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Abstract: One of the modern, recently developed mathematical approaches for modeling various
complex chaotic processes (the bacteria migration is apparently one of them), is the application
of fractional differential equations. Introduction of fractional derivatives is also a very effective
approach for investigation of the reactive processes (growth of bacteria in our case). Our recent
advances in application of fractional differential equations for modeling the anomalous transport
of reactive and non-reactive contaminants (see our recent publications in the References) allow us
to expect that the anomalous transport of growing bacteria can also be effectively described by the
models with fractional derivatives. Based on these modern approaches, utilizing fractional differential
equations, in this paper we developed a reliable mathematical model that could be properly calibrated
and, consequently, provide an adequate description of the growing bacteria transport. This model
accounts for the memory effects in the bacteria transport due to the random character of bacteria
trapping and release by the porous matrix. Two types of bacteria in the saturated porous medium are
considered: mobile and immobile bacteria. Bacteria in the mobile phase are migrating in the fluid
and have the velocity of the bulk flow, whereas bacteria in the immobile phase are the bacteria that
are captured by the porous matrix. These bacteria have zero velocity and can cause clogging of some
pores (therefore, porosity is possibly not constant). Examining different conventional models and
comparing computations based on these models, we show that this extremely complex character
of bacteria transport cannot be described by the traditional approach based on classical partial
differential equations. In this paper we suggest fractional differential equations as a simple but
very effective tool that can be used for constructing the proper model capable of simulating all
the above-mentioned effects associated with migration of alive bacteria. Using this approach, a
reliable model of the growing bacteria transport in the porous medium is developed and validated by
comparison with experimental laboratory results. We proved that this novel model can be properly
linearized and calibrated, so that an excellent agreement with available experimental results can be
achieved. This simple model can be used in many applications, for example, as a part of more general
mathematical models for predicting the outcomes of the bioremediation of contaminated soils.

Keywords: fractional equation; bacteria migration; mathematical model; active bacteria; porous medium

MSC: 35R11

1. Introduction

An increased subsurface pollution, especially due to organic wastes, oil discharges,
and leakages from chemical and petroleum plants, is a serious environmental problem for
every country. Bioremediation is an effective practical approach based on the application
of bacteria to the subsurface systems for eliminating hazardous waste. Therefore, the
proper understanding of the peculiarities of bacteria migration in a porous medium is an
important factor for the development and implementation of bioremediation technology.
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Experimental studies by Simamura et al. [1] and Yang et al. [2] were focused on peculiarities
of the bacteria transport in a porous medium simultaneously with the cell growth (bacteria
reproduction). The experiments showed that mass transport of non-active bacteria as a
suspension of particles can be well described by the conventional advection-dispersion
equation. However, if the injected bacteria are active and capable for reproduction, then
the application of conventional advection-dispersion equation, even with added term that
models bacteria growth, does not provide an agreement with experimentally observed
behavior. The maximal values of bacteria concentration in the exit cross-section of the
experimental set up (see Figure 1) were much lower than the computed concentration.
Moreover, the experimentally obtained concentration curve is shifted towards the origin
of the Cartesian coordinates from the computed concentration curve. The reduction of
the maximal values of concentration within the experimental studies in comparison to the
computed concentration can be attributed to the fact that theoretical model does not account
for capture of the bacteria in the fluid phase by the porous matrix. The key conclusion
based on analysis of the experimental data was that migration of the growing bacteria in
the porous media exhibits an anomalous behavior and, therefore, cannot be described by
existing traditional models based on advection-dispersion equations, even if these equations
are coupled with the first type kinetic equations for modeling the adsorption-desorption
phenomena (bacteria capture-release), which are normally used for modeling the bacteria
transport. The target of this paper is to construct a mathematical model of bacteria transport
by the flow of nutrient solution in the porous medium capable to adequately describe the
experimentally observed in [1,2] behavior.
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Figure 1. A schematic of the process (an experimental setup).

Concentration of the alive bacteria in the active state can increase due to the bacteria
reproduction. Herewith, the growing bacteria can gather in groups which size exceed
the size of the singular cell. This behavior can trigger such situations when these groups
(colonies) of bacteria fill the part of the pore space within the porous medium that may lead
to the capture by the porous matrix a certain number of bacteria. Similar phenomena can
be observed in the flows of colloid solutions. In the latter case, the mechanism of particles
capture is well documented [3–7]. Another group of researchers, using analogies with the
adsorption processes, describe the bacteria capture using the approach, which is typically
used for modeling the solution flow with effects of adsorption [8–10].

The process of capture of bacteria by the porous matrix is normally accompanied by
the process of detachment by the fluid flow of some bacteria that have already settled in the
porous medium. In order to account for bacteria capture-detachment prompt researchers,
in a view of similarities of bacteria transport with particulate solutions flow, to incorporate
in the model of bacteria transport the equations of kinetics of the first order [6,11].

Obviously, it could be suggested that the behavior of bacteria has the stochastic
character and, therefore, can be described in terms of stochastic physics. At least for the
passive solutes, in [12] it is shown that within the framework of stochastic physics the
process of the complex mass transport can be described by the classic advection-dispersion
equation, but with incorporation of the complex law of concentration distribution in the
fluid phase and particles captured by the porous matrix. This law is presented in the form
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convolution integral for the bacteria concentration in the fluid phase with some coefficient
of distribution, which values define the mechanism of interaction of the particles in the
fluid phase with particles settled in the porous matrix. For the active particles, such as
active growing bacteria, mass transport is more complex and, therefore, the equation used
for its description can be different from the classical advection-dispersion equation. In the
publications [13–15] it is noted that for description of the anomalous types of diffusive
processes, it is meaningful to consider the so-called fractional kinetic equations, in which the
fractional operator with respect to time is applied to the mass flux. In the publication [16] it
is demonstrated that the temporal fractional derivative is a very promising tool, especially
for modeling and analyzing the reactive solute transport. In the publications [17–19]
equations with fractional derivatives for describing the solute transport in the porous rocks
were used and theoretically obtained results were in a good agreement with laboratory and
field experiments.

