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Abstract: It is recognized that most real systems and networks exhibit a much higher clustering
with comparison to a random null model, which can be explained by a higher probability of the
triad formation—a pair of nodes with a mutual neighbor have a greater possibility of having a link
between them. To catch the more substantial clustering of real-world networks, the model based
on the triadic closure mechanism was introduced by P. Holme and B. J. Kim in 2002. It includes a
“triad formation step” in which a newly added node links both to a preferentially chosen node and to
its randomly chosen neighbor, therefore forming a triad. In this study, we propose a new model of
network evolution in which the triad formation mechanism is essentially changed in comparison
to the model of P. Holme and B. J. Kim. In our proposed model, the second node is also chosen
preferentially, i.e., the probability of its selection is proportional to its degree with respect to the
sum of the degrees of the neighbors of the first selected node. The main goal of this paper is to
study the properties of networks generated by this model. Using both analytical and empirical
methods, we show that the networks are scale-free with power-law degree distributions, but their
exponent γ is tunable which is distinguishable from the networks generated by the model of P. Holme
and B. J. Kim. Moreover, we show that the degree dynamics of individual nodes are described by
a power law.

Keywords: triadic closure; social networks; preferential attachment; complex networks; high
clustering; growth model; community structure; edge clustering

MSC: 05C82; 05C90; 90B15; 91D10; 37M10

1. Introduction

The structure and properties of many real networks cannot be meticulously captured
by random graph models that cannot generate networks with complex cluster and commu-
nity patterns. In social graphs, a simple yet realistic mechanism known as triadic closure is
considered to be an important factor in producing high clustering and complex community
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structures. Triadic closure refers to the phenomenon where new links are formed between
nodes that have a common neighbor, resulting in the closing of triads. This concept, first
introduced by Rapoport in 1953 [1], highlights the tendency of real networks to exhibit
a much higher likeliness of forming links between pairs of nodes that share a mutual
neighbor compared to a random null model.

By leveraging the triadic closure effect, researchers and analysts can gain valuable
insights into the organization and dynamics of complex networks. This knowledge can be
utilized to facilitate the identification and analysis of communities within the network, en-
abling a better understanding of the collective behavior and interactions of its constituents.
Furthermore, the study of triadic closure can inform the development of strategies for
community detection, network growth modeling, and targeted interventions aimed at
fostering collaboration and cooperation within these networks.

The triadic closure (TC) model developed in the study [2] uses the growth and preferen-
tial attachment mechanisms that are core to the Barabási–Albert (BA) model [3]. Moreover,
the authors of [2] showed that the TC model generates networks that have a scale-free
structure and whose degree distributions follow a power law. However, the TC model
offers an additional feature that induces higher clustering compared to the BA model. This
makes the networks obtained using the triadic closure model more similar to real social
networks in terms of their clustering properties.

In the triadic closure model, when a new vertex is attached to the graph, it forms a link
with an present vertex chosen based on preferential attachment. Preferential attachment is
a mechanism where the probability of selecting a node to form a link with is proportional
to its degree (i.e., the number of connections it already has).

In addition to the preferential attachment mechanism, the new node also forms other
m− 1 links. The probability of these links being formed with an existing node is determined
by a parameter p. If p = 1, then the new node joins a randomly selected neighbor of the
first chosen node. This process, known as triad formation, strengthens the clustering in the
network. On the other hand, if p = 0, then the new node simply forms links based on the
preferential attachment mechanism.

The triadic closure model allows one to generate graphs with different average cluster-
ing by changing the value of p. On the other hand, the resulting degree distributions in the
networks generated by the TC model are exactly the same as in the BA model, following a
power law with γ = −3 and do not depends on the value of p.

In the model proposed in [2], when a triad is formed, a new edge is attached to a
random neighbor of a node, chosen uniformly from the nodes that were already selected
in the previous step using the preferential attachment rule. However, in some complex
networks, it appears that the selection of the second link is also performed using the
preferential attachment rule, as follows:

• In social networks, when a person becomes a friend with someone, they also tend to
be a friend of the most popular individual in the group. Most social networks are
clustered, so dealing with a large volume of emerging new information in various
types of networks requires selecting relevant information from the ever-increasing
data pool. This significantly increases the costs of data selection. Due to the difficulty
of making choices, network participants will rely on the opinions of experts as the
most authoritative members of these networks;

• In citation networks, when an article cites a paper, it tends to cite the most cited items
from the paper references as well;

• If an Internet page links to an existing page, there are great chances that it also links to
the most popular pages to which the existing page is pointed to;

• In criminal structures: the tendency of two individuals to commit a crime together if
they have a common accomplice.
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In this paper, we present an enhancement to the triadic closure model by incorporating
preferential selection of nodes during the triadic formation step. Unlike the basic model,
where nodes are chosen uniformly, our proposed model allows for selective node choice.
However, the dynamic nature of such models poses challenges in obtaining analytical
descriptions and accurately identifying the network features that can be directly attributed
to triadic closure.

To assess the effectiveness of our enhanced model, we conducted both analytical and
empirical investigations into the geometric properties of the networks generated. Our
findings demonstrate that a network simulated by the proposed model is scale-free, and is
characterized by a power-law degree distribution. However, the exponent of the power-law,
denoted as γ, can be adjusted or tuned in our model.

This distinction highlights the flexibility and versatility of our enhanced triadic closure
model, as it allows for fine-grained control over the degree distribution exponent. Such
control over the degree distribution exponent can have significant implications for network
analysis and understanding real-world networks.

The paper is organized as follows. Section 2 presents a short review of recent studies
on the topic. In Section 3, we introduce an extension of the triadic closure model based
on the model of P. Holme and B. J. Kim. Moreover, in Section 3.2 we study the degree
dynamics of a node in the networks generated by the extended triadic closure model.
Finally, in Section 4 we show that the extended triadic closure model induces scale-free
networks. Moreover, we show that the proposed model generates networks with tunable
scale-free behavior (with its exponent γ depending on p and m), which differs from the
behavior of the BA or the triadic closure models. The model under consideration generates
networks with different levels of power-law exponent as well as clustering by varying p
and m. Note that networks simulated by the triadic closure model exhibit a power-law
degree distribution with exponent γ = −3 for any 0 ≤ p ≤ 1.

