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Abstract: Object detection has gained widespread application across various domains; nevertheless,
small object detection still presents numerous challenges due to the inherent limitations of small
objects, such as their limited resolution and susceptibility to interference from neighboring elements.
To improve detection accuracy of small objects, this study presents a novel method that integrates
context information, attention mechanism, and multi-scale information. First, to realize feature
augmentation, a composite backbone network is employed which can jointly extract object features.
On this basis, to efficiently incorporate context information and focus on key features, the composite
dilated convolution and attention module (CDAM) is designed, consisting of a composite dilated
convolution module (CDM) and convolutional block attention module (CBAM). Then, a feature
elimination module (FEM) is introduced to reduce the feature proportion of medium and large objects
on feature layers; the impact of neighboring objects on small object detection can thereby be mitigated.
Experiments conducted on MS COCO validate the superior performance of the method compared
with baseline detectors, while it yields an average enhancement of 0.8% in overall detection accuracy,
with a notable enhancement of 2.7% in small object detection.

Keywords: small object detection; context information; composite backbone network; multi-scale
information; attention mechanism

MSC: 68T07

1. Introduction

Object detection is one fundamental field of computer vision, encompassing the
identification of object positions, sizes, and categories within images. The precise detection
of small objects, a specialized subtask within this field, is particularly crucial in diverse
domains, playing a pivotal role in areas including autonomous driving, healthcare, and
national defense. Its application in real-world scenarios is widespread and essential [1].

However, small object detection presents persistent challenges, arising from several
factors. Firstly, small objects with limited resolution may result in restricted visual infor-
mation, making it difficult for the detector to extract sufficient features. Furthermore, as
small objects occupy a relatively tiny region, there is a lack of sufficient context information
to assist in their detection. Additionally, the current detectors heavily depend on anchor
boxes and use a fixed threshold during training to classify proposal regions as positive or
negative. Therefore, an uneven distribution of positive and negative cases across various
sizes will occur, resulting in fewer positive samples for small objects compared to medium
and large ones. Consequently, detectors prioritize detecting other objects, often overlooking
small ones [2,3].

Currently, research to facilitate small object detection primarily focuses on several areas:
data augmentation, incorporating context information, and utilizing multi-scale information.

• Data augmentation [4–7] has been widely adopted in small object detection. Through
utilizing diverse strategies to augment the training data, the dataset can be expanded
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in size and diversity. However, data augmentation also presents certain issues, such
as increased computational costs. And poorly devised augmenting approaches might
add additional noise, negatively impacting feature extracting. Additionally, data
augmentation merely adds features of small objects without considering how to
optimize the extraction of these features.

• Certain studies have proposed the integration of context information to assist in
detection tasks. This involves learning background features surrounding the object
and global scene features. Though these explorations have yielded performance
improvements, devising an appropriately balanced strategy for extracting context
information and preventing small objects from being influenced by medium to large-
sized objects remains a challenge.

• Moreover, multi-scale learning is widely used. The feature pyramid network (FPN)
emerges as the multi-scale network for comprehensive feature extraction in object
detection [8]. This approach aims to leverage an extensive range of feature layers,
fusing the shallow layers and deep layer; the fused feature layer has richer position
information and semantic information. Building upon this foundation, Liang et al. [9]
proposed a Deep FPN, which incorporates lateral connections and is trained using
specifically designed anchor boxes and loss functions. Merugu et al. [10,11] also
employed a similar multi-module approach. However, these methods primarily focus
on how to superimpose additional features for detection, ignoring specific multi-scale
learning strategies tailored for small objects.

Although the current works are meaningful, there is still a lack of exploration re-
garding how to fully extract features and efficiently incorporate context information and
multi-scale information. In light of these considerations, our study introduces a novel
detection model for small objects. Initially, the model incorporates a composite backbone
network, which can more thoroughly extract object features compared to current single-
backbone network detectors. Additionally, the model is designed with a composite dilated
convolution module, which efficiently integrates context information through dilated con-
volutions. Compared to existing context learning methods, this approach demonstrates
a superior level of simplicity and efficiency. Furthermore, a feature reduction module
is devised. Unlike existing multi-scale learning methods such as feature pyramids, this
module effectively mitigates the impact of other-sized objects on small objects. This work
conducts detailed experiments utilizing MS COCO, validating that our model is more
efficient when detecting small objects than other comparative models.

The main contributions are listed below.

