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Abstract: In selection and ranking, the partitioning of treatments by comparing them to a control
treatment is an important statistical problem. For over eighty years, this problem has been investi-
gated by a number of researchers via various statistical designs to specify the partitioning criteria
and optimal strategies for data collection. Many researchers have proposed designs in order to
generalize formulations known at that time. One such generalization adopted the indifference-zone
formulation to designate the region between the boundaries for “good” and “bad” treatments as
the indifference zone. Since then, this formulation has been adopted by a number of researchers to
study various aspects of the partition problem. In this paper, a non-parametric purely sequential
procedure is formulated for the partition problem. The “first-order” asymptotic properties of the
proposed non-parametric procedure are derived. The performance of the proposed non-parametric
procedure for small and moderate sample sizes is studied via Monte Carlo simulations. An example
is provided to illustrate the proposed procedure.

Keywords: purely sequential procedure; control population; indifference zone; probability of correct
decision; non-parametric distribution; simulations; example

MSC: 62F07; 62L10

1. Introduction

The statistical problem of comparing treatments with a control population has been
an active area of research for nearly eighty years. One of the earlier research studies
that had proposed a formal statistical design to compare treatments with a control is
reported in [1]. Soon after this, Ref. [2] investigated this problem for normal means and
binomial proportions with an idea of spacing between treatments. Ref. [3] extended this
further by exploring the idea of multiple comparisons and formulated a procedure to
carry out comparisons with a control population. The idea of spacing was further refined
in [4] which formally conceptualized the “indifference zone” formulation for selecting the
best normal population from a group of several normally distributed populations in the
preference zone with the predetermined probability. In statistical literature, the region
outside the indifference zone is referred to as the preference zone. Also in the 1950s, another
formulation was proposed for the problem of selecting or isolating the best population in [5],
which had the property that it did not restrict the selection from the preference zone but
rather the selection was carried out from the entire parameter space. This formulation of the
problem, known as the “subset-selection formulation”, selects a subset of the populations of
random size which includes the best treatment with the prespecified probability. A number
of researchers have studied this problem by formulating it under various requirements
and goals and while adopting various sampling methodologies. Once such formulation
that has been extensively studied in the literature is in which the experimenter wants the
selected population to be some “specified amount better” than other treatments, which is
referred to as a control or standard. This area of research is typically known as the problem
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of “comparisons with a control” or the “partition problem” in statistical literature. For
the partition problem formulation, one formulation that has been used by a number of
practitioners and researchers is the one introduced in [6] for the populations that follow a
normal distribution.

In Section 2, we have summarized the [6] formulation and provided a summary of
the current research in the area. In Section 3, we have proposed a distribution-free version
of the [6] formulation and proposed a purely sequential methodology and derived its
first-order asymptotic properties. In Section 4, we have studied the performance of the
proposed non-parametric procedure by picking different values of design constants to
study how the asymptotic expansions provided in Theorem 1 compare with the observed
values when the procedure is simulated for small and moderate sample sizes. In Section 5,
we have provided an example to illustrate an application of the proposed non-parametric
purely sequential procedure.

2. Normal Populations Case

Assume that we have (k + 1) independently distributed normal populations to be
donated as π0, π1, · · · , πk, with respective means µ0, µ1, · · · , µk and a common variance σ2.
We will assume that all the parameters are unknown. The population π0 is referred to as the
control or standard population. The formulation presented in [6] starts by mathematically
defining the “good” and “bad” populations based on the input from practitioners or experts
in the area of the application.

Next, for fixed but arbitrary constants, δ1 and δ2, with δ2 > δ1, ref. [6] defined
the “good” and “bad” populations via three sets by adopting the [4] indifference zone
formulation, as defined below

ΩB = {πi : µi ≤ µ0 + δ1, i = 1, · · · , k},
ΩG = {πi : µi ≥ µ0 + δ2, i = 1, · · · , k},
ΩI = {πi : µ0 + δ1 < µi < µ0 + δ2, i = 1, · · · , k}.

