
Citation: Fan, B.; Ma, H.; Liu, Y.;

Yuan, X.; Ke, W. KDTM: Multi-Stage

Knowledge Distillation Transfer

Model for Long-Tailed DGA

Detection. Mathematics 2024, 12, 626.

https://doi.org/10.3390/

math12050626

Academic Editor: Jonathan

Blackledge

Received: 30 January 2024

Revised: 13 February 2024

Accepted: 17 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

KDTM: Multi-Stage Knowledge Distillation Transfer Model
for Long-Tailed DGA Detection
Baoyu Fan , Han Ma , Yue Liu * , Xiaochen Yuan and Wei Ke

Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China; baoyu.fan@mpu.edu.mo (B.F.);
han.ma@mpu.edu.mo (H.M.); xcyuan@mpu.edu.mo (X.Y.); wke@mpu.edu.mo (W.K.)
* Correspondence: yue.liu@mpu.edu.mo

Abstract: As the most commonly used attack strategy by Botnets, the Domain Generation Algorithm
(DGA) has strong invisibility and variability. Using deep learning models to detect different families of
DGA domain names can improve the network defense ability against hackers. However, this task faces
an extremely imbalanced sample size among different DGA categories, which leads to low classification
accuracy for small sample categories and even classification failure for some categories. To address
this issue, we introduce the long-tailed concept and augment the data of small sample categories by
transferring pre-trained knowledge. Firstly, we propose the Data Balanced Review Method (DBRM) to
reduce the sample size difference between the categories, thus a relatively balanced dataset for transfer
learning is generated. Secondly, we propose the Knowledge Transfer Model (KTM) to enhance the
knowledge of the small sample categories. KTM uses a multi-stage transfer to transfer weights from
the big sample categories to the small sample categories. Furthermore, we propose the Knowledge
Distillation Transfer Model (KDTM) to relieve the catastrophic forgetting problem caused by transfer
learning, which adds knowledge distillation loss based on the KTM. The experimental results show that
KDTM can significantly improve the classification performance of all categories, especially the small
sample categories. It can achieve a state-of-the-art macro average F1 score of 84.5%. The robustness of
the KDTM model is verified using three DGA datasets that follow the Pareto distributions.

Keywords: domain generation algorithm; long-tailed problem; transfer learning; knowledge
distillation; data balanced review method

MSC: 68T07

1. Introduction

The Internet has brought great convenience to people but it has also brought hidden
dangers of network security while facilitating our lives. Botnet [1,2] attacks are one of the
most common and destructive threats [3]. They are large-scale network attacks carried out
by remotely controlled devices infected by malware. The botnet attack controls the infected
hosts through the command and control (C&C) server [4] to launch DDoS attacks [5], send
spam [6], generate false Internet traffic [7], and commit many other crimes and malicious
acts. To bypass the detection of security devices, the production process of attackers is
becoming more and more complex. To establish and maintain communication with the
C&C server, attackers integrate the Domain Generation Algorithm (DGA) into the system to
dynamically and randomly generate the domain names. This can increase the robustness of the
botnet and the persistent control of the infected hosts. Therefore, if DGA domain names can be
accurately detected, botnet control can be avoided. In the initial stage, the network security
field uses the DGA domain names collected by information security intelligence to generate a
blacklist [8]. Malicious domain names [9] are determined by checking against the blacklist, but
the randomness and variability of DGA make it difficult to update the blacklist. Therefore, a
scheme of using machine learning to detect DGA domain names was derived [10].
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Traditional approaches mainly use feature extraction methods based on machine
learning. They follow the process as below: statistical feature detection of domain name
characters [10], Domain Name Server (DNS) traffic information detection [11], and tra-
ditional machine learning models to detect DGA domain names [12]. However, manual
feature extraction is time-consuming and some hidden features are easy to ignore. Then
came deep learning methods to detect DGA domain names, and additional conditions
were considered for the deep learning methods to improve the detection ability [13]. In
Section 2, we summarize the related work of deep learning on DGA detection. It can
be seen that imbalanced sample sizes between categories can affect the overall detection
results. However, the categories that can not be detected in network security are more
dangerous. Therefore, to more accurately detect DGA categories with fewer samples, we
introduced the long-tailed concept in the DGA detection problem in this paper. The DGA
dataset follows the Pareto distribution. It greatly affects the classification ability of deep
models. The classification results usually tend to the categories that contain large amounts
of data, while the tail categories that contain small amounts of data have low accuracy.
Or, even worse, to reduce the impact of long-tailed problems on deep network models,
tail categories were cut off in previous DGA studies [14–16], leading to an incomplete
DGA classification.

Although the long-tailed DGA problem was ignored in the literature, there are op-
timization methods for long-tailed problems in other fields. From the data perspective,
the solutions mainly use resampling to balance the data volume between categories, but
this causes over-fitting and losses of information [17]. From an algorithm perspective, the
solutions mainly adjust the hyperparameters to balance the weights of the categories or
adjust some training strategies to balance the impact of the categories. For example, the
head categories transfer the knowledge to the tail categories [18]. However, some head
knowledge may be forgotten during the transfer process, resulting in decreased accuracy
of head categories. Knowledge distillation [19] can alleviate the catastrophic forgetting
problem caused by transfer learning. Inspired by it, we propose a multi-stage Knowledge
Distillation Transfer Model (KDTM) for long-tailed DGA detection. We divide the training
task into multiple stages. Then, we use the Data Balanced Review Method (DBRM) to fill
in the data for each stage to balance the category data at each stage. Finally, we apply
multi-stage transfer weights with knowledge distillation to transfer the knowledge from the
previous stage to the subsequent stage sequentially. We expect that the tail categories with
insufficient knowledge can learn more from the head categories so that the overall classifi-
cation accuracy can be improved, especially for the tail categories. The main contributions
of this paper are as follows:

• We propose DBRM, which is a sampling method to transform long-tailed distribution
data into a relatively balanced dataset. This method is used during the transfer
learning phase to reduce the gap between the head and tail categories.

• We propose the Knowledge Transfer Model (KTM), which divides weight transfer into
multi-stages and gradually transfers head category knowledge to tail categories to
improve the classification performance of tail categories. The experimental results
show that when all categories of data are equally divided into two stages, KTM has
the best performance, with an overall performance of 79%.

