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Abstract: As is well known, magnetic fields in space are distributed very inhomogeneously. Some-
times, field distributions have forms of filaments with high magnetic field values. As many observa-
tions show, such a filamentation takes place in convective cells in the Sun and other astrophysical
objects. This effect is associated with the frozenness of the magnetic field into a medium with high
conductivity that leads to the compression of magnetic field lines and formation of magnetic fila-
ments. We analytically show, based on the general analysis, that the magnetic field intensifies in the
regions of downward flows in both two-dimensional and three-dimensional convective cells. These
regions of the hyperbolic type in magnetic fields play the role of a specific attractor. This analysis
was confirmed by numerical simulations of 2D roll-type convective cells. Without dissipation, the
magnetic field grows exponentially in time and does not depend on the aspect ratio between the
horizontal and vertical scales of the cell. An increase due to compression in the magnetic field of
highly conductive plasma is saturated due to the natural limitation associated with dissipative effects
when the maximum magnitude of a magnetic field is of the order of the root of the magnetic Reynolds
number Rem. For the solar convective zone, the mean kinetic energy density exceeds the mean
magnetic energy density for at least two orders of magnitude, which allows one to use the kinematic
approximation of the MHD induction equation. In this paper, based on the stability analysis, we
explain why downward flows influence magnetic filaments, making them flatter with orientation
along the interfaces between convective cells.
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1. Introduction

The phenomenon of collapse plays a significant role in terms of understanding how
turbulence, convection, and other similar phenomena operate in fluids. Collapse is under-
stood as a process of formation of singularities in a finite time for smooth initial conditions.
Such processes have been widely studied for quite a long time. According to the classical
concepts of the Kolmogorov–Obukhov theory [1,2] in the case of a low-viscosity limit, the
vorticity fluctuations in the inertial interval with a scale λ behave proportionally to λ−2/3.
This means that in the limit of small λ, we will have infinite amplitudes of fluctuations,
which may indicate that classical turbulence is closely related to the occurrence of collapse.
At the same time, when the highly accurate numerical modeling of such problems became
possible, it turned out that collapse was in fact not observed in such cases [3] (see also
the review paper [4] devoted to this subject). Nevertheless, the tendency for vorticity en-
hancement remains, but without blow-up behavior. At the same time, for two-dimensional
hydrodynamics in the ideal case, solutions associated with collapse are forbidden [5–7]. In
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the 2D case, however, this does not exclude the existence of infinite exponential growth [8].
In 3D hydrodynamics, the generation of pancake-type structures was numerically observed
when pancake thickness decreases with time according to an exponential law due to the
compressible character of the vorticity field [9]. It is important to note that the appearance
of such structures in a three-dimensional case is associated with the vorticity frozenness
of a fluid [10]. It should be noted that in two-dimensional ideal flows, the vorticity rotor
(called divorticity) is also a frozen vector field [8]. This means that not only vorticity, but
also any other fields frozen into a medium, should be compressible, and all the arguments
about collapse given above are applicable to them. The compressible feature of such fields
is a sequence of their frozenness.

Another classical example of frozen fields is a magnetic field in the ideal magneto-
hydrodynamics (MHD) [11]. In this case, we may expect that the magnetic field should
evolve by the same laws as the vorticity in ideal fluids and, consequently, compress into
localized magnetic structures [12]. But, unlike fluids, the MHD operates with two vector
fields, namely, velocity and magnetic field. If the kinetic energy density sufficiently exceeds
the magnetic energy density, we can consider the evolution of the magnetic field in a given
velocity distribution and ignore the influence of the growing magnetic field on velocity
flows. Such a situation is realized in the convective zone of the Sun, where the ratio be-
tween mean kinetic energy density and magnetic pressure consists of at least two orders
of magnitude. Indeed, in this case, the sizes of magnetic distributions have a tendency to
decrease exponentially in time with exponential increases in the magnetic field values. The
amplification of a magnetic field is a direct consequence of its frozenness.

From the astrophysical point of view, the process of appearance of localized strong
magnetic fields is of great interest. Thus, for the first time, Parker drew attention to the
fact that the magnetic field in the convective zone of the Sun is noticeably filamented [13].
He studied magnetic field evolution in the case of a two-dimensional velocity field cor-
responding to convective rolls and showed exponential in time generation of magnetic
filaments. Subsequently, these ideas were developed in many other works on this topic
(see, [14–25] and references therein). According to the data of the Solar and Heliospherical
Observatory (SOHO), in the convective zone of the Sun, filaments, in their majority, are
concentrated near interfaces between convective cells and oriented correspondingly to
downward flows [26]. The SOHO observations also show that filaments are almost absent
at the centers of cells (Figures 1 and 2).

