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Abstract: In nonlinear dynamics, there is a continuous exploration of introducing systems with
evidence of chaotic behavior. The presence of nonlinearity within system equations is crucial, as it
allows for the emergence of chaotic dynamics. Given that quadratic terms represent the simplest
form of nonlinearity, our study focuses on introducing a novel chaotic system characterized by only
quadratic nonlinearities. We conducted an extensive analysis of this system’s dynamical properties,
encompassing the examination of equilibrium stability, bifurcation phenomena, Lyapunov analysis,
and the system’s basin of attraction. Our investigations revealed the presence of eight unstable
equilibria, the coexistence of symmetrical strange repeller(s), and the potential for multistability in
the system.

Keywords: chaotic system; multistability; stability

MSC: 37M05; 34C28; 68P25

1. Introduction

The emergence of innovative chaotic systems marks a noteworthy advancement in
the domain of chaos theory. Following Lorenz’s discovery of a bounded non-periodic
solution within a three-dimensional dynamical equation, which was initially devised for
analyzing meteorological patterns [1], the concept of chaos has gained widespread accep-
tance as an explanatory framework for numerous real-world phenomena. Since then, a
diverse range of researchers have endeavored to employ chaotic systems in elucidating
various phenomena. For example, chaotic systems have found application in modeling
the potential behavior of biological neurons [2,3]. Likewise, researchers have proposed
numerous chaotic systems to capture the intricate dynamics of lasers [4,5]. Chaotic sys-
tems have made significant inroads into computational mathematics ever since Sprott
introduced a collection of elegant three-dimensional chaotic systems [6]. This served as a
catalyst for researchers to craft chaotic systems tailored to possess specific characteristics.
For instance, they have developed various systems featuring a single stable equilibrium
point [7,8] or no equilibria [9,10], a defined arrangement of equilibria [11,12], instances of
multistability [13,14] and symmetry [15,16], hidden [17–19] and self-excited [20,21] dy-
namics, single [22,23] and multi-scroll [24,25] attractors, and even systems exhibiting
hyperchaotic behavior [26,27]. In addition to the introduction of novel chaotic systems
with unique characteristics, there has been a concerted effort in certain research endeavors
to develop modified versions of existing models, each offering its own set of distinctive
features and properties [28–30]. Furthermore, alongside these explorations into new and
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adapted chaotic systems, a parallel line of investigation has emerged delving into strategies
for controlling chaos in nonlinear dynamics. On the other hand, certain investigations
have pursued strategies for controlling nonlinear dynamics, such as controlling chaos
synchronization [31] or special dynamical properties [32].

This paper presents a novel chaotic system characterized by only quadratic non-
linearities and investigates its dynamical properties and stability. Section 2 introduces
the mathematical definition of this chaotic system, and Section 3 analyzes its dynamical
properties employing tools like bifurcation diagrams, Lyapunov spectra, and the basin of
attraction. Finally, Section 4 offers concluding remarks for this paper.

2. Mathematical Definition

Chaos is commonly observed in systems featuring nonlinear terms, although not in all
systems with nonlinearity. This observation has spurred numerous valuable studies aimed
at proposing systems capable of exhibiting chaos under specific parameter settings or initial
conditions. Some proposed systems stand out for their elegance, attributed to the low
dimensionality and simplicity of their nonlinear terms and/or parameter values [33]. Most
chaotic systems incorporate linear and nonlinear terms [6,33], while only a few studies have
identified elegant chaotic systems comprising solely nonlinear terms [21,34]. Quadratic
terms represent the simplest form of nonlinearity capable of inducing chaos. Consequently,
elegant systems characterized by quadratic nonlinearities, capable of exhibiting chaos
independently or in coexistence with other solutions, hold particular allure in nonlinear
dynamics. In this paper, we propose a three-dimensional system that exclusively consists
of quadratic nonlinearities. This system can be mathematically delineated as follows:

.
x = a1y2 − a2z2,
.
y = b1x2 − b2z2,

.
z = c1y2 + c2z2 − 1,

(1)

where a1, a2, b1, b2, c1, and c2 are the system parameters. After conducting an extensive
examination involving a wide range of initial conditions and system parameter variations,
it was determined that the introduced system exhibits chaotic behavior when specific values
are used, specifically when a1 = a2 = b2 = c2 = 1, b1 = 2, and c1 = 3, and considering an
initial condition of (x0, y0, z0) = (1,−0.5,−1). To ascertain that this chaotic behavior is an
inherent characteristic of the system and not merely a transient phenomenon, the Lyapunov
exponents (LEs) for this chaotic solution were computed using the Wolf algorithm [35],
resulting in values of (LE1, LE2, LE3) = (−0.8009, 0, 0.1090). Figure 1a,b demonstrates the
three-dimensional chaotic attractor in the x − y − z space and the time series of variable x
of System (1) with the specified parameter values and initial conditions. Here, the system
is solved for 2000 time units.

Upon closer examination of System (1), it becomes evident that, owing to its exclusively
quadratic terms, the system remains unaltered when subjected to the transformation
(x, y, z, t) → (−x,−y,−z,−t) . Hence, while structural symmetry cannot be identified in
System (1), it is worth noting that this system displays a symmetrical strange repeller.
This symmetry is established because the time-reversed system reveals a chaotic solution
that exhibits symmetry with respect to the original system’s strange attractor, particularly
around the origin. The trajectory within the three-dimensional state space and the time
series of variable x of this symmetrical strange repeller are depicted in Figure 1c,d.
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Figure 1. First row: The dynamical properties of System (1) in terms of (a) phase portrait in 𝑥 − 𝑦 −𝑧 state space and (b) time series of the variable 𝑥. Second row: The dynamical properties of the 
time-reversed version of System (1) in terms of (c) phase portrait in 𝑥 − 𝑦 − 𝑧 state space and (d) 
time series of the variable 𝑥. System (1) (shown in pink) and its time-reversed version (shown in 
blue) are solved for the same parameters, i.e., 𝑎 = 𝑎 = 𝑏 = 𝑐 = 1, 𝑏 = 2, and 𝑐 = 3, while in-
itialized with symmetric initial conditions 𝑥 , 𝑦 , 𝑧 = 1, −0.5, −1  and 𝑥 , 𝑦 , 𝑧 = −1,0.5,1 , 
respectively. After elapsing a significant transient time, the system demonstrates chaotic dynamics 
under the specified conditions. Moreover, it has a symmetrical strange repeller. 
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In this section, our objectives encompass three primary stages of dynamical analysis: 

assessing the stability of the system equilibria, identifying monostable and bistable re-
gions within the parameter space via bifurcation and Lyapunov analysis, and eventually 
examining the system’s basin of attraction. 

3.1. Stability Analysis 
Discovering system equilibria and conducting stability analysis are pivotal processes 

essential for comprehending and forecasting the behavior of intricate dynamical systems 
across various scientific disciplines. The equilibria can be found by setting the time deriv-
atives (velocities) to zero. Thus, we have 𝑥 = 0 → 𝑎 𝑦 − 𝑎 𝑧 = 0, 𝑦 = 0 → 𝑏 𝑥 − 𝑏 𝑧 = 0, 𝑧 = 0 → 𝑐 𝑦 + 𝑐 𝑧 − 1 = 0. (2) 

By solving these equations simultaneously, the equilibrium points can be found. Ac-
cordingly, System (1) is found to have eight equilibrium points: 

Figure 1. First row: The dynamical properties of System (1) in terms of (a) phase portrait in x − y − z
state space and (b) time series of the variable x. Second row: The dynamical properties of the
time-reversed version of System (1) in terms of (c) phase portrait in x − y − z state space and
(d) time series of the variable x. System (1) (shown in pink) and its time-reversed version (shown
in blue) are solved for the same parameters, i.e., a1 = a2 = b2 = c2 = 1, b1 = 2, and c1 = 3, while
initialized with symmetric initial conditions (x0, y0, z0) = (1,−0.5,−1) and (x0, y0, z0) = (−1, 0.5, 1),
respectively. After elapsing a significant transient time, the system demonstrates chaotic dynamics
under the specified conditions. Moreover, it has a symmetrical strange repeller.

3. Dynamical Analysis

In this section, our objectives encompass three primary stages of dynamical analysis:
assessing the stability of the system equilibria, identifying monostable and bistable regions
within the parameter space via bifurcation and Lyapunov analysis, and eventually examining
the system’s basin of attraction.

