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1. Introduction

Fixed-point theory is a major and important tool in the study of nonlinear phenomena.
This theory has been applied in such diverse fields as topology, differential equations and
inclusions, economics, game theory, engineering, physics, optimal control, and nonlinear
functional analyses. Many authors are interested in fixed-point theorems in metric spaces.
The concept of a b-metric space is an old notion that is used in many areas of mathematics.
In 1970, Coifman and Guzffian [1] introduced a weaker notion of a metric space called a
quasi-metric space; some researchers have used the notion of the b-distance in an attempt
to include b-distance functions such as

d(x, y) = |x − y|n, x, y ∈ Rn,

to resolve some central questions in harmonic analyses (see also [2–4]). The actual definition
of a b-metric was introduced in 1979 by Madas and Segovia [5]. The notion of a b-metric
was first used in fixed-point theory by Bakhtin [6] and extended by Czerwik [7]. Chapter 12,
and in particular Section 12.1, of the monograph by Kirk and Shahzad [8] presents a nice
introduction to the origin and history of this type of metric space as well as some elementary
examples of such spaces.

Our aim in this work is to prove some new versions of the Covitz and Nadler fixed-
point theorem [9,10] and to answer a question proposed by Kirk and Shahzad [8], namely,
does Nadler’s theorem hold in strong b-metric spaces [8] (page 128) (see Theorem 3 below)?

2. Preliminaries

We begin with some essential concepts and results. In what follows, P(X) denotes
the set of all nonempty subsets of X so that Pcl,b(X) is the set of all nonempty closed and
bounded subsets of X, and Pcp(X) is the set of all nonempty compact subsets of X.

Definition 1. Let A, B ∈ P(X) and define:

• H∗
d (A, B) = sup{d(a, B) : a ∈ A};
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• H∗
d (B, A) = sup{d(A, b) : b ∈ B};

• Hd(A, B) = max(H∗
d (A, B), H∗

d (B, A)) (the b-Hausdorff distance between A and B).

Remark 1. For ϵ > 0, let
Aϵ = {x ∈ X : d(x, A) < ϵ}.

Then,

H∗
d (A, B) = inf{ϵ > 0 : A ⊂ Bϵ}, H∗

d (B, A) = inf{ϵ > 0 : B ⊂ Aϵ}.

Next, we define what is meant by a b-metric space and a strong b-metric space.

Definition 2. Let X be a nonempty set and s ≥ 1. By a b-metric on X, we mean a map d:
X × X → [0, ∞) with the following properties for all x, y, z ∈ X:

(i) d(x, y) = 0 if and only if x = y;
(ii) (Symmetry) d(x, y) = d(y, x);
(iii) (s-relaxed triangle inequality) d(x, y) ≤ s[d(x, z) + d(z, y)].

The triple (X, d, s) is called a b-metric space.

Definition 3. Let X be a nonempty set and s ≥ 1. By a strong b-metric on X, we mean a map
d : X × X → [0, ∞) with the following properties for all x, y, z ∈ X:

(i) d(x, y) = 0 if and only if x = y;
(ii) (Symmetry) d(x, y) = d(y, x);
(iii) (s-relaxed triangle inequality) d(x, y) ≤ d(x, z) + sd(z, y).

The triple (X, d, s) is called a strong b-metric space.

A useful generalization of the s-relaxed triangle inequality is given in the
following lemma.

Lemma 1. Let (X, d, s) be a strong b-metric space. Then, for x0, x1, . . . , xn ∈ X, we have

d(x0, xn) ≤
n−2

∑
i=0

si+1d(xi, xi+1) + sn−1d(xn−1, xn).

The next two lemmas will be used in our proofs.

Lemma 2. Let (X, d, s) be a strong b-metric space. Then, d is a continuous mapping.

Proof. For any x, y, x0, y0 ∈ X,

d(x, y) ≤ sd(x, x0) + d(x0, y)

≤ sd(x, x0) + d(x0, y0) + sd(y0, y).