2. Related Studies

Triadic closure is widely acknowledged as an essential mechanism in the formation of
structural patterns in social networks. Numerous models of network formation have been
proposed that incorporate triadic closure, typically as part of a growth or rewiring process.

This phenomenon is particularly pronounced in social networks, where individu-
als often tend to connect with others who are already connected to their acquaintances.
Many studies show that this process of triadic closure leads to the formation of tightly-knit
communities within the larger network, characterized by strong social ties and frequent in-
teractions, including the following:

• The patterns of the temporal behavior of triads in social networks have been studied
in paper [4]. The authors state that triads are common in social groups and propose a
probabilistic factor graph model that captures the dynamic information in the triadic
closure process.

• Paper [5] states that the community structure is an important property of complex
social networks, while the triadic closure naturally implies the presence of community
structure. The authors use a fitness-based link attractivity defined for a vertex to
obtain a phase transition in which communities disappear.

• The study [6] deals with the problem of community formation in online social net-
works. The paper focuses on the triad formation mechanism and uses data sets
based on a large microblogging network. The study shows that the triadic closure
depends on user demographics, network characteristics, and social properties. The
authors propose a a probabilistic graphical model to predict the triad formation in
dynamic networks.

• The formation of social triads in social groups has been analyzed in paper [7]. The
author conducted an empirical study based on data sets of two real social complex
networks and they propose a method to predict inferring triadic tie strength dynamics.
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• The paper [8] deals with the problem of predicting missing links in the complex
network using triadic closure theory. The work is aimed at quantifying the common
neighbor influence on creating the link between nodes. It is shown that the proposed
algorithm a sufficient accuracy and is stable and robust. Moreover, the authors propose
an ensemble link prediction algorithm which is based on some local characteristics.

• The paper [9] examines the temporal data sets taken from Flickr and Epinions. The
study shows that the triad formation has a crucial role in the evolution of networks.
Moreover, the authors developed a network evolution model which uses the preferen-
tial triadic closure. Numerical experiments show that the proposed model is capable
in reproducing some global properties of real social networks.

• The authors of paper [10] applied Relational Event Modeling (REM) to a dataset
from online discussions. The paper examines social interaction based on micro-level
temporal patterns.

• The work [11] studies the effect of microstructures on the appearance of communities in
networks. The authors use four community-detection approaches and three different
generative network models including triadic closure.

• Paper [12] proposes local closure coefficient to quantify the phenomenon of edge
clustering in real social networks. The authors show that the use of the closure
coefficient may improve link prediction in real network dynamics.

However, triadic closure is not solely limited to social networks. It also manifests in
other types of networks, including knowledge networks, citation networks, and research
collaboration networks, among many others. These networks often demonstrate a similar
propensity for establishing connections between nodes that have mutual connections,
suggesting the presence of underlying community structures, including the following:

• The paper [13] proposes models of network growth in which the emergence of an
edge between nodes is more likely if they have a common neighbor. Simulations have
demonstrated that networks built using these models reproduce a number of features
of real social networks, including high levels of clustering.

• A large group of articles is devoted to citation networks, in which, as empirical studies
show, the probability of triangle formation is high. Thus, the work [14] proposes a
model for the evolution of scientific citation networks. The model takes into account
both the loss of relevance of articles over time and the formation of triangles.

• Another paper, [15] examines the citation network of scientific papers and proposes
a stochastic model incorporating the triadic closure mechanism, statistics of links to
scientific articles, as well as the dynamics of their citations. The authors substantiate
the model using the example of citation dynamics for physics articles, identifying
nonlinear citation dynamics, the nonlinearity of which is closely related to the net-
work topology.

• Citation networks were also the subject of research in [16], which analyzed co-citations
on the Web of Science citation dataset. The model proposed by the authors takes
into account the frequency of co-occurrence of the first author, the frequency of
co-occurrence of other authors, network density, as well as triadic closure in the co-
citation graph. The model allows one to predict the appearance of co-authors in the
co-authorship network.

• The study [17] notes that when modeling citation networks, it is necessary to take
into account their high clustering. The authors propose a new model to explain the
emergence of high clustering in such networks. The authors analyzed several real-life
citation networks and showed that the proposed model adequately reproduces the
power-law degree distribution and high clustering observed in these real-life networks.

• The authors of paper [18] look at knowledge networks and show that triadic clo-
sure and topographical closeness increase the likelihood of creating connections, but
do not affect their sustainability. The authors analyze the influence of endogenous
network effects and how the cognitive proximity of actors influence the process of
cluster creation.
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• The study [19] notes that the clustering coefficient does not reflect common interper-
sonal interpretations of triadic closure. In this regard, the study introduces a measure
of triadic closure, which is used in the study of three empirical social networks.

• Note that in some real networks the process of triangle formation is counterintu-
itive. The paper [20] examines the network of co-inventors and empirically finds
that two inventors are less likely to form a first research partnership if they have
mutual partners.

Many recent studies examined the triadic closure mechanism (the tendency for indi-
viduals with a common friend to become friends themselves) with respect to homophily
in complex networks (the habit for individuals to build connections with others who are
similar to them), including the following:

• The paper [21] investigates the formation and nature of social networks in the context
of Social Internet of Things (SIoT). The authors utilizes large datasets, including
anonymized call detail records, to analyze triadic closure patterns and homophily in
homophilic social networks. It proposes three social triad classes and explores the
correlation between triads and homophily. The study concludes that there is a positive
connection between homophily and a specific social triad class. Overall, this research
contributes to the understanding of social networks in the SIoT context.

