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Abstract: In this paper, we establish a structural inequality of the ∞-subLaplacian40,∞ in a class of
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1. Introduction

In this research article, we consider the compact, connected, semi-simple Lie group
LG endowed with the horizontal vector fields X1, X2, . . . , X2n; see Section 2 for details. We

denote by40,∞v =
2n
∑

i,j=1
XivXiXjvXjv the ∞-subLaplacian of a function v. For any function

v ∈ C∞, we establish a structural inequality of40,∞v (see Lemma 3 below), that is,∣∣∣∣|D2
0v∇Hv|2 −40v40,∞v− 1

2
[|D2

0v|2 − (40v)2]|∇Hv|2
∣∣∣∣

≤ (n− 1)[|D2
0v|2|∇Hv|2 − |D2

0v∇Hv|2].

Here, for any function v ∈ C1, we notate∇Hv = (X1v, X2v, . . . , X2nv) as the horizontal
gradient of v, and

D2
0v =

(XiXjv + XjXiv
2

)
1≤i,j≤2n

as the symmetrization of ∇H∇Hv = (XiXjv)1≤i,j≤2n, and 40v = ∑2n
i=1 XiXiv as the 2-

subLaplacian. Here, see [1,2] for the definitions. Based on this structural inequality, we aim
to obtain the local horizontal W2,2-regularity of weak solutions to the p-Laplacian equation
in the semi-simple Lie group.

Let 1 < p < ∞. For a given domain Ω ⊂ LG, we define that the functions u : Ω→ R
are p-harmonic functions in Ω if u ∈ W1,p

H, loc (Ω) are weak solutions to the degenerate
p-Laplacian equation

4H,pu(x) =
2n

∑
i=1

X∗i (|∇Hu|p−2Xiu) = 0 ∀x ∈ Ω, (1)
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that is, ∫
Ω

2n

∑
i=1
|∇Hu|p−2XiuXi$dx = 0 ∀$ ∈ C∞

0 (Ω),

where X∗i is the formal adjoint of Xi, and W1,p
H, loc (Ω) is the first-order p-th integrable local

horizontal Sobolev space defined in Section 2. From [3], for left-invariant vector fields, it
holds true that X∗i = −Xi, i = 1, 2, . . . , 2n. Then, Equation (1) becomes

4H,pu(x) = −
2n

∑
i=1

Xi(|∇Hu|p−2Xiu) = 0 ∀x ∈ Ω. (2)

In the ordinary case p = 2, we habitually refer to the 2-harmonic functions in the semi-
simple Lie group as harmonic functions, and Hörmander [4] proved their C∞-regularity. In
the non-ordinary case p 6= 2, if the horizontal gradient ∇Hu of the p-harmonic function
u in the semi-simple Lie group has the boundary 0 < B−1 ≤ |∇Hu| ≤ B, Domokos–
Manfredi [5] proved u ∈ C∞. But we cannot expect the C∞-regularity for u if the assumption
is not satisfied. For general p-harmonic functions in the semi-simple Lie group, Domokos–
Manfredi [3] established the C0,1-regularity with 1 < p < ∞ and the C1,α-regularity with
2 ≤ p < ∞.

We denote by W2,2
H, loc -regularity the local horizontal W2,2-regularity, and also call it

the local second-order horizontal Sobolev regularity. Here, for any given domain Ω ⊂ G,
we define that the function v : Ω → R belongs to W2,2

H, loc (Ω) if the function v belongs

to W1,2
H, loc (Ω) and its second-order horizontal derivative ∇H∇Hv belongs to L2

loc (Ω).
We notate

K$ = 1 + ‖∇H$‖2
L∞(Ω) + ‖$∇R$‖L∞(Ω) (3)

for any function $ ∈ C∞
0 (Ω). Here, we denote by ∇Rv = (R1v, R2v, . . . , Rυv) the vertical

gradient of a function v. In this paper, we will prove the following local horizontal W2,2-
regularity of p-harmonic functions u in the semi-simple Lie group.

Theorem 1. Any p-harmonic function u in a domain Ω ⊂ LG belongs to W2,2
H, loc (Ω) for

1 < p ≤ 4 with n = 1,

and
1 < p < 3 +

1
n− 1

with n ≥ 2. (4)

In addition, when 1 < p ≤ 2, for any function $ ∈ C∞
0 (Ω), we have

∫
Ω

$2|∇H∇Hu|2dx ≤ cK$

(∫
spt($)

|∇Hu|2−pdx
) 1

2
(∫

spt($)
|∇Hu|p+2dx

) 1
2
; (5)

when 2 < p < ∞ and p satisfies (4), for any $ ∈ C∞
0 (Ω), we have

∫
Ω

$6|∇H∇Hu|2dx ≤cK$

(∫
spt($)

|∇Hu|p+2dx
) 1

4
(∫

spt($)
|∇Hu|p−2dx

) 1
4

×
(∫

Ω
$6|∇Hu|4−pdx

) 1
2
, (6)

where K$ is notated in (3), c = c(n, p) > 0, and the support of $ is notated as spt($).

