∈ WF such that FRFG. Thus, MS(G), G |=+ ψ by Lemma 8(1). By induction hypothesis,
φ ∈ G. By Lemma 9 (1), ♢ψ ∈ F. Conversely, assume that ♢ψ ∈ F. By Lemma 9 (1), ψ ∈ G
for some G ∈ WS such that FRSG. By induction hypothesis, MS(G), G |=+ ψ. By Lemma 7,
G ∈ WF. By Lemma 8 (1), MS(F), G |=+ ψ. Hence, MS(F), F |=+ ♢ψ. For (2), assume that
MS(F), F |=− ♢ψ. For all G ∈ WF such that FRFG, we have MS(F), G |=− ψ. By Lemma 8
(2), MS(G), G |=− ψ. By induction hypothesis, ∼ψ ∈ G. Then, by Lemma 7, ∼ψ ∈ G for all
G ∈ WS such that FRSG. By Lemma 9 (4), ∼♢ψ ∈ F. The other direction is shown similarly.

(ii) φ = ♦ψ or Eψ. This case is similar to the case (i).
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(iii) φ = ∼ψ. For (1), assume that MS(F), F |=+ ∼ψ. Then, MS(F), F |=− ψ. By in-
duction hypothesis, ∼ψ ∈ F. The other direction is shown similarly. For (2), assume that
MS(F), F |=− ∼ψ. Then, MS(F), F |=+ ψ. By induction hypothesis, ψ ∈ F. By (A2), we
have ∼∼ψ ∈ F. The other direction is shown similarly.

(iv) φ = ¬ψ. For (1), assume that MS(F), F |=+ ¬ψ. Then, MS(F), F ̸|=+ ψ. By in-
duction hypothesis, ψ ̸∈ F. Then, ¬ψ ∈ F since F is prime. Conversely, assume that
¬ψ ∈ F. Then, ψ ̸∈ F since F is proper. By induction hypothesis, MS(F), F ̸|=+ ψ. Hence,
MS(F), F |=+ ¬ψ. For (2), assume MS(F), F |=− ¬ψ. Then, MS(F), F ̸|=− ψ. By induction
hypothesis, ∼ψ ̸∈ F. Then, ¬∼ψ ∈ F since F is prime. By (A3), ∼¬ψ ∈ F. The other
direction is shown similarly.

(v) φ = ψ ∨ χ. For (1), assume that MS(F), F |=+ ψ ∨ χ. Then, MS(F), F |=+ ψ or
MS(F), F |=+ χ. By induction hypothesis, ψ ∈ F or χ ∈ F. By Lemma 5 (2), ψ ∨ χ ∈
F. The other direction is shown similarly. For (2), assume MS(F), F |=− ψ ∨ χ. Then,
MS(F), F |=− ψ and MS(F), F |=− χ. By induction hypothesis, ∼ψ ∈ F and ∼χ ∈ F.
By Lemma 5 (1), ∼ψ ∧ ∼χ ∈ F. By (A4), ∼(ψ ∨ χ) ∈ F. The other direction is shown
similarly.

Theorem 1 (Completeness). Γ ⊢S ψ if and only if Γ |= ψ.

Proof. The soundness can be checked as usual. Assume that Γ ̸⊢S ψ. Then, ψ ̸∈ [Γ).
By Lemma 6(1), there exists G ∈ Fp(S) such that [Γ) ⊆ G and ψ ̸∈ G. By Lemma 10 (1),
MS(G), G |=+ Γ but MS(G), G ̸|=+ ψ. Hence, Γ ̸|= ψ.

4. Discussion

In an AAF, consider different arguments a and b which have the same relations to
other arguments. The following Example 2 gives such a scenario. The problem is how a
and b can be distinguished from each other. The semantics given by Dung [5] can not tell
the difference between arguments a and b since an argument is completely determined
by its relations to other arguments. However, using the semantics presented in this paper,
we can achieve this. For an argument a, it has not only the attack relationship to other
arguments, for example, the argument b attacks a and a attacks c, but also can accept or
reject some properties. For example, a accepts the property p and rejects q. Thus, from this
semantical perspective, an argument is an abstract entity whose role is determined both by
its relations to other arguments and its semantical relations to propositions.

Example 2. Marry and John both oppose presidential candidate A. However, they oppose him for
different reasons. Marry opposes them because she thinks that he is not honest; and John opposes
them because he thinks that his policies can not support economic growth.