• We propose KDTM, which applies knowledge distillation to compensate for the
forgetting of head categories with large sample sizes during the transfer of the KTM.
Further, it improves the detection accuracy of categories with small sample sizes. The
experimental results show that the overall performance of all categories can reach
84.5%, and the accuracy of the tail categories has been improved by 12%.

The remaining chapters of this paper are briefly introduced as follows: Section 2
introduces recently related work for long-tailed problems and DGA detection methods.
Section 3 defines the long-tailed DGA detection problem and our framework for resolving
the problem. Section 4 introduces the dataset, ablation study, and experimental results.
Section 5 concludes with the conclusions.
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2. Related Work
2.1. DGA Detection

Botnets use DNS services to hide their C&C server [20]. The communication between
the C&C server and the infected host runs the same set of DGA to generate the same list of
alternative domain names. The infected host regularly connects and receives commands from
the C&C server and the hackers control the infected host by sending the commands to the C&C
server. At the initial stage of network security, a blocklist database is established to determine
whether a domain name is malicious [8]. However, DGA can generate hundreds and thousands
of domain names shortly, which makes it difficult to maintain and update the blacklist and it is
difficult to detect unknown DGA domain names using an out-of-date blacklist.

Therefore, it is more convenient and effective to use machine learning methods to detect
DGA domain names [21–23]. Traditional DGA domain name detection is mainly based on
feature extraction and machine learning. It classifies the DGA domain names by detecting the
difference in character distribution between the legal domain names and the DGA domain
names. Davuth in [10] made the bigram of domain names as a feature, filtered the bigrams
with low frequency through the method of artificial threshold and used the Support Vector
Machine (SVM) classifier to detect random domain names. Bilge [11] used DNS analysis
to detect the domain of malicious activities and described the different attributes of DNS
names and the way to query them by extracting 15 features from the DNS traffic.

Then comes deep learning methods for DGA detection with the advantage of reducing
the cost of manual feature extraction. Recurrent Neural Network (RNN) [24] is applied in
various natural language tasks due to its ability to capture meaningful temporal relation-
ships between sequences. However, RNN is prone to the gradient disappearance problem
in the long-chain operation and does not have the ability to learn long-term information
dependence. Woodbridge [14] used Long Short-Term Memory (LSTM) networks to achieve
the real-time detection of DGA domain names without the context information and manu-
ally created features. LSTM adds state information on the basis of RNN to enable it to learn
long-term information dependence. It is good at text and speech processing in the long-term
learning mode. In order to compare the advantages of deep learning methods, Tong [25]
proposed an LSTM network with an attention layer method for binary classification and
multi-classification of DGA families. Yu [15] used the feature-based random forest model,
which is an effective traditional machine learning method. However, compared with the
LSTM network and Convolutional Neural Network (CNN), this method does not perform
well on some specific DGA categories. Chen [16] proposed an LSTM model combined
with an attention mechanism. This model focused on the more important substrings in
the domain to improve the representation of the domain and achieve better performance,
especially for long domain names. A model combining BiLSTM and CNN with an attention
mechanism was proposed in [26], which effectively improved the detection accuracy of
DGA categories. However, the classification results of the categories with a small amount
of data were not ideal. The reason is that the imbalance of DGA data leads to large classifi-
cation errors for those tail categories. In this condition, when dealing with the DGA data,
we found that many studies chose to cut off the tail categories so that those DGA categories
could not be classified. We have summarized the related work in the past few years in
Table 1. We use the number of categories as the standard to classify DGA families into Many,
Medium, and Few, which can provide a clearer view of the distribution of data volume
within the dataset. In the traditional deep learning model [27–29], without considering the
difference in sample size between categories. The higher the degree of imbalance in the
dataset, the greater the impact on the overall performance of DGA detection (where we use
the Macro average value to evaluate). In subsequent research, ref. [25,26,30–33] chose to
cut out a few sample categories to improve the detection accuracy of other categories. But
in network security, the uncommon DGA categories with few samples are the ones that we
should be cautious about because hackers use uncommon DGA to increase the probability
of successful intrusion. Therefore, we need to consider the long-tailed problem of DGA
and use methods to address it to improve the overall performance of detection.
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Table 1. Related work of detecting Domain Generation Algorithm (DGA) domain names based on deep models. We divided DGA Families into Many, Medium, and
Few categories based on the sample size of the categories for analysis. The sample size of Many categories is greater than 10,000, while the sample size of Few
categories is less than 1000. Other categories are classified into Medium. The imbalance factor [34] is one of the indicators used to evaluate whether a dataset is
balanced. The Macro average F1 score [35] is used to evaluate the model detection effect.

Method Year Datasets
DGA Families Family Sample Range

(Max–Min) Imbalance Factor Macro Average F1 score
Many Medium Few

LSTM [14] 2016 Bambenek Consulting (DGA)
Alexa(whitelist) 30 81,281–9 9031 0.541

RNN [27] 2017 Bambenek Consulting and DGArchive (DGA)
Alexa (whitelist) 42 11 10 434,215–52 8157 0.66

SVM and LSTM-based models [28] 2017 Bambenek Consulting (DGA)
Alexa (whitelist) 1 9 27 42,166–25 1686 0.2695

LSTM.MI [36] 2018 Bambenek Consulting (DGA)
Alexa (whitelist) 1 9 27 42,166–25 1686 0.5671

CNN [37] 2019 DGArchive (DGA)
Alexa (whitelist) 73 - - 0.6123

ATT_CNN + BiLSTM [30] 2019 360netlab and Bambenek Consulting (DGA)
Alexa (whitelist) 13 3 3 25,000–210 119 0.81

ATT_CNN + BiLSTM [26] 2020 360netlab
Alexa (whitelist) 13 8 3 26,520–210 126 0.83

CNN_LSTM [38] 2020 OSINT Feeds (DGA)
Alexa and OpenDNS (whitelist) - - - - - -

B-LSTM/B-RNN/B-GRU [29] 2021 Bambenek Consulting (DGA)
Alexa (whitelist) 1 9 27 42,166–25 1686 0.47

ATT_BiLSTM [32] 2021 Bambenek Consulting (DGA)
Alexa (whitelist) 11 9 0 439,223–2000 219 0.8369