• The study [22] explores the concept of homophily and its impact on social segregation.
The authors challenge the belief that triadic closure and homophily work together
and demonstrate through network analysis and empirical investigation that triadic
closure can actually help reduce segregation. The findings are supported by real-
world networks, strengthening the validity of the study. The authors suggest practical
interventions to alleviate segregation in settings where triadic closure and homophily
interact, as well as insights for designing interventions in online communities. Overall,
this work makes a significant contribution to understanding social segregation and
offers potential solutions.

• The paper [23] examines how homophily (common interests) and triadic closure (mu-
tual connections) affect the reciprocation benefit for content providers in social media.
Using data from YouTube video providers, the researchers find that reciprocation
is generally beneficial for the initiator, but content similarity and common ties can
reduce the growth in subscribers. They also discover a positive interaction effect
between content similarity and common ties. Overall, these findings provide practical
implications for content providers and social media platforms seeking to optimize
reciprocal promotion. The study sheds light on the complex dynamics of reciprocation
in social media content promotion.

• The study [24] examines the relationship between triadic closure and choice homophily,
in social networks. Using a dynamic model, the researchers demonstrate that these fac-
tors contribute to induced homophily in real-world social networks. They estimate the
degree to which triadic closure amplifies observed homophily in friendship and com-
munication networks, and show that this augmentation can bring to the core-periphery
structure of networks and the persistence of homophilic constraints. The study also
highlights that even small individual biases can have significant network-level effects,
such as segregation or the dominance of a core group. This paper highlights the impor-
tance of considering the broader dynamics of society when studying individual-level
mechanisms in social networks.

The article [25] analyzes the friendship paradox as a property of triadic closure in
networks, and some works explore empirical studies on triadic closure in real social
networks in the context of innovation [20], the acting environment [26], as well as the
criminal world [27], to simulate real processes of collaboration development.
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Models of complex networks using the triadic closure mechanism studied by various
researchers, have shown that their properties vary from those of the well-known BA and
TC models (the Barabási–Albert (BA) model and the triadic closure (TC) model), as follows:

• A static triadic closure (STC) model has been proposed in [28] for generating growth
clustered networks. The author show that the proposed model is quite realistic and
simple enough to obtain some of properties analytically.

• The authors of paper [29] introduce an extension of the triadic closure model in which
the number of attached links selected randomly. They show that the model simulates
more realistically the dynamics of generated networks.

• An interesting model that captures the dissimilarities between the incoming and
outgoing network degrees has been analyzed in [30]. The model uses three different
mechanisms including directed triadic closure. The authors empirically validate the
model on real datasets.

• A nonlinear coevolving voter model with triadic closure local rewiring has been
developed and studied in [31]. The model is capable of explaining some properties
of real adaptive social networks such as the reproduction of isolated parts and a
high clustering.

• The work [32] introduce a hierarchy of network evolution models based on triadic
closure mechanism. The author uses a chemical kinetics framework to show that
models reproduce an apparent metastability property of the microscale system.

• The authors of paper [33] propose a Triangle Generalized Preferential Attachment
Model and investigate the clustering properties of simulated networks. They show
that this model generate networks with a power law degree distribution.

The works [34–38] present heuristic algorithms, e.g., for maximizing influence in
graphs with a triadic closure mechanism (TC-IM).

3. The Extended Triadic Closure Model
3.1. The Model Description

The triadic closure model developed by P. Holme and B. J. Kim [2] is based on the
well-known Barabási–Albert model [3] (the preferential attachment model). In this section,
we describe and study a development of triadic closure model proposed by P. Holme and
B. J. Kim [2]. The authors of [39] develop a model describing the growth of a network, in
which one node and two links are added at each iteration, and this node is connected by
two links with neighboring nodes. In this section, we will extend this model in two ways.
First, we will add m ≥ 2 links at each iteration. Secondly, we will form a triad with the
probability p (as it is in the classical triadic closure model).

In this model, when a new vertex is attached to the graph, it joins an existing node
with a probability depending on the degree of that node, which is called the preferential
attachment mechanism. Next, the remaining m − 1 edges of the new node can be established
with a certain neighbor of that node with probability p (so-called triad formation), or with
probability 1 − p, the new node can connect with any node in the network selected using
preferential attachment rule.

At each iteration one node appears and is added to the network. For simplicity, we
will use integer i to mark the node that appeared at the corresponding iteration i.

Let N(t) and M(t) be the number of nodes and the number of edges at iteration t,
respectively.

Denote k j(t) the degree of node j at iteration t. Let

p(j, i) =

{
1, if the link (j, i) exists,
0, otherwise.
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Then, we have

ki(t) =
N(t)

∑
j=1

p(j, i).

Let si(t) denote the total degrees for all neighbors of node i at iteration t:

si(t) =
N(t)

∑
j=1

p(i, j)k j(t). (1)

In the network evolution model, the process develops step by step as follows:

1. (Growth) At every iteration t, one new vertex t is attached;
2. At each stage, the network is replenished with m new connections, and each new

node t joins m existing nodes, taking into account the following rules:

(a) (Preferential attachment)
Node t links to one of the existing nodes i of the network with a probability
depending on the degree of the node ki(t);

(b) Each of the remaining m − 1 edges of the new node t is established as follows:

• (b1) (Triad formation)
With probability p, new node t is linked to one of the neighbors j of node
i selected at the previous stage, proportional to the degree of the vertex

k j(t). Therefore, the probability of choosing neighbor j of node i is p
kj(t)
si(t)

,
where si(t) is defined in Equation (1).

• (b2) With probability 1 − p, a link is established with one of the network
nodes s (not necessarily adjacent to node i) with a probability proportional
to the degree of this node ks(t).

The proposed model is extension of the growth network model presented in paper [39];
if we take m = 2 then we obtain the model studied in [39] as a particular case of our model.