Further on, following the ideas suggested in [13–15], we will assume that transport
of bacteria in the porous medium is described by the fractional equation and correlation
between the immobile and active bacteria in the nutrient liquid solution is defined by the
convolution equation, as suggested in [12,20–23]. One of the recently developed mathe-
matical approaches for modeling various complex chaotic processes (bacteria migration is
apparently one of them), is the application of fractional differential equations. Our recent
advances in application of fractional differential equations for modeling the anomalous
transport of the non-reactive and reactive contaminants [24–27] allow us to expect that the
anomalous transport of growing bacteria can also be well approximated by the models
with fractional derivatives. Our preliminary efforts to develop the adequate model based
on these modern approaches brought us to the conclusion that the problem of growing
bacteria transport should be modeled by accounting for the memory effects in the bacteria
transport due to the random character of bacteria trapping and release by the porous
matrix. Two phases (mobile and immobile) of bacteria existence in the flow should be
considered. Bacteria in a mobile phase have the velocity of the bulk flow, whereas bacteria
in the immobile phase, which are trapped by the porous matrix, have zero velocity and can
clog some of the pores.

2. System Model and Analysis

The description of the experimental set-up (see Figure 1), as outlined in [1]. Silica
sand was packed into the column in which the nutrient solution with suspended cells was
injected. The Lactobacillus casei (ATCC 15883) was used as a model bacterium. The size of
a cell is around 1 µm in diameter and 2 µm in length (approximately the volume of the
cell V0 ≈ 10−12 cm3). Two types of bacterial cells, growing (at temperatures comfortable
for bacteria reproduction) and resting (no growth, due to the lower temperature), were
prepared. This allowed testing in different experiments two types of bacteria behavior
when the bacteria were active and mobile, which rapidly increase their population, and
immobile, which population does not grow (resting cells). In the laboratory experiment the
growth and transport of bacteria was performed in the sand with a granule diameter of
600–850 µm and a porosity of m0 = 0.4 packed in the tube with non-permeable walls, which
length l = 14 cm and diameter d = 4.6 cm, cross sectional area S and volume V = Sl. In both
cases (growing or resting bacteria) concentration of bacteria in a suspension at the input c*
was 2.1 × 108 cell/mL and the average flow rate in the porous medium v = 10 cm/h. The
length of the injection period τ0 was equal to 0.5 pore volume, τ* = l/v. In the experiments,
the bacteria specific growth rate µ was in the range from 0.12 to 0.16 h−1. We will denote
by cm and ci the concentrations of mobile (in the fluid) and immobile (trapped by pores)
bacteria, respectively, so that the porosity m is a function of the concentration ci, and vf is a
fluid velocity.

Obviously, porosity and concentration are coupled by the following equation in
increments:

mS∆x = m0S∆x − (cim0S∆x)V0, (1)
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which represents the simple fact that the volume occupied of the liquid phase is equal to
the difference of initial porous volume and the volume occupied by immobile bacteria.
From the above equation it follows that:

m = m0(1 − ciV0). (2)

Here, ciV0 is the volumetric fraction of the porous medium occupied by the by im-
mobile bacteria. From Equation (2) it follows that the maximal value of ci should not
exceed V−1

0 . So, the equality ci = V−1
0 means that all pores within the porous medium

cross-section are totally filled with bacteria. Denoting by c the sum of all bacteria at the
cross-section x of the porous medium, we can obviously write:

c = mcm + m0ci (3)

The conservation law for c, which expresses the fact that the rate of change of c depends
on the influx of bacteria to the cross-section x and growth of the bacteria population at this
cross-section, can be presented in the following standard form:

∂c
∂τ

= − ∂q
∂x

+ j (4)

In the latter equation it is assumed that the bacteria transport takes place in the
direction of x-axis only, which is quite reasonable for the experimental set-up presented in
Figure 1, q is the mass flux, τ is a temporal variable, and j is the bacteria source (sink) term.

The approaches for modeling the bacteria growth are well documented. For example,
the behavior of bacteria population can be described by Monod kinetics [9,28,29]. Based on
this approach, it can be written that:

j(i)g = µgci, j(i)d = kdci, j(m)
g = µgcm, j(m)

d = kdcm, (5)

where j(i)g and j(i)d are the specific mass discharges due to the growth and decay of the

immobile (captured) bacteria, respectively; j(m)
g and j(m)

d are the specific mass discharges
due to the growth and decay of the mobile bacteria, respectively; µg is the bacteria growth
constant and kd is the bacteria decay constant.

Obviously, accounting for Equation (3), the overall specific discharge j for the mobile
and immobile species can be defined as follows:

j = µ(mcm + m0ci) = µc, (6)

where µ = µg − kd is the specific constant of the rate of growth of the bacteria colony.
The magnitude of the bacteria flux q depends on the bacteria transport in the solution

and its form should be determined by the mechanisms of the mass transport in the solution
and mass exchange between mobile bacteria in the solution and captured bacteria. The
final expression for q will be derived later, following the consideration of the equation for
the bacteria transport in the nutrient liquid medium.

The conservation law for ci can be presented as follows:

∂cim0

∂τ
= qim + µm0ci, (7)

where qim represents the bacteria participating in the exchange between the mobile and
immobile phases per unit time and µ is the specific constant of the rate of growth of the
bacteria colony.
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According to Dentz and Bercovitz [12], in the sufficiently general case, it can be
assumed that the correlation between the mobile and immobile phases can by modeled by
the following convolution equation:

m0ci =
∫ τ

0
k(τ − ξ)mcm(ξ, x)dξ, (8)

where k(τ) is a memory function which correlates the mobile and immobile concentrations
by a convolution with respect to time. If k(τ) in Equation (8) is known, then Equation (7)
can be used for obtaining the correlation between the flux of mobile–immobile exchange
qim and concentration of bacteria in the fluid. If there is no bacteria growth (no bacteria
reproduction), i.e., µ = 0, but bacteria in the solution are sufficiently big, so that the bacteria
capture can occur, then the bio-clogging effect may take place. In this case, the behavior
of the mobile bacteria can be modeled by the equation with the fractional time derivative,
which is often used for modeling complex random processes [13]:

∂cmm
∂τ

= kαD1−α
τ

[
αdv f m

∂2cm

∂x2 − mv f
∂cm

∂x

]
(9)

where D1−α
τ c = ∂1−αc

∂τ1−α =
∫ τ

0
(τ−ξ)−(1−α)

Γ(1−1+α)
∂c
∂ξ dξ is the fractional time derivative of Riemann-

Liouville [30], kα is a parameter which depends on properties of the porous medium and
bacteria in the fluid phase and αd is the coefficient of dispersion.