When 1 < p < ∞, for p-harmonic functions in Euclidean spaces Rn, we refer
to [6–10] for their C0,1 and C1,α-regularities. When 1 < p < 3 + 2

n−2 , their local hori-
zontal W2,2-regularity was proved by Manfredi–Weitsman [11], and Dong et al. [1] also
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gave a new proof. For p-harmonic functions in Heisenberg group Hn, grounding on the
work of [12–16], Zhong [17] established their C0,1-regularity with 1 < p < ∞ and C1,α-
regularity with 2 ≤ p < ∞. Mukherjee–Zhong [18] increased the range of p to 1 < p < ∞.
Domokos–Manfredi [13] established their local horizontal W2,2-regularity. Liu et al. [2]
improved the range of p, that is, 1 < p ≤ 4 with n = 1 and 1 < p < 3 + 1

n−1 with n ≥ 2.
Citti–Mukherjee [19] extended Zhong’s method to Hörmander vector fields of step two and
established C0,1 and C1,α-regularities with 1 < p < ∞. In addition, Muhkerjee–Sire [20]
established C1,α-regularity for inhomogeneous quasi-linear equations on the Heisenberg
group Hn with 2 ≤ p < ∞, and Yu [21] increased the range of p to 2− 1

2n+2 < p < ∞.
For further research on the second-order Sobolev regularity, Domokos–Manfredi [13,22]
first established the Cordes condition and applied it to obtain the HW2,2

loc -regularity in

the Heisenberg group H1 for
√

17−1
2 ≤ p < 5+

√
5

2 , Fazio et al. [23] established the W2,2
X, loc -

regularity in the Grušin plane for p near 2, and Domokos–Manfredi ([5], Theorem 4.1)
obtained a main inequality for studying the W2,2

X, loc -regularity on more general vector fields

when 2 ≤ p < 2ν
ν−1 . Recently, Yu [24,25] established the W2,2

H, loc -regularity on SU(3) with

1 < p < 7
2 and W2,2

X, loc -regularity on the first-order Grušin plane with 1 < p ≤ 4. For
further study on the quasilinear equations, Yu. G. Reshetnyak proved that the mappings
with the bounded distortion are continuous, open and discrete [26]. The key point of this
proof is based on a deep connection between the mappings with the bounded distortion
and the solutions of quasilinear equations of the elliptic type and non-linear potential
theory. Further development of quasi-conformal analysis and related functional classes
on Carnot groups and more general metric spaces, see [27–30], initiated the study of the
relationship between the mappings with bounded distortion and solutions of subelliptic
equations in the geometry of vector fields, satisfying the Hörmander condition; see [31] for
an example.

The proof of Theorem 1 depends on the study of the regularized equation of Equation (2).
Let u be the weak solution to Equation (2). For any given smooth domain U b Ω and any
positive constant ε ∈ (0, 1], we consider the regularized equation

2n

∑
i=1

Xi[(ε + |∇Hv|2)
p−2

2 Xiv] = 0 ∀x ∈ U; v− u ∈W1,p
H,0(U). (7)

We notate uε ∈W1,p
H (U) as weak solutions to Equation (7). The existence, uniqueness

and smoothness of solutions were studied in [3,5]. Domokos–Manfredi [3] proved that
their horizontal gradients {∇Huε}ε∈(0,1] have the unifrom L∞

loc (U)-regularity in ε ∈ (0, 1].
In addition, it is given in [3] that as ε→ 0, uε → u in C0(Ū) (see Proposition 1).

By studying Equation (7), we establish the following theorem, which gives that
uε ∈ W2,2

H, loc (U) uniformly in ε ∈ (0, 1]. From this, by letting ε → 0, we can apply
the same method as ([2], Section 5) to infer Theorem 1.

Theorem 2. When p satisfies the condition (4), weak solutions {uε}ε∈(0,1] to Equation (7) have the
uniform W2,2

H, loc (U)-regularity in ε ∈ (0, 1]. In addition, in the case 1 < p ≤ 2, for any function
$ ∈ C∞

0 (U), we have∫
U

$2|∇H∇Huε|2dx

≤ cK$

(∫
spt($)

(ε + |∇Huε|2)
2−p

2 dx
) 1

2
(∫

spt($)
(ε +∇Huε|2)

p+2
2 dx

) 1
2
; (8)

in the case that 2 < p < ∞ and p satisfies (4), for any function $ ∈ C∞
0 (U), we have
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∫
U

$6|∇H∇Huε|2dx

≤ cKφ

(∫
spt($)

(ε + |∇Huε|2)
p+2

2 dx
) 1

4
(∫

spt($)
(ε + |∇Huε|2)

p−2
2 dx

) 1
4

×
(∫

U
$6(ε + |∇Huε|2)

4−p
2 dx

) 1
2
, (9)

where K$ is notated in (3), c = c(n, p) > 0, and the support of $ is notated as spt($).