3.1. Stability Analysis
Discovering system equilibria and conducting stability analysis are pivotal processes

essential for comprehending and forecasting the behavior of intricate dynamical systems
across various scientific disciplines. The equilibria can be found by setting the time deriva-
tives (velocities) to zero. Thus, we have

.
x = 0 → a1y2 − a2z2 = 0,
.
y = 0 → b1x2 − b2z2 = 0,

.
z = 0 → c1y2 + c2z2 − 1 = 0.

(2)

By solving these equations simultaneously, the equilibrium points can be found.
Accordingly, System (1) is found to have eight equilibrium points:(
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In order to assess the stability of these eight system equilibria, our initial step involves
computing the Jacobian matrix for the system, as shown below:

J =


∂

.
x

∂x
∂

.
x

∂y
∂

.
x

∂z
∂

.
y

∂x
∂

.
y

∂y
∂

.
y

∂z
∂

.
z

∂x
∂

.
z

∂y
∂

.
z

∂z

 =

 0 2a1y −2a2z
2b1x 0 −2b2z

0 2c1y 2c2z

. (3)

Subsequently, in the next stage, we proceed to determine the eigenvalues of the
Jacobian matrix for each equilibrium point. The eigenvalues λi are the solution to the
characteristic equation given by |λI − J|(x∗ ,y∗z∗) = 0, where I is the identity matrix of the
same size as J. Substituting the Jacobian matrix, we have∣∣∣∣∣∣

λ 2a1y∗ −2a2z∗

2b1x∗ λ −2b2z∗

0 2c1y∗ λ − 2c2z∗

∣∣∣∣∣∣ = λ3 + f1λ2 + f2λ + f3 = 0, (4)

where f1 = −2c2z*, f2 = 4y*(b2c1z* − a1b1x*), and f3 = 8b1x*y*z*(a1c2 + a2c1). An equi-
librium point is considered stable when all its eigenvalues possess negative real parts.
Conversely, the equilibrium point is deemed unstable if at least one eigenvalue has a
positive real part. Assuming a1 = a2 = b2 = c2 = 1, b1 = 2, and c1 = 3, we get(

x∗1 , y∗1 , z∗1
)
→ (λ1, λ2, λ3) = (1.2679,−1.134 ± 1.782i),(

x∗2 , y∗2 , z∗1
)
→ (λ1, λ2, λ3) = (−1.2113, 0.1056 ± 2.1585i),

(x∗3 , y∗3 , z∗3) → (λ1, λ2, λ3) = (−2.52, 0.76 ± 1.2912i),(
x∗4 , y∗4 , z∗4

)
→ (λ1, λ2, λ3) = (2.1917,−1.5958 ± 0.1852i),

(x∗5 , y∗5 , z∗5) → (λ1, λ2, λ3) = (−2.1917, 1.5958 ± 0.1852i),
(x∗6 , y∗6 , z∗6) → (λ1, λ2, λ3) = (2.52,−0.76 ± 1.2912i),
(x∗7 , y∗7 , z∗7) → (λ1, λ2, λ3) = (1.2113,−0.1056 ± 2.1585i),
(x∗8 , y∗8 , z∗8) → (λ1, λ2, λ3) = (−1.2679,+1.134 ± 1.782i).

As a result, under the conditions depicted in Figure 1, none of the equilibrium points
exhibit stability. Furthermore, aside from their instability, it is evident that all equilibrium
points yield complex conjugate eigenvalues, indicating that the system’s solutions diverge
from these equilibria in a spiral fashion.

3.2. Bifurcation and Lyapunov Analysis

Bifurcation analysis examines how the fundamental characteristics of a dynamic
system evolve when a parameter undergoes variation. Its primary focus lies in pinpointing
specific locations in the parameter space where significant qualitative shifts in the system’s
behavior manifest. Identifying potential multistable regions within the parameter space can
be achieved by employing the forward and backward approaches to obtaining bifurcation
diagrams [5,36]. In the case of flow-based dynamical systems, a common practice is to
conduct bifurcation analysis by identifying the local maxima in the time evolution of the
system for each specific parameter configuration. On the other hand, LE analysis is a
methodology employed to numerically assess the rate at which nearby trajectories within
a dynamical system either exponentially move apart or converge. This technique offers
valuable insights into the system’s susceptibility to initial conditions and potential for
chaotic behavior.

