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Abstract: We propose a method for fitting transition intensities to a sufficiently large set of trajectories
of a continuous-time non-homogeneous Markov chain with a finite state space. Starting with
simulated data computed with Gompertz–Makeham transition intensities, we apply the proposed
method to fit piecewise linear intensities and then compare the transition probabilities corresponding
to both the Gompertz–Makeham transition intensities and the fitted piecewise linear intensities;
the main comparison result is that the order of magnitude of the average fitting error per unit
time—chosen as a year—is always less than 1%, thus validating the methodology proposed.
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1. Introduction with a Literature Review

This study follows on from a previous article (see [1]) in which we developed a way to
calibrate a Markov chain model in continuous time using data obtained from Portuguese
National Network of Continuing Care. The calibration methodology used in that work,
although very effective, is not completely satisfactory as it rests on a series of ad hoc
processes with reduced guarantees of reproducibility and robustness.

In the present work, we intend to develop simpler and more robust means of esti-
mating and calibrating intensities for non-homogenous continuous-time Markov chains
(see [2] for a recent introduction to these processes and their applications). For this purpose,
we first develop the two following subjects. The first subject deals with Markov chain
regime switching achieved by considering an abrupt change in the intensities, for instance,
having intensities with jumps. The second subject complements the first one if we suppose
that we replace regular intensities by irregular ones—like piecewise linear—in principle
with more easily estimable parameters; we study the effect on the transition probabili-
ties of a replacement of the original intensities by sufficiently close alternative intensities.
These two different streams of ideas are connected not only to one another but also to the
estimation–calibration techniques to be studied.

We now present a review of the literature, mainly covering the subject of estimation
and calibration of continuous-time non-homogeneous Markov chains with finite state space
relevant for health insurance and long-term care (LTC), existing results for the Kolmogorov
ordinary differential equations, as well as works where one can find some similarities
between non-homogeneous Markov chains and semi-Markov jump linear systems.

A consecrated approach in the study of continuous-time Markov chains for applica-
tions, namely, in the multiple state models—the transition intensity approach (see [3] p. 126
or [4] p. 189)—consists of giving the intensities, solving the Kolmogorov ODE and using
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the transition probabilities obtained for computations. The intensities should be estimated
from the data. This is the approach that we assume in this work.

The statistics of homogeneous Markov chains has already received several very tho-
rough analyses. A very well organised and complete one is provided in Billingsley’s
monograph [5] that treats, in the first part, the discrete-time homogeneous Markov chains
and in the second part the continuous-time chains by resorting to the canonical embedded
process. A companion reference is article [6] that provides a very complete set of references
on the subject until 1961. In order to obtain consistency and asymptotic normality results
for the maximum likelihood estimators, the author assumes, as usual, stringent regularity
assumptions in particular on the intensities.

The statistics of Markov chain models for multiple state models is usually performed
under simplifying assumptions on the model. For instance, in [7], the intensities are sup-
posed to be constant in selected time intervals, and observations are chosen for which the
exact age belongs to a given selected time interval. Another set of simplifying assumptions
is proposed in [8] (pp. 126–128); at first, the transition functions are approximated in a
one-year period interval by a one-sided Stieltjes interval. and then, using these approxi-
mations the transition intensities, with adequate analytical properties, are obtained as a
result of a minimisation of a sum of squares objective function. The method proposed in [4]
(pp. 147–169) has also two steps; in the first step, the transitions intensities are supposed
to be constant in one-year period intervals and are estimated with a maximum likelihood
approach. Subsequently, there is a second step of denominated graduation—a method
generally described in [9]—that fits parameters of exponential functional intensity using
generalised linear models. The method is applied to real data, and it becomes clear that
several adequate particular ad hoc assumptions in the method are inevitable in order to
deal with specific properties of the data. The simplifying assumption of transition intensi-
ties constant in each one-year period is also taken in [10] (pp. 683–690), where a detailed
treatment of an example is also presented; in a commentary, the authors also refer the need
of a graduated procedure to obtain the final intensities.

The excellent review work [11] illustrates the manner in which multiple-state Markov
and semi-Markov models can be used for the actuarial modelling of health insurance
policies. The bivariate character of the Markov process naturally associated with a semi-
Markov model is useful whenever the durational effects are not negligible but in contrast is
technically much more difficult to handle than the univariate Markov process. Considering
discrete-time semi-Markov processes, the authors in [12] study semi-Markov jump linear
systems—which is a hybrid dynamical system that consists of a family of subsystem modes
and a semi-Markov process that orchestrates switching between them—with bounded
sojourn times, in order to provide sufficient criteria for the stability and stabilisation prob-
lems with respect to a specified approximation error. The companion work [13] enlarges
the previous model by considering delay, and by means of a novel Lyapunov–Krasovskill
functional and using the probability structure of semi-Markov switching signal, the suffi-
cient stability conditions for the considered systems are presented in terms of a set of linear
matrix inequalities and a proper semi-Markov switching condition. It now becomes clear
that a natural extension of our work would be to consider semi-Markov models instead of
Markov chains.