Before we specify the idea of the proof, we denote by

Bv := ∇H∇Hv− D2
0v =

(XiXjv− XjXiv
2

)
1≤i,j≤2n

=

(
[Xi, Xj]v

2

)
1≤i,j≤2n

the difference between∇H∇Hv and D2
0v. Noting that B = (bi,j)1≤i,j≤2n is an anti-symmetric

matrix (bi,j = −bj,i), we have |∇H∇Hv|2 = |D2
0v|2 + |Bv|2. Thus, we can obtain the estimate

of |∇H∇Huε| by estimating |D2
0uε|2 and |Buε|2.

The proof of Theorem 2 relies on some prior estimates and some Cacciopoli-type
inequalities of uε built up by Domokos–Manfredi [3] (see Lemma 1). To be specific, we
divide the proof into the case 1 < p < 2 and the case 2 < p < ∞. When 1 < p < 2, we
deduce (8) from Lemma 1 directly. When 2 < p < ∞ and p satisfies (4), we use some
ideas from [1] to establish a structural inequality (see Lemma 3). Applying the structural
inequality to break down the horizontal Hessian matrix, we obtain a decomposition in-
equality for D2

0uε (see Lemma 4). Applying some priori estimates and some Cacciopoli-type
inequalities in Lemma 1, we obtain the estimate of |Buε|2 (see Lemma 7) and estimates
of all decomposition terms (see Lemmas 5 and 6). Finally, based on the decomposition
inequality (18), combining all estimates, we obtain (9). The proof is shown in Section 5.

Consequently, our new results improve the range of p in [23] (p near 2 for the Grušin
plane), Ref. [13] (

√
17−1
2 ≤ p < 5+

√
5

2 for the Heisenberg group H1) and ([5], Theorem 4.1)
(2 ≤ p < 2ν

ν−1 ). Compared to Euclidean spaces R2n with n ≥ 2, the range of this p
obtained is already optimal. Our method can also be applied to more general vector fields
to generalize and improve some known results in the literature.

2. Preliminaries

We consider a special class of semi-simple Lie group LG, which was first proposed
by Domokos–Manfredi [3]. The semi-simple Lie group LG is connected and compact. We
notate LG as its Lie algebra. The inner product on LG satisfies the properties

〈gXg−1, gYg−1〉 = 〈X, Y〉, ∀ g ∈ LG, and X, Y ∈ LG,

and
〈[X, Y], Z〉 = −〈Y, [X, Z]〉, ∀ X, Y, Z ∈ LG.

Let LS be the maximal torus of LG. We notate LS as its Lie algebra. Owing to the
fact that LS is a maximal commutative subalgebra of LG, we call it Cartan subalgebra. We
denote byR the set of all roots, where we say that R ∈ LS is a root if R 6= 0 with the root
space LGR 6= {0}. Here, LGR = {Z ∈ LGC : [S, Z] = i〈R, S〉Z, ∀S ∈ LS}.

According to ([3], Section 5), we can define the orthogonal complement of LS de-
noted by H, and we can choose its orthonormal basis satisfying Property 1. We notate
BH = {X1, X2, . . . , X2n} as the orthonormal basis ofH.

Property 1.

(i) ∀1 ≤ k ≤ n, ∃Rk ∈ R+ s.t. span{X2k−1, X2k} = HRk .

(ii) [X2k−1, X2k] = −Rk, [X2k, Rk] = −‖Rk‖2X2k−1, [Rk, X2k−1] = ‖Rk‖2X2k.
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(iii) [Xl , Xm] ∈ H when (l, m) 6= (2k− 1, 2k).

(iv) {[X2k−1, S], [X2k, S]} ⊂ HRk when S ∈ LS .

Based on the properties of BH, a basis of LS can be selected, that is, {R1, R2, . . . , Rυ}.
For any function v, we denote by

∇Hv = (X1v, X2v, . . . , X2nv), ∇Rv = (R1v, R2v, . . . , Rυv)

the horizontal and vertical gradients. Here, the homogeneous dimension of LG is 2n + 2υ;
see ([3], Section 5) for the definitions of the horizontal and vertical gradients. Moreover,
from Property 1, we draw the conclusion

[Xi, Xj] =
2n

∑
k=1

λ
(k)
i,j Xk +

υ

∑
l=1

θ
(l)
i,j Rl , [Xi, Rj] =

2n

∑
k=1

ϑ
(k)
i,j Xk. (10)

Here, λ
(k)
i,j , θ

(l)
i,j and ϑ

(k)
i,j are constants.

Given a domain Ω ⊂ LG, we notate W1,p
H (Ω) as the horizontal Sobolev space for

1 < p < ∞. We define that a function v belongs to W1,p
H (Ω) if it belongs to Lp(Ω) and its

horizontal gradient ∇Hv belongs to Lp(Ω). Here, we define the norm of v as

‖v‖
W1,p
H (Ω)

=
(
‖v‖p

Lp(Ω)
+ ‖∇Hv‖p

Lp(Ω)

)1/p
.

Moreover, we notate Wk,p
H (Ω,R) as the k-order horizontal Sobolev space for any k ≥ 2.