Hence,
d(x, y)− d(x0, y0) ≤ sd(x, x0) + sd(y0, y).

Similarly,
d(x0, y0)− d(x, y) ≤ sd(x, x0) + sd(y0, y). (1)

This implies that

|d(x, y)− d(x0, y0)| ≤ s[d(x, x0) + d(y0, y)],

and therefore d is continuous.
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Lemma 3 ([11]). Let (X, d, s) be a b-metric space. Then, every sequence (xn)n∈N ⊂ X for which
there exists γ ∈ (0, 1) such that

d(xn, xn+1) ≤ γd(xn, xn−1), n ∈ N,

is a Cauchy sequence.

Lemma 4. Let (X, d, s) be a b-metric space and A, B ∈ Pcp(X), which is the set of all nonempty
compact subsets of X. If d is a continuous b-metric, then for any x ∈ A, there exists y ∈ B such that

d(x, y) ≤ d(x, B).

Proof. Let x ∈ A; then, for every n ∈ N, there exists yn ∈ B with

d(x, yn) ≤ d(x, B) +
1
n

. (2)

Since B is compact, there exists a subsequence (ynk )k∈N of (yn)n∈N converging to y ∈ B.
Since d is continuous, letting n → ∞ in (2), we obtain

d(x, y) ≤ d(x, B) ≤ Hd(A, B),

which proves the lemma.

3. Covitz–Nadler-Type Fixed-Point Theorems

In this section, we give versions of the Covitz and Nadler fixed-point theorem in
b-metric spaces. They proved their classical fixed-point theorem in metric spaces for con-
traction multi-valued operators in 1970 (see [9,10]) (also see Deimling [12] (Theorem 11.1)).

Definition 4. A mapping F : X → P(X) is a multivalued map if for each x ∈ X, F(x) ∈ P(X).
The point p is a fixed point of a multivalued map F if p ∈ F(p). We will denote the set of fixed
points of the mapping F by Fix F.

We also have the notion of a contraction for multivalued maps.

Definition 5. If the mapping F has a Lipschitz constant c < 1, then f is called a multivalued
contraction mapping.

The following lemma is referred to as the Covitz and Nadler fixed-point theorem [9].

Lemma 5. Let (X, d) be a complete metric space. If F : X → Pcl(X) is a contraction, then
Fix X ̸= ∅.

Our first result is contained in the following theorem.

Theorem 1. Let (X, d, s) be a complete b-metric space and d be continuous. If F : X → Pcp(X) is
a contraction, then Fix F ̸= ∅.

Proof. Assume that Hd(F(x), F(y)) ≤ Ld(x, y) for every x, y ∈ X, where L ∈ [0, 1), and let
x ∈ X. Since F(x) is compact, by Lemma 4, we can choose x1 ∈ F(x) such that

d(x, x1) ≤ d(x, F(x)).

Then, we may choose x2 ∈ F(x1) such that

d(x1, x2) ≤ d(x1, F(x1)) implies d(x1, x2) ≤ Hd(F(x), F(x1)).
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This means that
d(x1, x2) ≤ Ld(x, F(x)).

Continuing this way, we can find a sequence {xn : n ∈ N} ⊂ X with

d(xn, xn+1) ≤ d(xn, F(xn)).

Hence,

d(xn, xn+1) ≤ d(xn, F(xn)) ≤ Hd(F(xn−1), xn)

≤ Ld(xn−1, xn) ≤ Lnd(x, F(x)).

By Lemma 3, {xn}n∈N is a Cauchy sequence. Since X is complete, we let x̃ = lim
n→∞

xn.

Then, xn+1 ∈ F(xn) for every n ∈ N, and

0 ≤ d(x̃, F(x̃)) ≤ s[d(xn+1, x̃) + d(xn+1, F(x̃))] ≤ s[d(xn+1, x̃) + Ld(xn, x̃)].

Letting n → +∞ gives x̃ ∈ F(x̃) as claimed, and this proves the theorem.