The present study employed both forward and backward approaches for bifurcation
and LEs analysis. This enabled us to unveil the system’s dynamical attributes, encompass-
ing areas of chaos and multistability within the parameter space. Figure 2 displays the
forward and backward bifurcation diagrams in the left column and the LE spectra in the
right column for the parameters a2, b1, and b2. In each case, apart from the bifurcation
parameters, the other parameter settings remained consistent with those in Figure 1. Specif-
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ically, Figure 2a illustrates the transition from a period-doubling cascade to chaos as a2
varies within the range of [0.85, 1.0355]. Within this range, the system exhibits periodic
solutions for 0.85 ≤ a2 < 0.912 while for 0.912 < a2 ≤ 1.0355, these solutions transition
into chaos through a period-doubling cascade. Upon closer examination of Figure 2a, a
notable expansion in the size of the attractor can be observed in the chaotic region around
a2 ≈ 0.9545, referred to as an interior crisis. Similarly, in Figure 2c, a transition from
periodic orbits to chaotic attractors occurs as the parameter b1 changes within the range of
[1.76, 2.13]. However, this transition occurs through a boundary crisis at b1 ≈ 1.853, where
period-2 solutions suddenly vanish, and chaotic solutions emerge. Before and after the
crisis, i.e., 1.76 ≤ b1 < 1.853 and 1.853 < b1 ≤ 2.13, the system has periodic and chaotic
solutions, respectively. Furthermore, as depicted in Figure 2c, the system undergoes an inte-
rior crisis at b1 ≈ 1.89. In Figure 2e, an opposite trend is observed when b2 varies within the
range of [0.95, 1.053]. Specifically, when 0.95 ≤ b2 < 1.03898, the system exhibits chaotic
solutions. However, for higher values of b2, i.e., 1.03898 < b2 ≤ 1.053, the solutions become
periodic following a boundary crisis at b2 ≈ 1.03898. Various small periodic windows can
also be observed within the chaotic regions in all cases depicted in Figure 2. The associated
forward and backward LE spectra corroborate all the evidence provided by the bifurcation
diagrams. Furthermore, because the forward and backward diagrams overlap across the
entire explored parameter region in all three cases presented in Figure 2, it can be inferred
that the system is monostable under the considered settings.
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served, indicating multistability. Furthermore, the forward diagram enters the multistable 
region through a period-halving bifurcation, while the backward diagram experiences an 
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Figure 2. The dynamical characteristics of System (1) regarding the variation of the parameters (a,b) a2

within 0.85 ≤ a1 ≤ 1.0355, (c,d) b1 within 1.76 ≤ b1 ≤ 2.13, and (e,f) b2 within 0.95 ≤ b2 ≤ 1.053 in terms
of forward (shown in blue) and backward (shown in red) bifurcation diagrams in the left columns and
forward/backward LE spectra in the right columns. Other settings are the same as in Figure 1. With
the forward and backward diagrams overlapping, there is no evidence of multistability emerging from
variations in the parameters.
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An analogous investigation was performed on the system, with the parameters a1, c1,
and c2 undergoing variations within [0.95, 2.27], [1.8, 3.1], and [0.96, 1.2], respectively, while
maintaining other parameter values (except for the parameter being probed), consistent
with those in Figure 1. The findings are presented in Figure 3, which illustrates the forward
(blue plot) and backward (red plot) bifurcation diagrams, accompanied by the associated
LE spectra. Unlike Figure 2, Figure 3 focuses on cases where the system has the potential
to exhibit multistability. Specifically, as depicted in Figure 3a, when the parameter a1 is
gradually increased, a period-halving followed by a period-doubling cascade is observed.
This implies that chaos is the system’s solution for both low and high values of a1 in the
explored region, while intermediate values of a1 lead to periodic solutions. However,
it is only within the period-halving route, specifically within 1.208 ≤ a1 ≤ 1.265, that
the discrepancy between the forward and backward diagrams is observed, indicating
multistability. Furthermore, the forward diagram enters the multistable region through a
period-halving bifurcation, while the backward diagram experiences an interior crisis. At
the end of the multistability region, both diagrams transition into the monostable chaotic
region through a boundary crisis. In Figure 3b, starting from c1 = 1.8, both forward and
backward bifurcation diagrams show a period-doubling cascade to chaos. However, in the
chaotic region (2.4426 ≤ c1 < 3.1), the backward diagram presents a significant periodic
window within the range of 2.59 ≤ c1 ≤ 2.649. This transition commences with a boundary
crisis and proceeds into the chaotic region via a period-doubling bifurcation. In the same
parameter range, the forward bifurcation depicts chaotic dynamics, entering into larger
solutions through an interior crisis at c1 = 2.649. Similar to Figure 3a, Figure 3c illustrates
a period-halving route from periodic (0.96 ≤ c2 < 1.071) to chaotic (1.071 < c2 ≤ 1.2)
dynamics. While the forward bifurcation diagram exhibits periodic dynamics within
periodic windows (1.041 ≤ c2 ≤ 1.0533), commencing with an interior crisis and concluding
with a boundary crisis, the backward diagram demonstrates chaotic solutions within the
same range. Like the forward diagram, the backward diagram enters the multistable
region through an interior crisis and exits this region via a boundary crisis. The forward
(second row) and backward (third row) LE spectra, as displayed in Figure 3, corroborate
the dynamics observed in the forward and backward bifurcation diagrams presented in the
first row of Figure 3. The discernible dynamical distinction, without any further analysis,
indicates that when a1, c1, and c2 fall within the interval [1.208, 1.265], [2.59, 2.649], and
[1.041, 1.0533], it is reasonable to anticipate the presence of at least two coexisting attractors
exhibiting varying dissipation levels (as indicated by the sum of LEs).

