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Abstract: A new solution to the continuous-time bilinear quadratic regulator optimal control problem
(CBQR) was recently developed using Krotov’s Method. This paper provides two theoretical results
related to the properties of that solution. The first discusses the equivalent representation of the cost-to-
go performance index. The second one breaks down this equivalence into smaller identities referencing
the components of the performance index. The paper shows how these results can be used to verify the
numerical accuracy of the computed solution. Additionally, the meaning of the improving function
and the equivalent representation, which are the main elements in the discussed CBQR’s solution, are
explained according to the derived notions. A numerical example of structural control application
exemplifies the significance of these results and how they can be applied to a specific CBQR problem.
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1. Introduction

The challenge of “choosing the best path” is a prevalent problem that has a significant
presence in applied science and technology [1]. Not surprisingly, its solutions find their way
into a wide range of applications, including automatic control of systems [2]. For the latter,
the problem is addressed in the framework of optimal control theory. The fundamental
objective in this field is to maximize the return from, or minimize the cost of, the operation
of physical [3,4], biological [5,6], social [7–9], economic processes [10,11], etc.

Many studies have been conducted over the years in optimal control theory, yielding
diverse results for many types of problems, and the research is still ongoing. An impor-
tant tool for solving various optimal control problems is Krotov’s method [2], sometimes
referred to by its original name: “a global method of successive improvements of control”.
The method, which stems from the fundamental extension principle [2], is a successive algo-
rithm aimed at the computerized solution of optimal control problems. It is a well-known
instrument for constructing optimal control for quantum systems [12,13]. Additionally, its
efficiency was demonstrated for a class of structural control problems [14–16], iron and
steel manufacturing processes [17], and biological systems [18].

However, it should be noted that even though Krotov’s method furnishes a rigorous
methodology for solving optimal control problems, its formulation is general and requires
additional effort when addressing a specific issue. In order to apply the method to a given
optimal control problem, one should solve another problem. That is, one should reshape the
given performance index to a form that points out a clear way to obtain a better, improved
process and the feedback generating it [2]. The reshaped form of the performance index is
called an equivalent representation, and the key object for obtaining it is an object called an
improving function [2].

One of the recent studies that utilized Krotov’s method deals with the solution for the
continuous-bilinear quadratic regulator problem (CBQR) [19]. Here, the aim is to support
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that solution by furnishing some interesting theoretical comments on the equivalent repre-
sentation related to this problem. These results can be used to verify the numerical accuracy
of the computed improving function and the solution obtained by it. Additionally, in the
same context, they shed light on the meaning of the elements of the equivalent representation
and the improving function. Section 2 provides some background needed for understanding
the main results. The latter are presented in Section 3. Finally, a numerical example is given
to illustrate the significance of the results and how they can be used to verify the numerical
accuracy of an improving function obtained by the method suggested in [19].

2. Methods

In order to put things in context and facilitate the main derivations, it is beneficial to
review several notions and theories.

x : R → Rn denotes a state trajectory, and u : R → Rnu denotes a control trajectory.
Here, x(t) is an intersection of x at t. That is, x(t) is a specific vector in Rn that expresses
the system’s state at t, whereas x refers to the entire trajectory. Ui is a set of control signals
admissible to the i-th control device.

The CBQR is an optimal control problem that consists of a bilinear system [20] and a
quadratic performance index of the form:

ẋ(t) =A(t)x(t) + B(t)u(t) + {uN(t)}x(t) + g(t)

x(0), u ∈ U , ∀t ∈ (0, t f )
(1)

J(x, u) =
1
2

t f∫

0

x(t)TQ(t)x(t) + u(t)TR(t)u(t)d t +
1
2

x(t f )
THx(t f ) (2)

Here, {uN(t)} ≜ ∑nu
i=1 ui(t)Ni(t); A, Ni : R → Rn×n and B : R → Rn×nu . g : R → Rn

is a trajectory of external excitations; Q : R → Rn×n such that Q(t) ≥ 0; R : R → Rnu×nu

such that R(t) ≥ 0 and H ≥ 0. A pair (x, u) that satisfies Equation (1) is called an admissible
process. The set X ⊆ [R → Rn] comprises state trajectories, reachable from U and the
specified x(0). The solution to this problem is required in the form of a state feedback that
synthesizes an optimal admissible process, i.e., one that minimizes J.