As a direct consequence of Theorem 1, we are able to obtain the following generaliza-
tion of Nadler’s fixed-point theorem to strong b-metric spaces.

Corollary 1. Let (X, d, s) be a complete strong b-metric space. If F : X → Pcp(X) is an L-
contraction, then Fix F ̸= ∅.

Proof. Since (X, d, s) is a complete strong b-metric space, it is complete. By Lemma 2, d is
continuous. By Theorem 1, F has at least one fixed point, and this completes the proof.

Our next result on the existence of a fixed point is contained in the following theorem.

Theorem 2. Let (X, d, s) be a complete b-metric space and F : X → Pcl,b(X) be an L-contraction
multi-valued mapping. Then, F has a fixed point in X.

Proof. We will employ a standard iterative procedure for contracting mappings. Let
L ∈ (0, 1) be such that

Hd(F(x), F(y)) ≤ Ld(x, y) for all x, y ∈ X.

Let x0 ∈ X be fixed and choose x1 ∈ F(x0) such that

d(x1, x0) ≤ d(x0, F(x0)) + L.

From the definition of the Hausdorff distance, we can find x2 ∈ F(x1) with

d(x1, x2) ≤ d(x1, F(x1)) + L, which implies d(x1, x2) ≤ Hd(F(x0), F(x1)) + L.

Similarly, we can find x3 ∈ F(x2), with

d(x3, x2) ≤ Hd(F(x2), F(x1)) + L2.

Continuing this process, we obtain a sequence (xn)n∈N in X such that xi+1 ∈ (xn) and

d(xi+1, xi) ≤ Hd(F(xi), F(xi−1)) + Li.

For fixed m ∈ N,
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d(xm, xm+1) ≤ Hd(F(xm), F(xm−1)) + Lm

≤ Ld(xm, xm−1) + Lm

≤ LHd(F(xm−1), F(xm−2)) + 2Lm

≤ L2d(xm−1, xm−2) + 2Lm

≤ L2(Hd(F(xm−2), F(xm−3)) + Lm−2) + 2Lm

≤ L3d(xm−2, xm−3) + 3Lm

...

≤ Lmd(x1, x0) + mLm.

By the s-relaxed triangle inequality in b-metric spaces, for every p ∈ N and q = [log2 p],

d(xm+1, xm+p) ≤ sd(xm+1, xm+2) + sd(xm+2, xm+p)

≤ sd(xm+1, xm+2) + s2d(xm+2, xm+22) + s2d(xm+22 , xm+p)

...

≤
q

∑
n=1

snd(xm+2n−1 , xm+2n) + sq+1d(xm+2q , xm+p).

By Lemma 1, we obtain

d(xm+1, xm+p) ≤
q

∑
n=1

s2n
m+2n−1−1

∑
i=m

d(x2n−1+i, xm+2n−1+i+1)

+ s2(q+1)
m+p−2q−1

∑
i=m

d(x2q+i, x2q+i+1).

Consequently,

d(xm+1, xm+p) ≤
q

∑
n=1

s2n
m+2n−1−1

∑
i=m

(L2n−1+id(x0, x1) + (2n−1 + i)L2n−1+i)

+ s2(q+1)
m+p−2q−1

∑
i=m

(L2q+id(x0, x1) + (2q + i)L2q+i)

≤
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

[L2n−1+i+md(x0, x1)

+ (2n−1 + i + m)L2n−1+i+m]

≤ Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

L2n−1+id(x0, x1)

+ Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i

+ mLm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i.

Using simple calculations, we can see that

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

L2n−1+id(x0, x1) ≤
Lmd(x0, x1)

1 − L

q+1

∑
n=1

L2n logL s+2n−1
, (3)
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and

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i

≤ Lm
q+1

∑
n=1

s2n2n−1L2n−1
2n−1−1

∑
i=0

Li + Lm
q+1

∑
n=1

s2nL2n−1
2n−1−1

∑
i=0

iLi

≤ 2Lm

1 − L

q+1

∑
n=1

(2s)2nL2n−1
+ Lm

∞

∑
i=0

iLi
q+1

∑
n=1

s2nL2n−1
.