3.3. Basin of Attraction

The term basin of attraction refers to the area within the state space of a dynamical
system where initial conditions result in the system converging towards a specific solution
or unbounded orbits. In simpler terms, it outlines the collection of initial states from
which the system progresses toward a particular outcome, serving as evidence of the
system’s sensitivity to initial conditions. As revealed by Figure 3, the system has the
potential to exhibit multistability. For instance, setting a1 = a2 = b2 = c2 = 1, b1 = 2, and
c1 = 2.6, the system is found to have two coexisting trajectories, including a strange attractor
and a period-3 orbit with (LE1, LE2, LE3) = (−0.8717, 0, 0.0874) and (LE1, LE2, LE3) =
(−0.6231, 0.2022, 0), respectively. These system solutions are shown in Figure 4, considering
(x0, y0, z0) = (−0.3727,−0.5, 0.2) and (x0, y0, z0) = (−0.3727,−0.527, 0.3) to obtain the
chaotic (in green) and periodic (in orange) trajectories.



Mathematics 2024, 12, 612 7 of 10

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 11 
 

 

commences with a boundary crisis and proceeds into the chaotic region via a period-dou-
bling bifurcation. In the same parameter range, the forward bifurcation depicts chaotic 
dynamics, entering into larger solutions through an interior crisis at 𝑐 = 2.649. Similar 
to Figure 3a, Figure 3c illustrates a period-halving route from periodic (0.96 ≤ 𝑐 < 1.071) 
to chaotic (1.071 < 𝑐 ≤ 1.2) dynamics. While the forward bifurcation diagram exhibits 
periodic dynamics within periodic windows (1.041 ≤ 𝑐 ≤ 1.0533), commencing with an 
interior crisis and concluding with a boundary crisis, the backward diagram demonstrates 
chaotic solutions within the same range. Like the forward diagram, the backward diagram 
enters the multistable region through an interior crisis and exits this region via a boundary 
crisis. The forward (second row) and backward (third row) LE spectra, as displayed in 
Figure 3, corroborate the dynamics observed in the forward and backward bifurcation 
diagrams presented in the first row of Figure 3. The discernible dynamical distinction, 
without any further analysis, indicates that when 𝑎 , 𝑐 , and 𝑐  fall within the interval 1.208,1.265 , 2.59,2.649 , and 1.041,1.0533 , it is reasonable to anticipate the presence 
of at least two coexisting attractors exhibiting varying dissipation levels (as indicated by 
the sum of LEs). 