(1)

The set ΩG is termed to as the set of “good” populations while the set ΩB is termed as
the set of “bad” populations. Note that the two constants δ1 and δ2 are determined based
on the input of experts in the area specifying how much better or worse a population has
to be compared to the control to be termed as a good population or a bad population. The
goal in [6] was to partition the populations that belong to ΩG or ΩB correctly with the
prespecified probability. On the other hand, the set ΩI is termed as the indifference-zone
set, and the experimenter is indifferent to the correct partition of the populations that fall in
the set ΩI . The parition problem is designed to partition the set Ω = {πi, i = 1, · · · , k} into
two mutually disjoint sets SB and SG, with high accuracy, so that all populations in ΩB fall
inside SB and all populations in ΩG fall inside SG. That is, when all the populations in ΩB
or ΩG are partitioned correctly, then such a partition is defined as a correct decision (CD).
Mathematically, let us denote by P∗ the probability of correct decision that the experimenter
wants to achieve. Note that 1

2k < P∗ < 1, as the probability of selecting correctly randomly
is 1

2 for each of the k populations.
Next, using a sampling design, determine N as the sample size from each of the k popu-

lations and the control population and the sample mean X̄iN from πi, i = 0, 1, · · · , k. Define
d = (δ1 + δ2)/2; then, the decision rule proposed by [6] to partition all the populations in
Ω took the following form:

SB = {πi : X̄iN − X̄0N ≤ d, i = 1, · · · , k},
SG = {πi : X̄iN − X̄0N ≥ d, i = 1, · · · , k}.

(2)

Ref. [6] has shown that if the sample size N satisfies N ⩾ 2σ2

a2b2 , and we partition the k
populations according to the partition rule (2), then

P[CD] ⩾ P∗, ∀ µ ∈ Rk+1, σ ∈ R+. (3)
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Note that a = (δ2 − δ1)/2, l = k/2 when k is even and l = (k + 1)/2 when k is odd,
and the k × k matrix covariance matrix Σ = (σij) is a given by

σij =


1 when i = j,
1/2 when i ̸= j and 0 < i, j ≤ l or l < i, j ≤ k,

−1/2 when 0 < i ≤ l and l < j ≤ k,

and b is a constant satisfying the integral equation given by

P∗ =
∫ b

−∞
· · ·

∫ b

−∞

|Σ|
1
2

(2π)
k
2

exp
(
−y′Σ−1y/2

)
dy1 · · · dyk. (4)

Ref. [6] has tabulated the values of design constant b for various choices of k and P∗.
For the unknown σ2 case, ref. [6] also constructed a two-stage and a purely sequential
procedure.

For the normal distributions case, ref. [7] constructed several multistage methodologies
focusing on the second-order asymptotic expansions. For references on the partition
problem for binomial treatments, the reader is referred to [8]. In [9], a generalization of the
“Tongs formulation” was introduced so that the treatments that fall between the “good” and
“bad” treatments can be partitioned as a separately identifiable group by introducing two
indifference zones. Ref. [10] extended this generalization by constructing an asymptotically
unbiased fine-tuned purely sequential procedure to guarantee the probability requirement.

Next, we have constructed a non-parametric procedure to partition the k populations
compared to a control population that does not require the populations to be normally dis-
tributed. However, we have assumed that the unknown distributions are symmetric. Next,
in Section 3, we have proposed a distribution-free version of the [6] formulation, proposed
a purely sequential methodology and derived its first-order asymptotic properties.

3. Non-Parametric Partition Problem

Assume that we are given (k + 1) independent populations π0, π1, π2, · · · , πk, where
the control population is denoted as π0 . Assume that the cumulative distribution function
(cdf) of πi is F(x − ∆i) for i = 0, 1, · · · , k. We will assume the cdf F(.) is continuous and
symmetric. Note that the function F(.) and all the centers of symmetries, namely, ∆0,
∆1, · · · , ∆k are assumed to be unknown. Following [6], we have defined below what an
experimenter may define as “good” and “bad” populations compared to a control based on
the input from experts in the area of application. As in Section 2 for the normal populations,
we will partition all k populations by comparing the centers of symmetry ∆i, i = 1, · · · , k
with the control population’s center of symmetry ∆0 to define the set of “good” and “bad”
populations which has the probability of correct decision (CD) of at least P∗. As before,
1
2k < P∗ < 1.