The two arguments in Example 2 (Marry and John’s arguments) both attack the
argument that presidential candidate A should be elected, but they are different arguments.
Using the labeling semantics, a formula φ can be interpreted as a property of arguments or
a set of all arguments accepting φ. The formula ∼φ is interpreted as a set of all arguments
rejecting φ. The formula ♢φ is interpreted as a set of all arguments which attack some
arguments supporting φ. The formula □φ is interpreted as a set of all arguments which
attack only arguments supporting φ. The formulas ♦φ and ■φ are interpreted similarly.
The formula Eφ is interpreted as that there is an argument accepting φ, and Uφ as that all
arguments accept φ. By the labeling semantics, arguments are distinguished by properties.

Furthermore, many arguments are based on incomplete and inconsistent information.
Dung [5] said that “all forms of reasoning with incomplete information rest on the simple
intuitive idea that a defeasible statement can be believed only in the absence of any evidence
to the contrary which is very much like the principle of argumentation.”. Since information
is usually not only incomplete but also inconsistent based on multiple information sources,
the labeling semantics given in the present paper works naturally since it introduces the
acceptance and rejection semantical relations.



Mathematics 2024, 12, 688 11 of 13

Grossi [23,24] introduced the doing argumentation theory to study abstract argumen-
tation. In this framework, an argument a belonging to I(p) in a given model means that
a has the property p or that p is true of a. Thus, either a has the property p or a does not
have p, but not both. This approach is essentially bivalent. In our paraconsistent labeling
semantics, we have the following four cases:

(1) a accepts p (p is true of a).
(2) a rejects p (p is false of a).
(3) a both accepts and rejects p (p is both true and false of a).
(4) a neither accepts nor rejects p (p is neither true nor false of a).

Grossi’s doing argumentation theory can not express the inconsistency or lacking informa-
tion of arguments. For example, the arguments which attack an argument supporting φ
and rejecting φ can be expressed by the formula ♢(φ ∧∼φ) under our labeling semantics.

Caminada [25] proposed an alternative labeling semantics for abstract argumentation.
In their framework, every argument is labeled (or be valued) by in, out or undec, which
means, respectively, the argument is accepted, rejected and illegally undec.

A Caminada Labeling is a function λ from the set of all arguments to the set of labels
(or propositional variables), in, out and undec, satisfying the following conditions.

(1) If R(a) = ∅ (i.e., there is no argument attacking a), then λ(a) = in.
(2) If b ∈ R(a) (i.e., the argument b attacking a) and λ(b) = in, then λ(a) = out.
(3) If all b ∈ R(a), λ(b) = out, then λ(a) = in.
(4) Otherwise, λ(a) = undec.

Caminada’s labeling demands consistency, i.e., an argument a is rejected if it is attacked by
an accepted argument b. It also demands maximal acceptance, i.e., an argument a which
is not attacked by no argument is necessarily accepted. However, in our paraconsistent
approach, neither consistency nor maximal acceptance is assumed.

5. Concluding Remarks and Future Work

This paper develops a paraconsistent labeling semantics for abstract argumentation.
Then, we introduces the paraconsistent modal logic PML and its Hilbert-style axiomatic
system S. The system S is shown to be sound and complete with respect to the paraconsis-
tent labeling semantics. Moreover, we have compared paraconsistent labeling semantics
with other semantical approaches to the abstract argumentation.

The present paper leaves some interesting directions which are worth exploring in
further work. One direction is that paraconsistency at the level of accessibility relation may
be generalized in two different ways: one is the four-valued accessibility relation, and the
other is the birelational frame semantics. In the latter way, we have the attack relation and
support relation so that an argument can both attack and support the same arguments.
Some logicians have given a sort of four-valued paraconsistent modal logic based on
birelational frame semantics, but the resulting logic is not a temporal logic (cf., e.g., [26]).

Another approach is using the modal hybrid logic that can enrich the expressiveness
of language on structures. We may add names of arguments to the language so that we can
talk about properties of arguments in a direct way. Some logicians have considered this
kind of modal hybrid logic (cf., e.g., [27]), but the used logic is not a temporal one.

The last approach is the study of measures of inconsistency in abstract argumentation
(AAF) that can enable us to compare in a direct way two different AAFs with respect of the
number of inconsistencies. For example, the arguments from a debate among the candidates
consist of an argumentation; then, the less inconsistency there is in the argumentation,
the clearer the candidate’s policy. Measures of inconsistency in the context of argumentation
theory are worth exploring further; although, this kind of work has been done in other
contexts (cf., e.g., [27–29]).
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