Then,

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

(2n−1 + i)L2n−1+i

≤ 2Lm

1 − L

q+1

∑
n=1

L2n logL 2s+2n−1
+ Lm

∞

∑
i=0

iLi
q+1

∑
n=1

L2n logL s+2n−1
.

Hence,

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

2n−1L2n−1+i ≤ 2Lm

1 − L

q+1

∑
n=1

L2n logL 2s+2n−1
, (4)

and

Lm
q+1

∑
n=1

s2n
2n−1−1

∑
i=0

iL2n−1+i ≤ Lm
∞

∑
i=0

iLi
q+1

∑
n=1

L2n logL s+2n−1
. (5)

We observe that

lim
n→∞

(2n logL s + 2n−1 − n) = lim
n→∞

(2n logL 2s + 2n−1 − n) = ∞.

For a fixed M > 0, there exist n0 ∈ N such that

2n logL s + 2n−1 − n ≥ M, and 2n logL 2s + 2n−1 − n ≥ M, for all n ≥ n0.

Then,
L2n logL s+2n−1 ≤ LMLn and L2n logL 2s+2n−1 ≤ LnLM,

and since limn→∞
(n+1)Ln+1

nLn = L ∈ (0, 1), we conclude that

L1 :=
∞

∑
n=1

L2n logL s+2n−1
, L2 :=

∞

∑
n=1

L2n logL 2s+2n−1
, L3 :=

∞

∑
n=1

nLn (6)

are convergent series. Using (3)–(6), we obtain

d(xm+1, xm+p) ≤
LmL1d(x1, x0)

1 − L
+

(2 + (1 − L)L1)L2(1 + m)Lm

1 − L
.

Thus, (xn)n∈N is a Cauchy sequence, and so xn → x for some x ∈ X.
Next, we prove that x ∈ F(x). For all n ∈ N,

0 ≤ d(x, F(x)) ≤ s[d(x, xn) + d(xn, F(x))]

≤ s[d(x, xn) + Hd(F(xn−1), F(x))]

≤ s[d(x, xn) + Ld(xn−1, x)].

Letting n → ∞, we see that
d(x, F(x)) = 0,
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which implies x ∈ F(x), and so x is a fixed point of F. This proves the theorem.

Remark 2. In [13], Czerwik obtained the result in Theorem 2 for b-metric spaces, but with the
more restrictive condition that sL ∈ (0, 1). Kirk and Shahzad [8] (Theorem 12.5) relaxed the result
for strong b-metric spaces with L ∈ (0, 1). Theorem 2 is an extension of the results of Czerwik and
Kirk and Shahzad.

4. Local Version of the Covitz–Nadler Theorem

For the next result, we give a version of the fixed-point theorems proved by Beer and
Dontchev [14] (see Theorem 4) and Dontchev and Hager [15] in a strong b-metric space.
Hence, we obtain a partial answer to the question raised by Kirk and Shahzad [8] (p. 128).

Theorem 3. Let (X, d, s) be a complete strong b-metric space and F : X → Pcp(X). Assume there
exist x0 ∈ X, r > 0, and sL ∈ (0, 1) such that

(i) d(x0, F(x0)) < r(1 − sL);
(ii) H∗

d (F(x) ∩ B̄(x0, r), F(y)) ≤ Ld(x, y) for all x, y ∈ B̄(x0, r).

Then, F has a fixed point in B̄(x0, r).

Proof. Since F(x0) ∈ Pcp(X), there exists x1 ∈ F(x0) with x1 ∈ B(x0, r) such that

d(x1, x0) < r(1 − sL) (7)

and
H∗

d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0).

Since x1 ∈ F(x0) ∩ B̄(x0, r),

d(x1, F(x1)) ≤ H∗
d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0) < r(1 − sL)L.