Due to the geometry of the experimental set-up (long and narrow channel filled with
porous medium), it is convenient to proceed in terms of mean over the cross section of the
porous medium velocities, v = mv f , so that Equation (9) can be rewritten in the following
form:

∂cmm
∂τ

= kαD1−α
τ (Lvcm), (10)

where

Lvcm = αdv
∂2cm

∂x2 − v
∂cm

∂x
(11)

It should be noted that Equation (10) does not contain the term qim from Equation (7),
which represent the exchange between mobile and immobile bacteria. Instead, this ex-
change between the mobile and immobile bacteria (captured by the pores) is accounted for
by the form of fractional derivative and the values of parameters kα and α.

Summing Equations (7) and (10), we should obtain the conservation equation for the
total concentration c, i.e., Equation (4) when j = 0. Hence, accounting for Equation (8),
Equation (7) will take the following form:

∂q
∂x

= − ∂

∂τ

∫ τ

0
k(τ − ξ)mcm(ξ, x)dξ − kαD1−α

τ (Lvcm) (12)

If function k is known, then Equation (12) defines the spatial variation of the mass flux
which affects the concentration of the bacteria in the porous medium. On the other hand,
we can consider the inverse problem of defining the distribution k(τ) for the given ∂q

∂x .

In the latter case, it would be natural to assume that function ∂q
∂x has the same structure

as the term that represents the variation of ci in Equation (10), i.e., the variation of the
total concentration can be also modeled by the equation of anomalous diffusion (fractional
equation), but with its own values of parameters kβ, β (instead of kα and αd):

∂q
∂x

= −kβD
1−β
τ (Lvcm) (13)

Introduction of the fractional Equation (13) is quite reasonable, because for the active
bacteria, even if there are no bacteria capture by the porous matrix, diffusion (dispersion)
can be anomalous, since bacteria tend to gather in groups (micro colonies) and the rate of
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their displacement by the fluid flow will be different from the velocity of this flow. This can
affect the diffusivity (dispersity) constant as well.

To obtain k(τ), we will apply the Laplace transform to Equations (12) and (13). As a
result, excluding ∂q

∂x , we have:

kβs1−β(Lvcm) = skmcm + kαs1−α
(

Lvcm
)

(14)

where a bar above the variable denotes the Laplace transform of this variable and s is the
parameter of Laplace transformation, e.g., c(s, x) =

∫ ∞
0 e−sτc(τ, x)dτ.

From Equation (10) it follows that:

Lvcm =
1
kα

sα(mcm). (15)

Substituting Equation (15) into (14), yields:

k =
kβ

kα
sα−β − 1. (16)

Applying the inverse Laplace transform to Equation (16), gives:

k(τ) =
kβ

kα

τβ−α−1

Γ(β − α)
− δ(τ), (17)

where δ(τ) is Dirac delta function and Г(x) is Gamma function.
Thus, if variation of k is defined by the Formula (17) and concentration of the particles

in the liquid phase of the porous medium is defined by the by the equation of anomalous
diffusion (10), then in the equation for the total concentration c, spatial variation of the
mass flux is also modeled by the fractional derivative.

Accounting for Equations (6), (7) and (12), equation for the total concentration will
have the following form:

∂c
∂τ

=
∂

∂τ

∫ τ

0
k(τ − ξ)mcm(ξ, x)dξ + kαD1−α

τ (Lvcm) + µc, (18)

where k(τ) is defined by (17). Applying to (7) ( µ = 0) Laplace transform and accounting
for (8) and (16), the mass flux qim can be presented in following form:

qim = sm0ci = sk·mcm =
kβ

kα
sα−β+1·mcm − s·mcm. (19)

From the above:

qim =
kβ

kα
sα−β+1·mcm − s·mcm. (20)

The bar above the variables in (19) and (20), same as before, denotes the Laplace transfor-
mation of these variables. Applying the inverse Laplace transform to the Formula (20), yields:

qim(τ) =
kβ

kα
D1−(β−α)

τ (mcm)−
∂(mcm)

∂τ
. (21)

In the case of the growing bacteria (µ ̸= 0), Equation (7) in Laplace transforms leads to

qim = (s − µ)m0ci. (22)

Comparing Equation (20) with Equation (22), which corresponds to µ ̸= 0, we see that
instead of the factor s in Equation (20), Equation (22) contains the factor (s − µ). Therefore,
following this analogy, in the case when µ ̸= 0, we can assume that in Laplace transforms,

k(s) = k(s − µ) =
kβ

kα
(s − µ)α−β − 1. (23)
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Then, using Equations (22) and (23), we can obtain:

qim = [
kβ

kα
(s − µ)α−β+1 − (s − µ)]mcm (24)

Also, in this case,

m0ci = [
kβ

kα
(s − µ)α−β − 1]mcm, (25)

and, accounting for Equation (6), Equation (4) can be rewritten as follows,

∂q
∂x

= (s − µ)c. (26)

So, instead of s, as it occurs in the case of µ = 0, in the present case, the right-hand
side contains the factor (s − µ). Therefore, accounting for Equation (13), in the case when
µ ̸= 0, we should write:

∂q
∂x

= −kβ(s − µ)1−β (L vcm). (27)

From Equations (26) and (27) it follows that:

sc = kβ(s − µ)1−β (L vcm) + µc . (28)

Accounting for Equation (24), Equation (7) in Laplace transforms can be rewritten as
follows:

sm0ci =

[ kβ

kα
(s − µ)α−β+1 − (s − µ)

]
mcm + µm0ci. (29)

Subtracting Equation (29) from Equation (28), we obtain an equation in Laplace trans-
forms for the concentration of the particles in the fluid phase, smcm= kβ(s − µ)1−β (L vcm)−[ kβ

kα
(s − µ)α−β+1 − (s − µ)