3.2. Degree Dynamics

In this model, every node i in the network has the possibility to increase the number
of its links, i.e., its degree, at each iteration. This can happen in three different ways: at
steps 2(a), 2(b1), and 2(b2).

When a new node is added to the network, it connects to one of the existing nodes. In
step 2(a), the probability of choosing a node of degree k at time t is

k

∑
N(t)
j=1 k j(t)

=
k

2M(t)
, (2)

where N(t) denotes the number of nodes in the network, and M(t) is the number of links
at time t. It is clear that N(t) = N0 + (t − 1) and M(t) = M0 + 2m(t − 1), where N0
and M0 are the numbers of nodes and links of the initial graph (before the first iteration),
respectively.

If we consider the degree ki as a continuous quantity that represents the average
of a set of random growth processes, as well as the rate at which node i acquires new
connections as a result of new nodes joining it at iteration t involving steps 2(a), 2(b1), and
2(b2), then these processes will correspond to a certain equation, where pa(i), pb1(i), and
pb2(i)—the probability of choosing node i at the corresponding steps.

If we represent the degree ki of node i as a continuous value, which is the average
value for a set of random growth processes, and also take into account the rate at which
node i acquires new links due to the addition of new nodes to it at iteration t, including
steps 2(a), 2(b1), and 2(b2), then we can write the following equation
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dki(t)
dt

= pa(i) + pb1(i) + pb2(i), (3)

in which pa(i), pb1(i), and pb2(i) represent the probabilities of choosing node i at the
corresponding steps. We obtain

pa(i) =
ki(t)

2M(t)
∼ ki(t)

2mt
. (4)

Let γi(t) be defined as follows:

γi(t) :=
N(t)

∑
j=1

p(j, i)
k j(t)
sj(t)

, (5)

where sj(t) is defined in Equation (1).
To find the probability that vertex i is chosen at step 2(b1) we should calculate the

sum (taken over all neighbors j for node i) each term of which is the multiplication of the
following:

• The expectation of picking node j at step 2(a), which is equal to
kj(t)

2M(t) ;

• The product of the number of trials m − 1 and the expectation of triad formation p;
• The probability of picking vertex i among k j(t) neighboring nodes of vertex j, which

is equal to ki(t)
sj(t)

.

Thus, we obtain

pb1(i) = p(m − 1)
N(t)

∑
j=1

p(j, i)
k j(t)

2M(t)
ki(t)
sj(t)

=

p(m − 1)
ki(t)

2M(t)

N(t)

∑
j=1

p(j, i)
k j(t)
sj(t)

∼ p(m − 1)
ki(t)
2mt

γi(t), (6)

where γi(t) is defined in (5).
We have

pb2(i) = (1 − p)(m − 1)
ki(t)

2M(t)
∼ (1 − p)(m − 1)

ki(t)
2mt

. (7)

It follows from (3), (4), (6), and (7) that k̄i(t) := E(ki(t)) satisfies

dk̄i(t)
dt

=
(
1 + p(m − 1)γi(t) + (1 − p)(m − 1)

) k̄i(t)
2mt

. (8)

If we integrate Equation (8), we have the following dynamics for large t:

k̄i(t) ∼ c
(

t
i

) 1+(1−p)(m−1)
2m

exp
(

p(m − 1)
2m

∫
γi(t)

t
dt
)

, (9)

where c is a constant satisfying the initial condition ki(i) = m.
Equation (9) shows the expected temporal trajectory for the degree of an individual

node i. If m = 2 and p = 1, then we obtain the dynamics (11) of the simple model described
in paper [39]. The exponents βi have disparate values, which is completely different for the
Barabási–Albert model.
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Using simulations we will demonstrate that the trajectory of the expected degree for
node i can be represented by a power law with exponent βi that depends on i:

k̄i(t) ∼ c
(

t
i

)βi

. (10)

A complete graph of five vertices was taken as an initial graph. This number of nodes
in the initial graph is sufficient for the first iteration, since we take as m = 5 as the amount
of edges added at each iteration. Then 200,000 iterations of the proposed triadic closure
model were applied to the initial graph. Thus, in each experiment a graph of size 200,000
was constructed using the triadic closure mode with the preferential attachment at triadic
formation step (as it is described in Section 3.1).

At certain iterations of the graph evolution, the values of the degrees for four fixed
vertices were calculated as i = 2 (the vertex from the initial complete graph), and i =
10, 50, 100.

We took m = 5 at the experiments. The probability p of triad formation was specified
by the three different model parameters p = 0.75, p = 0.5, and p = 0.25. For each of chosen
values of m and p we carried out 100 experiments. Thus, we obtained the values of k[j]i (t)
and the degree of node i = 2, 10, 50, 100 at iteration t = 1, . . . , 2 · 105 obtained in simulation
j = 1, . . . , 100.

Then, the degrees of vertices were averaged over the 100 simulations at fixed iterations
of graph construction; i.e., we calculate

ki(t) =
1

100

100

∑
j=1

k[j]i (t).

The resulting dynamics of vertex degrees averaged over 100 simulated graphs are
presented in Figure 1a,b (p = 0.75), Figure 1c,d (p = 0.5)), and Figure 1e,f (p = 0.25) .

Model-based network simulations show that the temporal behavior of the degree of
each individual node is not the same for all nodes. Although it obeys a power law, its
exponent depends on the iteration in which the node appears in the network. In other
words, the growth of every node’s degree follows a power-law, but its exponent βi depends
on i (its value is close to 1 for node i = 2, and βi quickly decreases to 1+(1−p)(m−1)

2m with
increasing i). Thus, the temporal behavior of node degrees in the proposed model differs
significantly from the corresponding dynamics in networks constructed using the BA or
TC models, for which node degree dynamics follow a power-law growth with the same
exponent 1

2 .
Model-based network simulations show that there is a limit of γi(t) as t → ∞, γi :=

limt→∞ γi(t). Consequently, the asymptotic behavior for large t satisfies the equation

ki(t) ∼ m
(

t
i

) 1+(1−p)(m−1)+p(m−1)γi
2m

. (11)

Equation (11) specifies the expected degree trajectory of an individual node over time.
Experiments have shown that the exponents βi depend on the time of node appearance. It
is known that in networks built using the Barabási–Albert model, the degree exponents are
the same for all nodes.