For any function v, we say v ∈ Wk,p
H (Ω,R) if ∇Hv ∈ Wk−1,p

H (Ω), and define its norm in a

similar method. For any index k ≥ 1 and 1 < p < ∞, we notate Wk,p
H, loc (Ω) as the collection

of all functions v : Ω→ R satisfying v ∈Wk,p
X (U) for all U b Ω. We notate Wk,p

H,0(Ω) as the

closure of C∞
0 (Ω) in W1,p

H (Ω) endowed with the ‖ · ‖
Wk,p
H (Ω)

-norm.

Let 1 < p < ∞ and u be a p-harmonic function in Ω. In the rest of this section, for
any ε ∈ (0, 1] and any smooth domain U b Ω, we list several priori uniform estimates for
uε established by Domokos–Manfredi [3], where uε ∈W1,p

H (U) is the weak solution to the
regularized Equation (7).

According to ([3], Theorem 5.1), we have the following uniform estimate for ∇Huε

and convergence.

Proposition 1 ([3], Theorem 5.1). For any 0 ≤ ε < 1, if uε ∈ W1,p
H, loc (U) is the weak solution

to Equation (7) with 1 < p < ∞, then its horizontal gradient ∇Huε has the uniform L∞
loc (U)-

regularity in ε ∈ [0, 1), and for any Carnot–Carathéodory ball Br ⊂ U, the following holds:

‖∇Huε‖L∞(Br/2)
≤ c(p)

(
−
∫

Br
(ε + |∇Huε|2)

p
2

) 1
p
, (11)

where we notate u0 = u for ε = 0. In addition, uε → u in C0(Ū).

Here, we notate −
∫

M ψdx = |M|−1
∫

M ψdx as the average of integrable function ψ over
the measurable set M. According to ([5], Theorem 1.1), we obtain the following corollary
from Proposition 1 in a direct method.

Corollary 1. When 1 < p < ∞, for any ε > 0, the weak solution uε ∈W1,p
H, loc (U) to Equation (7)

has the C∞(U)-regularity.
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Based on ([3], Section 5), we can obtain the same conclusion as [3] (Corollary 4.1) in
almost the same method. Here, we omit the proof.

Lemma 1. If any function $ ∈ C∞
0 (U) satisfies 0 ≤ $ ≤ 1, then there are the following conclu-

sions:

(i) For any β ≥ 0, the inequality holds:∫
U

$2(ε + |∇Huε|2)
p−2

2 |∇Ruε|2β|∇H∇Ruε|2dx

≤ c
∫

U
|∇H$|2(ε + |∇Huε|2)

p−2
2 |∇Ruε|2β+2dx (12)

+ c(β + 1)2
∫

U
$2(ε + |∇Huε|2)

p
2 |∇Ruε|2βdx.

(ii) For any β ≥ 0, the inequality holds:∫
U

$2(ε + |∇Huε|2)
p−2

2 +β|∇H∇Huε|2dx

≤ c(β + 1)4
∫

U
$2(ε + |∇Huε|2)

p−2
2 +β|∇Ruε|2dx (13)

+ c(β + 1)2K$

∫
spt($)

(ε + |∇Huε|2)
p
2 +βdx,

(iii) For any β ≥ 1, the inequality holds:∫
U

$2β+2(ε + |∇Huε|2)
p−2

2 |∇Ruε|2β|∇H∇Huε|2dx

≤ cβ(β + 1)4β‖∇H$‖2β

L∞(U)

∫
U

$2(ε + |∇Huε|2)
p−2

2 +β|∇H∇Huε|2dx. (14)

(iv) For any β ≥ 1, the inequality holds:∫
U

$2(ε + |∇Huε|2)
p−2

2 +β|∇H∇Huε|2dx

≤ c(β + 1)12K$

∫
spt($)

(ε + |∇Huε|2)
p
2 +βdx. (15)

Here, K$ is notated in (3), all of the above c = c(p) are positive constants, and the support of
$ is notated as spt($).

The following result is directly derived from (14) and (15).

Lemma 2. If any β ≥ 1 and any function $ ∈ C∞
0 (U) satisfies 0 ≤ $ ≤ 1, then the following

holds: ∫
U

$2β+2(ε + |∇Huε|2)
p−2

2 |∇Ruε|2β|∇H∇Huε|2dx

≤ cβ(β + 1)12+4βKβ+1
$

∫
spt($)

(δ + |∇Huε|2)
p
2 +βdx. (16)

Here, K$ is notated in (3), c = c(p) > 0, and the support of $ is notated as spt($).

3. A Decomposition Inequality for D2
0uε

Firstly, we introduce the structural inequality of 40,∞v. Here, we define 40,∞v =
2n
∑

i,j=1
XivXiXjvXjv as the ∞-subLaplacian of a function v. Its proof is placed at the end of
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this section. Applying the idea for proving ([1], Lemma 2.1), we establish the following
structural inequality. For simplicity, the ∞-subLaplacian40,∞v of v ∈ C∞ is written as

40,∞v = (∇Hv)T∇H∇Hv∇Hv = (∇Hv)T D2
0v∇Hv.

