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Abstract: The paper presents a Markovian queueing model for assessing the performance of synchro-
nisation between stations in a production system. The system at hand consists of K distinct buffers,
each buffer storing an item that is needed for the next production stage. Departures are immediate
when all items are present. Due to the presence of multiple buffers, there is no reasonably fast way
to calculate the stationary distribution of the Markov chain. Therefore, we focused on the series
expansion of the stationary distribution in terms of the arrival rate. We provide a fast algorithm
for calculating these terms. Comparing our results with stochastic simulation, we show that the
expansion approach converges to the simulated values for a wide range of arrival rates.
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1. Introduction

The synchronisation of material flows is a key element in supply chain management
and plays a pivotal role in ensuring efficiency in various industries including automotive [1]
and electronics [2,3]. By coordinating different stages of a production process, resources
such as machines, materials, and labour can be utilised more efficiently, which, in turn,
leads to an increase in overall productivity. A synchronised production process allows for
faster and more-predictable lead times. Nevertheless, due to the presence of uncertainty
in production times at the different stages of the production process, some buffering may
be required to streamline the process. For example, Borodin [4] and Romero-Silva and
Hurtado-Hernàndez [5] note that the supply of components to assembly operations is
subject to variability and uncertainty, as well as the task of assembling these components
itself. In the absence of buffers, the subsequent production stages are prone to blocking,
which reduces overall production efficiency. Such blocking is either caused by a lack of
input materials or by the absence of storage at the output.

In this paper, we introduce a Markovian queueing model that captures the essential
features and dynamics of synchronisation under uncertainty. The model at hand consists
of multiple queues in parallel, each queue representing a distinct product inventory that is
used to mitigate the blocking of the adjacent production stage. The different inventories
are tied to distinct independent production stages, while the subsequent stage requires all
items to be present. We, here, in particular, focus on the case where intermediate storage
in the inventories is limited in time. The products cannot be used beyond a certain time
limit, which is captured by abandonments in the different queues. Hence, the model at
hand involves multiple queues with abandonments and synchronous departures from the
different queues. From a mathematical perspective, the synchronisation system at hand,
therefore, shares some properties with the well-investigated fork–join queues [6–9], as well
as with queues with paired service [10–12]. In a fork–join queue, a job is split up between
servers (forking) and, then, again, combined in a later stage (joining). Hence, in a fork–join
queue, there is synchronisation between arrivals, which gives rise to a different type of
dynamic. Queues with paired service, also referred to as assembly-like queues or kitting
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processes, also assume that the arrival processes are independent. However, departures are
not immediate, as pairing requires service.

The synchronisation model at hand with only two buffers further corresponds to
a so-called double-ended queue [13,14]. As service is immediate, one of the queues is
empty, and the synchronisation station can be modelled by an integer-valued Markov chain.
Positive states correspond to items in one queue, while negative states correspond to items
in the other queue. Such double-ended queues are, e.g., motivated by taxi stands, where a
trip starts once the taxi is present, as well as its passengers.

The main contribution of the present paper involves extending the analysis of the
double-ended queue to Markovian models for the synchronisation of multiple streams.
When the number of streams is limited and the provided buffer capacity per stream is
limited, the corresponding Markov chain has a limited number of states, and the steady-
state solution of the Markov chain can be readily obtained by solving the linear system of
balance equations. As the state space of the synchronisation station is multidimensional,
the model suffers from the so-called curse of dimensionality: the state space of the Markov
chain grows exponentially in the number of dimensions, which makes the computational
cost of directly solving the balance equations prohibitive for practical applications. A second
contribution, therefore, lies in devising an efficient algorithm for numerically solving the
Markovian synchronisation model. We, here, rely on a series expansion approach. Instead
of calculating the stationary transition probabilities, the series expansion approach studies
the stationary transition probabilities as functions of a system parameter (the arrival rate λ
in the present setting) and calculates the terms in the series expansion of these functions.
At first sight, this does not mitigate the computational burden of the large state space, as
there are as many equations for each term in the series expansions as there are equations
in the balance equations. However, if the chain at λ = 0 only allows for transitions in
one direction (either upwards or downwards), the transition matrix is a triangular matrix,
and the computational complexity for a chain with M states is reduced to at most O(M2).
Moreover, in many practical applications, the number of possible transitions from a state
is much smaller than the size of the state space, so that the numerical complexity for the
calculation of each term is O(M) and the complexity for the calculation of the first N terms
of the expansion is only O(MN).