The estimation–calibration methodology we propose in this work is applied to continu-
ous piecewise linear intensities. Since in health insurance and long-term-care multiple-state
models, the intensities are usually of Gompertz–Makeham type (see [4] pp. 21, 24, 101), we
previously showed that the distance between two transition probability matrices—in the
sense of some matrix norm—is bounded by the same distance between the correspondent
intensity matrices, thus showing that the Gompertz–Makeham functional form for the
intensities is not really necessary.
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We now refer to some works with contributions to the topic of estimation calibra-
tion of multiple state models, also called multi-state models. The work [14] proposes a
review of multiple-state models via continuous-time Markov chains, signalling the usual
approach for the non-homogeneous case of considering piecewise constant intensities. It is
at first reading, a most interesting review paper with applications to real data comparing
different model analyses. Ref. [15] deals with a nonparametric approach to statistical infer-
ence in non-homogeneous Markov processes based on counting processes for transition
intensities—namely using the so-called Nelson–Aalen estimator or the kernel smoothing
estimator of Ramlau–Ahnsen—presenting a case study using this methodology. Ref. [16]
can be seen as a continuation of the previously referred to work. Besides reviewing methods
for non-parametric estimation of transition probabilities, the authors study the case where
semi-parametric Cox type regression models are specified for the transition intensities
whenever there is specification of the development of the time-dependent covariates. An
illustration of the methods with data from a randomised clinical trial in patients with
liver cirrhosis is also presented. Ref. [17] is an ancillary reference for graduating the
transition intensities in a multiple-state model for permanent health insurance applications
based on generalised linear models—with a random component based on independent
Poisson response variables—in the case that the intensities are supposed to depend on
some secondary variables. The work in [18] follows the preceding paper in the main intent
of proposing a graduation method for the transition intensities of a non-homogeneous
continuous-time Markov chain model. In the work [19], a comparison between a discrete-
time and continuous-time homogeneous Markov chain models is presented in order to
assess the effect of unevenly spaced observations. Since the authors want to incorporate
covariates in the model, this study also deals with a series of multinomial logit regressions
for the discrete-time model and proportional hazard regressions for the covariates through
transition intensity functions for the continuous-time model. Ref. [20] is a simplified
multiple-state model that develops a generic estimation method for calculating the transi-
tion probabilities in a one-year multiple-state model based on disability prevalence rates;
multiple logistic regression models are employed to estimate disability prevalence rates
and the one-year recovery rates. In doing so, the authors assume three conditions of the
ratio between the mortality rate of inactive and active people—and several other conditions
used in the literature—that allow the necessary computations in the case treated which
concerns cross-sectional data measuring the disabled status of an individual at one point in
time. The work [21] introduces a semi-parametric model that employs a logit function to
capture the treatment intensities across two groups, aiming to estimate transition intensity
rates within the framework of an illness–death model. Parameter estimation is conducted
through an EM algorithm coupled with profile likelihood. Simulation studies presented
in the text indicate that the proposed method is straightforward to apply and produces
results comparable to those of the parametric model. The study [22] examines the im-
pact of part-time and full-time employment on health by employing a Markov three state
model—using piecewise constant forces, where the transition intensities are graduated
using generalised linear models and assumed, at the start, to be equal per age level—and
generalised linear models to refine the initial raw rates. Integration of the corresponding
Chapman–Kolmogorov equations allow us to derive a comprehensive solution. As an
application of the model, the effectiveness of a partial early-retirement incentive in the
Netherlands is evaluated. The refined rates obtained indicate that working part-time does
not necessarily correlate with improved health among the elderly.

In the present work, we also establish a result with regime-switching Markov chains
exploring the possibility of having, in the whole time period under study, intensities with
several different functional forms (linear, exponential, etc.) in different subintervals of the
whole time period. Our study of ordinary differential Equations (ODE) with regimes that
began with the work [23] and was exploited in [24] is based on general results of existence
and uniqueness of solutions of ODE—due to Caratheodory and Wintner for existence and
Osgood for uniqueness, among others—with a non-regular second member. In the case of
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a second member of the non-regular ODE, the regimes appear clearly in the solutions of
the Kolmogorov equations due, for example, to possible discontinuities in the entries of the
intensity matrix.

The general theory of existence of solutions of Kolmogorov equations is exhaustively
treated in the works of Feinberg, Shiryaev and Mandala (see [25–27]). Their powerful results
apply to jump processes with values in a general Borel space and so are also transferable to
non-homogeneous Markov chains with a finite state space. Since we are dealing with this
finite state space—due to our interest in health insurance and long-term-care multiple-state
models—we chose to present a more simple approach that requires only classical existence
theorems for ordinary differential equations, namely Caratheodory’s existence theorem
and Osgood’s uniqueness theorem.

We now succinctly describe the contents of this work.

• In Section 2, we develop the subject of regime-switching Markov chains. The results
obtained can be applied to the consideration of discontinuous intensity matrices.

• In Section 3, we deal with the approximation of matrices of transition probabilities
given an approximation of the correspondent matrices of intensities.

• Sections 4–6 detail, with an example, the methodology for estimation–calibration
proposed and present an analysis of the results obtained.

• In Section 7, we provide a discussion of the results obtained in the example treated,
and in Section 8, we summarise all the results obtained in this work.

There are three main contributions of this work. The first is the proposal of a method
to estimate the parameters of a set of transition intensities from ideal observed data. The
second is a result on regime-switching Markov chains that establishes the possibility of
considering transition intensities made up of different sorts of functional forms, with each
one of the functional forms depending on different sets of parameters. Finally, the third
contribution is a result that quantifies the norm of the difference of two probability transition
matrices in terms of the norm of the corresponding matrices of transition intensities; this
last result justifies the choice of arbitrary functional forms for the transition intensities in
ways more adequate for parameter estimation.

2. Regime Switching Markov Chains

In this section, we develop the formalism of regime switching for Markov chains, in
which the transition probabilities are derived from intensities that, at a certain point in time,
can change either in functional form or in the parameters. The consideration of discontinu-
ous piecewise linear intensities suggests the study of Markov chains in continuous time
with regimes. Let us state some preliminary notations and results for context purposes
(see [28]). Firstly, we recall the definition of an intensity matrix Q(t, θ).

Definition 1. Let L(Rd×d) be the space of d× d square matrices with coefficients inR. A function
Q : [0,+∞[→ L(Rd×d) denoted by

Q(t, θ) =
[
µθ

ij(t)
]

i,j=1,...,d
,

with θ ∈ Θ ⊂ Rp a parameter is a transition intensity matrix if, for almost all t ≥ 0, it verifies

(i) ∀i = 1, . . . , d, t ≥ 0, µθ
ii(t) ≤ 0;

(ii) ∀i = 1, . . . , d, ∀j = 1, . . . , d, t ≥ 0, i 6= j⇒ µθ
ij(t) ≥ 0;

(iii) ∀i = 1, . . . , d, t ≥ 0, ∑j=1,...,d µθ
ij(t) = 0.
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Secondly, we recall the Kolmogorov ordinary differential Equations (ODE) for non-
homogeneous continuous-time Markov chains. These equations, upon integration, give the
matrix of transition probabilities P(x, t, θ) as a function of the matrix of intensities Q(t, θ),
where θ ∈ Θ is a parameter. The forward Kolmogorov ODE can be represented in the
following form:


P′t(x, t, θ) = P(x, t, θ)Q(t, θ)

P(x, x) = I ,
(1)

or, in integrated form, by

P(x, t, θ) = I +
∫
[x,t]

P(x, s, θ)Q(s, θ)ds . (2)

Finally, let us now deal with regime-switching Markov chains.
The general motivation for the study of regime switching in ODE can be seen in [23,24].