• This work introduces a composite backbone network architecture, enabling the two
backbone networks to simultaneously extract and fuse features, thereby obtaining
more usable features to enhance detection accuracy.

• This work designs a composite dilated convolution and attention module (CDAM).
This module convolves and fuses shallow feature maps with varying dilation rates to
effectively incorporate context information for better detection performance.

• This work presents the feature elimination module (FEM). This module mainly re-
duces the impact of medium and large objects on small objects by performing object
elimination on the shallow feature layer.

2. Related Work

This part introduces the development of object detection. Subsequently, this paper
delves into the detecting methods employed specifically towards small objects. Finally, the
paper explores various approaches that utilize context information.

2.1. Object Detection

Detection models including R-CNN series [12] and the YOLO series [13–15] have
shown commendable performance in precisely locating objects within images. Two-stage
detectors, exemplified by the R-CNN series, typically exhibit superior detection accuracy.
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They employ a two-step process, first selecting candidate boxes on feature layers and
subsequently performing detection on these candidates. However, these detectors suffer
from slow detection speeds, making them unsuitable for real-time applications. Conversely,
one-stage detectors do not rely on generating candidate boxes on the feature map, resulting
in faster detection speed; as a result, their accuracy typically falls short of that achieved by
the former. Among one-stage detectors, YOLOv5 [16] has garnered significant attention.
It adopts Mosaic data augmentation at the input, utilizes the Darknet-53 [17] architecture
as the backbone, incorporates FPN and PANet [18] in the Head section, and introduces
the GIOU_Loss function. Building upon YOLOv5, YOLOv7 enhances detection speed and
accuracy through faster convolution operations and a more compact model with the same
computational resources, surpassing many two-stage detectors. Despite the progress made
by these detectors, small object detection remains a persistent challenge.

2.2. Small Object Detection

Recently, numerous methods have emerged to tackle the complexities associated with
detecting small objects. These approaches encompass different aspects and considerations
in order to enhance detection accuracy and overcome the limitations associated with
small objects. A particular strategy involves utilizing data augmentation techniques to
augment the representation of small objects and alleviate the impact of imbalanced sample
distribution. Strategies such as copying, scaling, and component stitching have been
explored for this purpose [4–6]. With the increasing popularity of reinforcement learning,
research has gone beyond designing data augmentation strategies based solely on the
features of small objects, and has instead explored using reinforcement learning to select
the optimal data augmentation strategy [19], thus surpassing the limitations of object
features. However, relying solely on data-level enhancements has limitations in significantly
improving small object detection accuracy and may introduce unwanted noise. Another
approach, known as multi-scale learning, combines spatial details in the shallow layers
and semantic details in the deep layers to tackle the imbalance problem at the feature
level [20–22]. The objective of this approach is to maximize the utilization of diverse scales,
harnessing their complementary nature, with the ultimate goal of enhancing the detection
ability of small objects. Additionally, contextual learning is another idea that has been
explored for small object detection [23–26], which enriches object features by incorporating
global or local context information explicitly or implicitly. By considering contextual cues,
this approach enhances the discriminative power of features for small object detection. An
additional approach involves utilizing generative adversarial networks (GANs) to generate
high-resolution features based on low-resolution features as input, enriching small object
features. However, due to the introduction of a more complex generative adversarial
network, it has limitations of increased model complexity and slower speed. In addition,
research has been conducted to overcome the limitations of anchor boxes. The existing
design of anchor boxes makes the model more inclined to detect other objects and is not
very helpful for small objects. Some studies have transformed the detection task into the
estimation of keypoints. Law et al. [27] proposed CornerNet, which first predicts the two
points on the diagonal and subsequently uses the paired corner points for the generation
of the bounding box. Duan et al. [28] proposed CenterNet, which firstly predicts the two
corner points as well as the center keypoint. Then, it matches the corners to form bounding
boxes and finally utilizes the predicted center point to eliminate incorrect bounding boxes
caused by corner mismatch. Yang et al. [29] introduced a novel technique called RepPoints,
which offers a refined representation that enables more precise delineation of objects.