The presented series expansion technique is known by various terms in the literature,
including Markov chain perturbation, light-traffic approximation, and the power series
algorithm. We refer to the surveys on series expansion techniques [15,16] and the refer-
ences therein. Despite the lack of a fixed nomenclature, perturbation methods primarily
originate from the necessity to analyse how a system’s performance is affected by changes
in specific parameters. Singular perturbations, which disrupt the class-based structure of
the unperturbed chain, have been a significant focus in research, as seen in works such
as [17–19]. When the perturbed parameter relates to the arrival rate of a queue, the series
expansion is a light-traffic approximation. Lastly, the power series algorithm transforms
a Markov chain of interest into a collection of Markov chains indexed by a potentially
artificially introduced variable ρ. This transformation is chosen to allow for a straightfor-
ward computation of perturbations around ρ = 0, while as ρ approaches 1, the original
Markov chain is regained. Hence, the series expansion can be used for approximating
solutions of the original Markov chain. This holds true if the radius of convergence of
the series expansion exceeds ρ = 1 [20–23]. The methodology in the present setting is a
light-traffic approximation, though the numerical results reveal that the results are accurate
for a wide range of arrival rates. The approach is primarily algorithmic, with a focus on a
recursion for calculating many terms in the series expansion, rather than on closed-form
expressions for the first few terms. Such an algorithmic approach previously allowed for
analysing queueing systems with coupled service [11,12], retrial queues with heteroge-
neous retrials [24], and epidemic processes in finite populations [25]. In order to improve
convergence, we further rely on convergence acceleration techniques. Such techniques not
only accelerate the convergence in the region of convergence, but also extend the region
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of convergence [26–28]. We, here, in particular, apply Wynn’s ϵ-algorithm to improve
convergence. Wynn’s ϵ-algorithm is an efficient implementation of Shank’s transformation,
which is the best all-purpose acceleration method according to [29]. Under non-stringent
assumptions on the sequences, the transformation converges faster to the limit of the
original series in the region of convergence and converges to the analytic continuation of
diverging sequences [30].

The remainder of this paper is organised as follows. In the next section, we introduce
the Markovian modelling assumptions and find the corresponding set of balance equations.
We study the synchronisation station in the “light-traffic” regime in Section 3. In contrast
to a direct solution, we show that the computational cost of calculating the terms in
the light traffic approximation is considerably lower. We, then, extend the modelling
assumptions by the inclusion of a Markovian environment variable, which modulates
the arrival and abandonment rates in Section 4. We illustrate our approach by a set of
numerical experiments in Section 5. Finally, the conclusions are drawn in Section 6.

2. Mathematical Model

We considered a synchronisation station with N finite or infinite capacity queues, each
queue storing a particular part. Parts arrive at the nth queue in accordance with a Poisson
process with rate λn > 0, n ∈ {1, . . . , N}. Let Cn ∈ N \ {0} ∪ {∞} denote the (possibly
infinite) capacity of the nth queue. Whenever all queues are non-empty, a container with
all parts immediately leaves the synchronisation station. Note that, at any point in time, at
least one of the queues will be empty. If this is not the case, a container is ready and departs
immediately. Apart from container departures, parts may also leave prior to being packed
in a container. To be more precise, each part has a finite maximal residence time, which is
exponentially distributed. Let 1/αn denote the average maximal residence time of parts in
the nth queue. In other words, each part in the nth queue abandons the queue with rate
αn > 0.

Considering the modelling assumptions outlined above, the Markovian state of the
synchronisation station is completely determined by the number of parts in each queue.
Let Xn(t) ∈ {0, . . . , Ck}

.
= Ck denote the number of parts in the nth queue at time t, and

let X(t) = [X1(t), . . . , XN(t)] denote the vector of queue contents at time t. As one of the
queues is empty for sure, the state space of the Markov process X(t) is given by

C = (C1 × . . . Cn) \ (C0
1 × . . . × C0

N) ,

with C0
k = Ck \ {0} = {1, . . . , Ck}. Moreover, it is easy to verify that this Markov process

is ergodic. First, the Markov chain is irreducible, as state X = 0 can be reached by aban-
donments from any state and any state can be reached from state 0 by arrivals. Secondly,
comparing the system at hand with the (ergodic) system without container departures en-
sures that state zero is recurrent. Indeed, in the absence of container departures, departures
in the queues stem from abandonments, and each queue can be modelled by an infinite
server queue.