A successive method was utilized in order to solve this problem [19], that is, to
obtain an admissible process that minimizes J. The method, which is named Krotov’s
method after its founder Prof. V. F. Krotov [2], furnishes the solution as a sequence called
an improving sequence. Krotov defined this sequence to be a sequence of admissible
processes—{(xk, uk)}—such that J(xk, uk) ≥ J(xk+1, uk+1); i.e., the performance of each
element in the improving sequence is better than or equal to its former. In addition to
this monotonous improvement, the method has the advantages of not being limited to
small variations in u and obtaining the solution in the form of feedback [2]. A succinct
introduction to this method is given below.

Consider a class of optimal control problems defined by a state equation, set of
admissible control trajectories, and performance index:

ẋ(t) =f(t, x(t), u(t)); x(0), ∀t ∈ (0, t f ); u ∈ U (3)

J(x, u) =l f (x(t f )) +

t f∫

0

l(t, x(t), u(t))d t (4)

Here, f : R×Rn ×Rnu → Rn, l : R×Rn ×Rnu → R and l f : Rn → R. The goal is to
find an admissible (x, u) that minimizes J.

One of the key concepts in Krotov’s theory is the equivalent representation [2]. It was
shown that the optimal control problem can be reformulated by transforming the perfor-
mance index J into an equivalent one, Jeq. The rationale behind this transformation lies in
the potential for a thoughtfully selected Jeq to simplify the solution process. The equivalent
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representation plays a crucial role in various results put forth by Krotov, notably in Krotov’s
method [2]. The subsequent theorem introduces the relevant equivalent representation for
our context. ξξξ and ννν denote vectors in Rn and Rnu , respectively.

Theorem 1 ([2]). Let q : R× Rn → R be a piecewise-smooth function, upon which the next
functions and performance index are constructed:

s(t,ξξξ,ννν) ≜qt(t,ξξξ) + qx(t,ξξξ)f(t,ξξξ,ννν) + l(t,ξξξ,ννν) (5)

s f (ξξξ) ≜l f (ξξξ)− q(t f ,ξξξ) (6)

Jeq(x, u) ≜s f (x(t f )) + q(0, x(0)) +

t f∫

0

s(t, x(t), u(t))d t (7)

If (x, u) is an admissible process, then J(x, u) = Jeq(x, u).

Hence, the challenge is to find a q that forms a beneficial Jeq. In the following theorem,
Krotov points out a way of finding such a q. The theorem states the properties of q and an
improving feedback, û, which allow for the improvement of a given admissible process.

Theorem 2 ([2]). Let a given (x1, u1) be admissible, and let q : R×Rn → R. If the following
statements hold:

1. q grants s and s f the property:

s(t, x1(t), u1(t)) = max
ξξξ∈X (t)

s(t,ξξξ, u1(t)); ∀t ∈ (0, t f )

s f (x1(t f )) = max
ξξξ∈X (t f )

s f (ξξξ)
(8)

2. û is a feedback

û(t,ξξξ) = arg min
ννν∈U (t)

s(t,ξξξ,ννν) (9)

for all t ∈ [0, t f ],ξξξ ∈ X (t).
3. x2 is a state trajectory that solves:

ẋ2(t) = f(t, x2(t), û(t, x2(t))); x2(0) = x(0), (10)

at any ∀t ∈ (0, t f ), and u2 is a control trajectory such that u2(t) = û(t, x2(t)),

then (x2, u2) is an improved process.

A q that meets the requirements listed in the above theorem is called an improving
function. By repeating the process improvement over and over, an improving sequence is
obtained.

However, while the process of successive improvement proves highly beneficial, this
alone does not guarantee optimality. Additional considerations are necessary to ensure
that the obtained solution is indeed optimal. For instance, even assuming convergence of
the improving sequence, the optimality of its limit process remains uncertain. In the case of
an optimum, we anticipatethat it will satisfy conditions of optimality, such as Pontryagin’s
minimum principle. Krotov has also addressed this question.

Assume that at some step k of the algorithm, the gradients qkx and q(k−1)x are equal
for all t ∈ (0, t f ), and qk grants the gradient of sk the following property

skx(t, xk(t), uk(t)) = 0; ∀t ∈ (0, t f )
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at the process (xk, uk). Krotov showed that, in this case, (xk, uk) satisfies Pontryagin’s
minimum principle with the costate qkx(t, xk(t)) [2]. In this context, Krotov’s method
provides a convenient instrument for finding a solution that satisfies Pontryagin’s minimum
principle, rather than solving it directly. Furthermore, while solving problems directly via
Pontryagin’s minimum principle typically yields an open-loop control trajectory, Krotov’s
method offers a solution in a feedback form [21].