Thus, the degree dynamics of an individual vertex i of the network follows the power
law (10) with βi that depends on i. The normalization condition is

2M
N

=
1
N

N

∑
i=1

ki ∼
1
t

∫ t

1
m
(

t
x

)β(x)
dx = 2m,

since the average degree over all the vertices is 2M
N = 2m.
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Equation (10) allows us to obtain several properties as follows:

• First, the expectation of a fixed node’s degree increases as the network grows. This
growth follows a power law with exponent βi, the value of which varies for differ-
ent nodes.

• Secondly, the smaller i, the higher the exponent βi. Consequently, the growth of node
degrees in this model occurs faster for nodes that appear in the early stages of the
network’s existence. As a result, the hubs in this model are larger compared to BA or
TC models.
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Figure 1. Degree dynamics of nodes i = 2, 10, 50, 100 (a) p = 0.75, (c) p = 0.5 and (e) p = 0.25. We
normalized the data to a common scale by dividing each value by the maximum degree of a node.
We then plotted the trajectories of the degrees for different nodes i = 2, 5, 10, 50, 100 obtained for
(b) p = 0.75, (d) p = 0.5, and (f) p = 0.25 in the log–log scale. For each log–log plot, we also calculated
the slope using the linear regression method. The results are averaged over 100 independent runs for
graphs of the same size where N = 200,000.
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3.3. Additional Properties of γi’s

After t iterations, the algorithm described in Section 3.1 with parameters m and p
produces a network of size N(t) ∼ t. Denote Γm,p(t) the mean value of γi(t) over i at
iteration t, i.e.,

Γm,p(t) :=
1

N(t)

N(t)

∑
i=1

γi(t). (12)

We have

Γm,p(t) =
1

N(t)

N(t)

∑
i=1

N(t)

∑
j=1

p(j, i)
k j(t)
sj(t)

=
1

N(t)

N(t)

∑
j=1

k j(t)
sj(t)

N(t)

∑
i=1

p(j, i) =
1

N(t)

N(t)

∑
j=1

k2
j (t)

sj(t)
. (13)

The mean value of γiki over i,

1
N(t)

N(t)

∑
i=1

γi(t)ki(t) =
1

N(t)

N(t)

∑
i=1

N(t)

∑
j=1

p(j, i)ki(t)
k j(t)
sj(t)

=

1
N(t)

N(t)

∑
j=1

k j(t)
sj(t)

N(t)

∑
i=1

p(j, i)ki(t) =
1

N(t)

N(t)

∑
j=1

k j(t)
sj(t)

sj(t) =

1
N(t)

N(t)

∑
j=1

k j(t) =
2M(t)
N(t)

= 2m, (14)

i.e., it is equal to the mean value of ki over i, i.e., 2m.

Theorem 1. Γm,p(t) tends to a constant as t → ∞.

The proof of Theorem can be found in Appendix A.
Figure 2 shows the dynamics of Γm,p(t) (with different choices of m and p) over t and

that Γm,p(t) tends to a constant depending on m and p as t → ∞.
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Figure 2. The dynamics of Γm,p(t) over time for (a) m = 10, p = 0.5, (b) m = 25, p = 0.75, (c) m = 100,
p = 0.25, and (d) m = 25, p = 0.25.
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We built networks of size N = 100,000 using the proposed model for various values
of the model parameters m and p. During each experiment, for fixed parameter values,
we built 10 networks, for each of them we found a value Γm,p(N) using Equation (13), and
then we recorded their average values in Table 1.

Table 1. The empirical values of Γm,p obtained for different p and m. The values were calculated for
networks of size N = 100,000.

p \ m 2 5 10 25 50 100

0.25 0.41 0.20 0.11 0.11 0.13 0.16
0.5 0.33 0.14 0.14 0.15 0.16 0.17

0.75 0.27 0.17 0.18 0.18 0.18 0.20
1 0.27 0.20 0.19 0.19 0.19 0.20

Theorem 2. The values of {γi(t)} have the following properties:

• E(γ1(t)) ≥ E(γ2(t)) ≥ . . . ≥ E(γi(t)) ≥ E(γi+1(t)) ≥ . . .;

• E(γi(t)) → 0 for as i → ∞, i.e., E(βi(t)) → 1+(1−p)(m−1)
2m as i → ∞;

• The expected initial value of γi(i) at iteration i is equal to

E(γi(i)) =
1

2M(i)

i−1

∑
r=1

(
1 + (1 − p)(m − 1) + p(m − 1)γr(i)

)
k2

r (i)
sr(i)

.

The proof can be found in Appendix B.

4. Scale-Free Behavior

We study the stationary degree distribution as the number of iterations t → ∞. Let us
calculate the difference in the number of nodes with degree k after adding one node at the
iteration t (and m links are added connecting the newborn node with existing vertices).

Let qt(s, k) denote the probability that vertex s has degree k at iteration t.
Let pk(t) denote the probability that a randomly chosen node of the graph (at iteration

t) has degree k. In another words, pk(t) is the share of nodes with degree k among all nodes
of the network at iteration t.

By definition of qt(s, k) we have

1
t

t

∑
s=1

qt(s, k − 1) = pk−1(t), (15)

1
t + 1

t+1

∑
s=1

qt+1(s, k) = pk(t + 1), (16)

1
t

t

∑
s=1

qt(s, k) = pk(t). (17)

Since every new node obtains degree m, we have

qt+1(t + 1, k) = δk,m,

where δk,j is the Kronecker delta, i.e.