We focus on the stationary distribution of the Markov chain. For x ∈ C, let π(x) denote
the stationary probability to be in state x = [x1, x2, . . . , xN ]:

π(x) = lim
t→∞

P[X(t) = x] .

Moreover, to simplify the notation, it is convenient to set π(x) = 0 for x ̸= C. State
transitions are either triggered by part abandonments or by new part arrivals. In state x,
parts in the nth queue are abandoned with rate xnαn, the new state being x − en. Here,
en is a vector of all zeros, apart from its nth element, which is one. For xn < Cn, a new
part arrives at the nth queue with rate λn. If xn + en ∈ C, the arrival does not complete a
container and the state after the arrival is xn + en. If xn + en /∈ C, the new arrival completes
a container, such that there is an immediate departure of this container. Therefore, the state
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after the arrival is xn + en − e, where e is a vector of ones. In view of these observations,
we find the following set of balance equations:

π(x)
N

∑
n=1

(λn1{xn<Cn} + αnxn)

=
N

∑
n=1

π(x + en)αn(xn + 1) + π(x − en)λn + π(x − en + e)λn , (1)

for x ∈ C. Here, 1{·} is the indicator function, which evaluates to 1 if its argument is
true and to 0 if this is not the case. Note that the expression above holds both for finite
and infinite Cn. For infinite Cn, the condition xn < Cn trivially holds for all xn. Also, the
assumption π(x) = 0 for x /∈ C greatly simplifies the balance equations as we can omit the
indicators that the states x + en, x − en and x − en + e are part of the state space.

3. Light-Traffic Analysis

For small N and Cn, the balance Equation (1) is readily solved by direct methods
like, e.g., Gaussian elimination. However, already for moderate N and Cn, the size of the
state space of the Markov process makes a direct calculation of the stationary probabilities
computationally demanding. Therefore, we focus on the synchronisation system in the light-
traffic regime. Our approach can approximate the exact distribution with high accuracy
and low computational effort, whereby the computational effort for the calculation of the
Tth term in the series expansion is O(N min(T, C)N) with C = maxk Ck, cf. infra.

To this end, we set λn = κnλ and introduce the Maclaurin series expansion in λ of the
solution of the balance equations:

π(x) =
∞

∑
k=0

πk(x)λk .

Before proceeding, we note that, for finite Ck, it is easy to check—by applying Cramer’s
rule, that one explicitly expresses π(x) as a fraction of two determinants; that the stationary
probabilities are rational functions of λ. Since rational functions have no singularities other
than poles in the extended complex plane and there is no pole at λ = 0, we conclude
that the stationary probabilities are analytic functions in a region around λ = 0. This,
then, justifies the series expansion. However, analyticity is not necessarily required. In the
following numerical examples, we rely on the ϵ method for convergence acceleration. This
method is known to extend the region of convergence and even works when the radius of
convergence is 0 [30].

Substituting the series expansions above in the balance equations and isolating the
terms in λk leads to

πk(x) =

(
N

∑
n=1

αnxn

)−1(
− πk−1(x)

N

∑
n=1

κn1{xn<C}

+
N

∑
n=1

πk(x + en)αn(xn + 1) + πk−1(x − en)κn + πk−1(x − en + e)κn

)
, (2)

for k ∈ {1, 2, . . .} and for x ∈ C \ {0}. For x = 0, the normalisation condition:

∑
x∈C

π(x) = ∑
x∈C

∞

∑
k=0

πk(x)λk = 1

yields
πk(0) = − ∑

x∈C\{0}
πk(x) , (3)
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k ∈ {1, 2, . . .}. Moreover, for k = 0, one easily finds

π0(x) = 1{x=0} .

The latter result is also intuitively clear. In the absence of part arrivals, all part queues
are empty.