The major difficulty faced by a control designer intending to apply Krotov’s method
is formulating an improving function suitable for the addressed optimal control problem.
For the CBQR problem, given an admissible process, (x, u), an improving function can be
formulated as q(t,ξξξ) = ξξξTP(t)ξξξ+ ξξξTp(t) [19]. Here, P : R → Rn×n is the solution of the
following differential Lyapunov equation [22]:

Ṗ(t) = −P(t)(A(t) + {uN(t)})− (A(t) + {uN(t)})TP(t)− Q(t) (11)

to P(t f ) = H, and p : R → Rn is the solution of:

ṗ(t) = −(A(t) + {uN(t)})Tp(t)− P(t)(B(t)u(t) + g(t)) (12)

to p(t f ) = 0. In these equations, u is the control trajectory specified by the given admissi-
ble process.

As mentioned above, the improving function q is associated with some Jeq, whose
importance lies in the fact that it underpins the process improvement. This relation, between
the improving function and equivalent representation, is discussed below in Section 3 in
the context of the CBQR problem.

3. Results

The equivalent representation of the performance index refers to the entire time
domain [0, t f ]. However, in some cases, there is an interest in the performance of the system
over a sub-interval, [t1, t f ] ⊆ [0, t f ], also known as the cost-to-go. Following Theorem 1
one can easily obtain the equivalent representation of the cost-to-go. The next corollary
provides an equivalent representation of the cost-to-go of a given admissible process, (x, u).

Corollary 1. Let J̄ : X × U ×R → R and J̄eq : X × U ×R → R be the functionals:

J̄(x, u, t1) ≜

t f∫

t1

l(t, x(t), u(t))d t + l f (x(t f )) (13)

J̄eq(x, u, t1) ≜q(t1, x(t1)) +

t f∫

t1

s(t, x(t), u(t))d t + s f (x(t f )) (14)

where t1 ∈ [0, t f ] and (x, u) is admissible. Then, J̄(x, u, t1) = J̄eq(x, u, t1) for any 0 ≤ t1 ≤ t f .

The proof is similar to Krotov’s proof to Theorem 1, differing only by setting the time
domain to [t1, t f ] rather than [0, t f ]. It is given below for the reader’s convenience.

Proof. Let the hypothesis hold. By substituting Equations (5) and (6) into J̄eq − J̄, we obtain:

J̄eq(x, u, t1)− J̄(x, u, t1) =q(t1, x(t1)) + (l f (x(t f ))− q(t f , x(t f ))− l f (x(t f ))

+

t f∫

t1

(qt(t, x(t)) + qx(t, x(t))f(t, x(t), u(t)))d t

As (x, u) is an admissible process, ẋ(t) = f(t, x(t), u(t)) holds, leading to:
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J̄eq(x, u, t1)− J̄(x, u, t1) =q(t1, x(t1))− q(t f , x(t f ))

+

t f∫

t1

(qt(t, x(t)) + qx(t, x(t))ẋ(t))d t

= q(t1, x(t1))− q(t f , x(t f )) +

t f∫

t1

d q(t, x(t)) = 0

by the virtue of Newton–Leibnitz formula.

Remark 1.

J̄eq can be used for evaluating performance over sub-trajectories by:

t2∫

t1

l(t, x(t),u(t))d t = J̄(x, u, t2)− J̄(x, u, t1) (15)

= J̄eq(x, u, t2)− J̄eq(x, u, t1) (16)

=q(t1, x(t1))− q(t2, x(t2)) +

t2∫

t1

s(t, x(t), u(t))d t (17)

Assume that (x, u) is an admissible process. By substituting q into s and then into J̄eq (Equa-
tion (14)), we obtain

J̄eq(x, u, t1) =
1
2

x(t1)
TP(t1)x(t1) + p(t1)

Tx(t1)

+

t f∫

t1

p(t)T(B(t)u(t) + g(t)) +
1
2

u(t)TR(t)u(t)d t
(18)