]
mcm + µmcm, which can be reduced to the following form:

kβ(s − µ)1−β (L vcm)−
[ kβ

kα
(s − µ)α−β+1

]
mcm = 0. The latter equation, after division

by
kβ

kα
(s − µ)α−β, can be rewritten as follows:

(s − µ) cmm = kα(s − µ)1−αLvcm. (30)

Applying the inverse Laplace transform to Equation (30) leads to the following equa-
tion for the mobile bacteria concentration in the liquid nutrient medium:

∂cmm
∂τ

= eµτD1−α
τ

[
kαe−µτ Lvcm

]
+ µmcm. (31)

Equation (8) is the equation for the concentration of bacteria in immobile stage, where
the factor k is defined by the Formula (23). Application of inverse Laplace transform to the
expression (23) gives:

k(τ) =
kβ

kα

τβ−α−1

Γ(β − α)
eµτ − δ(τ). (32)

The value of qim, which determines the number of bacteria participating in the mobile-
immobile interexchange, can be obtained from the Formulae (24) or (22), where the former
couples qim with concentration cm and the latter with ci. Applying the inverse Laplace
transform to the expression (24) and accounting for the Riemann-Liouville definition of
fractional derivative, yields:

qim =
kβ

kα
eµτD1+β−α

τ

[
e−µτ(mcm)

]
− ∂(mcm)

∂τ
+ µmcm. (33)
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The system of Equations (31)–(33) along with Equation (8) completely defines the
behavior of active (mobile) and passive (immobile) bacteria in the porous medium. It
should be noted that by choosing the certain forms of the functions k(τ) and ∂q

∂x we can
obtain from the above system, as the particular cases, different well-known conventional
models, which are typically used for computation of concentrations of the bacteria (or
particles) in the solution flows within porous media. For example, let’s assume that in
Formula (32), kα = kβ = 1, β = 1, α → β. Then, for µ ̸= 0, we have:

k(τ) = 0, (34)

− ∂q
∂x

= Lvcm. (35)

Accounting for (34) and (5), equation for the total concentration (18) will take the
following form:

∂c
∂τ

= (Lvcm) + µc. (36)

Assuming that m0ci = kamcm, we obtain:

c = kamcm + mcm = mcm(1 + ka), (37)

where the coefficient ka defines the rate of bacteria capture.
Then, accounting for (37), Equation (36) can be rewritten as follows:

(1 + ka)
∂cmm

∂τ
= αdv

∂2cm

∂x2 − v
∂cm

∂x
+ µ(1 + ka)mcm (38)

Equations (36)–(38) are well-known in the literature as an adsorption model [5,8,11,28,31].
One more model, which will be used in the further numerical analysis, can be obtained,

if we assume that
k(τ) = kme(µ−ki)τ . (39)

In the above formula, km is the parameter that defines the rate of particle capture from the
liquid phase and parameter ki defines the rate of release of the previously captured particles,
i.e., the transition of particles from the immobile to mobile status. The value of ∂q

∂x , as in the
previous case, is defined by the expression (35). In this case, the formula for qim can be presented
as follows:

qim = kmmcm − kim0ci. (40)

It should be noted that Equations (4), (6)–(8) and (39) constitute the well-known
adsorption–desorption model, where the exchange between phases is described by the
kinetics of the first order [11,12]. In the case of any arbitrary function k(τ), expression for
qim can be presented as follows:

qim =
∂

∂τ

∫ τ

0
k(τ − ξ)mcm(ξ, x)dξ − µ

∫ τ

0
k(τ − ξ)mcm(ξ, x)dξ. (41)

If we introduce a so-called memory function φ(τ), Formula (41) can be rewritten in a
more compact form. Let us assume that Laplace transform of this memory function has the
following form:

φ(s) =
(s − µ)

s
k(s), (42)

where, as before, the bar above the variable denotes the Laplace transform of this variable.
Utilizing Formula (42), expression (41) can be rewritten as follows:

qim =
∂

∂τ

∫ τ

0
φ(τ − ξ)mcm(ξ, x)dξ. (43)
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In the particular case, when k(τ) is defined by the Formula (23),

φ(τ) =
kβ

kα
φ0(τ) + µ − δ(τ), (44)

where

φ0(τ) =
τβ−α−1

Γ(β − α)
eµτ − µ

Γ(β − α)

∫ τ

0
τβ−α−1eµτdτ. (45)

Note that for the particular case when β = 1, formula for φ0(τ) coincides with the memory
function obtained in the study presented in [24], which is related to interaction of the radioactive
contaminants in the fracture and surrounding porous medium. If, as in the work presented in
(45) we assume that β = 1, µ = 0, then we obtain another well documented particular case, when
φ0(τ) describes the interaction of the solute between the blocks of the porous medium without
chemical reactions [25]. The system of the above equations completely defines the behavior of
active (mobile) and passive (immobile) bacteria in the porous medium. This system should be
supplemented by the proper initial and boundary conditions. For example for the experimental
setup illustrated in Figure 1, we can assume that

τ = 0, cm = ci = 0, m = m0; (46)

x = 0, cm = cm0(τ) =

{
c0 − const., 0 < τ < τ0

0, τ > τ0
; (47)

where in the laboratory experiments, the constant c0 is taken as 3.6 × 108 cells/mL,
2.1 × 108 cells/mL, and 0.8 × 108 cells/mL and τ0 is the length of bacteria injection period.
In the infinity,

x → ∞, cm = ci = 0, m = m0. (48)

For the further analysis it is convenient to introduce the following non-dimensional
variables:

Ci =
ci
c0

, Cm = cm
c0

, t = τ
τ∗ , t0 = τ0

τ∗ , ψ = m
m0

, X = x
l , Pe = l

αd
, Da = µτ∗,

Kα = kα (τ
∗)α−1, Kβ = kβ (τ

∗)β−1, K(t) = k(τ)
k0

, C0(t) =
cm0(τ)

c0
, Qim = qim

q0
,

(49)

where τ∗ = l
v , k0 = 1

τ∗ , q0 = c0
τ∗ .