In contrast to the balance Equation (1), the system of Equations (2) and (3) is easily
solved. Indeed, close inspection of Equations (2) and (3) reveals that one can solve these
equations in reverse lexicographical order: to calculate πk(x) by (2) and (3), one only needs
(k − 1) the-order terms and terms in πk(y) for y lexicographically larger than x. In addition,
by the so-called k-events rule, one can show that πk(x) = 0 if the state x cannot be reached
from state 0 with k arrivals (and possibly any number of other transitions). In this case,
we have πk(x) = 0 if the total queue size exceeds k: ∑n xn > k. Summarising, we find
that one needs to calculate at most O(min(T, C)N) unknowns for the Tth-order terms,
each term requiring O(N) additions. Hence, the calculation of the Tth-order term is of
order O(N min(T, C)N). Note that the factor min(T, C) follows from the n-events rule used
above. We have πT(x) = 0 and state that it cannot be reached from the empty queueing
state with T arrivals.

Once the terms in the series expansions of the stationary probabilities have been calcu-
lated, various performance measures of interest can be studied. The Kth order expansion
of the ℓth moment of the nth queue equals

E[Xℓ
n] ≈

K

∑
k=0

(
∑
x∈C

πk(x)xℓn

)
λk . (4)

Similar expressions are readily obtained for the cross-moments of the different queue
content as well.

The Kth-order expansion of the abandonment rate νn and loss probability ηn in the
nth queue further equal

νn ≈
K

∑
k=0

(
∑
x∈C

πk(x)xnαn

)
λk , ηn ≈

K

∑
k=0

(
∑
x∈C

πk(x)1{xn=Cn}

)
λk .

Indeed, each of the xn parts in the nth queue is abandoned with rate αn, while there
is a loss if there is an arrival in a full queue. Finally, the Kth-order expansion of the
(simultaneous) departure rate µ from the queues equals

µ ≈
K

∑
k=0

(
∑
x∈C

πk(x)
N

∑
n=1

κn1{xn=0,xm>0,∀m ̸=n}

)
λk+1 .

Here, we used the observation that we have a departure if there is an arrival in an
empty queue, and the other queues or not empty.

Remark 1. The expressions of the performance measures show that the terms in the series expansions
of the performance measures can be calculated once the corresponding terms of the stationary
probabilities are obtained. This observation allows for a considerable reduction of the memory
requirements of the algorithm. Indeed, while close inspection of (2) shows that the nth terms need
to be preserved during the calculation of the (n + 1)th terms, once these calculations are complete
and once the nth terms of the performance measures are calculated, the nth terms are no longer
required, and the storage can be freed or overwritten. Summarising, the storage requirement is
O(N min(T, C)N), which only depends on the number of terms by the truncation of the state space,
which follows from the n-events rule (cf. supra).
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4. Markovian Environment

We now extend our findings to a synchronisation station, where the arrival rates in the
different queues, as well as the abandonment rates from the different queues depend on an
exogenous Markov process with a finite state space. More precisely, let Y(t) be an ergodic
Markov process with finite state space M and with generator matrix B = [βij]i,j∈M. Here,
βij denotes the transition rate from state i to state j (i, j ∈ M with i ̸= j), while the diagonal
elements are equal to

βii
.
= − ∑

j∈M\{i}
βij ,

as usual (for i ∈ M). For further use, let ν denote the invariant distribution of this Markov
process. That is, ν solves νB = 0 and νe′ = 1 or, equivalently,

ν = (B + e′e)−1e .

When the exogenous state is j ∈ M, new parts arrive at the nth queue with rate λ
j
n > 0,

while parts in the nth queue are abandoned with rate α
j
n > 0. Retaining the notation of

the preceding section, it is now easily verified that the process (X(t), Y(t)) constitutes an
ergodic Markov process with state space C ×M. For (x, j) ∈ C ×M, let

π(x, j) = lim
t→∞

P[X(t) = x, Y(t) = j]

denote the limiting distribution of the Markov process.

Remark 2. For the ease of exposition, we assumed positive arrival and abandonment rates for all
states of the environment. This is not strictly required. In the finite setting, a positive arrival and
abandonment rate in one of the states suffices. In the infinite setting, it suffices to check that each
queue is ergodic in the absence of container departures.