δk,j =

{
1, k = j,
0, k ̸= j.
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Node s will have degree k at iteration t + 1 if the following occur:

• The degree of vertex s is equal to k − 1 at iteration t and it adds up by 1 at time t + 1;
• The degree of node s at iteration t is k and it does not change at iteration t + 1.

The probability that the degree of vertex s is equal to k − 1 at iteration t and the node
is chosen at step 2(a) of iteration t + 1 is

qt(s, k − 1)
k − 1

2M(t)
.

The probability that the degree of node s is equal to k − 1 and the node is chosen at step
2(b1) of iteration t + 1, is

p(m − 1)qt(s, k − 1)
N(t)

∑
j=1

p(s, j)
k j

2M(t)
k − 1

sj
.

The probability that node s has degree k − 1 and the node is chosen at step 2(b2) of
iteration t + 1 is

(1 − p)(m − 1)qt(s, k − 1)
k − 1

2M(t)
.

The probability that node s has degree k and the node is not chosen at iteration t + 1 is

qt(s, k)

(
1 − k

2M(t)
− p(m − 1)

N(t)

∑
j=1

p(s, j)
k j

2M(t)
k
sj
− (1 − p)(m − 1)

k
2M(t)

)
.

Then,

qt+1(s, k) = qt(s, k − 1)
k − 1

2M(t)
+

p(m − 1)qt(s, k − 1)
N(t)

∑
j=1

p(s, j)
k j

2M(t)
k − 1

sj
+ (1 − p)(m − 1)qt(s, k − 1)

k − 1
2M(t)

+

qt(s, k)
(

1 − k
2M(t)

− p(m − 1)
N(t)

∑
j=1

p(s, j)
k j

2M(t)
k
sj
− (1 − p)(m − 1)

k
2M(t)

)
. (18)

If we sum up the left- and right- hand sides of (18) over s = 1, . . . , N(t), we obtain by
using of Equations (15)–(17) that

(t + 1)pk(t + 1)− δk,m = tpk−1(t)
k − 1

2M(t)

+ p(m − 1)
k − 1

2M(t)

N(t)

∑
s=1

qt(s, k − 1)
N(t)

∑
j=1

k j(t)
sj(t)

p(s, j)

+ (1 − p)(m − 1)tpk−1(t)
k − 1

2M(t)
+ tpk(t)− tpk(t)

k
2M(t)

− p(m − 1)
k

2M(t)

N(t)

∑
s=1

qt(s, k)
N(t)

∑
j=1

k j(t)
sj(t)

p(s, j)

− (1 − p)(m − 1)tpk(t)
k

2M(t)
. (19)

Denote pk = limt→∞ pk(t) the limit probability, then

(t + 1)pk(t + 1)− tpk(t) → pk, t → ∞.
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Using approximations N(t) ∼ t, M(t) ∼ mt and Equation (19) we obtain

2mpk =

(
1 + (1 − p)(m − 1)

)
((k − 1)pk−1 − kpk)

+ p(m − 1) lim
t→∞

1
t

t

∑
s=1

γs(t)
(
(k − 1)qt(s, k − 1)− kqt(s, k)

)
, (20)

where γs(t) is defined in (5).
Tending t to infinity we obtain

lim
t→∞

1
t

t

∑
s=1

γs(t)((k − 1)qt(s, k − 1)− kqt(s, k)) =

Am,p lim
t→∞

(
1
t

t

∑
s=1

γs(t)

)(
1
t

t

∑
s=1

((k − 1)qt(s, k − 1)− kqt(s, k))

)
=

Am,p((k − 1)pk−1 − kpk)Γm,p, (21)

where Am,p is a constant and
Γm,p := lim

t→∞
Γm,p(t).

It follows from (20) and (21) that

2mpk = (k − 1)
(

1 + (1 − p)(m − 1)
)

pk−1 − k
(

1 + (1 − p)(m − 1)
)

pk

+ Am,p p(m − 1)(k − 1)pk−1Γm,p − Am,p p(m − 1)kpkΓm,p. (22)

It follows from (22) that

pk =

(k − 1)
(

1 + (1 − p)(m − 1) + Am,p p(m − 1)Γm,p

)
2m + k

(
1 + (1 − p)(m − 1) + Am,p p(m − 1)Γm,p

) pk−1, (23)

and therefore

pk = ck−γm,p , γm,p = 1 +
2m

1 + (1 − p)(m − 1) + Am,p p(m − 1)Γm,p
, (24)

i.e., the degree distribution of the network follows the power law with its exponent γm,p
depending on m and p.

Table 2 shows the dependence of exponent γm,p on different m and p obtained empiri-
cally in a series of experiments. In each experiment we generate ten networks of the same
size where N =100,000 with the use of the proposed model. Then, we averaged results
over these networks. Table 2 demonstrates that exponents of degree distribution depend
on the model parameters m and p.

Table 2. The empirical values of the degree distribution exponent γm,p obtained for different p and m.
The values were calculated for networks of size N = 100,000.

p \ m 2 5 10 25 50 100

0.25 2.71 3.05 3.25 3.40 3.47 3.50
0.50 2.84 3.35 3.66 3.94 4.08 4.14
0.75 3.03 3.60 3.96 4.38 4.61 4.79
1.00 3.42 3.86 4.46 4.50 4.79 5.10
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Figure 3 presents the log–log plots of degree distributions for networks generated for
different m and p. The plots show that the degree distributions follow the power law with
the corresponding exponents that are present in Table 2.
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Figure 3. Log–log plots of degree distributions for networks generated with parameters (a) m = 10,
p = 0.5; (b) m = 100, p = 0.25; (c) m = 25, p = 0.25; (d) m = 25, p = 0.75

5. Conclusions

In this paper, we consider the development of the triadic closure model, in which all
nodes at each iteration are selected based on the preferential attachment mechanism. The
results show that the stationary degree distribution follows a power law, but the value of
the exponent is significantly different from the value of the exponent for the basic triadic
closure model.