Let us elaborate on the motivation to study regime-switching Markov chains. Suppose that
we have two continuous-time Markov chains, having the same state space, with intensi-
ties of different functional forms—such as piecewise constant or affine of the Gompertz-
Makeham type, etc.—depending on two sets of parameters, say Θ1 and Θ2, respectively,
defined in two contiguous-time intervals, say [0, t1] and [t1, t2]. The result we proof shows
that there exists a well-defined Markov chain in the interval [0, t2] with intensities de-
pending on a set of parameters Θ := Θ1 ∪Θ2 such that the transition probabilities of this
Markov chain—obtained by the solution of the Kolmogorov equations—coincide with the
transition probabilities of the first initial Markov chain in [0, t1] and also coincide with the
transition probabilities of the second initial Markov chain in [t1, t2]. This result will grant
us a greater latitude in the choice of the functional forms of the intensities for estimation
purposes since it will be possible to partition a time interval of interest in two or more
disjoint intervals and to have intensities, in each one of the intervals, possibly of different
functional forms and different sets of parameters. In Theorem 4, we consider extended
solutions of an ODE in the sense of Carathéodory. For that, following [29] (pp. 41–44), we
consider the definition of an extended solution of a differential equation.

Definition 2 (Extended solution of an ODE). For f (t, y) : I ×D→ R
d×d a non necessarily

continuous function, with I ⊂ [0,+∞[ and D ⊂ Rd×d and a differential equation given by

Y ′(t) = f (t, Y(t)) , Y(0) = y0 ∈ R
d×d , (3)

or in the equivalent integral form, with the appropriate Lebesgue measure du inR,

Y(t) = y0 +
∫ t

0
f (u, Y(u))du , (4)

an extended solution Y(t) of the ODE in Formula (3) is an absolutely continuous function Y(t),
such that f (t, Y(t)) ∈ D for t ∈ I and Formula (3)—or equivalently, Formula (4)—is verified
for all t ∈ I almost everywhere (a.e), that is, possibly with the exception of a set of null Lebesgue
measure in [0,+∞[.

We now recall Caratheodory’s existence theorem—see [29] (p. 43) for the unidi-
mensional result and [30] (pp. 28–29) for the multidimensional result, with a proof via
Schauder’s fixed point theorem—in the context of the model we are studying, a theorem
that ensures the existence of an extended solution under general conditions.
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Theorem 1 (Caratheodory’s existence theorem). Suppose that f (t, y) : I ×D→ R
d×d, with

I = [0, u[ an open set of [0,+∞[ and D an open set ofRd×d, verifies that

(i) f (t, y) is measurable in the variable t, for fixed y, and continuous in the variable y, for fixed t,
for (t, y) ∈ I ×D.

(ii) For each compact set K b D and T > 0, there exists a Lebesgue integrable function λ(t), such
that ‖ f (t, y)‖ ≤ λ(t) for (t, y) ∈ [0, T]× K.

Then, for every (t0, y0) ∈ I ×D such that Y(t0) = y0, that is, a given initial condition of
equation in Formula (3), there exists an extended solution according to Definition 2, defined in a
neighbourhood of (t0, y0).

Despite the fact that Theorem 1 guaranties the local existence of an extended solution,
it is always possible to consider a maximal extension of this solution, possibly, to a larger
time interval (see [30] pp. 29–30).

Theorem 2 (Maximal time interval for existence). With the notations and under the hypothesis
of Theorem 1, any existing solution Y admits a continuation Ỹ to a maximal time interval of
existence, let it be [a, b] such that, ∂D being the boundary of D:

lim
t→a

Ỹ(t) ∈ ∂D and lim
t→b

Ỹ(t) ∈ ∂D .

Remark 1 (Applying Caratheodory theorem to the Kolmogorov ODE). Kolmogorov ODE
for continuous time Markov chains, in Formula (1), falls under this formalism in the following way:

f (t, y, θ) = Q(t, θ) · y (5)

which is essentially the equation in Formula (3) with the possibility of dependence on a parameter
θ ∈ Θ. Consider a matrix norm ‖·‖ in the sense of [31] (p. 340), that is, a submultiplicative
norm—such as the l1 norm and l2 norm, also known as the Frobenius norm—and observe that since

‖ f (t, y, θ)‖ = ‖Q(t, θ) · y‖ ≤ ‖Q(t, θ)‖‖y‖ , (6)

and since any norm of a probability intensity matrix is bounded, we can apply Caratheodory’s
theorem to the Kolmogorov ODE under the condition that there exists a Lebesgue integrable function
λ(t) such that

sup
θ∈Θ

‖Q(t, θ)‖ ≤ λ(t) , (7)

for all t ∈ [0, T]. We will see in Remark 3 that the condition in Formula (7) is also sufficient to
ensure the unicity of the extended solutions.

Remark 2 (Existence of extended solutions alternative proof). We could also quote Wintner’s
theorem, referred to in [32], a theorem that states that if ‖ f (t, y)‖ ≤ N(t)L(‖y‖) with N and L
piecewise continuous, positive and L non-decreasing, such that for some c > 0∫ +∞

c

1
L(s)

ds = +∞ ,

then the ODE in Formula (3) has a solution for a given initial condition. We observe that the quoted
theorem is valid, under the assumption that f (t, y) is continuous with the possible exception of
points of a null Lebesgue set of the time variable, by considering extended solutions instead of usual
solutions, which have a continuous derivative, and as L(t) and N(t) both satisfy the hypotheses
of Wintner’s theorem for parameters of the intensity functions and taking each, two (or several)
distinct values in two (or several) complementary intervals of the time domain.



Mathematics 2024, 12, 668 7 of 21

We now quote an unicity result—from [30] p. 30—applicable whenever there is
existence of an extended solution in the Caratheodory sense.

Theorem 3 (Unicity of extended solutions). Suppose that f (t, y) : I ×D → R
d×d, with

I = [0, u[ an open set of [0,+∞[ and D an open set ofRd×d, verifies the conditions in Theorem 1,
and moreover, that for each compact set K b D and T > 0, there exists a Lebesgue integrable
function λK(t), such that

‖ f (t, y1)− f (t, y2)‖ ≤ λK(t)‖y1 − y2‖ , (8)

for (t, y1) , (t, y2) ∈ [0, T]× K. Then, for every (t0, y0) ∈ I ×D such that Y(t0) = y0, that is,
a given initial condition of equation in Formula (3), there exists an unique extended solution Y
according to Definition 2, defined in a neighbourhood of (t0, y0). The domain of definition of Y is
open, and Y is continuous in this domain.