Assuming π(x, j) = 0 for (x, j) /∈ C ×M, the balance equations then read

π(x, j)

 N

∑
n=1

(λ
j
n1{xn<Cn} + α

j
nxn) + ∑

k∈M\{j}
β jk

 = ∑
i∈M\{j}

π(x, i)βij

+
N

∑
n=1

(
π(x + en, j)αj

n(xn + 1) + π(x − en, j)λj
n + π(x − en + e, j)λj

n

)
, (5)

for x ∈ C and j ∈ M. For convenience, let π(x) = [π(x, j)]j∈M denote the row vector
that collects the stationary probabilities for a fixed x ∈ C. Moreover, let An and Λn denote
diagonal matrices with jth diagonal entry α

j
n and λ

j
n, respectively. The balance equations

can then be rewritten as follows

π(x)
N

∑
n=1

(Λn1{xn<Cn} + Anxn)

= π(x)B +
N

∑
n=1

(π(x + en)An(xn + 1) + π(x − en)Λn + π(x − en + e)Λn) . (6)

We now express Λk in terms of a single rate λ, Λk = λKk, and as for the synchronisation
station without an exogenous environment, we introduce the Maclaurin series expansion
in λ of the solution of the balance equations:

π(x) =
∞

∑
k=0

πk(x)λk .
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Plugging the series expansion above in (4) and comparing terms in equal powers of λ
then yield

π0(x) = 0 , (7)

and

πk(x) =
(
− πk−1(x)

N

∑
n=1

Kn1{xn<Cn} +
N

∑
n=1

πk(x + en)An(xn + 1)

+
N

∑
n=1

πk−1(x − en)Kn + πk−1(x − en + e)Kn

)( N

∑
n=1

Anxn − B

)−1

, (8)

for k = 1, 2, . . . and x ∈ C \ {0}. Note that Equation (7) simply states that there are no parts
in any of the queues in absence of arrivals.

For x = 0, we further find

π0(0)B = 0 ,

πk(0)B = πk−1(0)
N

∑
n=1

Kn −
N

∑
n=1

(πk(en)An + πk−1(e − en)Kn) . (9)

Combining these expressions with the normalisation conditions:

π0(0)e′ = 1 , ∑
x∈C

πk(x)e′ = 0 ,

then yields π0(0) = ν and

πk(0) =
(

πk−1(0)
N

∑
n=1

Kn −
N

∑
n=1

(πk(en)An + πk−1(e − en)Kn) + κe
)
(B + e′e)−1 ,

with
κ = πk(0)e

′ = − ∑
x∈C\{0}

πk(x)e′ .

Note that we cannot simply obtain πk(0) from Equation (9) as B is not invertible.
Again, the terms in the series expansion can be easily determined in reverse lexico-

graphical order, where, by the k-events rule, one can show that πk(x) = 0 if the state x
cannot be reached from state 0 with k arrivals (and possibly any number of other transi-
tions). The scalar operations of the preceding section are now replaced by matrix operations.
Hence, following the same reasoning as in the preceding section, we find that the numerical
complexity for calculating the Tth order term is O(N min(T, C)M3), where M denotes the
number of environment states. Once the series expansion of the stationary vectors π(x)
is obtained, series expansions for various performance measures of interest are readily
obtained. The expression (4) for the ℓth moment of the queue size remains valid, with
π(x) = ∑j∈M π(x, j). The Kth order expansion of the departure rate now reads

µ ≈
K

∑
k=0

(
∑
x∈C

∑
j∈M

πk(x)
N

∑
n=1

κ
j
n1{xn=0,xm>0,∀m ̸=n}

)
λk+1 .

5. Numerical Examples

We now illustrate our numerical approach by a set of examples. To assess the accuracy
of the series approximations, we compare the results that were obtained by the analytic
approach with stochastic simulation. We first demonstrate the accuracy for the synchronisa-
tion system without the random environment and, then, extend our examples by including
an environment variable that allows for including burstiness in the arrival processes of one
of the queues.
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Preliminary experimentation showed that the series expansions only converge to the
correct value for small λ values, which is an indication that the region of convergence of
the series expansion is limited. Luckily, convergence acceleration techniques allow for
extending the region of convergence [26–28]. We, here, implement Wynn’s ϵ-algorithm to
speed up convergence, as well as to extend the region of convergence. To this end, for a
performance measure of interest, introduce the sequence of partial sums Sn = ∑n

k=0 skλk.
Here, the sequence sk corresponds to the coefficients in the expansion of the performance
measure. Expressions for these terms are given in Section 3 and are readily calculated once
the terms in the expansions of the stationary probabilities are determined. The ϵ-algorithm
then approximates the limit n → ∞ by ϵ