LA_Bin07/LA_Mul07 [25] 2022 UMUDGA (DGA)
Alexa (whitelist) 50 0 0 500,000–10,000 50 -

Extended Character Feature in BiLSTM [31] 2022 360netlab (DGA)
Alexa (whitelist) 10 16 13 498,620–193 2583 0.7514

MHSA-RCNN-SABILSTM [33] 2022 360netlab and Bambenek Consulting (DGA)
Alexa (whitelist) 11 9 0 439,223–2000 219 0.8397

PEPC [39] 2022 DGArchive, Bambenek Consulting and 360netlab (DGA)
Alexa (whitelist) 20 - - 0.8046

TLM [40] 2023 360netlab (DGA)
Alexa (whitelist) 10 9 12 452,428–132 3427 0.766
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2.2. Long-Tailed Problem

At present, the long-tailed problem in DGA detection has not received widespread
attention from scholars, but there have been many studies on the long-tailed problem in
other application scenarios. The traditional approach to solve the long-tailed problem
is resampling consisting of over-sampling for the classes with few samples [41] and sub-
sampling [42] for classes with many samples. However, over-sampling tends to overfit the
minor class, it can not learn the robust and general abilities, and it often performs worse on
imbalanced data. Under-sampling causes serious information loss for the class with many
samples resulting in under-fitting. In DGA data with multiple categories and large data
volume differences between categories, the direct use of resampling is not applicable.

During the training, re-weighting aims to re-balance the classes by altering the loss
values for the distinct classes. The most intuitive way for loss re-weighting is to use the label
frequencies of training samples directly, known as weighted softmax loss. In addition to
loss re-weighting, the balanced softmax in [43] used the label frequencies to alter the model
detection during the training, allowing the past information to mitigate the bias of the data
imbalance. Therefore, if re-weighting is used in DGA detection, it sets different weights for
different categories based on losses and greater weights for the few-shot category. However,
it requires excessive human intervention to manually decide the weights.

Transfer learning [44–48] aims to improve the training of the model on a target domain
by transferring information from a source domain (e.g., datasets, tasks, or classes). Tail data
can be seen as samples to fine-tune downstream tasks using a large-scale model [49]. Head-
to-tail knowledge transfer [18,50] aims to improve model performance on the tail categories
by transferring knowledge from the head categories. There are two main types of head-to-tail
knowledge transfer: feature transfer and weight transfer. Feature Transfer Learning (FTL) [18]
uses head-class and intra-class variance to direct the feature augmentation for the tail-class
samples, resulting in more intra-class variance in tail-class features and improving the tail-class
performance. GIST was [51] proposed to transfer the weights of the classifier from the head to
the tail. The head categories with most of the weight parameters of the classifier can be used to
enhance the classifier weights of the tail categories. However, if there are many tail categories,
not all tail categories can learn the knowledge of the head categories. At the same time, there are
multiple categories in the DGA categories that have high similarities and are easily confusing.
Therefore, it is necessary to divide categories into multiple stages, so that the weights can be
gradually transferred to the tail categories. However, during the transfer process, it may cause
catastrophic forgetting [52] for header categories knowledge.

2.3. Knowledge Distillation

Knowledge distillation uses a pre-trained teacher model to guide a student
model [19,53]. Knowledge distillation for long-tailed learning has been the subject of sev-
eral recent studies. To deal with the long-tailed instance segmentation, the Learning to Segment
the Tail (LST) [54] method created a class-incremental learning technique, in which knowledge
distillation was employed to combat catastrophic forgetting. The Learning From Multiple Ex-
perts (LFME) method [55] used the numerous subgroups datasets and then trained the multiple
experts with the subsets. LFME used adaptive knowledge distillation with instance selection
from easy to hard, which trained a unified student model based on these experts. Routing
dIverse Distribution-aware Experts (RIDE) [56] presented a knowledge distillation approach by
training a student network with fewer experts based on the multi-expert framework. Therefore,
knowledge distillation can be used as an auxiliary method for transfer learning to alleviate
catastrophic forgetting and can be applied to our problem.

3. Method

We have provided a detailed explanation of our method in this section. In Section 3.1,
we define the DGA long-tailed problem. Sections 3.2, 3.3, and 3.4, respectively, introduce
the specific implementations of DBRM, KTM, and KDTM.
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3.1. Long-Tailed DGA Detection Problem

DGA domain name categories c ∈ {1, 2, . . . , C} from a long-tailed DGA dataset
D = {(xi, yi)}H

i=1, where xi denotes an input of the i-th sample and the yi denotes the
corresponding category. We assume a training

f : argm
ω

inL(D, ω) (1)

where ω denotes the model parameters. During model training, the model parameters are
adjusted iteratively and accordingly, with the goal of minimizing the loss function L. In multiple
classification problems, the difference in the sample size of different categories in D will make
ω more biased toward categories with more samples. Therefore, the larger the sample size gap
between categories, the easier for few-shot categories to be ignored. This will also affect the final
training results of f . Therefore, the data imbalance of D is defined as a Pareto distribution.

The Pareto distribution [57] is named after Vilfredo Pareto. The Pareto principle is also
known as the 80–20 rule. If X is a random variable with Pareto distribution, the probability
that X is bigger than a number x, i.e., the tail function, is given by:

F̄(x) = Pr(X > x)
{
( xm

x )a x ≥ xm
1 x < xm

(2)

The scale parameter xm(the minimal possible value of X) and the shape parameter α,
often known as the tail index, defines the Pareto distribution. H := ∑C

c=1Hc is defined as
the total sample size of dataset D, and Hc as the sample size of category c. Hc is sorted in
descending order so that H1 ≥ H2 ≥ · · · ≥ HC. The imbalance factor [34] to measure the
long-tailed distribution is defined below:

IF =
max{H1, H2, . . . , HC}
min{H1, H2, . . . , HC}

=
H1

HC
(3)

However, it cannot reflect the overall characteristics of DGA datasets as the middle
categories are not considered in IF. In this paper, we use α of F̄(x) to measure the long-
tailed problem of DGA datasets. The larger the α, the greater IF, the more imbalanced
D, and the more significant the gap between H1 and HC. Therefore, for the detection
of long-tailed datasets D, we want to detect more few-shot categories and improve the
overall detection result of f by changing D to relatively balanced datasets, and modifying
the training strategies of ω and L for knowledge enhancement in the few-shot categories.
Algorithm 1 shows the specific implementation structure of our method. We divide the
model into multiple stages for training, using DBRM to obtain a relatively balanced dataset
in each stage, using KTM for knowledge transfer in each stage, and KDTM using the
transferred ωn and L to enhance knowledge.