An exponential increase in the magnetic field of the regions of downward flows follows
from the topological arguments based on the Okubo–Weiss criteria [27,28]. These criteria
divide flow area by hyperbolic and elliptic parts. Downward flows belong to hyperbolic
regions. Due to the frozenness of the magnetic field into plasma, these regions play the roles
of specific attractors. In elliptic regions, magnetic fields demonstrate the formation of spiral
structures. Accounting finite conductivity in the hyperbolic regions leads to saturation
of a magnetic field’s growth up to values proportional to the root square of the magnetic
Reynolds number Rem [14].

It is worth noting that both observations and estimations show that in the convective
zone of the Sun, mean kinetic energy is sufficiently large in comparison to magnetic energy,
so we can use it for descriptions of the magnetic field dynamics according to the MHD
equations in kinematic approximation.

Note that the processes associated with the influence of convective flows are no less
important in other astrophysical objects, such as galaxies, accretion disks, etc. In the
simplest case, they can be taken into account using averaged models with account of
the helicity fluxes of the magnetic field. At the same time, it is necessary to consider the
corresponding effects more accurately within the framework of numerically modeling
flows in such objects.
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Figure 1. SOHO magnetogram overlaid with lines of convergence of the horizontal flow and with 
green dots showing the convergence points. The measured flow is shown as colored arrows: red for 
inferred downflow and blue for inferred upflow. The field is shown in light grey for positive fields 
and dark for negative fields. Only the field above the background noise is shown. Red rectangle 
shows the fragment which is demonstrated in Figure 2. Courtesy of SOHO/MDI consortium. SOHO 
is a project of international cooperation between the ESA and NASA [26]. 

 
Figure 2. Single cell on the Sun (enlarged fragment of the magnetogram from Figure 1). Courtesy of 
SOHO/MDI consortium. SOHO is a project of international cooperation between the ESA and NASA 
[26]. 

Figure 1. SOHO magnetogram overlaid with lines of convergence of the horizontal flow and with
green dots showing the convergence points. The measured flow is shown as colored arrows: red for
inferred downflow and blue for inferred upflow. The field is shown in light grey for positive fields
and dark for negative fields. Only the field above the background noise is shown. Red rectangle
shows the fragment which is demonstrated in Figure 2. Courtesy of SOHO/MDI consortium. SOHO
is a project of international cooperation between the ESA and NASA [26].
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of SOHO/MDI consortium. SOHO is a project of international cooperation between the ESA and
NASA [26].
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Previously, we studied the basic features of magnetic field amplification in convective
cells [29] as an example of roll-type simple flow within a two-dimensional model. It was
shown both numerically and analytically that, indeed, in the vicinity of hyperbolic points
of the flow, the magnetic field increases exponentially in time. In the ideal case (Rem → ∞ ),
the field growth is not limited. For finite magnetic viscosity, this process saturates, which
gives the resulting magnetic field values of the order of Re1/2

m . It is also worth noting
that in [29], we analyzed the cells of a square shape, i.e., for equal horizontal and vertical
cell sizes. In reality, such an assumption is unlikely to be realized. It should be thought
that the vertical dimension is greater than the horizontal dimension. The fact is that the
convective transfer of heat into the Sun extends, according to all estimates, to distances
greater than the horizontal dimensions of the convective cells. The main thing is that we
do not know is at what depths the transition from turbulent convection to the observed
laminar convection occurs. In this regard, it is necessary to understand how the process of
formation of magnetic filaments is affected by an increase in the vertical size of the cells.

At the same time, the question arises as to whether the process of filamentation can be
limited by other mechanisms. It is evident that the kinematic approximation in [29] cannot
be applied to study the feedback influence of the growing magnetic field on the flow itself.
Note that such an approach is very popular and is used often in dynamo theory [30–32]. In
the case of dynamo theory, the simplest methods of nonlinear saturation are often used,
which require a separate study of the stability of stationary solutions. In our case, intensive
magnetic fields lead to the emergence of a large Lorentz force in the vicinity of magnetic
filaments. This changes the nature of the flow of the medium, which, according to Lentz’s
rule, can lead to a weakening of growth and probably its complete stop. Nevertheless, in
the vicinity of a stationary hyperbolic point, the main direction of the Lorentz force will
be parallel to the top convection surface with a high degree of accuracy. This means that
the influence of the magnetic field on the flow may be strong enough in comparison with
simple estimations. However, all this needs additional verification, which is one of the
main aims of this work.