In non-dimensional variables the governing equations will take the following form:

∂Cmψ

∂t
= eDatD1−α

t

[
Kαe−Dat(LPeCm)

]
+ DaψCm, (50)

where LPeCm = − ∂Cm
∂X + 1

Pe
∂2Cm
∂X2 ,

Ci =
∫ t

0
K(t − τ)ψCm(τ, x)dτ, (51)

Qim =
∂

∂t

∫ t

0
K(t − τ)ψCm(τ, x)dτ − Da

∫ t

0
K(t − τ)ψCm(τ, x)dτ, (52)

K(t) =
Kβ

Kα

tβ−α−1

Γ(β − α)
eDat − δ(t), (53)

ψ = 1 − V0 c0Ci , (54)

t = 0, Cm = Ci = 0, ψ = ψ0;

X = 0, Cm = C0(t) =
{

1, 0 < t < t0
0, t > t0

; (55)

X → ∞, Cm = Ci = 0.
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In general, the system of Equations (50)–(54) is non-linear, since porosity ψ depends
on Ci. Furthermore, the experimental results show that parameter α depends on the
rate of the bacteria colony growth. If the bacteria reproduction in the porous medium
is ignored, then Equation (50) should be reduced to the traditional diffusion-advection
equation, which effectively models the behavior of non-active bacteria. Hence, in this case,
Da = 0, Kβ = Kα = 1, β = α = 1. When bacteria are active, then Da ̸= 0, and α < 1. The
rate of growth of bacteria population is proportional to the concentration of bacteria in the
fluid medium. This fact can be denoted as

α = α(D aψCm). (56)

Let us assume that concentration in the inlet of the porous medium c0 varies in the
range [0, cmax

0
]
. Denoting by Cγ = c0/cmax

0 and approximating α in the vicinity of Cγ

(while keeping only the leading term in this approximating expansion), we can write
α = α(D aψCγ). Further, assuming that DaCγ < 1, approximation for (56) yields:

α = 1 − α0DaψCγ + O
(
(DaψCγ)

2
)

(57)

Similarly, for the parameter Kα = Kα(D aψCm), we can write, Kα = 1+ K0DaψCγ +

O((DaψCγ)
2). The same reasonings can be used for approximating the parameters Kβ and β.

According to the experimental data, the values of c0 varied from its minimum
0.8 × 108 cells/mL to maximum of 3.6 × 108 cells/mL. For these values of initial con-
centration in expression (54) the value of the product c0V0 ∼ 10−4. Assuming that within
the considered period of time the value of the non-dimensional concentration of immobile
bacteria is the order of 1, then approximately we can assume that ψ ≈ 1. Obviously, this
assumption works within a certain finite period of time. For the longer periods of time, due
to the growth of the bacteria colony, concentration Ci can reach rather high magnitudes,
then ψ < 1 and the variation of porosity cannot be ignored. In this paper, we will consider
the situation when the porosity variation is rather small and, therefore, ψ ≈ 1.

3. Solution of the Governing Equations

For solving the system of Equations (50)–(54) we will apply the method of Laplace
transforms with respect to the variable t. Note, that it is sufficient to solve equations for the
case when C0(t) = 1. After obtaining this solution, application of the Duhamel’s theorem
immediately gives:

Cm(t, X) =
∂

∂t

∫ t

0
C0(τ)Ĉm(t − τ, x)dτ, (58)

where Ĉm is the solution of the system (50)–(54) for C0(t) = 1.
Application of Laplace transform to Equations (51)–(53) leads to the following equa-

tions in terms of Laplace transforms (denoted by the bar on the top):

K(S) =
Kβ

Kα
(S − Da)

−β+α − 1, (59)

Ci(S, X) = K(S)Cm(S, X), (60)

Qim(S, X) = (S − Da)K(S)Cm(S, X). (61)

Fractional differential Equation (50) with the corresponding boundary conditions (55)
will be reduced to the following boundary-value problem for the ordinary differential
equation:

1
Pe

∂2Cm

∂X2 − ∂Cm

∂X
− Cmg(S) = 0, (62)

X = 0, Cm = 1/S, (63)
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X → ∞, Cm → 0, (64)

where
g(S) =

1
Kα

(S − Da)
α. (65)

It can be readily shown that the conventional adsorption–desorption models for the
flows of particles in the liquids are constituted by the same Equations (62)–(64), but with
functions g different from the function given by Equation (65).

Solution of the problem (62)–(65) can presented in the following form:

Cm(S, X) =
1
S

e
Pe
2 Xe−

√
( Pe

2 )
2
+Peg(S)X . (66)

For performing the inversion of this solution, it is convenient to utilize the following
representation of the exponential function:

e−2z =
2√
π

∫ ∞

0
e−ξ2−( z

ξ )
2
dξ. (67)

Accounting for the Formula (67), solution (66) can be presented as

Cm(S, X) =
2

S
√

π

∫ ∞

0
e

Pe
2 X−ξ

2− Pe
4 Z e−Zg(S)dξ, (68)

where Z = −X2Pe
4ξ2 .

If in Equation (62) we assume that Pe → ∞ , then Equations (62)–(64) will describe (in
terms of Laplace transforms) concentration of bacteria in a fluid phase when dispersion is
ignored. Solution of this truncated equation can be readily obtained in the following form:

C∞(S, X) =
1
S

e−Xg(S). (69)

Applying to (69) the inverse Laplace transformation, we can obtain the concentration
C∞(t, X). If this function is obtained, then applying the inverse Laplace transform to
Equation (68), yields:

Ĉm(t, X) =
2√
π

∫ ∞

0
e

Pe
2 X−ξ

2− Pe
4 Z C∞(t, Z)dξ. (70)

When Ĉm(t, X) is known and, hence Cm(t, X) can be obtained by the Formula (58), the
corresponding values of Ci and Qim can be readily computed from the expressions (60)
and (61) by taking the inverse Laplace transform. Let us consider three different particular
models, which can be determined by the different forms of the function K(t).