Algorithm 1 Knowledge distillation transfer model

1: N : denotes the number of stages
2: KN : denotes first category of stage N
3: n : denotes current stage
4: Input: {Dc}c∈(0,KN ] ▷ Data pre-processing
5: Output: ωN ▷ The final stage model parameters
6: ω1 ←− argm

ω1
inLCE({Dc}c∈[K1,K2)

, ω1) ▷ Base classes training

7: for n = 2 to N do
8: Dbr

n ←− DBRM({Dc}c∈[K1,Kn+1)
)

9: ωn ←− KTM(Dbr
n , ωn−1)

10: ωn ←− argm
ωn

inLKD(Dbr
n , ωn)

11: end for
12: return ωn
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3.2. DBRM

We divide training into multiple stages, but there is also a significant difference in
sample size between each stage. We use an under-sampling strategy to obtain a relatively
balanced dataset at each transfer stage to narrow the sample size gap between stages. For
example, if we split the training data into two stages: the first stage is from category 0 to
category 15 (containing 90% of the data in the DGA dataset) and the second stage is the
remaining classes. When training for the second stage, if all the data used in the first stage
are inputted into the second stage, the data volume in the second stage is imbalanced.

We assume that the latter stage does not inherit the data from the previous stage. In
this case, the detector may forget the previous stage category. This results in the deep
model being unable to detect all categories. To solve this problem, we define the DBRM
strategy as below:

(1) K ∈ Rd is the step size for each stage category, and for stage N, {Kn}n=1,2,...,N is the
step size of stage n. Categories [K1, K2) are termed as base categories and K1 = 1. For
stage n, categories [K1, Kn) are the old categories, [Kn, Kn+1) are the new categories,
and [Kn+1, KN ] are the future categories. Datasets Dnew

n = {Dc}c∈[Kn ,Kn+1)
contain

new categories and Dold
n = {Dc}c∈[K1,Kn)

contain old categories.

(2) Obtain the review datasets Dsample
n : For each category in [K1, Kn), randomly sample

HKn samples from Dold
n .

(3) By using the balanced datasets Dsample
n of the old categories, we replay Dsample

n into

each stage Dold
n to obtain a relatively balanced datasets Dbr

n = Dsample
n ∪ Dnew

n as the
training datasets.

In addition, we have concretely presented DBRM in Figure 1 for better understanding.
To narrow the gap between large sample size categories and small sample size categories,
we use an under-sampling strategy in large sample size categories for each transfer stage
based on small sample size categories. This can maintain a relatively balanced sample size
during the migration phase and, to a greater extent, avoid the model’s neglect of small
sample size categories. Figure 1 shows that DBRM reduces the amount of data for large
sample categories in the base data through an under-sampling strategy. In the final stage
N, it can be seen that the amount of data for large sample categories is relatively balanced
with that for small sample categories.

Figure 1. The architecture of the Knowledge Transfer Model (KTM). The purple and red lines indicate
the distribution trend of sample size for each category.
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3.3. KTM
3.3.1. Base Data

Dataset D is obtained by sorting all categories in descending order according to the
number of samples. Multi-stage learning divides D into multiple non-overlapping sub-
datasets Dn, n = 1, 2, . . . , N. D1 is used to train the base teacher model and includes the
categories with relatively large amounts of data in dataset D.

3.3.2. Preprocessing

As shown in Table 2, there are many types of characters in the DGA dataset. we
replace the characters in the domain name with numbers. We map alphabetic characters
(a–z), numbers (0–9), and special characters (., _, -) to integers 0 to 39; DGA domain names
have different lengths. Since the maximum length of DGA domain names is 73, we use the
filling to make all the domain names have equal lengths so that domain names are ready to
be inputted into the deep learning model.

Table 2. The detailed Domain Generation Algorithm (DGA) dataset.

DGA Family Sample DGA Family Sample

Alexa (whitelist) google.com qadars 9u78d6349qf8.top
banjori bplbfordlinnetavox.com locky tcrgkleyeivrlix.work
emotet fdfptbhnadweuudl.eu dyre g6a8ff179bf317e57b2b6665d3fdc47dc0.to
rovnix oysyt45p4r3ul7sbdo.com chinad j0xx9q0a0p57o0up.cn
tinba lkhhrrnldtoy.me.uk cryptolocker lmnlbvkcomdoh.biz

pykspa_v1 vjdibcn.cc vawtrak agifdocg.top
simda welorav.info pykspa_v2_fake bvuhnesrlz.net
ramnit hpgfsqdgbwvonp.com dircrypt extuhmqqtzwavpmfw.com

gameover 2okay8f2i4l7xadz0c1tt8rlw.biz conficker bxsujqbjrz.cc
ranbyus eruvxfflddfkekhvd.su matsnu half-page-belt.com

virut uiufzg.com nymaim yxcaitrv.in
murofet wjspslenzlfruiy.com fobber_v2 nqietkrebr.com
necurs twxsbhjatburhmg.nf fobber_v1 ayppvfettvcxdosqu.net
symmi tucapefube.ddns.net tempedreve crpejdbfqf.net
shifu updesxi.info pykspa_v2_real rjsxrxre.info

suppobox alexandriawashington.net padcrypt cccdocfealldbnbf.tk

3.3.3. Embedding

Embedding is a method to convert discrete variables into continuous vectors of fixed
length. It is very suitable for deep learning [58], using low-dimensional vectors to encode
objects and preserve their meanings. Word embedding performs well in natural language
processing, but because DGA domain names are generated using random characters and
do not conform to the word rule in natural language, we use character-level embedding. In
this paper, according to the padding size, the embedding input size is 73 and the output
dimension is 32. To prevent over-fitting, we also use dropout and L2 regularization.

3.3.4. Att_BiLSTM + CNN Model

We use BiLSTM + CNN with an attention mechanism (ATT_BiLSTM + CNN) model [32]
as the base teacher and comparison model, as shown in Figure 2.