2.3. Context Information

For small object detection, incorporating context information holds significant impor-
tance. The limited resolution and pixel representation of small objects pose challenges
for traditional object detection methods, impeding their accurate detection. Context infor-
mation offers valuable cues that aid in this process. For instance, identifying a fish at the
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bottom of the sea in an image might be arduous without any contextual cues. However,
with the inclusion of ocean background information, the fish can be easily recognized.
Therefore, integrating context information into the detection process proves advantageous
for detecting small objects. Context information can be categorized as implicit or explicit.
Implicit context encompasses the background features surrounding the object or global
scene features. Li et al. [23] proposed a method that utilizes contextual windows; it
extracts features through windows of different scales to introduce context information.
Zeng et al. [24] tried to use Long Short-Term Memory between relevant image regions to
extract context information. Explicit contextual reasoning entails leveraging clearly defined
context information within a scene to aid in inferring the position or category of an object.
For instance, the contextual relationship between the sky area and the object can be used to
infer the object’s category. Liu et al. [25] introduced a structural reasoning network that
comprehensively considers the relationship between scene context and objects, thereby
enhancing detection performance. To harness prior knowledge, Xu et al. [26] introduced
Reasoning-RCNN, which is improved from Faster R-CNN. This model constructs a knowl-
edge graph to encode contextual relationships and utilizes prior contextual relationships
to influence the object detection process. Merugu et al. [30] integrated image classifica-
tion with spatial context information by combining colorimetric edge preservation with
spatial-spectral modeling.

The following mainly compares various object detection methods along three dimen-
sions: feature extraction techniques, integration of context information, and utilization of
multi-scale information, as illustrated in Table 1 below.

Table 1. Comparison of various approaches.

Method Feature Extraction Context Information Multi-Scale Information

[12,31] single backbone - -
[8] single backbone - FPN

[15,16,18] single backbone - based on FPN
[32] single backbone - Img Pyramid
[23] single backbone by multi-context windows -
[24] single backbone by LSTM -
[25] single backbone by Graph Neural Network -
[26] single backbone by Knowledge Graph -

Ours composite backbone by dilated convolution based on FPN and add FEM

3. Methodology
3.1. Overall Framework

The primary objective aims at improving detection ability for small objects by inte-
grating context information, extracting more comprehensive features, and suppressing
the impact of medium and large objects. To accomplish this, this work presents a novel
small object detection model that integrates several crucial components. Firstly, the CDAM
is introduced, which facilitates the comprehensive capture of context information. The
module utilizes surrounding context and enhances the detection process. Secondly, the
FEM is proposed, specifically designed to suppress the impact of medium and large object
features. By focusing on small object detection, the FEM effectively eliminates the interfer-
ence caused by larger objects and better detects small targets. Lastly, composite backbone
networks are incorporated into our framework to enable more extensive and robust feature
extraction. This integration of diverse backbone networks ensures the comprehensive repre-
sentation of various object characteristics and enhances the overall detection performance.
The architecture of the proposed method is illustrated in Figure 1.
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Figure 1. The architecture of the proposed method. Firstly, a composite backbone network is designed
for extracting features. Backbone1 uses a basic backbone network, while Backbone2 adds the CDAM
after the C22 feature layer in order to introduce context information; the rest of the network is
the same as Backbone1. The composite backbone outputs three layers, F3, F4, and F5; the FEM is
used to highlight features of small objects. Finally, P3, P4, and P5 are sent for further classification
and regression.

3.2. Composite Dilated Convolution and Attention Module

Rich context information is helpful for small object detection. If the detector wants to
obtain more context information, it needs a larger receptive field, which means the range of
input space corresponding to a pixel on the output feature map.

By introducing gaps in the convolutional kernel, dilated convolution could achieve a
better receptive field. This involves setting the dilation rate, specifying the gap between
kernel elements during convolution. Dilated convolution has the advantage of preserving
internal data structure and avoiding operations such as downsampling. Most importantly,
the dilation rate governs the effective receptive field size of the convolutional operation.
This empowers the model to gather information from a more extensive spatial context,
enhancing its ability to capture surrounding details of objects in that region, referred to
as context information—resulting in improved detection accuracy. However, a drawback
of this approach arises from the discontinuity of the convolution kernel, leading to the
exclusion of certain pixels during the calculation process. Consequently, there is a possibility
of losing valuable pixel information.

In order to enrich context information without ignoring key details, this work proposes
the CDAM that consists of two components: CDM and CBAM. Figure 2 illustrates how
CDAM works.