Based on the input from experts in the area, the statistical design would start by
selecting two arbitrary but fixed design constants, δ1 and δ2, with δ2 > δ1. Next, as in [6],
we define three subsets for Ω = {π1, · · · , πk} following the idea of spacing from [4] the
indifference-zone formulation as follows:

ΩL = {πi : ∆i ≤ ∆0 + δ1, i = 1, · · · , k},
ΩR = {πi : ∆i ≥ ∆0 + δ2, i = 1, · · · , k},
ΩI = {πi : ∆0 + δ1 < ∆i < µ0 + δ2, i = 1, · · · , k}.

(5)

Note that ΩR and ΩL are the sets of “good” populations and “bad” populations,
respectively, whereas ΩI is the set of populations the experimenter would be indifferent to.
We define two constants based on δ1 and δ2 as d = (δ1 + δ2)/2 and δ∗ = (δ2 − δ1)/2. Let Λ
denote a class of symmetric and continuous distributions which satisfy some regularity
conditions to be specified in Section 4. Next, we propose a purely sequential procedure for
the partition problem described in (5). The procedure starts with an initial sample size of



Mathematics 2024, 12, 591 4 of 11

m(≥ 2) observations from all the (k + 1) populations. Next, implementing the “vector-at-a-
time” sampling procedure, we will sample one observation from all the (k + 1) populations
according to the stopping rule defined below in (7). Having recorded an independent
sample Xi1, Xi2, · · · , Xin, a sample of size n from πi, i = 0, 1, · · · , k, a statistic Li(n), to be
defined below, is proposed to estimate the center of symmetry ∆i, i = 0, 1, · · · , k. The
estimator Li(n) has an asymptotic normal distribution. That is, N

(
∆i, 1

/(
nA2)), as n → ∞

for i = 1, · · · , k, F(.) ∈ Λ. Note that the unknown constant A is a finite and positive
function of F. For the literature of non-parametric procedures in the area of selecting
the best population, the reader is refereed to [11]. One may also refer to [12] who had
constructed a non-parametric accelerated sequential procedure to select the population
with the largest center of symmetry.

Based on a sample of size n, the decision rule is to compare each Li(n) with L0(n),
i = 1, · · · , k, and then partition the k populations following the partition rule given by:

PL = {πi : Li(n)− L0(n) < d, i = 1, · · · , k}
PR = {πi : Li(n)− L0(n) ≥ d, i = 1, · · · , k},

(6)

Next, as in [11], we will assume that the following regularity conditions are satis-
fied by the unknown distribution F(.) and the purely sequential stopping rule, which is
implemented to obtain the sample size N:

Regularity Conditions: We will assume the following three conditions hold for all
ω(δ∗) ∈ Ω and F(.) ∈ Λ:

1. n1/2(Li(n)− ∆i) = A−1Zi(n) + o(1) a.s. as n → ∞ where Zi(n) is a standardized
average of independent and identically distributed random variables having a finite
second moment and 0 < A = A(F) < ∞.

2. For an estimator S2
n of A, as n → ∞, we have lim S2

n = A−2 a.s.
3. The set

{
δ2N(δ) : δ > 0

}
is uniformly integral.