 
Figure 3. The dynamical characteristics of System (1) regarding the variation of the parameters 𝑎  
(within 0.95 ≤ 𝑎 ≤ 2.27; first column), 𝑐  (within 1.8 ≤ 𝑐 ≤ 3.1; second column), and 𝑐  (within 0.96 ≤ 𝑐 ≤ 1.2; third column) while 𝑎 = 2 in terms of (a–c) forward (shown in blue) and backward 
(shown in red) bifurcation diagrams and (d–f) forward and (g–i) backward LE spectra. Other set-
tings are the same as in Figure 1. In each case, the forward and backward diagrams do not exhibit 
congruence in specific ranges of bifurcation parameters, signifying the presence of multistability in 
the corresponding parameter region. 

  

Figure 3. The dynamical characteristics of System (1) regarding the variation of the parameters a1

(within 0.95 ≤ a1 ≤ 2.27; first column), c1 (within 1.8 ≤ c1 ≤ 3.1; second column), and c2 (within
0.96 ≤ c2 ≤ 1.2; third column) while a = 2 in terms of (a–c) forward (shown in blue) and backward
(shown in red) bifurcation diagrams and (d–f) forward and (g–i) backward LE spectra. Other settings
are the same as in Figure 1. In each case, the forward and backward diagrams do not exhibit
congruence in specific ranges of bifurcation parameters, signifying the presence of multistability in
the corresponding parameter region.

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 11 
 

 

3.3. Basin of Attraction 
The term basin of attraction refers to the area within the state space of a dynamical 

system where initial conditions result in the system converging towards a specific solution 
or unbounded orbits. In simpler terms, it outlines the collection of initial states from which 
the system progresses toward a particular outcome, serving as evidence of the system’s 
sensitivity to initial conditions. As revealed by Figure 3, the system has the potential to 
exhibit multistability. For instance, setting 𝑎 = 𝑎 = 𝑏 = 𝑐 = 1, 𝑏 = 2, and 𝑐 = 2.6, 
the system is found to have two coexisting trajectories, including a strange attractor and a 
period-3 orbit with 𝐿𝐸 , 𝐿𝐸 , 𝐿𝐸 = −0.8717,00.0874   and 𝐿𝐸 , 𝐿𝐸 , 𝐿𝐸 =−0.6231,0.2022,0 , respectively. These system solutions are shown in Figure 4, consider-
ing 𝑥 , 𝑦 , 𝑧 = −0.3727, −0.5,0.2   and 𝑥 , 𝑦 , 𝑧 = −0.3727, −0.527,0.3   to obtain 
the chaotic (in green) and periodic (in orange) trajectories. 

 
Figure 4. The dynamical properties of System (1) in terms of (a,c) phase portrait in 𝑥 − 𝑦 − 𝑧 state 
space and (b,d) time series of the variable 𝑥. System (1) is solved for 𝑎 = 𝑎 = 𝑏 = 𝑐 = 1, 𝑏 = 2, 
and 𝑐 = 2.6  while initialized with the initial conditions 𝑥 , 𝑦 , 𝑧 = −0.3727, −0.5,0.2   and 𝑥 , 𝑦 , 𝑧 = −0.3727, −0.527,0.3  to obtain the chaotic (shown in green) and period-3 (shown in 
orange) solutions, respectively. After elapsing a significant transient time, the system demonstrates 
multistability, where chaotic and periodic attractors coexist. 

The study of the basin of attraction for a dynamical system becomes even more inter-
esting in the case of multistability. Hence, keeping 𝑎 = 𝑎 = 𝑏 = 𝑐 = 1 , 𝑏 = 2 , and 𝑐 = 2.6, we aimed to find the initial variable settings leading to the chaotic and periodic 
attractors illustrated in Figure 4. Accordingly, Figure 5 portrays six cross-sectional views 
of the three-dimensional 𝑥 − 𝑦 − 𝑧  state space, facilitating the recognition of the eight 

system equilibria. These cross sections are 𝑥 = ± = ±0.3727 (Figure 5a,b), 𝑦 = ± = ±0.527  (Figure 5c,d), and 𝑧 = ± = ±0.527  (Figure 5e,f) 

planes. As portrayed in Figure 5, the system equilibria have no basin of attractions. As 
illustrated in Figure 5, it is evident that the system’s equilibria do not possess basins of 
attraction. Consequently, in the parameter settings being considered, these equilibria are 
proven unstable without further analytical analysis. The instability of these equilibria can 
also be confirmed through the stability analysis described in Section 3.1, as none of the 
system’s equilibria exhibit three negative real eigenvalues. The regions highlighted in 