Figure 2. The composite dilated convolution and attention module (CDAM). Firstly, the C22 layer
undergoes dilated convolution when three different rates of 1, 2, and 3 are set to obtain C22_1, C22_2,
and C22_3. These three feature layers contain context information at different scales and are fused.
To eliminate potential noise, the fused map is processed by the CBAM, obtaining C32.
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The CDM contains composite dilated convolutions with different dilation rates, and
then the composite feature map can be achieved through feature fusion. The CDM not
only includes a wider range of context information but also integrates feature maps with
diverse dilation rates, thus effectively avoiding the problem of critical information loss. This
model adds the CDM after the feature layer C22. In the CDM, this model conducts dilated
convolutions on the feature layer with a 3 × 3 convolution kernel. C22_1, C22_2, and C22_3
are separately obtained when the dilation rate sets to 1, 2, and 3, and are subsequently
fused together. The fusion of the three feature layers is achieved by directly adding feature
matrices, where addition is performed element-wise at each position. This approach allows
preservation of the original range and distribution of the features.

The features processed by the CDM have richer context information, but at the same
time, the fusion of multiple feature layers may introduce additional noise. Therefore, this
model adds the CBAM after the CDM to prioritize effective information while further
enriching the feature.

3.3. Feature Elimination Module

As the depth of the deep neural network increases, there is a gradual reduction in
image resolution, resulting in the progressive loss of spatial information. Concurrently, the
convolution operation may lead to the disappearance of many small objects. In contrast,
medium and large objects retain more abundant features as semantic information gradu-
ally increases. Consequently, deep feature maps prove capable of meeting the detection
requirements for medium and large objects.

However, shallow layers possess higher resolution, containing abundant spatial infor-
mation and a substantial amount of object details, particularly pertaining to small objects.
To highlight features of small objects, the FEM is introduced, shown in Figure 3. The
FEM mainly reduces the proportion of medium and large objects in shallow feature maps
that contain various object features. Through this, the proportion of positive samples for
small objects can be increased, which alleviates the detection issues caused by sample
imbalance. Combining the FEM, our approach directs the attention of the shallow layers
towards detecting small objects. Consequently, this model achieves the goal of emphasizing
detection of small objects without compromising detection of larger objects.

Figure 3. The feature elimination module (FEM). N4 and N5 are convolved with a 1 × 1 kernel
to match the channel dimension of N3, then upsampled and fused to obtain the feature map N3’.
Subtracting N3’ from N3 yields the feature map P3.

The FEM has three feature layers, F3, F4, and F5. As the convolutional layers go deeper,
there is a reduction in the representation of features related to small objects, while the
features associated with medium and large objects become more prominent. Therefore, in
the shallow layer (F3), a feature layer containing rich small object features can be obtained.
By utilizing deep features (F4, F5), the detector can effectively capture the features of other
objects. After undergoing processing by the backbone network, they first go through a
structure similar to PANet [18] to obtain the N3, N4, and N5 feature layers.

N3 is the shallow layer encompassing objects of all sizes. In order to retain the features
of small objects, it is essential to suppress the features of objects of other sizes. By processing
N4 and N5 according to the following formula, this model can obtain the feature layer that
suppresses small object features and highlights medium and large object features, denoted
as N3′.

N3′ = U[U(Conv(N5))⊕ Conv(N4)] (1)
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In this formula, U denotes upsampling, a technique employed to increase resolution of an
image. This process entails the insertion of additional data points between existing ones,
thereby expanding the overall size of the image. Specifically, nearest-neighbor interpolation
is employed, which can leave the pixel values of the original image unchanged while
directly replicating the pixel values of the nearest neighbors to the new pixel positions. Con-
sequently, this approach effectively conserves the content of the image, thereby maintaining
the object shapes and edge details without introducing blurring effects. This is helpful for
the recovery of medium to large-sized objects. N3′ almost only contains medium and large
objects, with the large-sized objects being similar to those in N3. To derive a feature layer
exclusively containing small objects, the following adjustment is made.

P3 = N3 ⊖ N3′ (2)

P3 suppresses the features of objects of other sizes, exclusively preserving the characteristics
of small ones. This adjustment introduces a bias towards small objects, thereby enhancing
the model’s capability to detect small objects.

3.4. Composite Backbone Networks

In contrast to objects of other sizes, small objects occupy a relatively smaller proportion
of pixels, making their features difficult to extract, which becomes a key limiting factor for
small object detection accuracy. Currently, most detectors are based on single backbone
networks. Although single backbone networks have lower computational complexity and
relatively higher efficiency, their feature extraction capabilities are limited. They cannot
fully utilize the advantages of different feature extraction methods, making it difficult to
achieve diversified feature fusion, which limits the representation and detection perfor-
mance. In contrast, composite backbone networks, by integrating two different feature
extraction networks, can provide richer and more diverse feature representations, thereby
enhancing the capability of representing features. Moreover, the interaction between dif-
ferent backbones can effectively improve the robustness of the model. If one backbone
performs poorly under certain circumstances, the other backbone will provide an alterna-
tive feature representation. These two sets of features complement and strengthen each
other, enhancing the stability of the model.