In this work, we will show how the problem of the formation of magnetic filaments in
the convective zone of the Sun can be qualitatively studied based only on an analysis of the
dynamics of the free surface of convective cells, i.e., reducing the dimension of the problem.
This makes it possible to explain the formation of magnetic filaments in the vicinity of the
interfaces between convective cells, i.e., in areas of downward flows, which act as specific
attractors of the magnetic field. The growth of the magnetic field in the filaments occurs due
to the freezing of the field. It is important that this result does not depend on the specific
structure of the convective cell. A numerical experiment confirms this analytical concept.

2. Parameters of Solar Convective Zone

First of all, we present the main parameters of the solar convective zone. According
to observations, the horizontal size L for convective cells consists of 500–1000 km. For the
solar convective cells in this paper, we will keep the assumption that the ratio between
such scales is of the same order of magnitude (but not infinitely large) as for laboratory
convection [29] (see also [30]). For the solar convection zone kinetic energy density that

is much larger than the magnetic energy density, ρυ2

2 >> B2

8π (their ratio is about 103–104),
where ρ is a mass density, B is the magnetic field value, and

→
υ is a flow velocity that is

locally incompressible, div
→
υ = 0. Therefore, the fluid velocity in this case can be considered

as a given vector field. This limit is known as a kinematic approximation, which is widely
used in the dynamo problem. Also note that near the boundary of the convective zone with
the photosphere (the beginning of the Sun atmosphere), the mass density ρ there is about
10−5 g/cm3. The characteristic velocity U for cells is about 500 m/s. Their mean magnetic
field B0 is about a few gauss (for estimate we will take B0 = 10 G).
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Thus, the dynamics of the magnetic field in the convective zone can be analyzed within
one equation of the MHD system, i.e., for the magnetic field this is the induction equation:

∂
→
B

∂t
=

→
∇×

(
→
υ ×

→
B
)
+

1
Rem

∆
→
B (1)

with a given (independent of magnetic field) velocity distribution
→
υ satisfying incompress-

ibility condition div
→
υ = 0.

In this equation, Rem = UL
η is the magnetic Reynolds number and η = c2

4πσ is the
magnetic viscosity, where c is the speed of light, and σ is the conductivity. According to all
known data (see, e.g., [19,20] and references there), the Rem in convective cells is of the order
106, which allows one to neglect dissipation in Equation (1). Thus, in this approximation,

the magnetic field
→
B turns out to be the frozen-in-fluid vector field. The frozenness means

that the magnetic field lines move due to the velocity component normal to the magnetic
field direction. As follows from (1), in this case the parallel velocity component does not
have influence on the motion of magnetic field lines.

3. Generation of Magnetic Filaments by Two-Dimensional Flows

In this section, firstly, a convective flow is considered to be two-dimensional (lies
in the xy plane), stationary, and periodic along horizontal coordinate x. Thus, the cells
are supposed to be of the roll type, where flows in two neighboring cells have opposite
rotations. The vertical coordinate of the cell lattice changes in the following interval:
0 ≤ y ≤ h; y = 0 corresponds to the upper boundary of the convective zone, and h is its
depth. This geometry of the convective flow means that the normal velocity component
υy = 0 at y = 0, namely, we neglect any perturbations of the top convective plane. Hence,
for the y component of the magnetic field at y = 0, in accordance with Equation (1) and the
incompressibility condition div

→
υ = 0, one can obtain the following equation:

∂By

∂t
+ υx

∂By

∂x
= −By

∂υx

∂x
+ Re−1

m ∇2By (2)

Note that this equation becomes autonomous at zeroth magnetic viscosity, namely:

∂By

∂t
+ υx

∂By

∂x
= −By

∂υx

∂x
. (3)