Next, following [7], one can obtain that P(CD) is asymptotically at least P∗ if the
sample size n is at least 2b2

(Aδ∗)2 . Here, “b” is a constant, as reported earlier, which is a

function of k and P∗. Let us denote n∗ = 2b2

(Aδ∗)2 . The expression n∗ is known as the
optimal sample size. However, it is unknown as A is unknown. Next, to estimate A,
a purely sequential procedure is constructed which satisfies the correct decision probability
requirement and has lim inf P(CD) ≥ P∗ whenever θ ∈ ω(δ∗) and the unknown cdf
F(.) ∈ Λ, as δ∗ → 0. The purely sequential procedure starts with m observations from each
population, and it samples one observation from all (k + 1) according to the stopping rule:

N = inf{n ≥ m : n ≥ 2b2S2
n

δ∗2 } (7)

where S2
n, an estimator of A, is computed using the control and all k populations. Also, S2

n
depends on the estimator of the center of symmetry ∆i, i = 0, 1, · · · , k. Next, we present a
theorem to the first-order properties of the proposed purely sequential procedure (7).

Theorem 1. The purely sequential procedure defined in (7), under the assumptions as outlined
above, satisfies the following properties for all F(.) ∈ Λ and ω(δ∗) ∈ Ω:

(i) N(δ∗) → ∞ monotonically as δ∗ → 0 a.s.
(ii) E(N(δ∗)) → ∞ as δ∗ → 0.
(iii) lim δ∗2N(δ∗) = 2b2/A2 a.s.
(iv) lim inf P(CD) ≥ P∗ as δ∗ → 0.

Proof. We start with an estimator S2
n for the center of symmetry. Based on a sample of

size n, let Li(n) denote the Hodges–Lehmann estimator for the center of symmetry ∆i of
the ith population i = 0, 1, · · · , k. That is, the sample median of the n(n + 1)

/
2 quantiles



Mathematics 2024, 12, 591 5 of 11

(
Xij + Xil

)/
2 for j ≤ l, j, l = 1, · · · , n; i = 0, 1, · · · , k. Then, we consider the estimator of

A−2 is given by

S2
n =

n((k+1)K2
α)

−1

4

k
∑

i=0

(
Wn,a(n)(i)− Wn,b(n)(i)

)2
, (8)

where Wn,1(i) ≤ Wn,2(i) ≤ · · · ≤ Wn,n(n+1)/2(i) are the ordered
(
Xij + Xil

)/
2 for

1 ≤ j ≤ l ≤ n and for i = 0, 1, · · · , k. The sequence {a(n)} and {b(n)} are specified as

b(n) = max
{

1,
[

n(n + 1)
/

4 − Kα

(
n(n + 1)(2n + 1)

/
24
) 1

2

]}
a(n) = n(n + 1)

/
2 − b(n) + 1. (9)

where [x] is defined as the largest integer less than or equal to x. Kα is defined by
ϕ(Kα) = 1 − α for some 1/2 < α < 1. The Hodges–Lehmann estimator has been used
extensively in statistical literature, and it is well known that Li(n) is a consistent estimator
of the center of symmetry. The reader is referred to [13] for details.

Next, note that N(δ∗1 ) ≥ N(δ∗2 ) w.p. 1 if 0 < δ∗1 < δ∗2 , that is N(δ∗) is non-decreasing
in δ∗. Now, the assumption 1.1 [13] in regularity conditions will lead to part (i). Part (ii)
follows by applying the monotone convergence theorem. Since the stopping rule is

N(δ∗) = inf
{

n ≥ m0 : n ≥ 2b2S2
n

/
δ∗2
}

,

then the basic inequality simplifies to

2b2S2
n

/
δ∗2 ≤ N ≤ m0 + 2b2S2

n−1

/
δ∗2. (10)

Now, multiply δ∗2 throughout (10) and take limits as δ∗ → 0; this leads to part (3). For
the population πi, statistic Li(N) is proposed to estimate ∆i. For θ ∈ Ω(δ∗), we have

P(CD|θ ∈ Ω(δ∗))

= P
{

Li(N)− L0(N) < d, 0 < i ≤ r; Lj(N)− L0(N) ≥ d, r < j ≤ k
}

= P

{
((Li(N)− ∆i)− (L0(N)− ∆0))

√
n∗A√

2
< (d − (∆i − ∆0))

√
n∗A√

2
,0 < i ≤ r;

((
Lj(N)− ∆j

)
− (L0(N)− ∆0)