Remark 3 (Applying the unicity result to the Kolmogorov ODE). With the interpretation
given in Formula (5) and if the norm is a matrix norm, similarly to what we had in Formula (6), we
now have that a sufficient condition for the unicity of the extended solutions of Kolmogorov ODE is
for each compact set K b D and T > 0, there exists a Lebesgue integrable function λK(t) such that
‖Q(t, θ)‖ ≤ λK(t) , thus implying that

‖ f (t, y1, θ)− f (t, y2, θ)‖ = ‖Q(t, θ) · (y1 − y2)‖ ≤ ‖Q(t, θ)‖‖y1 − y2‖ ≤
≤ λK(t)‖y1 − y2‖ ,

(9)

which is the hypothesis bound in Formula (8) for Theorem 3.

Remark 4 (On the unicity of the extended solutions). Either directly using Theorem 18.4.13
in [33] (p. 337) or using Osgood’s uniqueness theorem—as presented for instance, in [34] (p. 58) or
in [35] (pp. 149–151)—we may also conclude that the extended solution, that we know to exist, is
unique, in the sense that two solutions may only differ on a set of Lebesgue measures equal to zero.

Remark 5 (On the numerical computation of extended solutions). We observe that these
existence and uniqueness results are essential for a numerical integration of the ODE, but that no
result on numerical convergence is implied—in the existence and uniqueness results above—for the
regime switching ODE with discontinuous coefficients. Nevertheless, the Lipschitz condition with
respect to the y variable—such as the one in Formula (8)—is sufficient for the convergence of the
Euler method (see [36] p. 74).

The next theorem is a simple example of a regime-switching result for continuous-time
Markov chains. The extension of this result to more than two regimes is straightforward.
We consider the Kolmogorov ODE in a time interval [0, T].

Theorem 4 (Regime switching continuous-time Markov chains). Let ‖·‖ denote a matrix
norm, let Θ denote a parameter set and let Q1(t, θ) defined for t ∈ [0, t1] and Q2(t, θ) defined for
t ∈ [t1, T] be two intensity matrices such that for λ(t), an integrable function defined in [0, T], we
have for t ∈ [0, T]

max

(
sup
θ∈Θ

‖Q1(t, θ)‖, sup
θ∈Θ

‖Q2(t, θ)‖
)
≤ λ(t) . (10)

Then, there exists P̃(t, θ) such that

1. In [0, t1], we have that P̃ ≡ P1, a.e. in t, where P1 is a solution of the Cauchy problem
(P1)

′
t(t, θ) = P1Q1(t, θ) with the usual initial conditions;

2. In [t1, T], we have that P̃ ≡ P2 a.e. in t, where P2 is a solution of the Cauchy problem
(P2)

′
t(t, θ) = P2Q2(t, θ) with the initial conditions given by P1(t1, θ);

3. P̃ is a transition probability matrix.
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Proof. Let Q1(t, θ) =
[
µ1,θ

ij (t)
]

i,j=1,...,d
and Q2(t, θ) =

[
µ2,θ

ij (t)
]

i,j=1,...,d
. If we define

Q(t, θ) =
[
µθ

ij(t)
]

i,j=1,...,d
:= Q1(t, θ)1I[0,t1]

(t) + Q2(t, θ)1I]t1,T](t) , (11)

we will have that:
µθ

ij(t) = µ1,θ
ij (t)1I[0,t1]

(t) + µ2,θ
ij (t)1I]t1,T](t) ,

and we can, immediately, verify that Q(t, θ) is an intensity matrix on [0, T] according
to Definition 1. Moreover, since by Formula (10) and the definition in Formula (11), we
have that

‖Q(t, θ)‖ ≤ λ(t) ,

we can let P̃(t, θ) be the unique solution of the Kolmogorov equation P̃
′
t = P̃Q on [0, T]

with the usual conditions. It is then clear that P̃(t, θ) is a transition probability matrix.
Furthermore, if we define

P̂(t, θ) := P1(t, θ)1I]0,t1[
(t) + P2(t, θ)1I]t1,T[(t)

and we will then have, using the hypothesis that

∂P̂(t, θ)

∂t
=
a.e.

∂P̂1(t, θ)

∂t
1I]0,t1[

(t) +
∂P̂2(t, θ)

∂t
1I]t1,T[(t)

=
a.e.

=
a.e. P1Q1(t, θ)1I]0,t1[

(t) + P2Q2(t, θ)1I]t1,T[(t)
=
a.e.

=
a.e.

(
P1(t, θ)1I]0,t1[

(t) + P2(t, θ)1I]t1,T[(t)
)(

Q1(t, θ)1I[0,t1]
(t) + Q2(t, θ)1I]t1,T](t)

)
=
a.e.

=
a.e. P̂(t, θ)Q(t, θ) ,

which shows that P̂(t, θ) ≡ P̃(t, θ) a.e. in t and, as a consequence, that P̃(t, θ) ≡ P̂(t, θ) ≡
P1 in [0, t1] a.e. and P̃(t, θ) ≡ P̂(t, θ) ≡ P2 in [t1, T] a.e.

We present in Figure 1 graphical representations of transition probabilities obtained
by numerical integration of Kolmogorov equations with discontinuous piecewise linear
intensities for a four-state Markov chain with intensity matrix given in Formula (16).

State one is the healthy state, state four is an absorbing state corresponding to death
and states two and three are intermediate dependent states. This representation, aside
from being an illustration of a regime switching Markov chain, also illustrates the possible
extreme effects of a regime switching of discontinuous-intensity matrix entries. The subject
of Markov chains with regimes has, as can easily be observed, an interest independent of
the objective that motivates us to study it. However, in the context of the present work, it
can be a way to justify a more efficient and robust parameter estimation (or calibration)
process by an adequate choice of functional forms for the intensities.
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Figure 1. Solutions of Kolmogorov ODE for discontinuous linear intensities. pij: j = 1 (blue); j = 2
(orange); j = 3 (green); j = 4 (red). ∑4

j=1 pij (purple). Lower left pi3: i = 1 (blue); i = 2 (orange);
Lower right pi4: i = 1 (blue); i = 2 (orange); i = 3 (green).

3. On the Approximation of Intensities and Corresponding Transition Probabilities

One way to simplify the estimation of intensities of Markov chain models in contin-
uous time—relevant for health insurance and long-term-care models—is to replace the
usual Gompertz–Makeham type intensities—containing exponential and linear terms and
therefore being difficult to estimate—by continuous piecewise linear intensities. In this
sense, it is important to have a result that controls the distance between two matrices of
transition probabilities resulting from the integration of the Kolmogorov equations for the
correspondent two matrices of intensities.