The model has the attractive feature of allowing networks to be created with different
power law exponents for the degree distribution depending on the choice of model param-
eters. Moreover, the model allows one to generate networks with more realistic clustering
that is inherent in real networks. However, issues related to the study of the behavior of
local clustering coefficients, as well as the dynamic behavior of global clustering indicators,
remained beyond the scope of this work. We believe that the study of these characteristics
is a fairly important problem in the context of analyzing the capabilities and limitations
inherent in the proposed network generation model.

We have shown that changing the mechanism of triad formation during network
growth leads to significant changes in the structure of the generated networks. It would
be interesting to study the influence of other mechanisms of triangle formation on the
characteristics of the resulting networks. In addition, it is also important to ensure that
these mechanisms lead to the creation of networks whose properties are close to those of
real social networks.
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Appendix A. The Proof of Theorem 1

Proof. We will prove the statement in case of m = 2 and p = 1. The other cases can be
proved in an analogous way.

We will show that the expected values of increments

∆Γ(t + 1) = Γ(t + 1)− Γ(t)

are non-positive. Then, Lemma follows from the fact that Γ(t) > 0 for all t.
For simplicity we let N(t) = t. The following terms in the sum (13) are changing with

the transition from t to t + 1:

• All terms 1
t

k2
j (t)

sj(t)
in Γ(t) are replaced by 1

t+1
k2

j (t)
sj(t)

in Γ(t + 1), therefore the difference is

t

∑
j=1

(
1

t + 1
− 1

t

) k2
j (t)

sj(t)
= −

t

∑
j=1

1
t(t + 1)

k2
j (t)

sj(t)
; (A1)

• New (t + 1)-term is adding to Γ(t + 1):

k2
t+1(t + 1)

(t + 1)st+1(t + 1)
=

4
(t + 1)st+1(t + 1)

, since kt+1(t + 1) = 2.

• With probability
kj(t)

4t new node t + 1 increases the degree of node j by 1 and the value
of sj(t) by 3, therefore the difference between the corresponding term in the sum
Γ(t + 1) and j-term in Γ(t) is

(k j(t) + 1)2

(t + 1)(sj(t) + 3)
−

k2
j (t)

tsj(t)
+

k2
j (t)

t(t + 1)sj(t)
=

sj(t)(2k j(t) + 1)− 3k2
j (t)

(t + 1)sj(t)(sj(t) + 3)
,

Where term 1
t(t+1)

k2
j (t)

sj(t)
is added to annihilate the corresponding term in (A1);

• If node j is chosen at step 2(a), then for each of its neighbors l the value of sl increases

by 1, while their degrees remain the same, i.e., the difference is (with probability
kj(t)

4t )

t

∑
l=1

p(l, j)

(
k2

l (t)
(t + 1)(sl(t) + 1)

− k2
l (t)

sl(t)
+

k2
l (t)

t(t + 1)sl(t)

)
=

−
t

∑
l=1

p(l, j)
k2

l (t)
(t + 1)sl(t)(sl(t) + 1)

,

https://github.com/mironovsv/Triad-PrefPref
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where the last term is added to annihilate it in (A1);
• The probability that node i (one of the neighbors of node j chosen at step 2(a)) will be

chosen at step 2(b) is ki(t)
sj(t)

and the changes caused by this choice are:

– New node t + 1 increases the degree of node i by 1 and the value of si(t) by 3:

(ki(t) + 1)2

(t + 1)(si(t) + 3)
− k2

i (t)
tsi(t)

+
k2

i (t)
t(t + 1)si(t)

=
si(t)(2ki(t) + 1)− 3k2

i (t)
(t + 1)si(t)(si(t) + 3)

,

– Each neighbors r of node i increases its value of sr by 1, while their degrees
remain the same:

t

∑
r=1

p(r, i)
(

k2
r (t)

(t + 1)(sr(t) + 1)
− k2

r (t)
tsr(t)

+
k2

r (t)
t(t + 1)sr(t)

)
=

−
t

∑
r=1

p(r, i)
k2

r (t)
(t + 1)sr(t)(sr(t) + 1)

.

Then,

∆Γ(t + 1) = Γ(t + 1)− Γ(t) = − 1
t(t + 1)

t

∑
j=1

k2
j (t)

sj(t)
+

4
(t + 1)st+1(t + 1)

+

t

∑
j=1

k j(t)
4t

(
sj(t)(2k j(t) + 1)− 3k2

j (t)

(t + 1)sj(t)(sj(t) + 3)
−

t

∑
l=1

p(l, j)
k2

l (t)
(t + 1)sl(t)(sl(t) + 1)

+

t

∑
i=1

p(i, j)
ki(t)
sj(t)

(
si(t)(2ki(t) + 1)− 3k2

i (t)
(t + 1)si(t)(si(t) + 3)

−
t

∑
r=1

p(r, i)
k2

r (t)
(t + 1)sr(t)(sr(t) + 1)

))
. (A2)

It follows from

N(t)

∑
j=1

p(j, i)k j(t) = si(t) and
N(t)

∑
j=1

p(j, i)
k j(t)
sj(t)

= γi(t)

that

∆Γ(t + 1) = Γ(t + 1)− Γ(t) = − 1
t + 1

Γ(t) +
4

(t + 1)st+1(t + 1)
+

+
1

2(t + 1)
Γ(t)− 3

4t(t + 1)

t

∑
j=1

k2
j (t)

sj(t)(sj(t) + 3)
+

1
4t(t + 1)

t

∑
j=1

k j(t)
sj(t) + 3

− 3
4t(t + 1)

t

∑
j=1

k3
j (t)

sj(t)(sj(t) + 3)
−

1
4(t + 1)

Γ(t) +
1

4t(t + 1)

t

∑
j=1

k2
j (t)

sj(t)(sj(t) + 1)
+

1
2t(t + 1)

t

∑
i=1

γi(t)
k2

i (t)
si(t)