(a) Model of adsorption, which accounts for the growth of bacteria population

This model is presented by Equations (34)–(38). Converting these formulae to the
non-dimensional form and accounting for the approximation ψ ≈ 1, yields: Ci = kaC,
R ∂Cm

∂t = 1
Pe

∂2Cm
∂X2 − ∂Cm

∂X + DaRCm, where R = 1 + ka. Applying the Laplace transform to the

latter aquation, we obtain: Ci = kaC, RSCm = 1
Pe

∂2Cm
∂X2 − ∂Cm

∂X + DaRCm, or 1
Pe

∂2Cm
∂X2 − ∂Cm

∂X −
Cmg(S) = 0, where g(S) = R(S − Da) . Obviously, the boundary conditions will be the
same as those that were used in the more general case of (63), (64), i.e., for X = 0, Cm = 1/s,
and for X → ∞, Cm → 0 .
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The obtained boundary-value problem for the Laplace transformations has the same
structure as the problem (62)–(64) discussed above. The only difference is in function g(S),
which justifies the application of Equations (66)–(70). Using these equations, we obtain:

C∞(S, X) =
1
S

e−XR(S−Da), (71)

Applying to the expression (71) the inverse Laplace transform, yields:

C∞(t, X) = eXRDa H(t − XR), (72)

where H is a Heaviside unit step function.
Substituting C∞ into the Formula (70) yields:

Ĉm(t, X) =
X
2

√
PeR

π
e

Pe
2 X

∫ t

0
e−

X2PeR
4τ − Peτ

4R +Dατ 1√
τ3

dτ. (73)

If Pe
4R − Dα > 0, then an integral in (73) can be expressed through the error function

erfc(x) as follows:

Ĉm(t, X) = e
Pe
2 X 1

2

{
e−X

√
Pe2

4 −Dα PeRer f c

[
X
2

√
PeR

t
−

√(
Pe
4R

− Dα

)
t

]
+ eX

√
Pe2

4 −Dα PeRer f c

[
X
2

√
PeR

t
+

√(
Pe
4R

− Dα

)
t

]}
. (74)

For C0(t) given by (55), it can be readily shown that

Cm(t, X) = Ĉm(t, X)− Ĉm(t − t0, X)H(t − t0). (75)

Obviously, in this case:

Ci(t, X) = kaCm(t, X) and Qim = ka

[
∂Cm

∂t
− DαCm

]
, (76)

where ka is the parameter used in Equation (38), which defines the rate of bacteria capture
in the fluid phase.

(b) Adsorption-desorption model, which accounts for the growth of bacteria population

In this case, k(t) is defined by the expression (39). The Laplace transform of this
function can be easily calculated:

k(S) = Ki
1

S − (Dα − Km)
, (77)

where Ki = kiτ
∗, Km = kmτ∗.

Function g(S) will have the following form: g(S) = (S − Da)
[
1 + Ki

1
S−(Dα−Km)

]
and,

therefore:

C∞(S, X) =
1
S

e−X(S−Da)−XKi e
XKiKm

S−(Dα−Km) . (78)

Applying the inverse Laplace transform, leads to the following solution:

C∞(t, X) = e−X(Ki−Da)

[
I0

(
2
√

XKiKm(t − X)

)
e−X(Km−Da)(t−X) + (Km − Da)

∫ t−X

0
I0

(
2
√

XKiKmτ
)

e−X(Km−Da)τdτ

]
H(t − X), (79)

where I0(X) is the modified Bessel function of zero order.
Substituting this expression into the Formula (70), yields:

Ĉm(t, X) =
X
2

√
Pe
πt

∫ 1

0
e

Pe
2 X− X2Pe

4(1−ξ)t −( Pet
4 +t(Ki−Dα))(1−ξ) V(t, ξ)√

(1 − ξ)3
dξ, (80)
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where V(t, ξ) = I0

(
2t
√

ξKiKm(1− ξ))
)

e−t(Km−Da)ξ + (Km − Da)t
∫ ξ

0 I0

(
2t
√
(1− ξ)KiKmτ

)
e−t(Km−Da)τdτ.

Introducing the auxiliary function G(τ, ξ, t) = I0

(
2t
√

KiKm(1 − ξ)ξτ
)

e−tξ(Km−Da) and

denoting B = Pe
4 − K f − Dα, we can rewrite Equation (80) in a more compact form:

Ĉm(t, X) =
X
2

√
Pe
πt

∫ 1

0
e

Pe
2 X− X2Pe

4(1−ξ)t −Bt(1−ξ) V(t, ξ)√
(1 − ξ)3

dξ, (81)

where V(t, ξ) = G(1, ξ, t) + (K m − Da)tξ
∫ 1

0 G(τ, ξ, t)dτ.
For C0(t) given by (55), it can be readily shown that:

Cm(t, X) = Ĉm(t, X)− Ĉm(t − t0, X)H(t − t0). (82)

Expressions for Ci(t, X) and Qim are defined by the Formulae (51) and (52), where
Ĉm(t, X) is given by the Formula (81).

(c) Model of anomalous dispersion, which accounts for bacteria growth

In this case, the expression for g(S) is given by (65) and, therefore, in Laplace trans-
forms we have:

C∞(S, X) =
1
S

e−
X

Kα
(S−Da)

α

. (83)

Applying to the latter equation the inverse Laplace transform, yields:

C∞(t, X) =
1
π

∫ ∞

0

1 − e−(ξ−Da)t

(ξ − Da)
e−

X
Ba ξαcos(πα)sin

[
X
Ba

ξαsin(πα)

]
dξ. (84)

Finally, substituting expression (84) into the Formula (70), we obtain the following
solution:

Ĉm(t, X) =
X
2

√
Pe
π

e
Pe
2 X

∫ ∞

0
e−

Pe
2 ( X2

2z +z)C∞(t, z)
1√
z3

dz. (85)

Note that, if in the latter solution we assume that Kα = 1/R, Kβ = 1, β = α = 1,
then expressions (84) and (85) provide the solution of the model (a), as a particular case.
Formulae (82), (84) and (85) define the concentration of bacteria in the fluid phase within
the porous medium. Using these solutions, the values of Ci(t, X) and Qim can be readily
obtained from the Formulae (51) and (52).