It is known (see, for example, [37] p. 264 and [1]) that we can represent the transition
probabilities in the Hostinsky form:

P(x, t, θ) =

= I +
+∞

∑
n=1

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

Q(t1, θ)Q(t2, θ) · · ·Q(tn, θ)dtn · · · dt1 ,
(12)

where the right-hand member only depends on the intensities and where the series con-
verges uniformly. The following theorem—akin to a multidimensional Gronwall-type
inequality—is a natural result.

Theorem 5 (Dependence of the transition probabilities on the intensities). Let ‖·‖ be a matrix
norm and let Q1(t, θ) and Q2(t, θ) be two matrices of intensities norm bounded by M > 0 in
[0, T]. Define

ε(Q1, Q2) := sup
t∈[0,T], θ∈Θ

‖Q1(t, θ)−Q2(t, θ)‖ . (13)
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Then, we have that

sup
t∈[x,T], θ∈Θ

‖P1(x, t, θ)− P2(x, t, θ)‖ ≤ ε(Q1, Q2)
eM|T−x| − 1

M
, (14)

where P1(x, u, θ) and P2(x, u, θ) are the solutions of the Kolmogorov equations—given in For-
mula (1)—with matrices of intensities Q1(t, θ) and Q2(t, θ), respectively.

Proof. The proof of a result of this type for an ordinary differential equation
y′(t) = f (t, y(t)), satisfying the condition

| f (t, y1(t))− f (t, y2(t))| ≤ λ(t)|y1(t)− y2(t)| ,

where λ is integrable and is immediate from the integral representation of the differential
equation. So we will use the integral representation given by Formula (12). The following
well-known result (see [38] p. 217 and, for a proof, [28] p. 348) will be instrumental.

Lemma 1. Let q : R+ 7→ R a measurable function integrable over every bounded interval ofR+.
Then, we have that

∫ t

s

∫ t

s1

· · ·
∫ t

sn−1

q(s1)q(s2) . . . q(sn)dsn . . . ds2ds1 =

(∫ t
s q(u)du

)n

n!
,

for all 0 ≤ s ≤ t, n ≥ 1.

Let us show, by induction, that if ‖Q1(t, θ)‖ ≤ M and ‖Q2(t, θ)‖ ≤ M for some
0 < M < +∞ then, using hypothesis in Formula (13), we have that∥∥∥∥∥ n

∏
k=1

Q1(tk, θ)−
n

∏
k=1

Q2(tk, θ)

∥∥∥∥∥ ≤ max
k=1,...,n

‖Q1(tk, θ)−Q2(tk, θ)‖ ·Mn−1 ≤

≤ ε(Q1, Q2)Mn−1

(15)

In fact, for the first order bound we have that

Q1(t1, θ)Q1(t2, θ)−Q2(t1, θ)Q2(t2, θ) =

= Q1(t1, θ)Q1(t2, θ)−Q1(t1, θ)Q2(t2, θ) + Q1(t1, θ)Q2(t2, θ)−Q2(t1, θ)Q2(t2, θ) =

= Q1(t1, θ)(Q1(t2, θ)−Q2(t2, θ)) + (Q1(t1, θ)−Q2(t1, θ))Q2(t2, θ) ,

and then it follows, using the matrix norm hypothesis, that

‖Q1(t1, θ)Q1(t2, θ)−Q2(t1, θ)Q2(t2, θ)‖ ≤
≤ M‖Q1(t2, θ)−Q2(t2, θ)‖+ M‖Q1(t1, θ)−Q2(t1, θ)‖ ≤
≤ M ·max

k=1,2
‖Q1(tk, θ)−Q2(tk, θ)‖ .

Consider now, for clarity, the next induction step, the second order bound.

Q1(t1, θ)[Q1(t2, θ)Q1(t3, θ)]−Q2(t1, θ)[Q2(t2, θ)Q2(t3, θ)] =

= Q1(t1, θ)[Q1(t2, θ)Q1(t3, θ)]−Q1(t1, θ)[Q2(t2, θ)Q2(t3, θ)]+

+ Q1(t1, θ)[Q2(t2, θ)Q2(t3, θ)]−Q2(t1, θ)[Q2(t2, θ)Q2(t3, θ)] =

= Q1(t1, θ)([Q1(t2, θ)Q1(t3, θ)]− [Q2(t2, θ)Q2(t3, θ)])+

+ (Q1(t1, θ)−Q2(t1, θ))[Q2(t2, θ)Q2(t3, θ)] .
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Again it follows, from the matrix norm hypothesis and using the previous order one
bound, that

‖Q1(t1, θ)Q1(t2, θ)Q1(t3, θ)−Q2(t1, θ)Q2(t2, θ)Q2(t3, θ)‖ ≤
≤ M‖[Q1(t2, θ)Q1(t3, θ)]− [Q2(t2, θ)Q2(t3, θ)]‖+ M2‖Q1(t1, θ)−Q2(t1, θ)‖ ≤
≤ M2 · max

k=1,2,3
‖Q1(tk, θ)−Q2(tk, θ)‖ .

The induction proof is now cleared. Now, by using Formulas (12) and (15) and Lemma 1,
we have the following bound for the norm of the difference of the two transition probabil-
ity matrices.

‖P1(x, t, θ)− P2(x, t, θ)‖ ≤

≤
+∞

∑
n=1

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

∥∥∥∥∥ n

∏
k=1

Q1(tk, θ)−
n

∏
k=1

Q2(tk, θ)

∥∥∥∥∥dtn · · · dt1 ≤

≤ 1
M

+∞

∑
n=1

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

ε(Q1, Q2)Mndtn · · · dt1 ≤

≤ 1
M

+∞

∑
n=1

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

ε(Q1, Q2)
1/n M× · · · × ε(Q1, Q2)

1/n M dtn · · · dt1 =

=
1
M

ε(Q1, Q2)
+∞

∑
n=1

Mn|t− x|n

n!
= ε(Q1, Q2)

eM|T−x| − 1
M

,

thus proving the result, in Formula (14).

A result like the one given by Theorem 5 is expected to simplify the estimation of the
parameters θ ∈ Θ that allow the fitting of a Markov chain model to real data coming, for
example, from multi-state models for health insurance or long-term care, which was the
case discussed in [1].