To solve this, this study introduces a composite backbone network with specific
designs. By jointly extracting object features from images, the model’s representation
capability can be enhanced, which could better capture small object features. Figure 4
shows the structure of the specific network, consisting of Backbone1 and Backbone2. The
two backbone networks have different structures, with Backbone1 being the base backbone
network following a traditional structure. As for Backbone2, the CDAM is added after
the C22 feature layer, while the other parts are the same as Backbone1. The two distinct
backbone networks maintain separate weight parameters. However, Backbone1 integrates
the feature layers extracted from Backbone2 and leverages them in the training process for
subsequent feature layers. This non-sharing of weights allows each backbone network to
learn features independently, thereby enabling the model to concentrate on diverse levels
and facets of feature extraction. This approach enriches the representation of features and
reduces the risk of overfitting. The composite backbone networks are processed according
to the following formula.

C32 = CDAM(C22) (3)

C31 = Conv(C21)⊕ C32 (4)

C41 = Conv(C31)⊕ Conv(C32) (5)

C51 = Conv(C41)⊕ Conv(Conv(C32) (6)

Firstly, C22 is processed by the CDAM to obtain feature layer C32; then, C32 and convolved
C21 are fused to obtain feature layer C31. Both C42 and C52 are obtained by convolution on
their previous layers. The acquisition process of C41 and C51 is similar to C31, obtained by
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fusing C42 and C52, respectively, with the convolved C31 and C41. This interactive feature
extraction process allows the two backbone networks to complement each other’s features
to the fullest extent. Finally, the composite backbone network outputs three feature layers,
F3, F4, and F5, as the input of the FPN section shown in Figure 1.

Figure 4. The composite backbone module. Backbone1 uses a basic backbone network; Backbone2
adds the CDAM after the C22 feature layer, as indicated by the yellow box in the figure. The two
backbone networks are separately trained without sharing parameters, and the feature layers of each
network are fused and used for training the next layers. Finally, three feature maps, F3, F4, and F5,
are output.

Based on the above composite backbone structure, the two backbone networks extract
features in different ways and then fuse them, enriching the object feature information and
improving small object detection accuracy. Figure 5 describes the entire procedure.

Figure 5. Flowchart of the proposed method.
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4. Experiments
4.1. Experimental Setup
4.1.1. Dataset

The experiments are conducted on MS COCO (Microsoft Common Objects in Con-
text) [33], which serves as a benchmark for object detection. MS COCO is a comprehensive
image dataset encompassing a wide variety of objects. It comprises images featuring
80 distinct object categories, containing training, validation, and test sets (with more than
118,000, 5000, and 40,000 images, respectively).

First, the training process is executed utilizing the training set. Then, the ablation
experiments are carried out specifically using the validation set to verify the performance of
our proposed detection model. Finally, the model undergoes testing on the test set, where
it is compared against other models for performance evaluation.

4.1.2. Performance Indicator

Average precision (AP) is a primary evaluation indicator for MS COCO. AP is com-
puted by taking the average of precision values at different Intersection over Union (IoU)
thresholds. These thresholds are typically in the range of [0.5, 0.95], with an increment of
0.05. In MS COCO, around 41% of the objects fall into the category of small objects (with
an area less than 322), 34% are classified as medium objects (with an area between 322 and
962), and approximately 24% are considered large objects (with an area exceeding 962). On
this basis, different measurement standards for these objects are proposed, including APS,
APM, and APL, indicating average precision for small, medium, and large objects. In the
experiments, APS is used to evaluate the proficiency of the model in detecting small objects.
Simultaneously, this work observes APM and APL to demonstrate that the model maintains
good performance in medium and large object detection.

4.1.3. Training Details

All of our experiments are performed utilizing three NVIDIA 2080Ti GPUs. To opti-
mize the model, the Adam optimizer is employed with default parameters provided by
PyTorch 1.7.0. The batch size is set as 4 during training. Initially, the learning rate is 0.001,
while at epoch 10, epoch 20, and epoch 30, the rate is divided by 0.1. This work maintains
consistency with YOLOv7 by keeping all other parameters unchanged. The model under-
goes training for 40 epochs. Figure 6 depicts the loss curve, which demonstrates that our
model has good convergence.