)√n∗A√
2

≥
(
d −

(
∆j − ∆0

))√n∗A√
2

, r < j ≤ k

}

= P

{
Zi − Z0√

2
<

√
n∗Aδ∗√

2
, 0 < i ≤ r;

Zj − Z0√
2

≥ −
√

n∗Aδ∗√
2

, r < j ≤ k

}

= P

{
Yi(N) ≤

√
n∗Aδ∗√

2
, i = 1, · · · , k

}
. (11)

where
Zi(N) =

√
n∗A(Li(N)− ∆i)

for i = 1, . . . , k,

Yi(N) =
Zi(N)− Z0(N)

2
, Yj(N) =

Z0(N)− Zj(N)

2
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for 0 < i ≤ r, r < j ≤ k. If we define the (k × k) covariance matrix Σr = (σij) by

σij = 1, f or i = j;

=
1
2

, f or 0 < i, j ≤ r or r < i, j ≤ k;

= −1
2

, f or 0 < i ≤ r and r < j ≤ k,

then

P(CD|θ ∈ Ω(δ∗)) =
∫ √

n∗Aδ∗√
2

−∞
· · ·

∫ √
n∗Aδ∗√

2

−∞
(2π)−

k
2 |Σr|−

k
2 exp

(
−1

2
y′Σ−1

r y
) k

∏
i=1

dyi. (12)

Equation (12) gives the infimum of the P(CD) for the set of all configurations such
that there are r populations from ΩL (bad populations) and (k − r) populations from ΩR
(good populations). The right side of (12) achieves a minimum over all r(0 < r ≤ k) under
the LFC. Let b = b(P, k) be the solution of the equation

P =
∫ b

−∞

∫ b

−∞
· · ·

∫ b

−∞
(2π)−

k
2 |Σk|−

k
2 exp

(
−1

2
y′Σ−1

k y
) k

∏
i=1

dyi

Also, for any real number c and q, let

Pq(c) =
∫ c

−∞

∫ c

−∞
· · ·

∫ c

−∞
(2π)−

q
2
∣∣Σq
∣∣− q

2 exp
(
−1

2
y′Σ−1

q y
) q

∏
i=1

dyi (13)

where the (q × q) covariance matrix Σq =
(
σij
)

is such that
σij = 1, f or i = j;

=
1
2

, f or i ̸= j.

Define
A = [Yi ≤ b, i = 1, · · · , r]
B = [Yi ≤ b, i = r + 1, · · · , k]

then
Pr(b) + Pk−r(b) = 1 + P∗

which leads to

P(A ∩ B) = P{Yi(N) ≤ b, i = 1, · · · , k} = P(CD|θ ∈ Ω(δ∗)) ≥ P∗

i.e., lim inf P(CD) ≥ P∗, which is part (4). This completes the proof of the theorem.

4. Monte Carlo Simulation Results

In this section, using the Monte Carlo simulation study, the “purely sequential pro-
cedure” (7) is replicated independently 5000 times by picking different values of design
constants to study how the asymptotic expansions provided in Theorem 1 compare with
the observed values when the procedure is simulated for small and moderate sample sizes.
In our simulation study, we considered k = 8 independent populations and one control
population. To construct the LFC, we generated f our populations with the center of sym-
metry equal to µ0 − δ, and the remaining f our populations are generated to have the center
of symmetry as µ0 + δ. The control population is generated to have the center of symmetry
as µ0. Without loss of generality, we set µ0 = 0. For k = 8 and P∗ = 0.95, the value of the
constant b equals 2.44177 from [6]. Next, we considered the following symmetric distribu-
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tions: normal distribution, Laplace distribution, t-distribution, uniform distribution, and a
mixture of two normal distributions. For these distributions, the parameter A2 is given by

A2 = 12
(∫

f 2(x)dx
)2

f (x) is the density function for normal distribution, Laplace distribution, t-distribution,
uniform distribution and a mixture of two normal distributions, respectively. In our
simulations, Normal(0, 1), the Laplace distribution with µ = 0, b =

√
2/2, t-distribution

with d f = 5, U(−1, 1), and two mixed normal distribution: 0.35N(x1; 0, 1) + 0.65N(x2; 0, 2)
and 0.8N(x1; 0, 1) + 0.2N(x2; 0, 5) were used here.