Lemma 3. The following holds for any function v ∈ C∞(U),∣∣∣∣|D2
0v∇Hv|2 −40v40,∞v− 1

2
[|D2

0v|2 − (40v)2]|∇Hv|2
∣∣∣∣

≤ (n− 1)[|D2
0v|2|∇Hv|2 − |D2

0v∇Hv|2] ∀x ∈ U. (17)

Proof. We fix any point x̄ ∈ U. Apparently, the inequality (17) holds for ∇Hv(x̄) = 0.
Below, we consider the case ∇Hv(x̄) 6= 0. We can divide both sides of the inequality (17)
by |∇Hv(x)|2. Therefore, we only need to consider the case |∇Hv(x̄)| = 1.

At the point x̄, noting that D2
0v is a symmetric matrix, we can derive its eigenvalues

{ζi}2n
i=1 ⊂ R and obtain an orthogonal matrix A ∈ O(2n) (A−1 = AT) such that

AT D2
0vA = diag{ζ1, ζ2, . . . , ζ2n}.

Thus,

|D2
0v|2 = |AT D2

0vA|2 =
2n

∑
i=1

(ζi)
2 and ∆0v =

2n

∑
i=1

ζi.

Notating AT∇Hv = ∑2n
i=1 µiei =: ~µ, we obtain

∆0,∞v = (∇Hv)T D2
0v∇Hv = (AT∇Hv)T(AT D2

0vA)(AT∇Hv) =
2n

∑
i=1

ζi(µi)
2

and

|D2
0v∇Hv|2 = |(AT D2

0vA)(AT∇Hv)|2 =
2n

∑
i=1

(ζi)
2(µi)

2.

Based on ([1], Lemma 2.2) with ~ζ := (ζ1, ζ2, . . . , ζ2n) and ~µ, we deduce∣∣∣∣|D2
0v∇Hv|2 − ∆0v∆0,∞v− 1

2
[|D2

0v|2 − (∆0v)2]|∇Hv|2
∣∣∣∣

=

∣∣∣∣∣ 2n

∑
i=1

(ζi)
2(µi)

2 − (
2n

∑
i=1

ζi)[
2n

∑
j=1

ζ j(µj)
2]− 1

2
[

2n

∑
i=1

(ζi)
2 − (

2n

∑
i=1

ζi)
2]

∣∣∣∣∣
≤ (n− 1)[

2n

∑
i=1

(ζi)
2 −

2n

∑
i=1

(ζi)
2(µi)

2]

= (n− 1)[|D2
0v|2|∇Hv|2 − |D2

0v∇Hv|2].

Now, we use the structural inequality to obtain the following decomposition inequality
for D2

0uε, which is a pointwise estimate.

Lemma 4. Let uε ∈W1,p
H, loc (U) with 1 < p < ∞ be the weak solution to Equation (7), then[

2n + 2(p− 2) + (2− 2n)(p− 2)2
]
|D2

0uε|2

≤
[
2n + 2(p− 2) + (p− 2)2

]
[|D2

0uε|2 − (40uε)2] ∀x ∈ U. (18)
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Here, note that (4) implies

2n + 2(p− 2) + (2− 2n)(p− 2)2 = 2(p− 1)[(1− n)(p− 2) + n] > 0,

and thus the coefficient in (18) is positive. This ensures that the decomposition inequality
(18) is valuable.

Proof. Owing to the C∞(U)-regularity of uε, Equation (7) gives

(p− 2)∆0,∞uε + (ε + |∇Huε|2)∆0uε = 0 ∀x ∈ U. (19)

We fix any point x̄ ∈ U. It is easy to prove that the inequality (18) holds for∇Huε(x̄) = 0
since we can deduce ∆0uε(x̄) = 0 from (19) in a direct method. Below, we consider the case
∇Huε(x̄) 6= 0. Letting v = uε in Lemma 3 and multiplying both sides by 2(p− 2)2, then
from (19), at x̄, we infer

2(p− 2)2|D2
0uε∇Huε|2 + 2(p− 2)(∆0uε)2[|∇Huε|2 + ε]

− (p− 2)2[|D2
0uε|2 − (∆0uε)2]|∇Huε|2

≤ (p− 2)2(2n− 2)[|D2
0uε|2|∇Huε|2 − |D2

0uε∇Huε|2].

We divide both sides of the above inequality by |∇Huε(x̄)|2, then, at x̄,

2(p− 2)2n
|D2

0uε∇Huε|2

|∇Huε|2 + 2(p− 2)
(∆0uε)2

|∇Huε|2 [|∇Huε|2 + ε]

≤ (p− 2)2[|D2
0uε|2 − (∆0uε)2] + (p− 2)2(2n− 2)|D2

0uε|2 (20)

We apply (19) again, and then apply Hölder’s inequality to derive, at x̄,

(p− 2)2 |D2
0uε∇Huε|2

|∇Huε|2 ≥ (p− 2)2 |∆0,∞uε|2
|∇Huε|4 ≥

(∆0uε)2

|∇Huε|2 [|∇Huε|2 + ε].