Then, there exists x2 ∈ F(x1) with

d(x1, x2) < r(1 − sL)L,

so we have

d(x0, x2) ≤ d(x0, x1) + sd(x1, x2) < r(1 − sL) + sr(1 − sL)L,

that is,

d(x1, x2) < r(1 − sL)L, d(x0, x2) < r(1 − (sL)2), and x2 ∈ B̄(x0, r). (8)

Hence,

d(x2, F(x2)) ≤ H∗
d (F(x1) ∩ B̄(x0, r), F(x2)) ≤ Ld(x1, x2) < rL2(1 − sL).

Then, there exists x3 ∈ F(x2) such that

d(x2, x3) < rL2(1 − sL),

and so

d(x0, x3) ≤ d(x0, x2) + sd(x2, x3) ≤ r(1 − (sL)2) + srL2(1 − sL)

≤ r(1 − (sL)2) + srL2(1 − (sL)2)

since sL < 1. We then have

d(x2, x3) < rL2(1 − sL), d(x0, x3) < r(1 − (sL)4), and x3 ∈ B̄(x0, r). (9)
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From (7)–(9), we can proceed by induction, so that there exist (xn)n∈N ⊂ B̄(x0, r) with
xn ∈ F(xn−1), n ∈ N, such that

d(xn, xn+1) < rLn(1 − sL), n ∈ N0.

By the s-relaxed triangular inequality, for n ≥ m, we have

d(xm, xn) ≤ s
n−1

∑
i=m

d(xi, xi+1) ≤ rs(1 − sL)
n−1

∑
i=m

Li ≤ rs(1 − sL)Lm
∞

∑
i=0

Li.

Therefore,

d(xm, xn) ≤
rs(1 − sL)Lm

1 − L
→ 0 as m → ∞,

which implies that (xn)n∈N is a Cauchy sequence in X. Since X is complete, there exists
x ∈ X such that lim

n→∞
xn = x ∈ B̄(x0, r). By condition (ii),

d(xn, F(x)) ≤ H∗
d (F(xn−1) ∩ B̄(x0, r), F(x)) ≤ Ld(xn−1, x).

The s-relaxed triangle inequality implies that

d(x, F(x)) ≤ sd(x, xn) + d(xn, F(x)) ≤ sd(x, xn) + Ld(xn−1, x) → 0

as n → ∞. Therefore, d(x, F(x)) = 0, and hence, x is a fixed point of F. This proves the
theorem.

A second result in the same direction is contained in the following theorem.

Theorem 4. Let (X, d, s) be a complete strong b-metric space and F : X → Pcl(X). Assume there
exist x0 ∈ X, r > 0, and L ∈ (0, 1) such that

(i) d(x0, F(x0)) <
r
s (1 − L);

(ii) H∗
d (F(x) ∩ B̄(x0, r), F(y)) ≤ Ld(x, y) for all x, y ∈ B̄(x0, r).

Then, F has a fixed point in B̄(x0, r).

Proof. Since F(x0) ∈ Pcp(X), there exists x1 ∈ F(x0) with x1 ∈ B̄(x0, r) such that

d(x1, x0) <
r
s
(1 − L)

and
H∗

d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0).

Since x1 ∈ F(x0) ∩ B̄(x0, r),

d(x1, F(x1)) ≤ H∗
d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0) <

r
s
(1 − L)L,

and so there exists x2 ∈ F(x1) such that

d(x1, x2) <
r
s
(1 − L)L.

Hence, we have

d(x0, x2) ≤ s[d(x0, x1) + d(x1, x2)] < r(1 − L) + r(1 − L)L = r(1 − L2),

which means

d(x1, x2) <
r
s
(1 − L)L, d(x0, x2) < r(1 − L2), and x2 ∈ B̄(x0, r).
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Thus,

d(x2, F(x2)) ≤ H∗
d (F(x1) ∩ B̄(x0, r), F(x2)) ≤ Ld(x1, x2) <

r
s

L2(1 − L),

and so then there exists x3 ∈ F(x2) such that

d(x2, x3) <
r
s

L2(1 − L).