A2
Normal = 12

(∫ +∞

−∞

(
1√
2π

e−
x2
2

)2
dx

)2

= 12
(∫ +∞

−∞

1
2π

e−x2
dx
)2

= 0.9549

A2
Laplace = 12

(∫ +∞

−∞

(
1√
2

e−
√

2|x|
)2

dx

)2

= 12
(∫ +∞

−∞

1
2

e−2
√

2|x|dx
)2

= 1.5

A2
Uni f orm = 12

(∫ 1

−1

(
1

b − a

)2
dx

)2

= 12

(∫ 1

−1

(
1
2

)2
dx

)2

= 3

A2
t = 12

∫ +∞

−∞

 Γ
(

v+1
2

)
√

vπΓ
( v

2
)(1 +

x2

v

)− v+1
2

2

dx


2
∣∣∣∣∣∣∣∣
v=5

= 0.7447

A2
Mixed1 = 12

(∫ +∞

−∞

(
0.35

1√
2π

e−
x2
2 + 0.65

1
2
√

2π
e−

x2

2·22

)2

dx

)2

= 0.3689

A2
Mixed2 = 12

(∫ +∞

−∞

(
0.80

1√
2π

e−
x2
2 + 0.20

1
5
√

2π
e−

x2

2·52

)2

dx

)2

= 0.5183

After, we obtained the value of the A2 for each distribution; the value of δ was

determined by δ =
√

2b2

n∗A2 . The values of n∗ which we selected were 50, 100, 200, 400, and
800. For each value of n∗, the corresponding value of δ was obtained, and those values have
been summarized in Tables 1–6. As described earlier, the estimator S2

n as described in (8) is
used to estimate the unknown parameter A−2. Note that the purely sequential rule does
not rely upon the knowledge of A2. Next, we generated data from the normal distribution
with σ = 1, Laplace distribution with λ =

√
2
/

2, t-distribution with d f = 5, uniform
distribution, and two mixed normal distributions given by 0.35N(x1; 0, 1) + 0.65N(x2; 0, 2)
and 0.8N(x1; 0, 1) + 0.2N(x2; 0, 5), respectively. Note that the Hodges–Lehmann estimator
holds for 1/2 < α < 1. In the simulations, we have considered several possible choices
of the α and studied the impact of α on the estimation of A2. The simulation results are
reported in Tables 1–6.

From Tables 1 and 2, note that the purely sequential procedure (7) is oversampling by
roughly two to three observations when the population is normally distributed and by just
below 10 observations for the Laplace distribution. Also, note that the estimated probability
of correct selection is below the target value of 0.95 for the normal case. However, for
the Laplace distribution, the estimated probability of correct selection matches the target
value of 0.95 quite well. This feature of the statistical estimation should not come as a
surprise. The Hodges–Lehmann estimator is more appropriate when the distribution has
tails longer than normal distribution tails. That is, when the distribution is close to being
normally distributed, then the partition procedures are designed for normally distributed
populations, such as the ones described in [7]. However, if the tails are significantly longer
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than the normal tails, like for the Laplace distribution, then the non-parametric partition
procedures are more appropriate.

Table 1. Simulation results for normal distribution with σ = 1.

α δ n∗ n̄ std(n̄) P̄ std(P̄)

0.75 0.499 50 52.050 0.143 0.867 0.011
0.75 0.353 100 102.298 0.189 0.870 0.011
0.75 0.250 200 202.597 0.263 0.870 0.011
0.75 0.177 400 402.507 0.376 0.877 0.010
0.75 0.125 800 803.636 0.492 0.847 0.011

0.85 0.499 50 52.958 0.122 0.865 0.011
0.85 0.353 100 103.046 0.180 0.865 0.011
0.85 0.250 200 203.638 0.255 0.855 0.011
0.85 0.177 400 403.382 0.365 0.857 0.011

Table 2. Simulation results for Laplace distribution with λ =
√

2
2 .