This and (20) imply

[2n + 2(p− 2)]
(

∆0uε

|∇Huε|

)2
[|∇Huε|2 + ε]

≤ (p− 2)2[|D2
0uε|2 − (∆0uε)2] + (p− 2)2(2n− 2)|D2

0uε|2. (21)

Noting that 2n + 2(p− 2) = 2(p− 1) + 2(n− 1) > 0, from (21), we obtain

[2n + 2(p− 2)](∆0uε)2 ≤ (p− 2)2[|D2
0uε|2 − (∆0uε)2] + (p− 2)2(2n− 2)|D2

0uε|2.

Subtracting
(
[2n + 2(p− 2)](∆0uε)2 −

[
2n + 2(p− 2)− (2n− 2)(p− 2)2]|D2

0uε|2
)

from both sides of the above inequality, we obtain[
2n + 2(p− 2) + (2− 2n)(p− 2)2

]
|D2

0uε|2

≤
[
2n + 2(p− 2) + (p− 2)2

]
[|D2

0uε|2 − (∆0uε)2],

that is, (18) is valid.

4. Estimates of All Decomposition Terms and the Estimate of |Muε|2

Firstly, we give the estimate of the right term in (18).
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Lemma 5. For any function v ∈ C∞(U) and any function $ ∈ C∞
0 (U), the following holds:∣∣∣∣∫U

$6[|D2
0v|2 − (40v)2]dx

∣∣∣∣ ≤c
∫

U
$6|∇Hv|2dx + c

∫
U

$6|∇Hv||∇H∇Rv|dx

+ c
∫

U
|$|5[|∇H$|+ |$|]|∇Hv||∇H∇Hv|dx, (22)

where c = c(n) > 0.

Proof. Recall that

D2
0v =

(XiXjv + XjXiv
2

)
1≤i,j≤2n

and 40v =
2n

∑
i=1

XiXiv.

Then,

[|D2
0v|2 − (40v)2]

=
2n

∑
i,j=1

(XiXjv + XjXiv
2

)2

−
(

2n

∑
i=1

XiXiv

)2

=
2n

∑
i,j=1

[
1
4
[(XiXjv)2 + (XjXiv)2 + 2XiXjvXjXiv]− XiXivXjXjv

]

=
1
4

2n

∑
i,j=1

[(XiXjv)2 − XiXivXjXjv] +
1
4

2n

∑
i,j=1

[(XjXiv)2 − XiXivXjXjv]

+
1
2

2n

∑
i,j=1

[XiXjvXjXiv− XiXivXjXjv]

=
1
2

2n

∑
i,j=1

[(XiXjv)2 − XiXivXjXjv] +
1
2

2n

∑
i,j=1

[XiXjvXjXiv− XiXivXjXjv]. (23)

Firstly, we estimate the integral term
∫

U $6(XiXjv)2dx. We apply integration by parts
to obtain∫

U
$6(XiXjv)2dx

= −
∫

U
$6XjvXiXiXjvdx− 6

∫
U

$5Xi$XjvXiXjvdx

= −
∫

U
$6XjvXiXjXivdx−

∫
U

$6XjvXi[Xi, Xj]vdx− 6
∫

U
$5Xi$XjvXiXjvdx

= −
∫

U
$6XjvXjXiXivdx− 6

∫
U

$5Xi$XjvXiXjvdx

−
∫

U
$6Xjv[Xi, Xj]Xivdx−

∫
U

$6XjvXi[Xi, Xj]vdx

=
∫

U
$6XjXjvXiXivdx + 6

∫
U

$5Xj$XjvXiXivdx− 6
∫

U
$5Xi$XjvXiXjvdx

−
∫

U
$6Xjv[Xi, Xj]Xivdx−

∫
U

$6XjvXi[Xi, Xj]vdx. (24)

Secondly, we estimate the integral term
∫

U $6XiXjvXjXivdx. We apply integration by
parts to obtain
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∫
U

$6XiXjvXjXivdx

= −
∫

U
$6XjvXiXjXivdx− 6

∫
U

$5Xi$XjvXjXivdx

= −
∫

U
$6XjvXjXiXivdx−

∫
U

$6Xjv[Xi, Xj]Xivdx− 6
∫

U
$5Xi$XjvXjXivdx

=
∫

U
$6XjXjvXiXivdx−

∫
U

$6Xjv[Xi, Xj]Xivdx

+ 6
∫

U
$5Xj$XjvXiXivdx− 6

∫
U

$5Xi$XjvXjXivdx. (25)

Thirdly, we control the term [Xi, Xj]Xi. By (10), we have

|[Xi, Xj]Xiv| ≤ c(n, υ)(|∇R∇Hv|+ |∇H∇Hv|)
≤ c(n, υ)(|∇H∇Hv|+ |∇H∇Rv|+ |∇Hv|+ |∇Rv|). (26)

Finally, combining (23)–(26), we conclude that (22) holds by |∇Rv| ≤ c(n, υ)|∇H∇Hv|.