Corollary 1 establishes the overall equivalence of J and Jeq in a general sense, without
delving into their components. The subsequent theorem addresses how this equivalence is
reflected through the components of J and Jeq for a linear system with an external excitation
and no control input, namely:

f(t, x(t), u(t)) =f′(t, x(t)) ≜ A(t)x(t) + g(t); x(0)

l(t, x(t), u(t)) =l′(t, x(t)) ≜ x(t)TQ(t)x(t); l f (x(t f )) =
1
2

x(t f )
THx(t f )

In brief, the following theorem highlights specific properties of P and p, which are the
solutions to Equations (11) and (12), respectively. These properties allow us to deconstruct
the overall equivalence, as described in Corollary 1, into smaller identities. The theorem
also provides a tool for verifying the accuracy of P and p and offers a deeper understanding
of their role in Jeq.

It is worth noting that, despite the differences between the CBQR and the aforemen-
tioned system, the result remains relevant to the CBQR case, as elucidated later in Section 4.

Theorem 3. Let g : R → Rn; A, Q : R → Rn×n, where Q(t) ≥ 0. If xh, xp, p : R → Rn and
P : R → Rn×n satisfy the linear ODEs
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ẋh(t) =A(t)xh(t); xh(t1) = x(t1) (19)

ẋp(t) =A(t)xp(t) + g(t); xp(t1) = 0 (20)

Ṗ(t) =− P(t)A(t)− A(t)TP(t)− Q(t); P(t f ) = H (21)

ṗ(t) =− A(t)Tp(t)− P(t)g(t); p(t f ) = 0 (22)

for t ∈ (t1, t f ), then:

(a) 1
2 x(t1)

TP(t1)x(t1) =
1
2

t f∫
t1

xh(t)TQ(t)xh(t)d t + 1
2 xh(t f )

THxh(t f )

(b)
t f∫
t1

p(t)Tg(t)d t = 1
2

t f∫
t1

xp(t)TQ(t)xp(t)d t + 1
2 xp(t f )

THxp(t f )

(c) x(t1)
Tp(t1) =

t f∫
t1

xh(t)TQ(t)xp(t)d t + xh(t f )
THxp(t f )

Proof. Consider Equations (1) and (2) over [t1, t f ], and let u ≜ 0. Consequently, Equation (1)
becomes:

ẋ(t) =A(t)x(t) + g(t); t ∈ (t1, t f ), x(t1)

x’s solution consists of homogeneous and particular solutions satisfying Equations (19) and
(20), respectively. In addition, Equations (11) and (12) become Equations (21) and (22),
repectively.

As (x, 0) is admissible and by Corollary 1:

1
2

t f∫

t1

x(t)TQ(t)x(t)d t +
1
2

x(t f )
THx(t f ) =

t f∫

t1

p(t)Tg(t)d t +
1
2

x(t1)
TP(t1)x(t1) + x(t1)

Tp(t1)

After substituting x = xh + xp:

1
2

t f∫

t1

(
xh(t) + xp(t)

)TQ(t)
(
xh(t) + xp(t)

)
d t

+
1
2

(
xh(t f ) + xp(t f )

)T
H
(

xh(t f ) + xp(t f )
)

=

t f∫

t1

p(t)Tg(t)d t +
1
2

x(t1)
TP(t1)x(t1) + x(t1)

Tp(t1)

(23)

(a) Let g ≡ 0. Hence, xp = 0, p = 0, and

1
2

t f∫

t1

xh(t)TQ(t)xh(t)d t +
1
2

xh(t f )
THxh(t f ) =

1
2

x(t1)
TP(t1)x(t1)



Mathematics 2024, 12, 611 7 of 15

(b) Let x(t1) = 0. Hence, xh = 0 and

1
2

t f∫

t1

xp(t)TQ(t)xp(t)d t +
1
2

xp(t f )
THxp(t f ) =

t f∫

t1

p(t)Tg(t)d t

(c) By (a), (b), and cancelling terms from Equation (23):

t f∫

t1

xh(t)TQ(t)xp(t)d t + xh(t f )
THxp(t f ) = x(t1)

Tp(t1)