Consider the latter case in more detail. In a convection cell, the parallel velocity
component υx at y = 0 is equal to zero in the two points where convective flow makes
turns of 90◦. These points correspond to centers for upward and downward flows. Hence,
it follows that the derivatives of υx in these points have different signs (Figure 3). At the
center of upward flow, this derivative will be positive because this point (x1) corresponds
to flow source on the plane y = 0, but the second point (x2) serves as a sink, and the
derivative of υx will therefore be negative. Such behavior of the parallel velocity on the
plane y = 0 immediately shows that at the point with a positive derivative, By will decrease

exponentially in time, ∝ exp
{
− ∂υx

∂x

∣∣∣
x=x1

t
}

, and increase exponentially in the sink point,

x2 : ∝ exp
{

∂υx
∂x

∣∣∣
x=x2

t
}

. If the parallel velocity is symmetric (see Figure 3), then it is evident

that decrement γ(x1) and increment γ(x2) will have the same values but opposite signs.
Note that between these two points, as follows from Equation (3), besides amplification,

the normal component of
→
B undergoes advection towards point x2. Note that this motion

is a consequence of the frozenness property of the magnetic field when the only the
→
B

component perpendicular to the convective flow undergoes advection.
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Consider now what happens with another magnetic component. As we saw above,
the behavior of the By component at y = 0 is based on both the stationary character of the
convective flow and the assumption that the top convection boundary is planar. The same
issue can be applied to the downward flow (plane x = x2). Then, evidently the equation of
motion for Bx there will be analogous to (2):

∂Bx

∂t
+ υy

∂Bx

∂y
= −Bx

∂υy

∂y
. (4)

Here, at y = 0, the x-component of
→
υ will be equal to zero but its derivative at x = x2

will be positive due to the incompressibility condition:

∂υy

∂y
= −∂υx

∂x
> 0. (5)

Hence, we have an exponential decrease in time of Bx with maximal decrement:

γdis = − ∂υx

∂x

∣∣∣∣
x=x2,y=0

. (6)

Thus, in the corner (y = 0, x = x2), the magnetic field grows exponentially in time
where the magnetic field direction is parallel to the downward flow and |Bx| <<

∣∣By
∣∣,
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respectively. Note that the point (y = 0, x = x2) for this flow represents a hyperbolic point,
respectively, and the region around this point belongs to the hyperbolic one in accordance
with the Okubo–Weiss criterion (see below). Hence, using magnetic flux conservation it is
possible to estimate the width δ of the forming magnetic filament:

⟨B|t=0⟩L ∝ Bmaxδ. (7)

Here, ⟨B|t=0⟩ is the mean magnetic field and L is the longitudinal size of the convective
cell. This estimation indicates that the filament width compresses in time exponentially
with decrement in γdis.

It is worth noting that the above analysis is general. It does not use a concrete structure
of the convective cell. The only assumptions made are that the top convection surface is
planar and the flow is stationary.

4. Numerical Simulations

In the numerics presented below, we show that these general conjectures are com-
pletely valid in the partial case of a convective flow of the roll type. Consider the flow of
this type written in terms of stream function ψ:

υx = −∂ψ

∂y
; υy =

∂ψ

∂x
, (8)

with the choice of ψ in the form:

ψ(x, y) = V sin k1x sin k2y. (9)

(Note that here, we use a different sign for stream function in comparison with the
common definition, which is more convenient for us in numerics). Using dimensionless
variables, it is convenient to take the values V = α, k2 = 1/α, and k1 = 1, where α is the
aspect ratio and it characterizes the difference between the parallel and perpendicular sizes
of the cell. In this case, the velocity takes the following form:

υx = − sin x cos
y
α

; (10)

υy = α cos x sin
y
α

. (11)

Note that at y = 0, the x velocity component is fixed and does not depend on aspect
ratio α.

We will consider the magnetic field
→
B lying in the xy plane. In this case,

→
B can be

expressed in terms of the z component of the vector potential
→
A = A

→
e z as follows:

Bx =
∂A
∂y

, By = −∂A
∂x

. (12)

Note that curves A = const coincide with the magnetic field lines.
We take the initial magnetic field B0 constant in parallel to the y-axis, so that

A = −B0x + a, (13)

namely, a|t=0 = 0. In this case, induction Equation (1) in terms of potential a will be written
as follows:

∂a
∂t

+ υx
∂a
∂x

+ υy
∂a
∂y

= B0υx +
1

Rem
∆a. (14)