Remark 6 (Applying Theorem 5). The applicability of Formula (14) requires that M|T − x| � 1;
if not, the result is of no use. The usefulness of the result relies on the possibility of localising the
computation of the solutions of Kolmogorov ODE. Once time units are chosen—let us say, one year—
this is achieved by solving, successively, the Kolmogorov differential equations in time intervals
[xk, xk+1] of length |xk+1 − xk| � 1. In doing so, the final values of the transition probability
matrix in one interval must be the initial values of the transition probability matrix Kolmogorov
ODE in the immediately following time interval. Supposing the adequate hypothesis for the existence
and unicity of solutions of the Kolmogorov forward equations, we may then conclude that two matrix
intensity matrices are close to one another in some small time interval, the correspondent probability
transition matrices will be close to one another in the same small time interval.

An illustrative example of the usefulness of this result is given in Figure 2 for which
the intensity matrix considered is the following.


µ11(t) 1.20135× 10−5e0.117(t+50) + 1

200 1.2 · µ12(t) 0.05 · µ34(t)
0.7 · µ12(t) µ22(t) 5.49958× 10−6e0.128(t+50) + 3

500 0.5 · µ34(t)
0.36 · µ12(t) 0.3 · µ23(t) µ33(t) 4.08902× 10−6e0.139(t+50) + 7

1000
0. 0 0 1

 (16)

That is all the intensities are of Gompertz–Makeham type; moreover, µ12(t), µ23(t) and
µ34(t) were first defined, and then, all the others were defined proportional to these three;
the determinations of the parameters of these intensities from the data is the goal of an
estimation calibration procedure. The coefficients of µ12(t), µ23(t) and µ34(t) were chosen
having in mind a unit time of one year and a LTC model starting at the age of 50 years and
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going on until 100 years of age. The proportions between µ12(t), µ23(t) and µ34(t) and all
the others can be calibrated using a discrete-time transition matrix if available. The linear
interpolations of the intensities were given at the six following points t = 0, 15, 30, 40, 45, 50.
The differences of the linear interpolated intensities and the original Gompertz–Makeham
intensities µ12(t), µ23(t) and µ34(t) are shown in Figure 3.
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0.8

1.0
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Solutions of K-ODE from First state
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Solutions of K-ODE from First state LI
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Solutions of K-ODE from Second state
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Figure 2. Comparing transition probabilities from Gompertz–Makeham intensities (left-hand side)
and corresponding six-point linear interpolations (right-hand side). pij: j = 1 (blue); j = 2 (orange);
j = 3 (green); j = 4 (red). ∑4

j=1 pij (purple).

10 20 30 40 50

0.01

0.02
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Gompert-Makeham minus LI for μ12

10 20 30 40 50

0.02
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0.06

Gompert-Makeham minus LI for μ23
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0.05

0.10

0.15

0.20

Gompert-Makeham minus LI for μ34

Figure 3. The symmetric of the differences between Gompertz–Makeham intensities and correspond-
ing six-point linear interpolations for µ12(t), µ23(t) and µ34(t).

The analysis of Figure 3 together with Figure 2 conveys an illustration of Theorem 5
and Remark 6 in the particular case of the approximation of Gompertz–Makeham intensities
by linear interpolated ones.
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4. Constructive Definition of CT-MC

The existence of a non-homogenous continuous-time Markov chain can also be guar-
anteed by a known constructive procedure that we now present, for completeness, and that
is most useful for simulation and that we will use for defining the estimation calibration
procedure proposed in this work. A reference for the following algorithmic definition of a
Markov chain in continuous time is [37] (p. 266). For a proof of Theorem 6 below, see [38]
(pp. 221–233). Let θ ∈ Θ be a parameter.

Definition 3 (Constructive definition). Given a transition intensity matrix,

Q(t, θ) =
[
µθ

ij(t)
]

i,j=1,...,d
,

define

p?(t, i, j) =


1−δ

j
i

−µθ
ii(t)

µθ
ij(t) µθ

ii(t) 6= 0

δ
j
i µθ

ii(t) = 0 ,
(17)

with δ
j
i Kronecker’s delta. Let X0 = i, according to some initial distribution on {1, 2, . . . , d}.

1. The jump sequence (τn)n≥0 of stopping times is defined by induction as follows; τ0 ≡ 0.
2. τ1, the sojourn time in state i which is also the time of first jump, has an exponential distribu-

tion function given by

Fτ1(t) = P[τ1 ≤ t] = 1− exp
(∫ t

0
µθ

ii(t)du
)

. (18)

We note that this distribution of the stopping time is mandatory as a consequence of a general
result on the distribution of sojourn times of a continuous-time Markov chain (see Theorem
2.3.15 in [38] p. 221).

3. Given that the process is in state i, it may jump to state j at time τ1 = s1 with probability
p?(t, i, j) defined in Formula (3), that is

P[Xs1 = j|τ1 = s1 , X0 = i] = p?(s1, i, j) , (19)

and so Xt = i for 0 ≡ τ0 ≤ t < τ1.
4. Given that τ1 = s1 and Xs1 = j, τ2 time of the second jump with an exponential distribu-

tion function,

Fτ2|τ1=s1
(t) = P[τ2 ≤ t | τ1 = s1] = 1− exp

(∫ t

0
µθ

jj(u + s1)du
)

and
P[Xs2 = k|τ1 = s1 , X0 = i , τ2 = s2 , Xs1 = j] = p?(s1 + s2, j, k) ,

and so Xt = j for τ1 ≤ t < τ2.

The following theorem ensures that the preceding construction yields the desired result.

Theorem 6 (The continuous-time Markov chain). Let the intensity matrix be norm bounded
by a Lebesgue integrable function in [0, T]. Then, given the times (τ0)n≥1, we have that with the
sequence (Yn)n≥1 defined by Yn = Xτn , the process defined by

Xt =
+∞

∑
n=0

Yn1I[τn ,τn+1[
(t) =

+∞

∑
n=0

Xτn 1I[τn ,τn+1[
(t) (20)

which is a continuous-time Markov chain with transition probabilities P and transition intensi-
ties Q.
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Proof. This theorem is stated and proved, in the general case of continuous-time Markov
processes in [38] (p. 229).

5. Estimation–Calibration Procedure

In the following, we consider the set of procedures that allow us to obtain transition
intensities from simulated data and then, by integration of the forward Kolmogorov ODE,
the transition probabilities; these so-called estimated transition probabilities will be com-
pared to the original transition probabilities that were used to generate the simulated data.
The procedures comprehend both non-parametric statistical estimation by kernel methods
and fitting piecewise linear functions to data with additional constraints, a procedure more
akin to calibration.