− 3
4t(t + 1)

t

∑
i=1

γi(t)
k2

i (t)
si(t)(si(t) + 3)

+

1
4t(t + 1)

t

∑
i=1

γi(t)
ki(t)

si(t) + 3
− 3

4t(t + 1)

t

∑
i=1

γi(t)
k3

i (t)
si(t)(si(t) + 3)

−

1
4t(t + 1)

t

∑
r=1

(
t

∑
i=1

γi(t)p(r, i)ki(t)

)
k2

r (t)
sr(t)(sr(t) + 1)

. (A3)
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Since the degree of every node is at least 2, then for every node j the average degree of its
neighbors sj(t)/k j(t) ≥ 2. Therefore, k j(t) ≤ sj(t)/2. Then, we can evaluate some positive
terms in (A3) from the above as follows:

4
(t + 1)st+1(t + 1)

≤ 1
t + 1

, since st+1(t + 1) ≥ 4,

1
4t(t + 1)

t

∑
j=1

k j(t)
sj(t) + 3

≤ 1
8t(t + 1)

t

∑
j=1

sj(t)
sj(t) + 3

≤ 1
8(t + 1)

,

1
4t(t + 1)

t

∑
j=1

k2
j (t)

sj(t)(sj(t) + 1)
≤ 1

16t(t + 1)

t

∑
j=1

s2
j (t)

sj(t)(sj(t) + 1)
≤ 1

16(t + 1)
,

1
2t(t + 1)

t

∑
i=1

γi(t)
k2

i (t)
si(t)

≤ 1
4t(t + 1)

t

∑
i=1

γi(t)ki(t) ≤
1

t + 1
, (with the help of (14)),

1
4t(t + 1)

t

∑
i=1

γi(t)
ki(t)

si(t) + 3
≤ 1

8t(t + 1)

t

∑
i=1

γi(t)
si(t)

si(t) + 3
≤ 1

8(t + 1)
Γ(t).

Then, neglecting some negative terms in (A3), the difference ∆Γ(t + 1) can be estimated
from above as follows:

∆Γ(t + 1) ≤ 7
2(t + 1)

− 3
4(t + 1)

Γ(t).

The solution of the differential equation

d f (t)
dt

=
7

2(t + 1)
− 3

4(t + 1)
f (t)

is a constant function. Thus, ∆Γ(t + 1) ≤ 0.

Appendix B. The Proof of Theorem 2

Proof. We have

γi(t) =
N(t)

∑
j=1

p(j, i)
k j(t)
sj(t)

= S1,i(t) + S2,i(t) + S3,i(t), (A4)

where

S1,i(t) :=
i−1

∑
j=1

p(j, i)
k j(t)
sj(t)

, S2,i(t) := p(i + 1, i)
ki+1(t)
si+1(t)

, S3,i(t) :=
N(t)

∑
j=i+2

p(j, i)
k j(t)
sj(t)

.

First, we find the expectation E(S1,i(t)) of the first term at time t. Denote j1(i) the node to
which the node i was attached at step 2(a) of iteration i. Let j2(i) and j3(i) denote nodes
to which vertex i was linked at step 2(b1) and 2(b2) of iteration i, respectively. Note that
the iteration i is the moment of the appearance of node i, so j1(i), j2(i), j3(i) < i. Then, the
first sum consists of three terms corresponding to the three nodes j1(i), j2(i), and j3(t). The
expectation of the first sum in (A4) at t can be estimated as follows:
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E(S1,i(t)) =
i−1

∑
r=1

p(j1 = r)
kr(t)
sr(t)

+

p(m − 1)
i−1

∑
r=1

p(j1 = r)
i−1

∑
l=1

p(j2 = l|j1 = r)
kl(t)
sl(t)

+ (1 − p)(m − 1)
i−1

∑
r=1

p(j3 = r)
kr(t)
sr(t)

=
i−1

∑
r=1

kr(i)
2M(i)

kr(t)
sr(t)

+ p(m − 1)
i−1

∑
r=1

kr(i)
2M(i)

i−1

∑
l=1

p(l, r)
kl(i)
sr(i)

kl(t)
sl(t)

+

(1 − p)(m − 1)
i−1

∑
r=1

kr(i)
2M(i)

kr(t)
sr(t)

= (1 + (1 − p)(m − 1))
i−1

∑
r=1

kr(i)
2M(i)

kr(t)
sr(t)

+

p(m − 1)
1

2M(i)

i−1

∑
l=1

(
i−1

∑
r=1

p(l, r)
kr(i)
sr(i)

)
kl(i)

kl(t)
sl(t)

=
1 + (1 − p)(m − 1)

2M(i)

i−1

∑
r=1

kr(i)
kr(t)
sr(t)

+
p(m − 1)

2M(i)

i−1

∑
l=1

γl(i)kl(i)
kl(t)
sl(t)

=

1
2M(i)

i−1

∑
r=1

(
1 + (1 − p)(m − 1) + p(m − 1)γr(i)

)
kr(t)
sr(t)

kr(i). (A5)

It follows from Equation (9) that

E(S2,i(t)) =
(

1 + (1 − p)(m − 1) + p(m − 1)γi(t)
)

ki(i + 1)
2M(i + 1)

ki+1(t)
si+1(t)

. (A6)

It follows from Equation (A5) that

E(S1,i+1(t)) =
1

2M(i + 1)

i

∑
r=1

(
1 + (1 − p)(m − 1) + p(m − 1)γr(i + 1)

)
kr(t)
sr(t)

kr(i + 1).

(A7)
It follows from (A5)–(A7) that

E(S1,i+1(t)) < E(S1,i(t)) +E(S2,i(t)), E(S2,i+1(t)) +E(S3,i+1(t)) < E(S3,i(t)),

therefore,
E(γi(t)) > E(γi+1(t)),

and the first statement of the theorem is proved.
The second follows from (A5) as i → ∞. The third statement of the theorem follows

from (A5) with t = i.
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