(0)
k , for k even (odd indices are intermediate values),

recursively defined as follows:

ϵ
(n)
−1 = 0 , ϵ

(n)
0 = Sn ,

ϵ
(m)
r+1 = ϵ

(m+1)
r−1 +

1

ϵ
(m+1)
r − ϵ

(m)
r

,

for k, n ∈ {0, 1, 2, . . .}. Our implementation includes a simple protection against division
by zero, as well as the simple stopping rule of [31] (p. 213).

5.1. Basic Model

We first consider a synchronisation station with five queues, with equal arrival rates
λ in all queues and with capacities C1 = C2 = 10, C3 = 15, C4 = 20, and C5 = 25. The
abandonment rates in the different queues equal α1 = 0.25γ, α2 = 0.225γ, α3 = 0.2γ,
α4 = 0.175γ, and α5 = 0.15γ. Here, γ is a scale factor for the abandonment rates. This
factor can be used to study how the abandonment rates affect performance, with higher γ
corresponding to more abandonments. With these queue capacities, there are approximately
106 states. Figure 1a,b depict the mean and variance of the queue sizes versus the arrival
rate λ, respectively. The scale parameter is fixed to γ = 1 for all curves. The different
curves are calculated by applying the ϵ-algorithm on the 30th-order series expansion. Not
all terms in the series expansion are necessarily used though, the expansion order being
an upper bound for the number of terms in the stopping rule of [31]. The markers were
obtained by means of stochastic simulation and are included to verify the accuracy of
the series expansion approach. The simulation results were obtained by means of the
replication–deletion approach. We simulated 100 replications of 5 × 106 state transitions.
The obtained 99% confidence intervals are smaller than 1% of the simulated value and are,
therefore, omitted from the plots. The figures show that the correspondence between the
simulation results and the series expansion approach is excellent for the complete range
of the λ-values. We would like to point out that the ϵ-algorithm is key for the accuracy
of the results. Without convergence acceleration, the region of convergence of the series
expansion is limited, and the results are only accurate for very small arrival rates (λ < 0.05).
We excluded the curves without acceleration from the figures to enhance clarity.

To evaluate the effect of the abandonment rates on performance, Figure 2 depicts
the mean total queue content and the departure rate from the queues vs. the arrival rate
λ for different values of the scale factor γ, as indicated. Again, values from the (30th-
order) series expansion approach were compared with the equivalent values obtained
by stochastic simulation. As in Figure 1, the simulation results were obtained by means
of the replication–deletion approach with 100 replications of 5 × 106 state transitions.
The simulation study showed that the combination of the series expansion approach and
the ϵ-algorithm leads to very accurate results. More arrivals translate into larger queue
sizes, while more abandonments imply lower queue sizes. Analogously, the departure
rate increases with the arrival rate and decreases with the abandonment rate. Recall that
the departure rate only includes departures by synchronisation and excludes departures
by abandonments. Ideally, the departure rate should equal the arrival rate, so that all
arrivals can leave the queues by synchronisation. There are two impediments to such a
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perfect operation of the synchronisation station. First, some part arrivals may not enter the
synchronisation station due to a lack of queue capacity. Secondly, parts may be abandoned,
prior to synchronisation. The latter effect is dominant in the present example, especially for
higher abandonment rates (that is, for higher γ).
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Figure 1. Mean (a) and variance (b) of the queue sizes vs. the arrival rate λ. The curves follow from
the series expansion, and the markers were obtained by stochastic simulation.
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Figure 2. Total queue size E[X] (a) and departure rate µ (b) vs. the arrival rate λ for different values
of the scale factor γ of the abandonment rates. The curves follow from the series expansion, and the
markers were obtained by stochastic simulation.