CNN [32] uses local area features to achieve target tasks. In the feature extraction stage,
the convolution layer and pooling layer are repeatedly executed to automatically extract
data features. Therefore, CNN can be used to learn the local sequence information of the
DGA detection task and extract text features. BiLSTM [59] is a sequence processing model,
and its name indicates that it is composed of bidirectional LSTM. It is commonly used in
natural language tasks to model context information. By simulating human attention, an
attention mechanism [60] is presented as a solution to the problem. In a nutshell, it is the
process of swiftly separating high-value information from a large volume of data. Therefore,
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BiLSTM can learn global sequence information and understand the semantic information
of the DGA data. We build the model and first input the pre-processing domain names into
BiLSTM with attention and the CNN embedding layer, respectively. CNN includes four
1D convolution operations with different filter sizes from 2 to 5 and maximum pooling.
We set the output size of the BiLSTM layer to be 256. To output each sequence, we set the
theretun_sequence to True, add self-attention to BiLSTM to focus on important characters
in the domain name, and then concatenate BiLSTM with attention and the CNN output
layer. Finally, we obtain the DGA classification result through the full connection layer
with ReLu as the activation function.

Figure 2. The architecture of the Att_CNN + BiLSTM model.

3.3.5. Transfer Weights

The specific segmentation of multiple stages is determined by the number of categories
in the DGA datasets. We need to set the number of segmentation stages N, the total number
of categories C of dataset D, and the number of categories in each stage K = C/N. If K is a
non-integer, the stages except for the last stage contain rounded K categories, and the last
stage contains the remaining categories. We use transfer learning to transfer the divided
stage from the first stage to the last stage.

Transfer learning applies the knowledge learned from one task to other tasks. Transfer
learning includes source domain Ds, Ds = {(xs1 , ys1), . . . , (xsi , ysi )} and target domain
DT , DT =

{
(xT1 , yT1), . . . , (xTi , yTi )

}
. xsi is the data instance and ysi is the corresponding

class label, the inputs xTi and yTi are the corresponding outputs. So, transfer learning uses
knowledge in the source domain Ds and learning task Ts to help improve the learning of
target predictive function fT(·) in DT .

As shown in Figure 1, starting from Stage 1, we use {Dc}c∈[K1,K2)
as the input to

train the base teacher model and save it as the basic pre-training model ω1. For Stage 2,
we use Dbr

2 as the model input. We obtain ω2 by loading and freezing the weight of ω1
trunk, and ω2 uses the weights of ω1 by changing the output layer. We gradually transfer
data to obtain {ωn}n=3,...,N using the same method. This multi-stage and gradual transfer
approach can enable ωn to learn from {ωn−1} knowledge. Based on the above, ωN can
learn knowledge of all categories as the final model. We achieve weight transfer by freezing
model parameters and cutting the last part of the dense layers to replace the new dense
layers. This allows us to use the parameters of the frozen model and train only the latest
dense layers. After completing the multi-stage weight transfer, the head categories with
large sample data will transfer knowledge to the tail categories with small sample data.
This can enhance the features of categories with small sample data.
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3.4. KDTM

To further optimize KTM, we propose KDTM to alleviate ωn’s forgetting of ωn−1,
which is the forgetting of head category knowledge. In Figure 3, we specifically demonstrate
how KDTM uses knowledge distillation to retain the memory of ωn.

Figure 3. The architecture of the Knowledge Distillation Transfer Model (KDTM).

Knowledge Distillation

In our knowledge distillation, to alleviate the catastrophic forgetting of {ωn−1} during
the weights transfer process through knowledge distillation. ωn−1 is the exporter of
the knowledge, and ωn−1 is the recipient of knowledge. Suppose that the ωn predicts
p = (p1, p2, . . . , pH) ∈ RH to obtain the Softmax function [61]:

pi =
exp

(
zj
)

∑H
k=1exp(zk)

(4)

where zj is the ωn’s logits, H is the total number of labels. We add τ ∈ [1, 20] to pi to
smooth the output results and preserve the similarity information between ωn and ωn−1.
We denote the probability of each category, which is the inputting of the logits of ωn to the
Softmax-T function [19]:

pτ
i =

exp
(
zj/τ

)
∑H

k=1exp(zk/τ)
(5)

Similarly, qτ
i denotes the probability of each category, which is the output of inputting

the logits of ωn−1 into the Softmax-T function. Based on the above information, we have
defined our distillation loss function as:

LKD = (β + 1)
H

∑
i=1

yilogpi + βτ2
H

∑
i=1

qτ
i log

qτ
i

pτ
i

(6)

where ∑H
i=1 qτ

i log qτ
i

pτ
i

denotes the Kullback–Leibler (KL) divergence loss [62] of qτ
i and pτ

i at
the same temperature τ, and can be expanded to:

∑H
i=1qτ

i log
qτ

i
pτ

i
= ∑H

i=1qτ
i logqτ

i − qτ
i logpτ

i (7)

which measures the distribution difference between ωn−1 and ωn. Similarly, ωn can also
receive knowledge of ωn−1.
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The knowledge of ωn−1 can also have a certain error rate for ωn. Therefore, using
∑H

i=1 yilogpi , which is the cross entropy [63] of ωn including Softmax [64] pi can effectively
reduce the possibility of errors being propagated to ωn. The weighted parameter β ∈ [0, 1]
can balance the two parts of loss. To ensure the same contribution of the two parts of loss
on the gradient amount, it is necessary to multiply the coefficient of τ2 before the second
part of the loss.

Knowledge distillation is conducted based on transfer weights. Knowledge distillation
has been proposed as a way to alleviate the catastrophic forgetting problem during the
transfer weights process, but it can also add more knowledge of {ωn−1} to ωn. For tail
categories with small sample data, knowledge distillation means that more head category
features will be transferred to the tail categories.

4. Experiments

We conducted extensive experiments to demonstrate how KDTM can improve the
overall performance of DGA detection. Firstly, we conducted ablation experiments on the
design in Section 4.3. Then, we benchmark our method on three long-tailed datasets with
Pareto distributions, showing that it rivals or outperforms existing DGA detection methods.