Figure 6. The loss across different epochs for our model.

For ablation experiments, the input size of the images is set as 416 × 416 pixels.
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4.2. Ablation Study
4.2.1. The Impact of CDAM

As aforementioned, object detection can benefit from additional context information;
thus, the CDAM is proposed as an efficient approach to incorporate maximum context
information. After incorporating the composite dilated convolution, this study further
introduces CBAM to mitigate the impact of introduced noise and enhance the model’s
focus on crucial regions.

First, this work conducts some ablation studies in order to validate the efficiency of
the CDAM. Table 2 shows the outcome. Compared to the baseline, the inclusion of the
composite dilated convolution shows an improvement of 0.6% in detecting accuracy, while
incorporating the CBAM results in an additional improvement of 0.3%. Moreover, with
the introduction of the CDAM, while APS increase, there are corresponding improvements
in APM and APL, rising by 2.2% and 3%, respectively. The above results conclusively
demonstrate the efficacy of the CDAM, as well as the effectiveness of the composite dilated
convolution. These enhancements not only enable the model to leverage context informa-
tion more effectively but also strengthen its precise focus on crucial regions, providing clear
evidence for the improvement in object detection performance across various object sizes.

Table 2. CDAM ablation study on MS COCO val2017 Dataset. Baseline: YOLOv7 trained by ourselves.
The CDM: only using the composite dilated convolution operation. CDM + CBAM: adding the CBAM
on the basis of the CDM.

Method Size AP AP50 AP75 APS APM APL

Baseline 4162 43.6 62.2 47.0 22.9 45.2 59.9
CDM 4162 44.4 62.6 48.3 23.5 46.6 60.7

CDM + CBAM 4162 44.9 63.0 48.8 23.8 47.4 62.9

Additionally, this study conducts experiments on combinations of different dilation
rates to assess our method. According to observations from Table 3, it is evident that when
rate = 1, the detection accuracy is the lowest. However, upon combining different dilation
rates, there is an observable enhancement in accuracy. The highest detection accuracy
is achieved when all three dilation rates are combined. This is attributed to the diverse
context information introduced by the three different dilation rates, thus enhancing the
detection accuracy across different sizes of objects.

Table 3. Ablation study on combinations of different dilation rates in the CDM.

Rate = 1 Rate = 2 Rate = 3 Size APS APM APL

✓ - - 4162 22.9 45.2 59.9
✓ ✓ - 4162 23.3 45.9 60.1
✓ - ✓ 4162 23.2 45.7 60.5
✓ ✓ ✓ 4162 23.5 46.6 60.7

Tables 2 and 3 demonstrate the effectiveness of the CDAM. The efficacy is attributed
to the preservation of contextually relevant information surrounding small objects within
feature layer C22, which remains unchanged by convolution operations. This preservation
facilitates the detection of small objects by maintaining beneficial context cues. Furthermore,
employing dilated convolutions on C22 enhances the receptive field of the subsequent
feature layer C32. Consequently, C32 can effectively capture features of small objects
from the preceding layer while concurrently considering context information pertinent to
these objects. The incorporation of such information serves as a mechanism for feature
enhancement, thereby facilitating the detection of small objects. Moreover, the utilization
of two distinct dilation rates (2 and 3) equates to the establishment of two disparate
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sizes of information extraction windows. This approach effectively enriches the pool of
contextual information, thereby augmenting the overall efficacy of the framework in small
object detection.

4.2.2. The Impact of FEM

Within the shallow feature layer, there exists abundant information about the features
of objects. However, for small objects, the presence of extensive features from medium
and large objects often diverts the model’s attention away from the small objects. This
work hypothesizes that by eliminating the medium and large object features within the
shallow feature layer, the model can prioritize and concentrate on detecting small objects
more effectively.

Upon the introduction of the feature elimination module, the detection precision of
small objects notably increases from 22.9% to 23.7%, as depicted in Table 4. Meanwhile,
large object detection exhibits some degree of enhancement as well. This is because in
the deep feature map, large object features are already distinctive enough to support
the effective detection of large objects. For medium-sized objects, the detection precision
remains roughly stable. The results show that the FEM could facilitate small object detection
without negative impact on detecting other-sized objects.

Table 4. FEM ablation study on MS COCO val2017 dataset.