4. Comparison of Mathematical Models (a), (b), and (c) with Experimentally Obtained Data

Let us consider the situation when bacteria are in non-active state, so that the rate
of bacteria growth Da = 0 and there is no bacteria capture. In this case, all three models
provide the same solution for bacteria concentration in liquid phase. From Equation (74),
assuming there Da = 0 and K = 0, we obtain:

Ĉm(t, X) = e
Pe
2 X 1

2

{
e−

Pe
2 Xer f c

[
X
2

√
PeR

t
−

√(
Pet
4

)]
+ e

XPe
2 er f c

[
X
2

√
Pe
t

+

√
t

Pe
4

]}
. (86)

Hence,
Cm(t, X) = Ĉm(t, X)− Ĉm(t − t0, X)H(t − t0) (87)

and, correspondingly, Ci(t, X) = 0 and Qim = 0.
Figure 2 illustrates the results of computations by the Formulae (86) and (87) (solid

lines) and experimental data (dots) obtained for non-active bacteria. It is obvious that the
traditional advection–dispersion equation provides a sufficiently effective instrument for
modeling the behavior of non-active bacteria.
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Figure 2. Non-active bacteria migration. Mathematical model (a) which is based on conventional
advection–dispersion equations (2—solid line), experimental data (1—dots) measured at low temper-
atures when bacteria are non-active.

Now, let us consider the situation when the injection of active bacteria in the porous
medium takes place with growth rate Da = 0.14. Figure 3 contains the results of com-
putation by model (a) that accounts for adsorption (solid line) and experimental data
for the active bacteria (dots). In the computations presented in Figure 3, it is assumed
that retardation parameter R is equal to 1 (ka = 0). It corresponds to the situation when
concentration of bacteria in immobile state is equal to 0, i.e., there is no capture of bacteria
by the porous matrix. In this case, as it is illustrated in the figure, the maximal computed
values of concentration are greater than experimentally measured values. It proves that the
conventional model does not provide the proper description of the active bacteria migration.
If the coefficient ka is not equal to 0 (Figure 4), then the greater value of coefficient ka will
model the situation when some bacteria in the fluid phase will be captured by the porous
matrix and will be transferred to the colony of immobile bacteria. Obviously, in this case the
maximal concentration of the mobile bacteria will decline with growth of ka. On the other
hand, the increase of ka will significantly affect the retardation, which leads to translation of
the computed curve to the right from the experimentally obtained values. This discrepancy
of the computed and experimental data (Figures 3 and 4) occurs due to the limitations of
the model (a), which accounts for capture of the mobile bacteria only. In reality, the process
of mobile bacteria capture should be accompanied by detachment of the immobile bacteria
from immobile mass and transition them to the mobile population.
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dispersion equations (2—solid line), experimental data (1—dots) measured at high temperatures when
bacteria are active, and bacteria reproduction takes place. (Da = 0.14, Pe = 80, X = 1, ka = 0).
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Figure 4. Active bacteria migration. Mathematical model (a) which is based on conventional advection–
dispersion equations (2—solid line), experimental data (1—dots) measured at high temperatures when
bacteria are active, and bacteria reproduction takes place. ( Da = 0.14, Pe = 80, X = 1, ka = 0.5).

Figure 5 illustrates the results of computation obtained from model (b) based on
kinetics of the first order. Obviously, model (b) provides the better description of the
bacteria behavior, since it accounts for both capture of the mobile bacteria by the porous
matrix and avulsion of the immobile (trapped by the porous matrix) bacteria by the fluid
flow. However, as can be seen in Figure 5, the computed curve is substantially translated
to the right from the experimental data. Our numerical experiments with the first order
kinetic equation for adsorption–desorption process also indicates that this approach does
not provide the adequate description of the transport of the active growing bacteria and
matching with the experimental data is rather poor. All these attempts were unsuccessful,
since the theoretically obtained curve could not be shifted to the left by variation of the
controlling parameters. So, our attempts to attain the better agreement with experiments
by choosing different values of constant parameters did not improve the mismatch of
computed and experimental results depicted in Figure 5. For example, increasing of the
value of the parameter Km leads to the reduction of the number of immobile bacteria and,
consequently, to the growth of the mobile bacteria in a fluid phase Cm. This behavior is
understandable, since the higher values of Km correspond to enhancing the mechanisms
of avulsion of bacteria by the fluid flow. It is interesting to note that the slight increments
of Km lead to the increase of Cm mostly at the tail region of the curve, where the overall
flux of interaction between the mobile bacteria and captured bacteria becomes negative.
The further increment of Km leads to the reduction of immobile bacteria Ci and to decrease
of the flux Qim, which causes the growth of the maximal value of Cm. These features
of the model are illustrated in Figures 6 and 7. The poor agreement of computed and
experimental results implies that the mobile–immobile bacteria exchange is more complex
than suggested by the model (b), which is based on the conventional advection–dispersion
equation and kinetics of the first order.
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Results of computations based on the model (c) are depicted in Figure 8. The initial
values of parameters for these computations are determined by the experimental set-up,
whereas the values of parameters α0 and B0 were properly selected to calibrate the model
in order to attain the agreement with experimental data. Obviously, model (c) provides
rather good agreement of computed and experimentally obtained results. So, accounting
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for the effects of anomalous dispersion by incorporating into the model fractional differ-
ential equations, allows us to calibrate the model and attain the perfect agreement with
experimental data. We can use this model for description of the alive bacteria migration in
the porous medium, which accounts for bacteria capture and detachment, clogging and
de-clogging of pores by the growing reproductive bacteria carried by the flow of the liquid
nutrient within the porous medium. Figure 9 illustrates the effect of initial concentration
on bacteria behavior using the same model (c). It can be readily seen that the greater values
of initial concentration C0 amplify the anomalous character of bacteria dispersion. This
happens due to the intensification of bacteria capture, which leads to the decrease of the
non-dimensional bacteria concentration in liquid phase (mobile bacteria). Furthermore, the
capture intensification leads to the slight shift of the calculated curve towards the origin
of the Cartesian system of coordinates. This behavior of the bacteria in the liquid nutrient
agrees with experimental findings.

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 7. Temporal variations of Cm, Ci, Qmi computed by model (b) for Km = 0.5; Pe = 80; t0 = 0.1; Ki = 
0.3; x = 1; α = β = 1; Da = 0.14. 