4. Discussion

The fact described in Corollary 1 proves to be useful in certain circumstances. As
mentioned earlier, the method proposed for solving the CBQR problem [19] relies on
process improvement. However, even though the process is rigorously derived, there is a
practical obstacle to its application. The solutions for Equations (11) and (12) are usually
obtained through numerical integration methods. In practice, numerical computation errors
are always an issue when differential equations are solved numerically [23,24]. Numerical
observations show that a successful improvement of a given process—(xk, uk)—is quite
sensitive to the accuracy of q. This accuracy is highly affected by that of P and p, which
solves Equations (11) and (12). Furthermore, differential Lyapunov equations tend to be
quite stiff [25,26], making the numerical accuracy issue very present. This is particularly
true in the case of Equation (11) and when u is rapidly varying or discontinuous, which is
a common situation in many practical optimal control problems [2,16,27–29]. Therefore,
dealing with numerical errors becomes a common practice in the improvement process.
As a result, when numerical errors do exist in P and p, the structure of q becomes flawed
and inaccurate, and the improvement might fail. A verification of q’s numerical accuracy at
different t’s can be helpful in such a case as it may pinpoint the root of the problem and,
consequently, its solution.

First, note that P(t f ) and p(t f ) are specified. Hence they are accurately known, and
q(t f ,ξξξ) is accurately known as well. Hence, q’s accuracy at t f is not of concern. As for q at
other t’s, J̄eq can be used. By taking advantage of the independence of J̄ on q, one can verify
q’s accuracy at a certain t1 ∈ [0, t f ) by examining the difference | J̄eq(xk, uk, t1)− J̄(xk, uk, t1)|.
Clearly, higher accuracy will be reflected in a smaller difference. This tool can be utilized
to identify the sections of u that contribute to the numerical issues, indicating where
additional computational efforts should be focused.

Theorem 3 can be instrumental for a more specific verification of the accuracy of P
and p. Since the right-hand side of expressions (a)–(c) in Theorem 3 depends solely on x, it
can be computed and compared to the left-hand side of those equations. This allows us to
verify the accuracy of the numerically computed P and p at any given t, as follows.

Throughout the improving steps, the control trajectory undergoes repeated alterations.
However, at each step, the previously computed process, say (x, u), serves as a fixed
starting point. Consequently, at a given step, we treat an admissible control trajectory, u, as
a specified input. We can now write the state equation for this step as:

ẋ(t) =Â(t)x(t) + ĝ(t); x(0), t ∈ (0, t f ) (24)

where Â(t) ≜ A(t) + {uN(t)} and ĝ(t) ≜ B(t)u(t) + g(t). Clearly, for the given process,
Equation (1) is equivalent to Equation (24). As it is a linear system, the state trajectory
can be decomposed into homogeneous and particular solutions. This also applies to each
sub-interval (t1, t f ) ⊆ (0, t f ). Therefore, x = xh + xp over (t1, t f ) where the homogeneous
solution xh solves
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ẋh(t) = Â(t)xh(t); t ∈ (t1, t f ), xh(t1) = x(t1) (25)

and the particular one, xp, solves

ẋp(t) = Â(t)xp(t)+ĝ(t); t ∈ (t1, t f ), xp(t1) = 0 (26)

On the one hand, substituting this decomposition into the CBQR’s l and l f and then
into Equation (13), yields:

J̄(xh + xp, u, t1) =
1
2

t f∫

t1

xh(t)TQ(t)xh(t)d t +
1
2

xh(t f )
THxh(t f )

+
1
2

t f∫

t1

xp(t)TQ(t)xp(t)d t +
1
2

xp(t f )
THxp(t f )

+

t f∫

t1

xh(t)TQ(t)xp(t)d t + xh(t f )
THxp(t f )

+
1
2

t f∫

t1

u(t)TR(t)u(t)d t

(27)

On the other hand, according to Equation (18), an admissible process (x, u) can be
evaluated over the sub-interval (t1, t f ) by:

J̄(xh + xp, u, t1) = J̄eq(x, u, t1) =
1
2

x(t1)
TP(t1)x(t1) + p(t1)

Tx(t1)

+

t f∫

t1

p(t)T ĝ(t)d t +

t f∫

t1

1
2

u(t)TR(t)u(t)d t

where P and p are computed from Equations (11) and (12) to the given u and g. Obvi-
ously, in this case, Equations (21) and (22) solved for Â and ĝ are equivalent to Equa-
tions (11) and (12). Theorem 3 reveals that each state-dependent-term on the right-hand
side of Equation (27) is equal to a corresponding component of J̄eq. Let

Ih(τ) ≜
1
2

t f∫

τ

xh(t)TQ(t)xh(t)d t +
1
2

xh(t f )
THxh(t f )