As regards the integral term
∫

U $6|∇Huε||∇H∇Ruε|dx in (22), we establish the follow-
ing upper bound by applying some Caccoippoli-type inequalities established in Lemma 1.

Lemma 6. Let uε ∈W1,p
H, loc be the weak solution to Equation (7). When 2 < p ≤ 4, the following

holds for any function $ ∈ C∞
0 (U):∫

U
$6|∇Huε||∇H∇Ruε|dx

≤ cK$

(∫
spt($)

(ε + |∇Huε|2)
p+2

2 dx
) 1

4

×
(∫

spt($)
(ε + |∇Huε|2)

p−2
2 dx

) 1
4
(∫

U
$6(ε + |∇Huε|2)

4−p
2 dx

) 1
2
, (27)

where K$ is notated in (3), c = c(n, p) > 0, and the support of $ is notated as spt($).

Proof. By (12) in Lemma 1 with β = 0 and $ replaced by $3, we derive∫
U

$6(ε + |∇Huε|2)
p−2

2 |∇H∇Ruε|2dx ≤cK$

∫
U

$4(ε + |∇Huε|2)
p−2

2 |∇Ruε|2dx

+ c
∫

U
$6(ε + |∇Huε|2)

p
2 dx. (28)

Applying Hölder’s inequality, and then letting β = 1 in Lemma 2, we derive∫
U

$4(ε + |∇Huε|2)
p−2

2 |∇Ruε|2dx

≤
(∫

U
$4(ε + |∇Huε|2)

p−2
2 |∇Ruε|4dx

) 1
2
(∫

U
$4(ε + |∇Huε|2)

p−2
2 dx

) 1
2

≤ K$

(∫
spt($)

(ε + |∇Huε|2)
p+2

2 dx
) 1

2
(∫

U
$4(ε + |∇Huε|2)

p−2
2 dx

) 1
2
. (29)
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Combining (28) and (29), and then applying Hölder’s inequality, we derive∫
U

$6(ε + |∇Huε|2)
p−2

2 |∇H∇Ruε|2dx

≤ cK2
$

(∫
spt($)

(ε + |∇Huε|2)
p+2

2 dx
) 1

2
(∫

U
$4(ε + |∇Huε|2)

p−2
2 dx

) 1
2
. (30)

By Hölder’s inequality, we have∫
U

$6|∇Huε||∇H∇Ruε|dx ≤
∫

U
$6(ε + |∇Huε|2)

1
2 |∇H∇Ruε|dx

≤
(∫

U
$6(ε + |∇Huε|2)

p−2
2 |∇H∇Ruε|2dx

) 1
2
(∫

U
$6(ε + |∇Huε|2)

4−p
2 dx

) 1
2
. (31)

Combining (30) and (31), we conclude that (27) holds.

Finally, we bound the integral term involving |Mv|2 as below.

Lemma 7. For any function v ∈ C∞(U) and any function $ ∈ C∞
0 (U), the following holds:∫

U
$6|Mv|2dx ≤c

∫
U

$6|∇Hv||∇H∇Rv|dx + c
∫

U
|$|5|∇H$||∇Hv||∇Hv|dx

+ c
∫

U
$6|∇Hv|2dx. (32)

Proof. Recall that

Mv = ∇H∇Hv− D2
0v =

(
[Xi, Xj]v

2

)
1≤i,j≤2n

.

Then, from (10), we have

|Mv|2 =
1
4

2n

∑
i,j=1

(
[Xi, Xj]v

)2

=
1
4

2n

∑
i,j=1

(
2n

∑
k=1

λ
(k)
i,j Xk +

υ

∑
l=1

θ
(l)
i,j Rl

)2

≤ c(n, υ)[|∇Hv|2 + |∇Rv|2].

Thus, ∫
U

$6|Mv|2dx ≤ c(n, υ)
∫

U
$6|∇Rv|2dx + c(n, υ)

∫
U

$6|∇Hv|2dx. (33)

We estimate the integral of |∇Rv|2. By Property 1, we note that

Rk = −[Xk1, Xk2], k1, k2 ∈ {1, 2, . . . , 2n}.

Then, we have∫
U

$6|∇Rv|2dx =
υ

∑
k=1

∫
U

$6(Rkv)2dx = −
υ

∑
k=1

∫
U

$6[Xk1, Xk2]vRkvdx.
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Since [Xk1, Xk2] = Xk1Xk2 − Xk2Xk1, by integration by parts, we have∫
U

$6[Xk1, Xk2]vRkvdx =
∫

U
$6Xk1Xk2vRkvdx−

∫
U

$6Xk2Xk1vRkvdx

=−
∫

U
$6Xk2vXk1Rkvdx− 6

∫
U

$5Xk1$Xk2vRkvdx

+
∫

U
$6Xk1vXk2Rkvdx + 6

∫
U

$5Xk2$Xk1vRkvdx.

Combining the above two equations, we have∫
U

$6|∇Rv|2dx ≤c(n, υ)
∫

U
$6|∇Hv||∇H∇Rv|dx

+ c(n, υ)
∫

U
|$|5|∇H$||∇Hv||∇Rv|dx. (34)

Combining (33) and (34), we conclude that (32) holds.