Method Size AP AP50 AP75 APS APM APL

Baseline 4162 43.6 62.2 47.0 22.9 45.2 59.9
FEM 4162 44.7 63.0 48.5 23.7 45.1 60.3

The effectiveness of the FEM in detecting small objects is attributed to the fact that
the F3 feature layer undergoes fewer convolution operations compared to F4 and F5. This
results in diminished loss of features and richer object information, especially small object
information. Through feature elimination, the method selectively suppresses information
concerning objects of other sizes within the F3 feature layer. Therefore, after training, the
model weights within this layer are more favorable for detecting small objects. Meanwhile,
despite F4 and F5 undergoing convolution operations wherein certain features of small
objects may be lost, features of medium and large objects still dominate; hence, the detection
of medium and large objects is not affected.

4.2.3. The Impact of Composite Backbone

To better extract object features, this model incorporates a composite backbone network
structure. Table 5 shows the results.

Table 5. Composite backbone ablation study on MS COCO val2017 dataset.

Method Size AP AP50 AP75 APS APM APL

Baseline 4162 43.6 62.2 47.0 22.9 45.2 59.9
Composite Backbone 4162 44.7 63.1 48.4 24.0 46.2 61.3

Upon the incorporation of the composite backbone structure, for small objects, the
precision increases from 22.9% to 24%, resulting in an improvement of 1.1%. Additionally,
the precision for medium objects increases by 1%, while that for large objects increases
by 1.4%. These experimental findings clearly demonstrate the substantial benefits of the
composite backbone network in feature extraction, validating its effectiveness in enhancing
overall detection performance.

The composite backbone contributes to the improvement of detection accuracy for
several reasons. Firstly, the utilization of two different backbone networks enables the
provision of more diverse and enriched feature representations, thereby enhancing the
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model’s capability to represent features. Additionally, the composite backbone network can
enhance the robustness of the model by facilitating interactive learning between different
backbone structures. If one backbone structure performs poorly under certain conditions,
the other backbone structure can provide better feature representations, thereby enhancing
the stability of the model.

However, the introduction of composite backbone networks leads to an increase in
computational complexity, resulting in a certain degree of reduction in training speed.
Under the same training conditions, the computational complexity of composite backbone
networks is 1.63 times that of single backbone networks, leading to a final training speed
that is 1.43 times slower compared to single backbone networks.

4.3. Comparison with Baseline

In this study, the model selects YOLOv7 as the baseline model and implements several
improvements upon it. To ensure a fair and effective comparison with YOLOv7, this
work utilizes identical parameters and configurations for both models. The training and
evaluation of YOLOv7 and our model are performed using three NVIDIA 2080Ti GPUs,
with a batch size of 4. The Adam optimization algorithm was employed during training,
and the MS COCO train2017 dataset was used. Experiments were conducted on the MS
COCO val2017 dataset. The comparison results between YOLOv7 and our model are
presented in Table 6.

Table 6. Comparison between YOLOv7 and our model on MS COCO val2017 dataset.

Method Size AP AP50 AP75 APS APM APL AR

YOLOv7 6402 45.8 65.5 49.2 27.1 52.3 62.5 54.7
Ours 6402 46.5 65.2 51.1 29.7 51.9 62.6 55.6

Compared with the baseline, our method demonstrates a notable enhancement when
detecting small objects, with a 2.6% increase in APS. In the detection of large objects,
our method performs roughly on par with the baseline. This evidence confirms that
our approach provides a notable enhancement in small object detection. The overall
improvements in AP and AR also demonstrate the effectiveness of the proposed method.
Figure 7 shows precision-recall curves and F1 curves.

Figure 7. Precision-recall curves and F1 curves of our model and YOLOv7.

4.4. Comparison with Other Models

Finally, the proposed methodology is evaluated against related approaches on the MS
COCO test set, with results presented in Table 7. The comparative experiments categorize
the input image sizes into two groups: 640 × 640 and 512 × 512. When image size is set as
640 × 640, our model achieves an APS of 27.2% and an AP of 47.2%. Conversely, with an
input image size of 512 × 512, the APS reaches 24.1% and the AP is 46.1%. These findings
highlight the effectiveness of our model across various image sizes.
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Table 7. Comparison of results between our method and related methods on MS COCO
test2017 dataset.