We will consider an ideal sample of complete data represented in Figure 4; each line
represents a trajectory and we have on the left-hand side the initial state, following it, we
have the time spent in that state then the new state and the time spent in that state an so on
and so forth. . .

Out[]//MatrixForm=

{1, 5.10729, 1, 11.2061, 4}
{1, 8.94734, 1, 13.8573, 3, 24.6617, 4}

{1, 6.87776, 4}
{1, 6.98515, 1, 13.3962, 4}

{1, 4.71123, 1, 9.89146, 3, 18.109, 4}
{2, 7.70894, 4}

{1, 6.84374, 1, 13.6126, 4}
{1, 6.04099, 1, 10.3816, 4}

{2, 6.33596, 4}
{3, 9.85956, 4}

{2, 4.69848, 3, 12.0129, 4}
{3, 5.10992, 4}

{1, 8.59185, 1, 15.0347, 1, 25.448, 4}
{1, 6.32415, 1, 12.4971, 4}
{1, 4.45355, 1, 9.13481, 4}

{1, 8.64611, 4}

Figure 4. A set of simulated trajectories of a 4-state continuous-time Markov chain.

Using the procedure detailed in Section 4, these data were generated with a full
intensity matrix, that is a matrix of the form,

−(µ12 + µ13 + µ14) µ12 µ13 µ14
µ21 −(µ21 + µ23 + µ24) µ23 µ24
µ31 µ32 −(µ31 + µ32 + µ34) µ34
0 0 0 0

 (21)

with the intensities given by
µ12 = 3.47 · 10−6 e0.138(t+65) + 1

2500 = µ21 µ13 = 0.5 · µ12 µ23 = 1.5 · µ12
µ14 = 0.0000758 e0.087(t+65) + 1

2000 µ24 = 1.4 · µ14 µ34 = 1.8 · µ14
µ21 = µ12 µ31 = 0.1 · µ21 µ32 = 0.4 · µ21

(22)

This set of intensities used to generate the full data sample was supposed to determine a
model for LTC with four states; the relations between the intensities reflect the qualitative
relations describing the force of transitions that we suppose are held in this particular model.

For estimation–calibration purposes—following the results on the distance of transi-
tion probabilities—we will suppose that is has given the most tractable functional form of
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the intensities depending on some parameters to be estimated. For instance, a continuous
piecewise linear functional form for which we can have, for i 6= j,

µθ
ij(t) =

r

∑
k=1

(
θk,1

ij + θk,2
ij t
)

1I[tk ,tk+1[
(t) , (23)

with 0 = t0 < t1 < · · · < tr+1 = T, and possibly some conditions on the parameters θk,1
ij

and θk,2
ij if the intensity µθ

ij(t) is supposed to be piecewise linear and continuous.
We stress again that the values in Figure 4 were simulated. For LTC, for example,

real data will be given, possibly, with time stamps of a day, at best; being so, the order
of approximation will have to be chosen looking for precision with a balance between
a sufficiently narrow interval around a given time and having enough observations to
perform the estimation.

Let us detail a methodology to identify the parameter θ ∈ Θ inspired by the constructive
definition of the Markov chain in Remark 3. The general idea of the methodology is as follows.

(i) Given a state i, we have to find a fitting for the distribution of random times of i→ i
jumps. According to Formula (18), these times have an exponential distribution with
density µθ

ii(t).
(ii) For every other state j, by using P[Xs1 = j|τ1 = s1 , X0 = i], possibly with an approx-

imation, by Formula (19), we can obtain an approximation of p?(s1, i, j).
(iii) By using Formula (17) and the approximation obtained for p?(s1, i, j), we can obtain

an approximation for µθ
ij(t).

(iv) Finally, we will fit a linear continuous piecewise intensity to µθ
ij(t).

Let us detail the procedures for applying the methodology just described.

1. Recall that an observed trajectory has the following structure: (first state, time spent
in state, second state, time spent in state, third state . . . ). The maximum length of
a trajectory in our sample is 11. Select all the trajectories of length greater than 3
that start at state i = 1. If the next state is also i = 1, the time spent in state—in this
case, in state i = 1—is the first part of the sample for obtaining µθ

11(t). Select all the
trajectories of length greater than 5 for which the second state is i = 1; this set of
trajectories already contains the previous considered set of trajectories and so, if the
third state is also i = 1, the sum of the time spent in the first state and the time spent
in the second state will be the second part of the sample for obtaining µθ

ii(t). Repeat,
successively, the procedure for all trajectories of length greater than 7, then of length
greater than 9 and finally of length greater than 11 to obtain the full sample for the
intensity µθ

11(t).
2. Fit a smooth kernel distribution to the sample obtaining the intensity µθ

11(t).
3. Repeat the procedure used for obtaining the sample for µθ

11(t), but this time, select the
transitions 1→ 2, that is, the transitions from state i = 1 to state i = 2. Fit a smooth
kernel distribution to these data.

4. Now, we look for an estimate of p?(t, i, j) given by Formulas (17) and (19). For that, we
will consider rounding the sojourn times—say to the unity, in order to have enough
observations—and then group all observations of jumps from the first state according
to this rounding. Consider then the observations towards state i = 2. We will then
have that

p?(s1, 1, 2) = P[Xs1 = 2|τ1 = s1 , X0 = 1] ≈ P[Xs1 = 2, s1 − 0.5 ≤ τ1 < s1 + 0.5]
P[s1 − 0.5 ≤ τ1 < s1 + 0.5]

=

=
P[s1 − 0.5 ≤ τ1 < s1 + 0.5|Xs1 = 2] ·P[Xs1 = 2]

P[s1 − 0.5 ≤ τ1 < s1 + 0.5]

(24)
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and most of the left-hand side of the formula will be estimable with the observations
by using the smooth kernel distributions.

5. Resorting to Formula (17), we can compute values for µθ
12(t) and fit a piecewise linear

density. That is, using again Formula (17), since µθ
11(s1) 6= 0, we have that for an

arbitrary time t = s1,

µθ
12(s1) ≈

−µθ
11(s1)

1− δ2
1

p?(s1, 1, 2) = −µθ
11(s1) · p?(s1, 1, 2) .

6. We consider a set of values of µθ
12(s1), µθ

12(s2), . . . , µθ
12(sk) and then fit the multidimen-

sional parameter θ ∈ Θ to these values (see Formula (23) for the case of a continuous
piecewise linear intensity functional form).

7. These procedures are to be repeated in order to obtain the parameters µθ
2j for j 6= 2

and µθ
3j for j 6= 3.