Ip(τ) ≜
1
2

t f∫

τ

xp(t)TQ(t)xp(t)d t +
1
2

xp(t f )
THxp(t f )

Ihp(τ) ≜

t f∫

τ

xh(t)TQ(t)xp(t)d t + xh(t f )
THxp(t f )

Ieq,p(τ) ≜

t f∫

τ

p(t)T ĝ(t)d t

(28)

The above trajectories can be used to verify the accuracy of P and p; i.e., according to
Theorem 3, a good accuracy should be reflected by a strong agreement in each of the pairs
(Ih, xPx), (Ihp, xTp), and (Ip, Ieq,p).
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Finally, Theorem 3 offers a more profound insight into the meaning of the components
in J̄eq. The identities that are introduced in the theorem reveal that:

• The term 1
2 x(t1)

TP(t1)x(t1) evaluates the performance of the homogeneous solution.

•
t f∫
t1

p(t)T ĝ(t)d t evaluates the performance of the particular solution.

• p(t1)
Tx(t1) evaluates the cross-performance of the homogeneous-particular solutions.

Additionally,

q(t1, x(t1)) =
1
2

x(t1)
TP(t1)x(t1) + p(t1)

Tx(t1)

=Ih(t1) + Ihp(t1)

This implies that the improving function, q, is a sum of the homogeneous solution’s
performance and the cross-performance of the homogeneous-particular solutions.

5. Numerical Example

A CBQR problem that was previously introduced in [19] is used here in order to
exemplify an application of the above results. Unlike the original paper, where it was
used to demonstrate a practical application of the CBQR problem and its solution, here,
the focus is placed on the solution’s numerical accuracy. It illustrates how the above
results can be used to verify the numerical accuracy of an improving function that was
obtained by the method suggested in [19]. The problem concerns a structural control
problem of a two-story building subjected to external excitation and configured with two
semi-active variable stiffness (SAVS) devices [30,31]. Devices of this type consist of a frame
that connects adjacent floors through a hydraulic element. This element has two operation
modes controlled by a servo-valve having two states: open and closed. When the valve is
open, it allows almost free flow of the hydraulic fluid, and the device’s resistance to relative
floors’ motion is minimal. In a closed state, the valve prevents the fluid’s flow, locks the
device, and turns it into a lateral bracing element. Springs and variable dashpots were used
for modeling these SAVS devices. Each variable dashpot is capable of providing either a
finite or infinite damping, representing the device’s unlocked or locked state, respectively.
Figure 1 depicts the dynamic scheme used for modeling the controlled structural system.

5[ton/s]
or
∞

25[kN/m]

5[ton/s]
or
∞

25[kN/m]

200[ton]

100[ton]

100[kN
/

m
m
]

100[kN
/

m
m
]

z1

z2

Figure 1. Dynamic scheme for a two-floor structure, equipped with two SAVS devices [19].
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The system dynamics amount to the following bilinear state equation:

ẋ(t) = Ax(t) + u1(t)N1x(t) + u2(t)N2x(t) + g(t)

A =




0 0 1 0 0 0
0 0 0 1 0 0

−2000 1000 −2.01 1 11̇0−5 −11̇0−5
500 −500 0.5 −0.51 0 51̇0−6

0 0 −2.51̇07 0 0 0
0 0 2.51̇07 −2.51̇07 0 0




N1 = diag(0, 0, 0, 0, 0,−5000)

N2 = diag(0, 0, 0, 0,−5000,−5000)

g(t) =
[
0 0 −3 −3 0 0

]T sin(16.55t)

where the state vector x(t) = (z1(t), z2(t), ż1(t), ż2(t), w1(t), w2(t)) describes the horizontal
displacements and velocities in the dynamic degrees of freedom and the forces applied
through the SAVS devices to the floors. u ≜ (u1, u2) is the control input trajectory, repre-
senting the SAVS devices’ locking patterns. Here, the control policy is restricted to one of
three unlocking patterns [30]: (1) both devices are unlocked, (2) only the second device
is unlocked, or (3) both devices are locked. These settings lead to an admissible set of
control inputs:

u(t) ∈ U =

{[
0
1

]
,
[

1
0

]
,
[

0
0

]}

Every object in this set reflects the SAVS devices’ unlocking patterns: 1, 2 and 3,
respectively. Note that U finiteness inhibits variational methods from being used for u.
A horizontal ground acceleration signal of z̈g(t) = 3 sin(16.55t) was used to simulate a
seismic excitation.