4.1. Datasets

To better compare with other methods, we chose the dataset commonly used in deep
learning DGA detection. Following [32], the long-tailed DGA dataset used in our exper-
iments includes two broad categories of whitelist domain names and blacklist domain
names. The whitelist domain names are obtained from the Alexa website (Alexa, The
web information company (Seattle, WA, USA), http://www.alexa.com/ (accessed on 20
January 2023)), which ranks the domain names according to the number of users and visits.
DGA domain names were obtained from a public dataset downloaded from the 360net-
lab (360netlab, https://data.netlab.360.com/dga/ or https://github.com/chrmor/DGA_
domains_dataset (accessed on 20 January 2023) intelligence website including 31 DGA fam-
ilies. To verify the generalization of KDTM, we reshape the DGA datasets to follow Pareto
distributions with α = 3, 5, 6 as shown in Figure 4a. When α = 6, the Pareto distribution
basically matches the distribution of the original data. If α > 6, some tail categories will
have too little data, and even some categories may not be able to obtain samples, so we
choose power value α ≤ 6. Overall, α = 6 contains 20.89281 M samples from 32 categories
with the maximum of 9 M samples and the minimum of 132 samples, α = 5 contains
9.262 M samples with the maximum of 5 M samples and minimum of 169 samples, and
α = 3 contains 5.5569 M samples with the maximum of 3 M samples and the minimum of
168 samples. From Figure 4a, it can be seen that for the difference in data volume between
the head and tail, α = 6 > α = 5 > α = 3.
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Figure 4. (a) The specific distribution of the datasets used to test model robustness . (b) The optimal
value selection of hyper-parameter β in LKD.
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4.2. Evaluation

We use precision , recall, F1 score, and macro average F1-Score [35] values as the
evaluation indicators for model comparison.

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
(9)

F1 =
2 ∗ precision ∗ recall

precision + recall
(10)

macro average F1-Score =
sum(per_class_F1_Score)

count(class)
(11)

where TP is the true positive, FP is the false positive, FN is the false negative. The F1 score
is the harmonic mean value of the precision rate and recall rate, which is equivalent to the
comprehensive evaluation index of the precision rate and recall rate. Therefore, we mainly
use the F1 score for comparison. The Macro average directly adds the evaluation indicators
of different categories to calculate the average. By giving all categories the same weights,
it treats each category equally, and better evaluates the overall effect of the model in the
imbalanced multi-classification problem. We further reported the Macro average F1 score
on three groups of categories, Many (category sample > 10,000), Medium (category sample
1000∼10,000), and Few (category sample < 1000), to comprehensively evaluate our model.
We use the TensorFlow [65] toolbox to train our models. The models are trained with a
batch size of 64 and the Adam [66] optimizer.

4.3. Ablation Study
4.3.1. Hyperparameter Tuning

β and τ are the two hyperparameters in knowledge distillation. To prevent the
information from being affected by the noise in the negative label, τ is set relatively low.
Following [67], we use τ = 1.3. Figure 4b shows that the model can obtain the optimal
result when β = 0.5 and τ = 1.3. We can see that as a weighting parameter of two parts of
loss in knowledge distillation, the F1 score value also increases with increased β. When
β = 0.4, F1 score tends to be stable, and the best result is when β = 0.5.

4.3.2. Choosing N-Stage in KTM

We divide the total 32 categories of DGA datasets into multiple stages. In Table 3, to
verify the impact of the number of stages on the classification performance, we choose the
number of stages as follows: N = 2, N = 3, N = 4 and N = 8. The 2-stage, 4-stage, and
8-stage can be evenly distributed to each stage of K = 32/N. The 3-stage is an example of
uneven distribution, with K = 32/3 categories in the first and second stages and K = 32/3
categories in the third stage. The F1 scores of the Many, Medium, and Few categories of the
3-stage are all the lowest due to the uneven distribution of each stage category. The results
of the 8-stage are also poor because the number of categories in each stage is too small
and the transfer frequency is too high. According to the division rules of Many, Medium,
and Few, Table 3 shows the results of transfer learning in multiple stages, we can see from
the results that the 2-stage performs best in Many, Medium, Few, and All, and the 3-stage
with non-average segmentation has the worst effect. With fewer stages and more even
segmentation, the performance is better.
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Table 3. Ablation studies comparing Knowledge Transfer Model (KTM) results across multiple
stages through F1 scores, recall, and precision in the Many, Medium, and Few categories on Domain
Generation Algorithm (DGA) long-tailed datasets of α = 6. The bolded values are the best in the
same metrics and data blocks.

Metrics N-Stage Many Medium Few All

F1

N = 2 0.941 0.930 0.558 0.792
N = 3 0.686 0.660 0.245 0.497
N = 4 0.870 0.875 0.580 0.766
N = 8 0.761 0.678 0.349 0.561

Recall

N = 2 0.952 0.929 0.562 0.799
N = 3 0.626 0.711 0.257 0.512
N = 4 0.916 0.860 0.596 0.780
N = 8 0.704 0.763 0.368 0.594

Precision

N = 2 0.922 0.935 0.652 0.825
N = 3 0.798 0.782 0.353 0.627
N = 4 0.853 0.900 0.594 0.769
N = 8 0.818 0.677 0.421 0.630

4.3.3. Baseline and KTM

To demonstrate the effectiveness of KTM, we compare the baseline model without transfer
learning with KTM. The baseline model is ATT_ BiLSTM + CNN, which is also the network
architecture of KTM before using transfer weights. Figure 5a compares the baseline model and
KTM per-class F1 score on DGA long-tailed datasets of α = 6. The blue part represents KTM,
the gray part represents the baseline, and the darker part represents the overlapping part of
the two values. From the results, it can be seen that the F1 score of KTM is much larger than
that of the baseline model after the "Necaurs" category, which also proves that the combination
of DBRM and weight transfer has a prominent contribution in categories with small sample
sizes. In addition, categories with relatively large sample sizes also maintained relatively high
accuracy. The overall effect of KTM is far superior to the baseline model.