8. The intensities µθ
jj for j = 1, 2, 3 are obtained in the usual form and are forcible contin-

uous piecewise linear since they are the sum of continuous piecewise linear functions.

6. Results of the Estimation–Calibration Procedure

We present the results from the estimation procedure developed in accordance with
the methodology proposed in Section 5.

The estimated matrix structure is a full matrix such as the one given in Formula (21)
but with piecewise linear intensities which are not very elucidative in themselves. It is
preferable to look at a graphical representation of these intensities. In Figure 5, we have
the estimated intensities (in blue colour) and the fitted piecewise linear intensities (in red
colour). We can observe that despite observable differences the fitting is reasonably good
with the exception of the intensity µ21. This may be due to the fact that we only had seven
observations in the sample, and they are consistent with LTC data. We also observe that
the fitting with an exponential-type density will give a non satisfactory result. In order to
evaluate the quality of this fitting, we present in Table 1 the maximum distance between
the computed approximate intensities and the fitted piecewise linear intensities.

Table 1. (1)—Maximum distance between the values of the computed approximate intensities; and
(2)—the fitted piecewise linear intensities and the maximum distance normalised by the maximum
value of the estimated intensities.

µ12 µ13 µ14

(1) 0.025381 0.159100 1.165812
(2) 0.000667 0.004186 0.030679

µ21 µ23 µ24
(1) 0.003661 0.020507 0.397256
(2) 0.000963 0.005396 0.104541

µ31 µ32 µ34
(1) 7.398272 0.000024 0.086817
(2) 3.52299 0.000011 0.04134

We observe that the error for µ31 is quite large compared to the other errors; this could
be due to the fact that the estimation was performed with only 20 observations, again
consistent with LTC data.
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Figure 5. Data recovered from the simulated results (blue) and the piecewise linear intensities
fitted (red).

In Figure 6, we can compare qualitatively the original transition probabilities with
the ones obtained as the solution of the forward Kolmogorov ODE with the estimated
piecewise linear intensities. A first qualitative observation is that the general behaviour
of the estimated and fitted intensities is similar. In order to compare quantitatively the
original transition probabilities with the ones obtained as the solution of the Kolmogorov
ODE with the estimated piecewise linear intensities, we present, in Figure 7, the difference
between the original transition probabilities and the estimated transition probabilities
for each of the three transient states. It is clear that there are substantial differences.
To justify these differences we have at least two cumulative sources of error. The first error
source is induced by the fact that there was a estimation–calibration procedure applied
to 5000 trajectories generated from the original transition probabilities; the second error
source comes from the fact that while the original transition probabilities are produced
from intensities of the Gompertz–Makeham type, the estimated transition probabilities are
produced by continuous piecewise linear intensities fitted to the simulated data.
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Figure 6. Comparing original transition probabilities used for simulation (left) with the estimated
piecewise linear transition probabilities (right). pij: j = 1 (blue); j = 2 (orange); j = 3 (green); j = 4
(red). ∑4

j=1 pij (purple).

In order to detail the average error per year coming from the estimation procedure we
can compute

∆ij :=
1

27

∫ 27

0

∣∣pij(t)− p̃ij(t)
∣∣dt (25)

with pij(t) the original transition probabilities and p̃ij(t) the estimated transition probabili-
ties. The results are presented in Table 2.
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Table 2. Average error per year between the estimated and the original probability transitions.

∆11 ∆12 ∆13 ∆14

0.004647 0.001806 0.000896 0.007118

∆21 ∆22 ∆23 ∆24
0.002394 0.002140 0.002624 0.004081

∆31 ∆32 ∆33 ∆34
0.000896 0.001258 0.005907 0.003898

The main conclusion is that the order of magnitude of the average error per unit
time—chosen as a year since it is the time duration of an interval where transition proba-
bilities in health insurance and long-term-care models can have a significant impact—is
always less than 1%. Of course, we have to be careful of the extremes of these errors that
are visible in Figure 7.
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Figure 7. The difference between the original transition probabilities and the estimated ones.
pij − p̃ij: j = 1 (blue); j = 2 (orange); j = 3 (green); j = 4 (red).

All computations and graphic representations were created with a Mac mini (M1 2020)
equipped with macOS Monterey 12.5.1 with Wolfram Mathematica 12, version 12.3.1.0.
The estimation–calibration procedures use either native functions or small routines that
require reasonable execution times of the order of a second.

7. Discussion

The methodology proposed in this work gave us the continuous piecewise linear
intensities depicted in Figure 5. The use of the continuous piecewise linear functional
form was intentional although not necessary; a better fit to the data, most possibly with
a larger number of parameters, could be computed and possibly could provide a better
final result, qualitatively, in Figure 6 and quantitatively with metrics given by both the
average error per year, as in Table 2 and as in Figure 7, showing the analysis of local
discrepancies between the original transition probabilities and the transition probabilities
resulting from the estimation methodology. The intention of using the continuous piecewise
linear functional form for the intensities was to illustrate the possibility of an estimation–
calibration procedure relying on a small number of parameters. Whenever faced with the
estimation–calibration of intensities for real-data modelling, a situation where there are
no known determined intensities generating the data, the choice of the functional form is
secondary with respect to the quality of the model fitting.

8. Conclusions

In this work, we proposed a methodology for estimation–calibration of continuous-
time non-homogeneous Markov chains with finite state space. We presented an ap-
plication of the methodology to a Monte Carlo simulated set of trajectories generated
from intensities of Gompertz-Makeham type, and we obtained, by the methodology, es-
timated continuous piecewise linear intensities. We compared the correspondent tran-
sition probabilities—obtained by solving the forward Kolmogorov ODE for the original
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Gompertz–Makeham intensities and for the continuous piecewise linear intensities—obtaining
an average error per year of always less than 1%.

In order to justify the methodology, we presented a result on regime-switching Markov
chains, proving the existence of a Markov chain process, in a given time interval, obtained
by glueing together different intensities matrices defined in the different intervals of a
partition of the time interval of the Markov chain process; this result shows that it is possible
to consider intensities of different functional forms for different sub intervals of the time
interval where the whole Markov chain process is defined.

We also presented a result that shows that it is possible to bound the distance between
the matrix of transition probabilities corresponding to different matrix intensities by the
distance between these matrix intensities. This result shows that, with respect to the
transition probabilities, we can consider changes in functional form of the intensities—in
an intensity matrix—as long as the distance between the original intensity matrix and the
altered one is small enough.

In future work, we intend to improve the methodology in order to control the quality
of the process by adequate tests and to improve the algorithm used.
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