The performance evaluation accounts for inter-story drifts and control forces. It is:

J(x, u) =

(
1
2

5∫

0

x1(t)21̇05 + (x2(t)− x1(t))21̇05 + 5(x5(t)2

+ x6(t)2)d t

)
+

1
2

(
x1(5)21̇04 + (x2(5)− x1(5))21̇04

+ 50(x5(5)2 + x6(5)2)

)

Q and H were constructed accordingly. It follows that R = 0 as u has no weight in J.
Additional details of the system are available in the original paper [19].

Here, that problem is revisited and discussed in the context of Corollary 1 and Theo-
rem 3. That is, in this section, the results are exemplified by demonstrating their application
in diagnosing numerical issues emerging during the solution of the above CBQR problem.

Two characteristics of this problem allude that numerical issues are likely to be in-
volved in solving it, especially in solving the differential equations that are related to the
process improving stage and the feedback synthesis. First, due to the operation’s principle
of the SAVS devices, the control signals are binary. Second, the control signals alternate
rapidly. Such issues indeed came up during the CBQR iterations, as follows.

Following [19], Krotov’s method was applied to the CBQR problem through MATLAB.
A numerical integration algorithm based on the fourth-order Runge-Kutta method was
utilized to solve the necessary differential equations. However, here, computations were
carried out twice. In the first case, the integration step was set to 0.01 [s], whereas, in the
second, it was set to 0.001 [s]. Notably, even though the fourth-order Runge-Kutta is not
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recommended for stiff equations [25], it is sufficient for the point discussed in this paper.
Here, the discussion revolves around validating the numerical solution’s accuracy rather
than its actual accurate computation.

Fifteen iterations were executed, each one consisting of a single CBQR improvement
step. As explained above, these iterations generate a sequence of processes, where each is
expected to be better than the previous in terms of J. Table 1 provides J’s values, evaluated
for each computed process and each case. In this table, i stands for the iteration number.
Start with i = 0 for the initial process, i = 1 for the process obtained after one improvement,
i = 2 for that obtained after two improvements, and so forth. The table also denotes the
relative change in J, signified by ∆Ji ≜ Ji − Ji−1.

Table 1. Peformance index values at each process. Here, ∆Ji = Ji − Ji−1.

Case 1 Case 2

i J ∆J J ∆J

0 4.59 × 1014 - 4.59 × 1014 -
1 4.34 × 1013 −4.16 × 1014 1.54 × 1014 −3.05 × 1014

2 5.84 × 1012 −3.76 × 1013 1.44 × 1013 −1.39 × 1014

3 4.88 × 1012 −9.61 × 1011 5.54 × 1012 −8.9 × 1012

4 4.78 × 1012 −9.94 × 1010 4.66 × 1012 −8.81 × 1011

5 4.82 × 1012 3.51 × 1010 4.65 × 1012 −4.5 × 109

6 4.59 × 1012 −2.23 × 1011 4.6 × 1012 −4.9 × 1010

7 4.57 × 1012 −2.59 × 1010 4.53 × 1012 −6.9 × 1010

8 4.45 × 1012 −1.23 × 1011 4.51 × 1012 −2.87 × 1010

9 4.38 × 1012 −6.33 × 1010 4.49 × 1012 −1.38 × 1010

10 4.43 × 1012 5.05 × 1010 4.49 × 1012 −5.34 × 109

11 4.36 × 1012 −7.09 × 1010 4.48 × 1012 −8.91 × 109

12 4.42 × 1012 5.52 × 1010 4.47 × 1012 −8.72 × 109

13 4.38 × 1012 −3.75 × 1010 4.49 × 1012 1.92 × 1010

14 4.5 × 1012 1.23 × 1011 4.47 × 1012 −1.41 × 1010

15 4.41 × 1012 −9.66 × 1010 4.47 × 1012 −7.55 × 109

It can be seen that J’s values in case 2 are different than those of case 1. This implies that
the processes, obtained in each case, differ too. Additionally, for an improving sequence,
∆J is expected to be non-positive. However, starting at the fifth iteration of case 1, ∆J
introduces some positive values, which means that a deterioration was obtained rather
than an improvement. Although this issue also exists in case 2, it is milder. In case 2, only
one such incident was recorded—after iteration 13. The explanation to this non-monotonous
behavior is numerical errors, involved in the computation of P and p. Obviously, case 2,
which benefits from higher accuracy due to a smaller integration step, is more reliable than
case 1.