α δ n∗ n̄ std(n̄) P̄ std(P̄)

0.75 0.399 50 55.570 0.183 0.970 0.005
0.75 0.282 100 106.486 0.264 0.978 0.005
0.75 0.199 200 206.231 0.351 0.969 0.005
0.75 0.141 400 408.060 0.514 0.975 0.005
0.75 0.099 800 808.374 0.687 0.975 0.005

0.85 0.399 50 56.872 0.175 0.976 0.005
0.85 0.282 100 107.685 0.244 0.975 0.005
0.85 0.199 200 207.481 0.347 0.978 0.005
0.85 0.141 400 409.598 0.505 0.969 0.006

Table 3. Simulation results for T-distribution with d f = 5.

α δ n∗ n̄ std(n̄) P̄ std(P̄)

0.75 0.566 50 52.981 0.159 0.896 0.010
0.75 0.400 100 103.358 0.224 0.898 0.010
0.75 0.283 200 202.923 0.269 0.893 0.010
0.75 0.200 400 403.129 0.423 0.901 0.009

0.85 0.566 50 54.494 0.147 0.901 0.009
0.85 0.400 100 104.488 0.209 0.909 0.009
0.85 0.283 200 204.676 0.293 0.913 0.009
0.85 0.200 400 404.660 0.413 0.918 0.009

0.90 0.566 50 54.605 0.144 0.928 0.008
0.90 0.400 100 105.242 0.213 0.893 0.010
0.90 0.283 200 204.816 0.280 0.913 0.009

0.95 0.566 50 55.769 0.135 0.929 0.008
0.95 0.400 100 105.988 0.208 0.912 0.009
0.95 0.283 200 205.799 0.279 0.926 0.008

In Table 3, the underlying distribution is t-distribution with 5 degrees of freedom.
The distribution has tails longer than a normal distribution but shorter than the Laplace
distribution. Note that the estimated probability of correct selection is somewhat below
the target value of 0.95 for smaller values of α. However, as α increases, the estimated
probability of correct selection is approaching the target value of 0.95.
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Table 4. Simulation results for uniform distribution.

α δ n∗ n̄ std(n̄) P̄ std(P̄)

0.60 0.282 50 42.792 0.564 0.487 0.016
0.60 0.199 100 104.732 0.409 0.599 0.016
0.60 0.141 200 210.747 0.236 0.621 0.015

0.75 0.282 50 56.769 0.117 0.641 0.015
0.75 0.199 100 110.106 0.129 0.64 0.015
0.75 0.141 200 214.045 0.175 0.62 0.015

0.85 0.282 50 58.122 0.094 0.653 0.015
0.85 0.199 100 111.698 0.114 0.610 0.015
0.85 0.141 200 216.071 0.146 0.604 0.015

0.99 0.282 50 63.737 0.070 0.719 0.014
0.99 0.199 100 118.374 0.089 0.648 0.015
0.99 0.141 200 224.796 0.119 0.654 0.015

Table 5. Simulation results for mixture of two normal distributions: X = 0.35N(x1; 0, 1) +
0.65N(x2; 0, 2).

α δ n∗ n̄ std(n̄) P̄ std(P̄)

0.75 0.804 50 52.859 0.162 0.903 0.009
0.75 0.569 100 103.243 0.213 0.905 0.009
0.75 0.402 200 203.962 0.303 0.911 0.009

0.85 0.804 50 53.685 0.140 0.916 0.007
0.85 0.569 100 104.216 0.216 0.926 0.008
0.85 0.402 200 204.205 0.285 0.912 0.009

0.90 0.804 50 54.817 0.143 0.909 0.009
0.90 0.569 100 104.823 0.203 0.902 0.009
0.90 0.402 200 204.928 0.290 0.900 0.009

0.95 0.804 50 55.676 0.142 0.928 0.008
0.95 0.569 100 105.801 0.202 0.918 0.009
0.95 0.402 200 206.601 0.271 0.913 0.009

Table 6. Simulation results for mixture of two normal distributions: X = 0.8N(x1; 0, 1) +
0.2N(x2; 0, 5).