4.3.4. Knowledge Distillation

Figure 5b compares the F1 scores of KTM and KDTM on the long-tailed dataset of
α = 6. It shows the F1 score of KDTM (yellow) and KTM (blue) for all categories and
their overlapping parts are shown in green. The red line is the distribution of the sample
size of the categories, which follows the long-tailed distribution with α = 6. KDTM can
greatly improve the accuracy of small sample categories while ensuring the accuracy of
large sample categories and detect more DGA small sample categories. It can be seen that
knowledge distillation has a memory ability for large sample categories of knowledge.
This ability optimizes the forgetting of old knowledge when transferring weights and
obtaining new knowledge to the small sample categories and it narrows the classification
gap between the large sample categories and small sample categories in long-tailed data.
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Figure 5. Ablation study comparing baseline model, Knowledge Transfer Model (KTM), and Knowl-
edge Distillation Transfer Model (KDTM) per-class F1 score on Domain Generation Algorithm (DGA)
long-tailed datasets of α = 6. (a) Comparison between KTM and baseline model (ATT_BiLSTM + CNN),
where dark regions are the areas where their values overlap. (b) Comparison between KTM
and KDTM.

4.4. Comparison Methods and Results
4.4.1. Compared Methods

Considering the overall poor performance of deep learning in DGA detection in Table 1,
we have chosen multiple methods that have been released in the past three years and have
a relatively high Macro average F1 score, the BiLSTM with attention mechanism model
(ATT_BiLSTM) [32] and CNN + BiLSTM model with attention mechanism (ATT_BiLSTM
+ CNN) [26]. The former two are the most recent and popular deep learning models for
DGA detection problems.

4.4.2. Results

Figure 6 shows the detailed classification performance of each DGA category for all
comparative models when using a DGA long-tailed distribution dataset with α = 3, α = 5,
and α = 6. As expected, ATT_BiLSTM and ATT_BiLSTM + CNN have high accuracy in
detecting categories belonging to Many, but for many categories belonging to Few, the
detection accuracy is low, and some can not even be classified. We find that this situation is
related to the dependence of traditional models on sample size. KTM knowledge transfer
has a significant effect on categories belonging to Few. Compared to the two traditional
models, categories from “dircrypt” to “pykspa_v2_real” can be basically classified. But the
category knowledge in Many can also be forgotten through layer-upon-layer transmission,
and KDTM has made improvements to this issue. The detection results of each category

Figure 5. Cont.
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This ability optimizes the forgetting of old knowledge when transferring weights and
obtaining new knowledge to the small sample categories and it narrows the classification
gap between the large sample categories and small sample categories in long-tailed data.
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Figure 5. Ablation study comparing baseline model, Knowledge Transfer Model (KTM), and Knowl-
edge Distillation Transfer Model (KDTM) per-class F1 score on Domain Generation Algorithm (DGA)
long-tailed datasets of α = 6. (a) Comparison between KTM and baseline model (ATT_BiLSTM + CNN),
where dark regions are the areas where their values overlap. (b) Comparison between KTM
and KDTM.

4.4. Comparison Methods and Results
4.4.1. Compared Methods

Considering the overall poor performance of deep learning in DGA detection in Table 1,
we have chosen multiple methods that have been released in the past three years and have
a relatively high Macro average F1 score, the BiLSTM with attention mechanism model
(ATT_BiLSTM) [32] and CNN + BiLSTM model with attention mechanism (ATT_BiLSTM
+ CNN) [26]. The former two are the most recent and popular deep learning models for
DGA detection problems.

4.4.2. Results

Figure 6 shows the detailed classification performance of each DGA category for all
comparative models when using a DGA long-tailed distribution dataset with α = 3, α = 5,
and α = 6. As expected, ATT_BiLSTM and ATT_BiLSTM + CNN have high accuracy in
detecting categories belonging to Many, but for many categories belonging to Few, the
detection accuracy is low, and some can not even be classified. We find that this situation is
related to the dependence of traditional models on sample size. KTM knowledge transfer
has a significant effect on categories belonging to Few. Compared to the two traditional
models, categories from “dircrypt” to “pykspa_v2_real” can be basically classified. But the
category knowledge in Many can also be forgotten through layer-upon-layer transmission,
and KDTM has made improvements to this issue. The detection results of each category
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edge Distillation Transfer Model (KDTM) per-class F1 score on Domain Generation Algorithm (DGA)
long-tailed datasets of α = 6. (a) Comparison between KTM and baseline model (ATT_BiLSTM + CNN),
where dark regions are the areas where their values overlap. (b) Comparison between KTM
and KDTM.

4.4. Comparison Methods and Results
4.4.1. Compared Methods

Considering the overall poor performance of deep learning in DGA detection in Table 1,
we have chosen multiple methods that have been released in the past three years and have
a relatively high Macro average F1 score, the BiLSTM with attention mechanism model
(ATT_BiLSTM) [32] and CNN + BiLSTM model with attention mechanism (ATT_BiLSTM
+ CNN) [26]. The former two are the most recent and popular deep learning models for
DGA detection problems.

4.4.2. Results

Figure 6 shows the detailed classification performance of each DGA category for all
comparative models when using a DGA long-tailed distribution dataset with α = 3, α = 5,
and α = 6. As expected, ATT_BiLSTM and ATT_BiLSTM + CNN have high accuracy in
detecting categories belonging to Many, but for many categories belonging to Few, the
detection accuracy is low, and some can not even be classified. We find that this situation is
related to the dependence of traditional models on sample size. KTM knowledge transfer
has a significant effect on categories belonging to Few. Compared to the two traditional
models, categories from “dircrypt” to “pykspa_v2_real” can be basically classified. But the
category knowledge in Many can also be forgotten through layer-upon-layer transmission,
and KDTM has made improvements to this issue. The detection results of each category
in Many are not inferior to traditional models, and even “emotet” and “pykspa_v1” can
achieve an accuracy of 1. This shows that our model effectively reduces the impact of
transfer learning on Many categories. Our model has achieved the best detection results for
almost every category after the category “necurs”, such as with the category “conficker”,
showing a 42% improvement in F1 score compared to other models. The overall category
average precision, recall, and F1 score increased by 8%, 3%, and 5%, respectively.