We can solve this equation numerically for the periodic boundary condition relative
to x: a(π, y) = a(−π, y). As for the dependence of a with respect to y, we also take the
periodic boundary conditions’ continuing solution for a positive y : −πα < y < +πα.
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Equation (6) was solved numerically on the 2000 × 4000 grid tn = n∆t, xi = −π + i ·
∆x, yj = −π + j · ∆y; using a simple numerical scheme [30]:

an+1
i,j −an

i,j
∆t + (υx)

n
i,j

an
i+1,j−an

i−1,j
2∆x + (υx)

n
i,j

an
i,j+1−an

i,j−1
2∆y =

= B0(υx)
n
i,j +

1
Rem

(
an

i+1,j−2an
i,j+an

i−1,j
∆x2 +

an
i,j−1−2an

i,j+an
i,j−1

∆y2

)
Such schemes are stable for time steps ∆t = O∗(Rem

(
∆x2 + ∆y2)) [33]. Usually, we

used ∆t = 2.5 · 10−5.
Now, we present the results of the numerical simulation of Equation (6) at Rem = ∞.

First of all, we have verified that the magnetic field grows exponentially with time in the
hyperbolic region, which is defined in accordance with the Okubo–Weiss criterion [27,28]:

ψxxψyy − ψ2
xy < 0. (15)

We have also observed that the magnetic field amplification in this region happens
due to the frozenness property of the magnetic field into plasma. In this case, the maximum
the growth rate is achieved in the corner y = 0, x = 0, which corresponds to the stationary
hyperbolic point coinciding with the centers of the downward flow (see, Figure 4). The
magnetic field in this point is parallel to the downward convective flows. The vector
potential A is shown in Figure 5 at t = 4.
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Figure 4. Evolution of the magnetic field for Rem = ∞ at the maximal point x = 0, y = 0
(logarithmic scale).

We also checked that the maximal growth rate does not depend on the aspect ratio, in
complete correspondence with the general consideration presented above (see previous
section, when Rem = ∞).
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At a finite magnetic Reynolds number, conductivity leads to destruction of the field
frozenness, which results in saturation of the exponential growth (see Figure 6).
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At Rem >> 1, it is possible to estimate the value of this field saturation in the magnetic
filament. As was shown above, the Bx component near the maximal point is a much smaller
By component that gives very different scales in the horizontal and vertical directions. This
means that in Equation (3) for By, one can neglect the second derivative relative to y in the
Laplace operator and consider the velocity υx to be linearly dependent on x − x2:

∂By

∂t
− ∂

∂x
(xBy) = Re−1

m
∂2By

∂x2 (16)

where we designate x − x2 as x and V = 1. Saturation is reached at the stationary solution
of this equation, which after integration gives the following:

By = Bmax exp
(
−x2Rem/2

)
. (17)



Mathematics 2024, 12, 677 10 of 14

The value of Bmax can be obtained using the magnetic field flux constancy. Approxi-
mately, Bmax is equal to [29] the following:

Bmax = 2.51B0Re1/2
m . (18)

According to [29], the width δ of this stationary filament was estimated as LRe−1/2
m .

5. Three-Dimensional Effects in Magnetic Filamentation

As we saw in the previous section for roll-type convection, the appearance of magnetic
filaments takes place in a small vicinity at the stationary hyperbolic point y = 0, x = x2 = 0.
In this region, the velocity in dimensionless variables can be written as follows: υx = −x
and υy = y. When magnetic viscosity is small enough and its influence is not too essential,
the Bx component tends to zero exponentially in time but the By component grows expo-
nentially. The filaments in this case represent a special kind of attractor. Account of the
finite magnetic viscosity leads to saturation of this growth and the formation of stationary
filaments parallel to the downward flow. At Rem >> 1, thus in the three-dimensional
geometry, these filaments form the whole plane of the small width. Consider their stability
relative to z coordinate fluctuations, taking into account the Bz component. At Rem = ∞,
the equation for Bz has the following form:

∂Bz

∂t
+

(
→
υ ·

→
∇
)

Bz = 0; (19)

where the velocity has two components with υz = 0. Thus, the Bz component represents a
passive scalar and can not change on the filaments. Moreover, the viscous term evidently
provides its dissipation. Therefore, filaments in the three-dimensional case with planar
downward flow have a tendency to be parallel to this surface.

However, the real situation, for instance, for solar cells, has some peculiarities different
from those of the roll-type convection. This is already seen from the experimental data
presented in Figures 1 and 2.