5. Proof of Theorem 2

Now, the proof of Theorem 2 is shown in this section.

Proof of Theorem 2. We prove (8) and (9) in turn. When 1 < p ≤ 2, by (13) with β = 2−p
2

in Lemma 1, we have∫
U

$2|∇H∇Huε|2dx ≤ c
∫

U
$2|∇Ruε|2dx + cK$

∫
U
(ε + |∇Huε|2)dx. (35)

Applying Hölder’s inequality and the fact that |∇Ruε| ≤ c(n, υ)|∇H∇Huε|, and then
letting β = 1 in Lemma 2, we derive∫

U
$2|∇Ruε|2dx

=
∫

U
$2(ε + |∇Huε|2)

2−p
4 (ε + |∇Huε|2)

p−2
4 |∇Ruε|2dx

≤
(∫

spt($)
(ε + |∇Huε|2)

2−p
2 dx

) 1
2
(∫

U
$4(ε + |∇Huε|2)

p−2
2 |∇Ruε|4dx

) 1
2

≤ cK$

(∫
spt($)

(ε + |∇Huε|2)
2−p

2 dx
) 1

2
(∫

spt($)
(ε + |∇Huε|2)

p+2
2 dx

) 1
2
. (36)

Finally, we combine (35) and (36), and then apply Hölder’s inequality to conclude (8).
When 2 < p ≤ 4, note that (4) implies

2n + 2(p− 2) + (2− 2n)(p− 2)2 = 2(p− 1)[(1− n)(p− 2) + n] > 0.

Recall that
|∇H∇Huε|2 = |D2

0uε|2 + |Muε|2.

From this, by Lemmas 4, 5 and 7, and the fact |∇Ruε| ≤ c(n, υ)|∇H∇Huε|, when
2 < p ≤ 4 and p satisfies (4), we have∫

U
$6|∇H∇Huε|2dx ≤c

∫
U

$6|∇Huε|2dx + c
∫

U
$6|∇Huε||∇H∇Ruε|dx

+ c
∫

U
|$|5[|∇H$|+ |$|]|∇Huε||∇H∇Huε|dx,
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where c = c(n, p) > 0. From this, we apply Young’s inequality to derive∫
U

$6|∇H∇Huε|2dx ≤c
∫

U
$6|∇Huε|2dx + c

∫
U

$6|∇Huε||∇H∇Ruε|dx

+ c
∫

U
$4[|∇H$|2 + $2]|∇Huε|2dx. (37)

We use Lemma 6 to estimate the term
∫

U $6|∇Huε||∇H∇Ruε|dx in (37), then∫
U

$6|∇H∇Huε|2dx ≤c
∫

U
$6|∇Huε|2dx + c

∫
U

$4[|∇H$|2 + $2]|∇Huε|2dx

+ cK$

(∫
spt($)

(ε + |∇Huε|2)
p+2

2 dx
) 1

4

×
(∫

spt($)
(ε + |∇Huε|2)

p−2
2 dx

) 1
4
(∫

U
$6(ε + |∇Huε|2)

4−p
2 dx

) 1
2
.

From this, noting that

|∇Huε|2 ≤ (ε + |∇Huε|2)
p
4 (ε + |∇Huε|2)

4−p
4 ,

and
(ε + |∇Huε|2)

p
4 = (ε + |∇Huε|2)

p−2
4 (ε + |∇Huε|2)

p+2
4 ,

then we apply Hölder’s inequality to conclude (9).

6. Conclusions

In this paper, on the semi-simple Lie group endowed with the horizontal vector fields
X1, . . . , X2n, we establish a structural inequality of the ∞-subLaplacian40,∞, that is,∣∣∣∣|D2

0v∇Hv|2 −40v40,∞v− 1
2
[|D2

0v|2 − (40v)2]|∇Hv|2
∣∣∣∣

≤ (n− 1)[|D2
0v|2|∇Hv|2 − |D2

0v∇Hv|2].

This structural inequality is stronger and more precise than the Cordes condition
first established by Domokos–Manfredi [13,22]. When 1 < p ≤ 4 with n = 1 and
1 < p < 3 + 1

n−1 with n ≥ 2, we apply the structural inequality to obtain the local
horizontal W2,2-regularity of weak solutions u to the p-Laplacian equation in the semi-
simple Lie group, that is, ∇H∇Hu ∈ L2

loc. This regularity result improves the range of p

in [23] (p near 2 for the Grušin plane), Ref. [13] (
√

17−1
2 ≤ p < 5+

√
5

2 for the Heisenberg
group H1) and [5] (Theorem 4.1) (2 ≤ p < 2ν

ν−1 ). Compared to Euclidean spaces R2n with
n ≥ 2, the range of this p obtained is already optimal. Our method can also be applied to
more general vector fields.

In summary, these results established in this paper are original. We are convinced that
our results will be broadly applicable to study the regularity for p-Laplacian-type equations
and other fields of applied sciences.
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