5.2. Markovian Environment

So far, the queueing model did not include the Markovian environment variable of
Section 4. We now consider a model with 10 queues, all with capacity Cn = 2 and all
with abandonment rate αn = 0.1, n ∈ {1, . . . , N}. The arrivals in all but the first queue
stem from independent Poisson processes with common rate λn = 1. In contrast, the part
arrivals in the first queue stem from an interrupted Poisson process. More precisely, we
introduce a random environment with two states, say on and off, and there are only arrivals
in the on state. Let a denote the transition rate from the on to the off state, and let b denote
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the transition rate from the off state to the on state. The fraction of time σ the Markov
environment is in the on state and the length κ of an on and off period then equal

σ =
b

a + b
, κ =

1
a
+

1
b

.

The pair (σ, κ) uniquely determines the transition rates a and b. We further assume
that the (Poisson) arrival rate in the on state equals λ̂1 = 1/σ, such that the average
arrival rate in the first queue is 1 as well. One expects that smaller σ and larger κ affect
performance negatively. For smaller σ, the arrivals are more concentrated, while for larger
κ, the periods with and without arrivals are longer. This means that the queue can build up
for a longer time.

Figure 3a shows the mean queue size as a function of the arrival rate for different values
of σ and fixed κ = 20. Only the mean queue size of the first two queues is shown. Due to
symmetry, the mean queue size of the remaining queues is identical to the mean queue
size of the second queue. The curves were obtained by the 80th-order series expansion
approach, complemented with the ϵ-algorithm. The markers again represent stochastic
simulation results. The simulation results were obtained by means of the replication–
deletion approach with 100 replications of 109 state transitions. The upper and lower
bounds of the obtained 99% confidence intervals are visually indiscernible and, therefore,
omitted. The correspondence between the analytic and simulation results is again good,
though, by the additional complexity of the environment, a higher order expansion is
needed to obtain accurate results. Recall that the arrivals in queue 1 are more concentrated
in time for lower values of σ. This leads to a lower mean queue size for the first queue
and a higher mean queue size for the second queue. The concentration of arrivals leads to
considerable loss in the first queue, followed by periods without arrivals. The loss explains
why there are fewer parts in this queue on average. On the other hand, the absence of parts
in the first queue implies that there are fewer synchronised departures, which, in turn,
means that there are more parts in the other queues. This latter observation is confirmed
by Figure 3b, which shows the departure rate µ for different κ and σ. Both an increase
of κ and a decrease σ lead to a decrease of the departure rate. Also, Figure 3b compares
the analytic results (80th-order expansion) with the simulation results. In contrast to the
preceding figures, the accuracy is not as good, especially for κ = 40 and σ = 0.25, which
is the example where the arrivals are concentrated over long periods, followed by long
periods without arrivals.

To conclude this numerical investigation, we briefly summarise some observations
on the applicability and accuracy of the series expansion approach. Foremost, we found
that the method works well for a large number of parameter sets, though the number
of terms in the expansion that is required to obtain accurate results does depend on the
specific parameter values. In general, there is no direct relation between the size of the state
space and the required order. We, however, observed that the presence of the Markovian
environment most often required higher-order expansions. As the calculation of the series
expansion is linear in the order of the expansion, computational limitations did not prevent
the use of higher-order expansions. However, we found that Wynn’s algorithm may
encounter numerical instability when dealing with higher-order series expansions for
specific λ-values, so there is a practical limit on the order.
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Figure 3. Mean queue size (a) and departure rate (b) vs. the arrival rate λ for different environment
parameters σ and κ, as indicated. The curves follow from the series expansion, and the markers were
obtained by stochastic simulation.

6. Conclusions

In this study, we introduced a Markovian queueing model to evaluate the performance
of synchronisation among stations within a complex production system featuring K distinct
buffers. These buffers store parts necessary for advancing to the subsequent production
stages, and departures occur instantly upon the availability of all required items. The
intricacies arising from multiple buffers render the calculation of the stationary distribution
of the Markov chain a challenging task. To address this challenge, we applied a series
expansion approach where the arrival rate was used as the parameter of the expansion.

Our primary contribution lies in the development of a rapid algorithm tailored to
the computation of terms within the series expansion. By employing this algorithm, we
mitigated the computational challenges associated with the calculation of the stationary
distribution. Our numerical experiments confirmed that the proposed algorithm enables
efficient and accurate computation of the stationary distribution. By comparing with
stochastic simulation results, the accuracy was observed consistently across a broad spec-
trum of arrival rates, highlighting the robustness and versatility of our methodology in
capturing the dynamic behaviour of the production system.
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