Firstly, solar filaments in the convective zone are concentrated in their majority near in-
terfaces between convective cells and are oriented correspondingly to downward flows [26].
Secondly, filaments are rare at the centers of convective cells. The insets of Figures 1 and 2
for a single cell shows such features in more detail.

We will give an explanation of these facts. First of all, a reminder that for the convective
zone, Rem is of the order 106, which allows one to use the frozenness equation:

∂
→
B

∂t
=

→
∇×

(
→
υ ×

→
B
)

. (20)

It is not difficult to obtain that the projection of this equation on the top convective

surface (z = 0) gives the following equation of motion for the normal (∥ẑ ) component of
→
B :

∂Bz

∂t
+

(
→
υ⊥ ·

→
∇
)

Bz = −Bzdiv
→
υ⊥. (21)

This equation is derived by means of the incompressibility condition

div
→
υ⊥ +

∂υz

∂z
= 0 (22)

and using the boundary condition υz = 0 at z = 0. The latter means that surface z = 0
is supposedly not deformed, as was considered in the 2D case. Therefore, Equation (21)
represents an analogue of Equation (4). Then, by the same reason as before, at the flow
source center

→
r =

→
r 0, the perpendicular velocity component

→
υ⊥ is equal to zero but its

divergence there will be a definite positive: div
→
υ⊥ > 0. This provides the exponential
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decrease in time of the normal component Bz at the cell source center. However, at the
interface with a neighboring cell (this is the starting position of a downward flow), we
have the opposite situation: the transverse velocity vanishes but its divergence there takes
negative values. This means that component Bz will grow exponentially in time at the
interface. The growth rate γ equal to

∣∣∣div
→
υ⊥

∣∣∣ along the interface will be a function of its
position. This means that some places at the interface will undergo bigger amplifications of
Bz than in another region of the interface. This inhomogeneity in the growth rate will cause
filaments to form in regions of maximum enhancement while maintaining their orientation
along the interface. As a result, the filaments will be quasi-flat as, for instance, is seen in
Figure 2. Note also that amplification does not depend on the sign of the normal component
Bz : two kinds of filaments separated from each other are possible with different polarities
in magnetic field (such a situation can only happen in the 3D case).

As in the 2D case, the second term in Equation (19) describes the advection of the Bz
component towards the interface.

Thus, in the kinematic approximation, we have two factors leading to the formation of
filaments: advection and the exponential growth of filaments at the interface. This explains
the experimental observations that solar filaments in the convective zone in their majority
are concentrated near interfaces between convective cells and are oriented correspondingly
to downward flows. As is seen from Figures 1 and 2, magnetic filaments are rare at cell
centers because of the advection of magnetic fields towards the periphery due to the
frozenness property.

As for magnetic field values of filaments in the 3D case, they will have the same order
of magnitude as in (18).

6. Feedback

Let us consider the Navier–Stokes equation in the presence of a magnetic field in the
Boussinesq approximation

∂
→
υ

∂t
+

(
→
υ ·

→
∇
)
→
υ = −

→
∇p + νRaT

→
n +

[[
⇀
∇×

⇀
B
]
×

→
B
]
+ ν∆

→
υ , (23)

where the magnetic field is written in Alfvenic units:
→
B/

√
4πρ →

→
B , i.e., has the dimen-

sion of speed, Ra is the Rayleigh number, T is the deviation of the temperature from its
linear in z dependence,

→
n —unit vector along the vertical z, ν—kinematic velocity, and

p—pressure.
In this case, we will assume temperature fluctuation vanishes at the boundary z = 0 :

T|z=0 = 0. Another boundary condition is written in the form of a continuity condition for
the projection of the momentum flux density onto the normal:

{σiknk} = 0, (24)

where curly brackets mean a jump at z = 0, and

σik = −υiυk −
(

p + B2/2
)

δik + BiBk + ν

(
∂υi
∂xk

+
∂υk
∂xi

)
. (25)

Since the surface z = 0 is fixed, the first term in (25) after substitution into (24) drops

out due to υz|z=0 = 0. It also follows that derivative
→
∇⊥υz = 0 (where

→
∇⊥ is the gradient

along the surface z = 0).
In the two-dimensional case, (24) implies two relations:{

−B2
x/2

}
− p + 2ν

∂υy

∂y
= 0, (26)
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{Bx}By + ν
∂υx

∂y
= 0. (27)