α δ n∗ n̄ std(n̄) P̄ std(P̄)

0.75 0.678 50 54.424 0.187 0.952 0.007
0.75 0.480 100 104.593 0.259 0.935 0.008
0.75 0.339 200 205.031 0.351 0.932 0.008

0.85 0.678 50 55.826 0.169 0.934 0.008
0.85 0.450 100 106.334 0.254 0.926 0.008
0.85 0.339 200 206.534 0.332 0.933 0.008
0.85 0.240 400 406.497 0.486 0.942 0.007

0.90 0.678 50 56.762 0.177 0.955 0.007
0.90 0.480 100 106.746 0.244 0.924 0.008
0.90 0.339 200 207.888 0.351 0.935 0.008

0.95 0.678 50 58.671 0.173 0.959 0.006
0.95 0.480 100 108.742 0.235 0.947 0.007
0.95 0.339 200 208.019 0.332 0.931 0.008

Next, we have considered the uniform distribution case which has tails even shorter
than the normal tails. One will note that the estimated probability of correct selection
is well below the target value of 0.95. This feature is again along the lines of comments
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made earlier in this section about the Hodges–Lehmann estimator being more appropriate
when the distribution has tails longer than normal distribution tails. Next, we have
considered the mixture of two normal populations. In the first case, we have considered
the 0.35N(x1; 0, 1) + 0.65N(x2; 0, 2) which is a mixture of two normal populations with
somewhat long tails. The first population is the mixture that has a variance of 1, and the
second has a variance of 2. In the second mixture of the two normal populations considered,
we have 0.8N(x1; 0, 1) + 0.2N(x2; 0, 5). This second mixture has two normal populations
again, but the two variances being 1 and 5, respectively, are farther apart. Intuitively, these
two mixture cases are symmetric but are not unimodal like normal distribution or the other
distributions considered earlier. The two tables below again exhibit the same behavior: the
longer the tails, the better is the performance of the Hodges–Lehmann estimator.

5. An Example

In this section, we study the performance of the non-parametric sequential procedure
via a real-world dataset. Ref. [14] conducted a pilot investigation to see if active exercise
can preserve walking beyond the 2nd month. In this experiment, newborn children were
randomly placed into one of four treatment groups: (1) active exercise group; (2) passive
exercise group; (3) no exercise group (these were observed weekly); and (4) control group
(observed once after 8 weeks). A traditional 12 months has been known as the mean
time infants take to walk. The statistical analysis confirmed that the walking data are
normally distributed with somewhat equal variance, adopting a 12.5% improvement as
significant and anything other than 8% as not significant. We took δ1 = −1.5 months,
δ2 = −1.0 months, k = 3, and the starting sample size m = 5. The data were analyzed
via the following three procedures: (1) two-stage procedure of [6]; (2) purely sequential
procedure of [7]; (3) non-parametric sequential procedure proposed in this manuscript.
Additional samples as needed were generated via SRSWR and saved to have the same
data for all the procedures. Note that all the three sampling methodologies yielded the
same result: that is, the active exercise group was partitioned as better than the control,
while the passive and no exercise groups were partitioned as bad compared to the control,
since the improvement was lower than 8%. The sample size for these five methodologies
is reported in Table 7. One will note that the sample size was somewhat larger for the
non-parametric sequential procedure, and it increased further when the parameter α was
increased. However, this was quite expected, since the data are normally distributed in this
case, and the procedures based on normal distribution assumption are bound to perform
better. Note that from the simulations, the true advantage of the non-parametric procedure
is when the data are not normal and have long tails.

Table 7. Comparison of various statistical methodologies.

Procedure Sample Size

Two-stage 71

Purely Sequential 66

Non-Parametric Sequential 42 (α = 0.75)
52 (α = 0.80)
53 (α = 0.85)
60 (α = 0.90)
67 (α = 0.95)
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