Method Backbone Size AP AP50 AP75 APS APM APL

RetinaNet [34] ResNet50 7002 35.1 54.2 37.7 18.0 39.3 46.4
Faster R-CNN + FPN [8] ResNet101 - 36.2 59.1 39.0 18.2 39.0 48.2

Cascade R-CNN [35] ResNet101 - 42.8 62.1 46.3 23.7 45.5 55.2
Soft-NMS [36] Aligned-Inception-ResNet 8002 40.9 62.8 - 23.3 43.6 53.3

Grid R-CNN + FPN [37] ResNeXt101 8002 43.2 63.0 46.6 25.1 46.5 55.2
LH R-CNN [38] ResNet101 8002 41.5 - - 25.2 45.3 53.1
IPG R-CNN [32] IPGNet101 8002 45.7 64.3 49.9 26.6 48.6 58.3

Ours CSPDarknet53 6402 47.2 65.5 51.8 27.2 51.8 61.1

YOLOv2 [13] Darknet 5442 21.6 44.0 19.2 5.0 22.4 35.5
SSD [31] ResNet101 5122 31.2 50.4 33.3 10.2 34.5 49.8

DSSD [39] ResNet101 5122 33.2 53.3 35.2 13.0 35.4 51.1
DES [40] VGG16 5122 30.1 53.2 34.6 13.9 36.0 47.6

DFPR [41] ResNet101 5122 34.6 54.3 37.3 14.7 38.1 51.9
RefineDet [42] VGG16 5122 33.0 54.5 35.5 16.3 36.3 44.3
CenterNet [28] HRNet-W64 5122 44.0 62.6 47.1 23.0 47.3 57.8
CornerNet [27] Hourglass104 5122 42.1 57.8 45.3 20.8 44.8 56.7

Ours CSPDarknet53 5122 46.1 64.7 50.5 24.1 50.9 62.8

In Table 8, the proposed method is compared with QueryDet [43], which is the SOTA
method. QueryDet conducted experiments with both ResNet50 and ResNet101, while
our method is trained with CSPDarknet53. In terms of small object detection accuracy,
the proposed method outperforms QueryDet with ResNet50 by 1.8%. However, com-
pared to QueryDet with ResNet101, the accuracy is slightly lower, as deeper networks
often yield greater performance improvements, especially for hard-to-detect small objects.
Nevertheless, our method performs better on objects of other sizes. On the other hand,
the introduction of composite backbone networks brings additional computational costs
and parameters, resulting in an FPS of 11.58, which is inferior to the 14.88 of QueryDet.
Additionally, our method consists of three modules designed specifically for small objects,
leading to a noticeable improvement in accuracy. But in terms of implementation conve-
nience, there is still a gap between the proposed method and the SOTA method. Therefore,
reducing computational complexity while maintaining accuracy and improving efficiency
is the direction we aim to optimize in future work.

Table 8. Comparison with other SOTA methods on MS COCO test2017 dataset.

Method Backbone AP AP50 AP75 APS APM APL FPS Params (M)

QueryDet [43] ResNet50 41.6 62 44.5 25.4 43.8 51.2 14.88 37.74
QueryDet [43] ResNet101 43.8 64.3 46.9 27.5 46.4 53 - -

Ours CSPDarknet53 47.2 65.5 51.8 27.2 51.8 61.1 11.58 49.59

4.5. Qualitative Results

The qualitative results, presented in Figure 8, provide a visual comparison between
YOLOv7 and the proposed model. Notably, the proposed model exhibits the ability to
detect a greater number of objects, while exhibiting a distinct advantage for detecting small
objects in particular.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Qualitative results comparison between baseline and our method. The images in the top
row are the results of the baseline, while the ones on the bottom are achieved by our method.

5. Conclusions and Future Works

This study proposes a method that utilizes a composite backbone network, context
information, and multi-scale information. It employs the composite backbone network to
extract richer and more informative features, enhancing the representation capability of
our model. Additionally, the model introduces the CDAM, which efficiently incorporates
context information through dilated convolutions at different ratios and reduces noise
interference through the attention mechanism. Finally, this study designs the FEM to fully
utilize multi-scale features, effectively mitigating the impact brought by medium to large-
sized objects on small object detection. Experiments conducted on MS COCO demonstrate
the roles of each module and the superiority of the overall model in small object detection.

However, it is important to note that the introduction of composite backbone networks,
while enhancing detection accuracy, does lead to increased computational complexity, re-
sulting in decreased training and inference speeds. Future research could explore strategies
to alleviate this computational overhead, such as optimization backbone network architec-
tures. Additionally, further investigation into the generalization ability of the proposed
model across diverse datasets and object categories would be valuable. Moreover, exploring
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the potential integration of context information techniques and enhancing the adaptability
of the model to varying environmental conditions could contribute to its robustness and
applicability in real-world scenarios.
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