In these expressions, we took into account the jump in the normal component of the
magnetic field {

By
}
= 0. (28)

As we saw earlier, in the region of magnetic field filament formation in the case of
high conductivity (Rem >> 1 [34]), component

∣∣By
∣∣>>

∣∣Bx
∣∣ at the boundary at y = 0. In

this case, the relations of (26) and (27) at approximately ν ̸= 0 can be written as

−p + 2ν
∂υy

∂y
= 0, (29)

∂υx

∂y
= 0. (30)

In this case, Equation (23) for υx at y = 0 takes the form

∂υx

∂t
+ υx

∂

∂x
υx = −By

∂

∂x
By + 3ν

∂2

∂x2 υx + ν
∂2

∂y2 υx. (31)

Far from filaments where By ≈ 0, the convection flow should be independent of time,
i.e., the last term in (31) can as such only provide a stationary flow. In this case, the ratio
between inertial term and viscous one is of the order of the Reynolds number Re. According
to [32,34], it is of the order of 102. When we approach magnetic filaments, this ratio is
assumed to be valid. The compensation of the inertial term (second term in (31)) is due to
the gradient of magnetic pressure in filaments. Thus, the Hartmann number Ha defined
as the ratio of electromagnetic force to the viscous force is of the order of the Reynolds
number Re.

In the special case of zero viscosity, the relations of (26) and (27) are also signifi-
cantly simplified:

{Bx} = 0,
p = 0 at y = 0.

(32)

From (26) and (27), it is also clear that for ν → 0 , the longitudinal component of the
magnetic field also turns out to be small.

Thus, on the surface y = 0, with zero values of kinematic and magnetic viscosity, and
neglecting the transverse component of the magnetic field Bx, the equation for the field
velocity component υx and the components of the magnetic field By turn out to be closed:

∂υx

∂t
+ υx

∂υx

∂x
= −By

∂By

∂x
, (33)

∂By

∂t
+ υx

∂By

∂x
= −By

∂υx

∂x
. (34)

It is easy to see that the sum and difference wx = υx ± By obey two independent
Hopf equations:

∂w±
∂t

+ w±
∂w±
∂x

= 0. (35)

In the case of a convective zone, we must assume that at the initial moment the average
kinetic energy density at t = 0 significantly exceeds the magnetic energy density:〈

υ2
x
〉

2
>>

B2
0

2
. (36)

According to Equation (33), one can see that the growth in magnetic field B due to
the magnetic pressure gradient (the r.h.s. of (33)) prevents penetration of the flow in the
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hyperbolic region with its center at y = 0, x = 0. For this reason, the hyperbolic point will
be moved towards the counter flow that provides an inverse influence on the growing
magnetic field of the convective flow. Because the filament region is small in comparison to
the convective cell, such a shift should not significantly influence the convection itself. It is
evident that this mechanism shows that the magnetic pressure B2/2 is comparable to the
mean kinetic energy density

〈
υ2〉/2.

7. Conclusions

In this paper, we have analyzed the filamentation of the magnetic field in convective
cells in the Sun within the kinematic approximation. This process is associated with the
frozenness of the magnetic field into a medium with high conductivity, which leads to the
compression of magnetic field lines and the formation magnetic filaments. Based on the
general consideration of the convection top flows only, and without knowledge of the cell
structure, we demonstrate that the magnetic field intensifies in the regions of downward
flows in both two-dimensional and three-dimensional convective cells. These hyperbolic-
type regions play the role of a specific attractor of the magnetic field. This theoretical
analysis was confirmed by numerical simulations for 2D convective cells of the roll type.
Without dissipation, the magnetic field grows exponentially in time and attains its maximal
value at the hyperbolic point where the growth rate does not depend on the aspect ratio
between the horizontal and vertical scales of the cell. This increase due to the compression
of the magnetic filaments is saturated due to the natural limitation associated with finite
plasma conductivity when the maximum magnitude of the magnetic field is of the order
of the root square of the magnetic Reynolds number. Another effect of saturation of the
magnetic field values is connected with feedback of the growing field on the convective
flows. Both of these effects on the Sun convective zone give the maximal magnetic field
values in filaments the same order of magnitude of about 1 kG. Based on the stability
analysis, we have explained why downward flows influence magnetic filaments by making
them flatter with orientation along the interfaces between convective cells.
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