Hence, inspection of the monotonicity of {(x, u)i} can serve as a simple measure of
the accuracy of the obtained process. Nevertheless, a deeper inspection can be performed
through a comparison of the original cost-to-go J̄ with its equivalent counterpart, which
was defined in Corollary 1, J̄eq. Such a comparison is presented in Figure 2. In this figure,
case 1’s costs are J̄c1, J̄c1

eq , and case 2’s are J̄c2, J̄c2
eq . Corollary 1 states that, theoretically, J̄ and

J̄eq should be identical for any 0 ≤ t1 ≤ t f . However, this property is not observed in case
1. It can be seen that J̄c1

eq substantially deviates from J̄c1. In contrast, in case 2, there is a
relatively good agreement between J̄c2 and J̄c2

eq . Additionally, Figure 2 points out another
interesting fact. It can be seen that J̄c1 and J̄c2 are not equal. Although they do have similar
initial and terminal costs, they differ over the majority of time instances. This is another
sign of the difference between the solutions obtained in case 1 and 2. However, the good
agreement of J̄c2 and J̄c2

eq implies that case 2 is the accurate one.
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Figure 2. Cost-to-go trajectories in case 1 ( J̄c1, J̄c1
eq ) and case 2 ( J̄c2, J̄c2

eq ).

Can we better identify the reason for the poor performance of case 1? Based on
Theorem 3, the answer is yes. Consider the identities defined in Theorem 3 and the
terms defined in Equation (28). A better identification can be obtained by examining the
equivalence of the terms in each one of the pairs: (Ih, xPx), (Ihp, xTp), and (Ip, Ieq,p).

Figure 3 inspects this equivalence in each case. As before, a ’c1’ superscript indicates
case 1, and case 2 is indicated by ‘c2’. The correspondence in each of the pairs is conspicuous
in case 2. However, even though case 1 shows reasonable similarity in the two first pairs,
in the third pair, Ic1

p is dissimilar to Ic1
eq,p for t ∈ [0, 3.2]. It follows that in the given problem

this element is the reason for the difference between J̄c1 and J̄c1
eq . Because the pair (Ip, Ieq,p)

consists of ĝ, which is absent from the other pairs, it is suggested that the numerical obstacle
in the given problem is most likely related to the components of ĝ, i.e., either the control
input u, the external excitation z̈g, or both.
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Figure 3. Trajectories of the cost-to-go elements for cases 1 and 2: (a) Ih against xPx, (b) Ihp against xTp,
(c) Ip against Ieq,p. Case 1 is indicated by a c1 superscript and case 2 is indicated by a c2 superscript.
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6. Conclusions

This paper furnishes novel theoretical results that are related to a recently published
solution to the CBQR problem. Specifically, the results refer to a key element in that
solution—the improving function. First, Corollary 1 defines an equivalent cost-to-go
performance index. Notably, its formulation is general and not limited to the CBQR
problem. A sub-interval’s equivalence is an immediate consequence of this theorem and is
discussed too. Next, Theorem 3 continues the idea presented in Corollary 1 but concentrates
on the CBQR case.

The theorem breaks the equivalence down into smaller identities in relation to the
components of the CBQR improving function.

These results allow us to verify the accuracy of the obtained numerical solution.
This can be performed for the overall accuracy of the computed feedback and each of its
components. It is an important tool as numerical issues frequently arise in solving ODEs,
especially when discontinuous control signals and excitations are involved. Additionally,
these theoretical results shed light on the meaning of the equivalent representation, the
improving function, and the way in which they are related to the given problem.

A numerical example from structural control is provided to illustrate the above identi-
ties and how they can be used to verify the accuracy of the computed solution and pinpoint
causes of inaccuracy, if there are such.

Based on the above results, different future research directions can be considered.
The following are three possible directions. First, the results were demonstrated to have
application in validating the numerical accuracy of improving functions. However, there
is still work to be performed on systematically incorporating such a validation into the
iteration process and what steps should be taken when errors are encountered. Second, can
the identities from Theorem 3 be extended for more complex systems? Third, the derived
identities provide novel explanations of the elements of the improving function related to
the CBQR problem. It would be beneficial to examine their utilization in improving the
computation time and effort required to solve that problem.
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