Results of computations based on the model (c) are depicted in Figure 8. The initial 
values of parameters for these computations are determined by the experimental set-up, 
whereas the values of parameters 𝛼   and 𝐵   were properly selected to calibrate the 
model in order to attain the agreement with experimental data. Obviously, model (c) pro-
vides rather good agreement of computed and experimentally obtained results. So, ac-
counting for the effects of anomalous dispersion by incorporating into the model frac-
tional differential equations, allows us to calibrate the model and attain the perfect agree-
ment with experimental data. We can use this model for description of the alive bacteria 
migration in the porous medium, which accounts for bacteria capture and detachment, 
clogging and de-clogging of pores by the growing reproductive bacteria carried by the 
flow of the liquid nutrient within the porous medium. Figure 9 illustrates the effect of 
initial concentration on bacteria behavior using the same model (c). It can be readily seen 
that the greater values of initial concentration C0 amplify the anomalous character of bac-
teria dispersion. This happens due to the intensification of bacteria capture, which leads 
to the decrease of the non-dimensional bacteria concentration in liquid phase (mobile bac-
teria). Furthermore, the capture intensification leads to the slight shift of the calculated 
curve towards the origin of the Cartesian system of coordinates. This behavior of the bac-
teria in the liquid nutrient agrees with experimental findings. 

 
Figure 8. Active bacteria migration. Computations were made by the mathematical model (c), which 
is based on fractional differential equation and accounts for anomalous dispersion supplemented 
by kinetics of the first order (2—solid line). Experimental data (1—dots) measured at high temper-
atures when bacteria are active, and bacteria reproduction takes place. 

Figure 8. Active bacteria migration. Computations were made by the mathematical model (c), which
is based on fractional differential equation and accounts for anomalous dispersion supplemented by
kinetics of the first order (2—solid line). Experimental data (1—dots) measured at high temperatures
when bacteria are active, and bacteria reproduction takes place.

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 20 
 

 

 
Figure 9. Concentration Cm obtained by mathematical model (c), which is based on fractional differ-
ential equation and accounts for anomalous dispersion, computed for different values of initial con-
centration c0. Computations are done for the following values of controlling parameters: 1—α = 0.92, 
c0 = 1; 2—α = 0.95, c0 = 0.58; 3—α = 0.98, c0 = 0.22. 

Figure 10 illustrates the dynamics of the bacteria concentrations in the liquid flow Cm, 
in the immobile state Ci and also variation of function Qim, which characterizes the inter-
action between the mobile and immobile bacteria. It was assumed that 𝛽 = 𝛼 , 𝐾 = 1.2𝐾 , whereas the other constants are the same as in previous computations. As it 
can be seen in Figure 10, at the beginning of the process an active capture of bacteria from 
the solution is taking place. This process is significantly more intense than in the case of 
the conventional model (b) based on kinetics of the first order. Obviously, accounting for 
the anomalous dispersion phenomenon and incorporating the fractional derivatives in the 
model, allows us to describe the complex behavior of the alive bacteria, which cannot be 
correctly described by the kinetics of the first order only. 

 
Figure 10. Temporal variation of the functions Cm, Ci, Qmi obtained by mathematical model (c) which 
is based on fractional differential equation and computed for α = 0.95, c0 = 0.58. 

5. Conclusions 
The numerical results of the bacteria migration based on conventional dispersion-

advection equations appeared to be in perfect agreement with results of laboratory exper-
iments for the non-active, resting bacteria (due to low temperatures of liquid nutrient  
when bacteria are non-active). 

However, if bacteria are in an active stage capable of growth and reproduction, the 
traditional model, even being supplemented with the terms that account for the bacteria 

Figure 9. Concentration Cm obtained by mathematical model (c), which is based on fractional
differential equation and accounts for anomalous dispersion, computed for different values of
initial concentration c0. Computations are done for the following values of controlling parameters:
1—α = 0.92, c0 = 1; 2—α = 0.95, c0 = 0.58; 3—α = 0.98, c0 = 0.22.

Figure 10 illustrates the dynamics of the bacteria concentrations in the liquid flow Cm,
in the immobile state Ci and also variation of function Qim, which characterizes the interac-
tion between the mobile and immobile bacteria. It was assumed that β = α, Kα = 1.2Kβ,
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whereas the other constants are the same as in previous computations. As it can be seen in
Figure 10, at the beginning of the process an active capture of bacteria from the solution is
taking place. This process is significantly more intense than in the case of the conventional
model (b) based on kinetics of the first order. Obviously, accounting for the anomalous dis-
persion phenomenon and incorporating the fractional derivatives in the model, allows us
to describe the complex behavior of the alive bacteria, which cannot be correctly described
by the kinetics of the first order only.
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5. Conclusions

The numerical results of the bacteria migration based on conventional dispersion-
advection equations appeared to be in perfect agreement with results of laboratory experi-
ments for the non-active, resting bacteria (due to low temperatures of liquid nutrient when
bacteria are non-active).

However, if bacteria are in an active stage capable of growth and reproduction, the
traditional model, even being supplemented with the terms that account for the bacteria
growth, does not provide the adequate description of the bacteria behavior observed in
the experiments. For the growing bacteria, the experimentally obtained curve of bacteria
concentration is shifted to the left from the concentration curve for the resting bacte-
ria. We attempted to use different conventional models based on traditional advection-
dispersion equation with incorporated the first order kinetic equations, which account
for the adsorption-desorption process (i.e., trapping and detaching bacteria) and tried
to calibrate these mathematical models by choosing different values of the controlling
parameters. All our numerical computations for these models indicate that this approach
does not provide an adequate description of the transport of the active growing bacteria in
the nutrient solution. It occurred that the theoretically obtained curves could not be shifted
to the left along the x-axis by variation of the controlling parameters.

Our analysis shows that the mathematical model, which is based on fractional advection–
dispersion equation and incorporates a convolution equation for modeling the mobile–immobile
bacteria interaction, can be very promising tools for solving the problems of bacteria migration
and associated problems of bioremediation of polluted soils.

Furthermore, more general models of bacteria migration can be developed by intro-
ducing different forms of the coefficients of bacteria distribution, k, within the convolution
equation that models the bacteria interaction. These new mathematical models can be
effectively used for describing the behavior of the various types of bacteria within the
different porous media and nutrient solutions.
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