Figure 7 shows all categories of Macro average F1 scores, Macro average precision,
and Macro average recall of comparing models on the datasets with different Pareto
distributions. From the results, it can be seen that our KDTM model results are optimal on
three datasets with different Pareto distributions, demonstrating the robustness of KDTM.
As α increases, the overall detection performance of the KDTM model shows an upward
trend in the Macro average F1 score. Except for the downward trend of ATT_BiLSTM, other
comparative models also show an upward trend. When α = 3, the optimal result for the
Many categories detection appears in ATT_BiLSTM, as α increases, the accuracy of Many,
Medium, and Few categories decreases. This indicates that although the amount of data
has increased, the increase in imbalance factors has led to a widening gap in the amount of
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data between the Many and Few categories, resulting in a decrease in accuracy. This is the
most common phenomenon in traditional models when encountering imbalanced datasets.
ATT_BiLSTM + CNN compared with ATT_BiLSTM, adding CNN can obtain more text
features, so as the data volume increases, more information can be obtained. The results
showed that the detection results of ATT_BiLSTM + CNN increased with the increase in
α in the Many and Medium categories, but there was no significant improvement effect
in the Few categories. KTM used transfer learning to transfer the knowledge in the Many
categories to the Few categories, so when the amount of data in the Many increases, the
knowledge in the relative Few will also increase. KDTM inherits this advantage and retains
more of the forgotten knowledge in the Many categories. As the imbalance factor increases
and the number of Many categories of data increases, our model will also perform well.
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Figure 6. The detailed classification performance of each Domain Generation Algorithm (DGA)
category for all comparative models when using a DGA long-tailed distribution dataset with
(a) α = 3, (b) α = 5, (c) α = 6.
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Figure 7. All categories of (a) Macro average F1 scores, (b) Macro average precision, and (c) Macro
average recall of comparing models on the datasets with different Pareto distributions.
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Table 4 also shows that KDTM has the best overall classification performance and can
achieve optimal detection performance for categories belonging to Medium and Few. The
accuracy of the corresponding Medium and Few categories will increase as α increases,
achieving the optimal result in α = 6. Specifically, while ensuring that the accuracy of the
Many categories is close to the optimal result, the Few categories can also have a significant
improvement. Compared with other models in α = 3, the Few categories’ Macro average
F1 score has increased by 28%, 42%, and 9%, respectively, in α = 5 by 33%, 43%, and 2%,
and in α = 6 by 50%, 32%, and 12%, respectively. In Table 5, we use the Macro average F1
score to compare our model with existing DGA deep learning models. The results show
that the overall performance of our model has reached state-of-the-art compared with
recent models.

Table 4. Macro average F1 scores on Pareto distribution α = 3, α = 5, and α = 6 datasets. Comparison
with the other methods with different metrics. The bolded values are the best in the same metrics, α

and data blocks.

Model Metrics
α = 3 α = 5 α = 6

Many Medium Few All Many Medium Few All Many Medium Few All

ATT_BiLSTM [32]
Precision 0.984 0.873 0.515 0.746 0.972 0.897 0.491 0.766 0.949 0.907 0.344 0.711

Recall 0.99 0.79 0.36 0.608 0.962 0.772 0.247 0.601 0.918 0.735 0.122 0.565
F1 0.987 0.797 0.415 0.641 0.967 0.813 0.247 0.645 0.918 0.767 0.167 0.596

ATT_BiLSTM + CNN [26]
Precision 0.983 0.687 0.506 0.652 0.946 0.834 0.367 0.691 0.943 0.889 0.536 0.777

Recall 0.796 0.683 0.208 0.472 0.916 0.83 0.108 0.585 0.967 0.913 0.287 0.697
F1 0.808 0.583 0.25 0.464 0.926 0.802 0.142 0.591 0.954 0.898 0.352 0.714

KTM
Precision 0.984 0.836 0.724 0.794 0.955 0.886 0.761 0.855 0.917 0.948 0.652 0.824

Recall 0.943 0.916 0.58 0.753 0.947 0.938 0.514 0.779 0.946 0.943 0.561 0.799
F1 0.942 0.87 0.588 0.739 0.948 0.908 0.565 0.787 0.929 0.945 0.558 0.792

KDTM
Precision 0.888 0.901 0.775 0.833 0.963 0.915 0.695 0.844 0.926 0.97 0.836 0.902

Recall 0.975 0.941 0.633 0.79 0.971 0.933 0.575 0.805 0.954 0.958 0.618 0.829
F1 0.927 0.916 0.67 0.792 0.966 0.919 0.577 0.801 0.939 0.963 0.674 0.845

Table 5. Comparison of Macro average F1 score between our models and existing Domain Generation
Algorithm (DGA) deep learning detection models. The bolded values are the best method and Macro
average F1 score.

Method Year Macro Average F1 Score

LSTM [14] 2016 0.542
RNN [27] 2017 0.660

SVM and LSTM-based models [28] 2017 0.267
LSTM.MI [36] 2018 0.567

CNN [37] 2019 0.612
B-LSTM/B-RNN/B-GRU [29] 2020 0.470

ATT_BiLSTM [32] 2021 0.837
Extended Character Feature in BiLSTM [31] 2022 0.751

MHSA-RCNN-SABILSTM [33] 2022 0.838
PEPC [39] 2022 0.805
TLM [40] 2023 0.766

KTM 2024 0.792
KDTM 2024 0.845

Overall, the KDTM can significantly improve the detection accuracy of categories
with small sample sizes and the overall detection accuracy of the model while ensuring
the accuracy of categories with large sample sizes, enabling DGA detection to detect
more categories.

5. Conclusions

In this paper, we propose KTM to optimize the long-tailed DGA detection problem. It
divides the DGA detection task into multiple stages and uses the DBRM for balancing the
data difference at each stage for the long-tailed DGA dataset. KTM uses transfer learning
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to transfer the knowledge from the big sample categories to the small sample categories
stage by stage, which improves the overall accuracy, especially for tail categories. We
propose KDTM, which adds knowledge distillation to alleviate catastrophic forgetting
from the process of transfer weights. It can also be seen from the experimental results that
compared with the traditional deep learning models, our method performs better in the tail
categories and our model improves the overall accuracy to 84.5%. We also verify that in the
long-tailed DGA detection, multi-stage transfer learning has the best effect by averaging
each stage category and dividing the task into two stages. We use three DGA datasets
to follow Pareto distributions to verify the generalization of the model by applying the
model to datasets with different Pareto distributions. KDTM has a good effect compared
with other models in a variety of DGA long-tailed distributions and is more conducive to
dealing with changes in data in practical scenarios. KDTM’s more friendly feature towards
tail categories can detect newly generated small sample categories, enhancing its defense
against hacker attacks. In the future, as many categories in DGA are prone to confusion,
we will add feature difference analysis of tail categories to solve the detection confusion
caused by feature similarity between categories.
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