Figure 4. The dynamical properties of System (1) in terms of (a,c) phase portrait in x − y − z state
space and (b,d) time series of the variable x. System (1) is solved for a1 = a2 = b2 = c2 = 1, b1 = 2,
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and c1 = 2.6 while initialized with the initial conditions (x0, y0, z0) = (−0.3727,−0.5, 0.2) and
(x0, y0, z0) = (−0.3727,−0.527, 0.3) to obtain the chaotic (shown in green) and period-3 (shown in
orange) solutions, respectively. After elapsing a significant transient time, the system demonstrates
multistability, where chaotic and periodic attractors coexist.

The study of the basin of attraction for a dynamical system becomes even more interesting
in the case of multistability. Hence, keeping a1 = a2 = b2 = c2 = 1, b1 = 2, and c1 = 2.6, we
aimed to find the initial variable settings leading to the chaotic and periodic attractors illustrated
in Figure 4. Accordingly, Figure 5 portrays six cross-sectional views of the three-dimensional
x0 − y0 − z0 state space, facilitating the recognition of the eight system equilibria. These cross

sections are x0 = ±
√

a1b2
b1(a1c2+a2c1)

= ±0.3727 (Figure 5a,b), y0 = ±
√

a2
a1c2+a2c1

= ±0.527

(Figure 5c,d), and z0 = ±
√

a1
a1c2+a2c1

= ±0.527 (Figure 5e,f) planes. As portrayed in Figure 5,
the system equilibria have no basin of attractions. As illustrated in Figure 5, it is evident that the
system’s equilibria do not possess basins of attraction. Consequently, in the parameter settings
being considered, these equilibria are proven unstable without further analytical analysis. The
instability of these equilibria can also be confirmed through the stability analysis described in
Section 3.1, as none of the system’s equilibria exhibit three negative real eigenvalues. The regions
highlighted in green and orange represent the initial conditions resulting in the chaotic and
periodic solutions already depicted in Figure 4. Furthermore, Figure 5 illustrates a considerable
portion of unbounded orbits, signifying that the system is likely to exhibit unbounded behavior.
Nevertheless, in specific regions, it can follow distinct trajectories with a bounded nature.
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Figure 5. The sensitivity analysis through the system’s basin of attraction assuming a1 = a2 = b2 =

c2 = 1, b1 = 2, and c1 = 2.6 in (a,b) x0 = ±0.3727 plane for −1.5 ≤ y0 ≤ 0.6 and −2.5 ≤ z0 ≤ 1.1,
(c,d) y0 = ±0.527 plane for −0.4 ≤ x0 ≤ 5 and −5 ≤ z0 ≤ 1, and (e,f) z0 = ±0.527 plane for
−1.2 ≤ x0 ≤ 1.2 and −1.5 ≤ y0 ≤ 0.6. The green dots represent trajectories converging towards
the chaotic attractor in Figure 4a, while the orange dots signify convergence towards the periodic
solution in Figure 4c. Gray-coded dots illustrate unbounded orbits, and the cyan color designates the
system’s equilibria. As these equilibria lack a basin of attraction, they are confirmed to be unstable.
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It is important to note that the system was solved for each set of initial condition
values to determine the basin of attraction within a predetermined parameter setting
and a particular cross section. The period of the attained solution was then calculated to
differentiate between periodic and chaotic dynamics.

4. Conclusions

In this paper, we introduce a novel chaotic system characterized solely by quadratic
nonlinearities. We conducted an extensive analysis of its dynamical behavior employing a
range of tools, such as bifurcation diagrams and LE spectra. The inherent quadratic nature
of the system led to the identification of eight equilibrium points and the manifestation of
repeller dynamics. Our stability analysis revealed that all equilibrium points were inher-
ently unstable within a specific parameter configuration. Furthermore, our examination of
forward and backward bifurcation analysis highlighted that the system can exhibit multista-
bility in a distinct parameter space region. We delved into the system’s basin of attraction
to investigate its sensitivity to initial conditions, particularly in the multistable area. This
exploration was performed while adjusting the parameters to facilitate the coexistence of a
strange attractor and a period-3 solution.
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