This implies

d(x0, x3) ≤ d(x0, x2) + sd(x2, x3) ≤ r(1 − L2) + rL2(1 − L)

≤ r(1 − L2) + rL2(1 − L2)

since L < 1. Thus, we have

d(x2, x3) <
r
s

L2(1 − L), d(x0, x3) < r(1 − L4), and x3 ∈ B̄(x0, r).

Proceeding by induction, there exists (xn)n∈N ⊂ B̄(x0, r) with xn ∈ F(xn−1), n ∈ N,
such that

d(xn, xn+1) <
r
s

Ln(1 − L), n ∈ N0.

As in the proof of Theorem 3, we again see that (xn)n∈N0 is a Cauchy sequence. Since
X is complete, there exists x ∈ B̄(x0, r) such that lim

n→∞
xn = x and x ∈ F(x), which proves

the theorem.

The next result is our improvement of Dontchev and Hager’s [15] (Lemma) fixed-point
theorem.

Theorem 5. Let (X, d, s) be a complete strong b-metric space and F : X → P(X). Assume there
exist x0 ∈ X, r > 0, and L ∈ (0, 1) such that

(i) The set Gr(F) ∩ B̄(x0, r)× B̄(x0, r) is a closed set;
(ii) d(x0, F(x0)) <

r
s (1 − L);

(iii) H∗
d (F(x) ∩ B̄(x0, r), F(y)) ≤ Ld(x, y) for all x, y ∈ B̄(x0, r).

Then, F has a fixed point in B̄(x0, r).

Proof. Since d(x0, F(x0)) <
r
s (1 − L), there exists x1 ∈ F(x0) with x1 ∈ B̄(x0, r) such that

d(x1, x0) <
r
s
(1 − L) (10)

and
H∗

d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0).

Since x1 ∈ F(x0) ∩ B̄(x0, r),

d(x1, F(x1)) ≤ H∗
d (F(x0) ∩ B̄(x0, r), F(x1)) ≤ Ld(x1, x0) <

r
s
(1 − L)L,

and so there exists x2 ∈ F(x1) such that

d(x1, x2) <
r
s
(1 − L)L

and
d(x0, x2) ≤ s[d(x0, x1) + d(x1, x2)] < r(1 − L) + r(1 − L)L = r(1 − L2).
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That is,

d(x1, x2) <
r
s
(1 − L)L, d(x0, x2) < r(1 − L2), and x2 ∈ B̄(x0, r). (11)

Hence,

d(x2, F(x2)) ≤ H∗
d (F(x1) ∩ B̄(x0, r), F(x2)) ≤ Ld(x1, x2) <

r
s

L2(1 − L),

so there exists x3 ∈ F(x2) such that

d(x2, x3) <
r
s

L2(1 − L).

It follows that

d(x0, x3) ≤ d(x0, x2) + sd(x2, x3) ≤ r(1 − L2) + rL2(1 − L)

≤ r(1 − L2) + rL2(1 − L2),

that is,
d(x2, x3) <

r
s

L2(1 − L), d(x0, x3) < r(1 − L4), and x3 ∈ B̄(x0, r). (12)

By induction, there exists

(xn)n∈N ⊂ B̄(x0, r), xn ∈ F(xn−1), n ∈ N, (13)

with
d(xn, xn+1) <

r
s

Ln(1 − L), n ∈ N0.

As in the proof of Theorem 3, (xn)n∈N0 is a Cauchy sequence, and since X is complete,
there exists x ∈ B̄(x0, r) such that lim

n→∞
xn = x. Hence, (xn−1, xn) → (x, x) as n → ∞.

From (13) and condition (i), we have

{(xn−1, xn)}n∈N ⊂ Gr(F) ∩ B̄(x0, r)× B̄(x0, r),

and so
(x, x) ∈ Gr(F) ∩ B̄(x0, r)× B̄(x0, r).

Therefore, x ∈ F(x) and this completes the proof of the theorem.
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