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Abstract: The dual active bridge (DAB) converter has grown significantly as one of the most important
units for energy distribution, connecting various types of renewable energy sources with the DC
microgrid. For controlling the DAB converter, moving discretized control set model predictive control
(MDCS-MPC) is considered one of the most effective methods because of its advantages, such as
high dynamic performance and multiobjective control. However, MDCS-MPC strongly depends
on the accuracy of system parameters. Meanwhile, the system parameters can be changed due
to temperature drift, manufacturing tolerance, age, and operating circumstances. As a result, the
steady-state performance of the output voltage of MDCS-MPC is affected. Motivated by this, this
paper proposes MDCS-MPC combined with the parameter identification technique to improve the
steady-state performance of the output voltage of the DAB converter. Then, analysis of the percentage
of the steady-state error of the output voltage is defined on six model parameters, and sensitivity
analysis of two dominant parameters is chosen. After that, a straightforward least-squares analysis
(LSA) technique is used to identify the two parameters online. The proposed method is verified
through simulation in several different operating scenarios to verify its effectiveness.

Keywords: moving discretized control set model predictive control; parameter identification;
least-squares analysis; dual active bridge converter; DC–DC converter

MSC: 93C05

1. Introduction

As the demand for electrical applications continues to rise, the DC microgrid has
experienced a rapid expansion in recent years. Along with this, the bidirectional DC–DC
converters are the fundamental units of the DC microgrid. Using these converters to
interlink various renewable energy sources with the DC bus and between the various
voltage levels available in DC microgrids is common practice. In energy distribution, many
renewable energy sources are connected to energy storage systems (ESSs) and solid-state
transformers (SSTs). Because of this, the fundamental functions of DC–DC converters are
regulating voltage and current and transferring power in both directions. Despite this,
these tasks provide several issues that need more academic and industrial attention [1–6].

According to [2], several different topologies for bidirectional DC–DC converters have
been investigated and proposed. Among them, the dual active bridge (DAB) converter, as
shown in Figure 1, is considered one of the potential typologies for the applications of SSTs
and ESSs [7]. These statements are for the following reasons: (1) The DAB converter is built
with modular capabilities, symmetric structures, and adjustable phase shift modulations,
enabling it to change the power flow direction automatically. As a result, the DAB converter
is appropriate for applications that include SSTs and ESSs connecting with DC microgrid.
(2) It is essential to have a high voltage and current conversion gain to interface ESSs like

Mathematics 2024, 12, 563. https://doi.org/10.3390/math12040563 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040563
https://doi.org/10.3390/math12040563
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1256-7832
https://doi.org/10.3390/math12040563
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040563?type=check_update&version=2


Mathematics 2024, 12, 563 2 of 20

batteries and supercapacitors, which might undergo significant changes depending on the
state of charge (SOC). In addition, a high voltage and current conversion gain converter
is required to complete the connection between the pulsed power loads and the power
sources. (3) It is possible to attain a wide zero-voltage switching (ZVS) range by utilizing
a variety of phase-shift modulations and advanced control and optimization approaches,
ultimately resulting in excellent power efficiency [2,6].
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Figure 1. DAB converter.

For modulation approaches used for transferring the power of the DAB converter, the
phase-shift modulation approaches can be categorized as single phase-shift (SPS), extended
phase-shift (EPS), dual phase-shift (DPS), and triple phase-shift (TPS). Table 1 shows the
comparison of modulation. These designations are based on the number and kinds of
phase-shift ratios that the modulation approaches use. Compared with EPS, DPS, and TPS,
the SPS is the modulation utilized most frequently due to its simplicity by using only one
phase-shift ratio as the control variable [1–6]. Therefore, this paper utilizes the SPS to show
the proposed method’s effectiveness.

Table 1. Comparison of modulation.

Modulation Control Degree Advantage Disadvantage

SPS 1
- Easy for implementation
- Most widely used

- High circulating power
- Limited ZVS range
- High current stress

EPS 2

- Low circulating power
- Wide ZVS range
- Low current stress

- Require one inner phase-shift ratio compared to SPS
- The operating states of the two bridges change in the

voltage conversion states or changing power flow
directions

DPS 2
- Low circulating power
- Wide ZVS range
- Low current stress

- Require one inner phase-shift ratio compared to SPS

TPS 3

- Low circulating power
- Wide ZVS range
- Low current stress
- High efficiency
- Most regulating flexibility

- Require two inner phase-shift ratios compared to SPS
- Most complicated for implementation
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Numerous advanced control methods are proposed for the DAB converter, according
to [3], such as linearization control [8], output current feedforward control [9], virtual
direct power control [10], disturbance observer-based control [11–13], feedforward current
control [14], predictive current control [15,16], and sliding mode control [17–19]. These
control strategies have the potential to stabilize and increase the steady-state performance
of the output voltage while simultaneously ensuring high dynamics. Compared to other
advanced methods, moving discretized control set model predictive control (MDCS-MPC)
is frequently considered in power electronics converters due to its numerous benefits, in-
cluding fast dynamics, easy inclusion of constraints in the cost function, and multiobjective
control [20–24]. Table 2 shows the comparison of the control method, according to [1–6].

Table 2. Comparison of the control method.

Control Method Advantage Disadvantage

Linearization control - Easy implementation
- Require few sensors - Low performance

Output current feedforward control - High performance - Affected by parameter variation

Virtual direct power control - High performance - Affected by parameter variation

Disturbance observer-based control - Robust against parameter variation
- High performance - Require model information

Feedforward current control - High performance - Difficult implementation

Predictive current control - High performance - Affected by parameter variation

Sliding mode control - Easy implementation - Low performance
- Chattering phenomenon

MDCS-MPC
- High performance
- Optimization constraint
- Multiobjective control

- Difficult implementation

Even though all of the advanced control methods have excellent dynamic performance,
they are highly dependent on the accuracy of the system model, which results in a degra-
dation in the steady-state performance if there is a mismatch of the system parameters.
This limitation is because the controller’s information usually differs from the hardware’s.
In experiments, the values of system parameters such as inductor and capacitor might
somewhat shift over time [25,26] due to temperature drift, manufacturing tolerance, age,
and operating circumstances; as a result, parameter mismatches of up to 20% can sometimes
be observed [27,28]. Therefore, if the system parameters are identified online accurately
while the operation is carried out, the steady-state performance significantly improves.

In order to overcome the effect of parameter mismatch, MPC with complex multiob-
jective optimization control is used in [29] to control the power converter or produce a
feed-forward compensator in [30] for a programmable logic controller system. However,
they are complicated. On the other hand, to identify parameters online, a model-based
feed-forward control strategy combined with recursive least-squares (RLS) is proposed
in [31], and a model predictive control with a novel parameter identification scheme of
RLS in [32]. However, they do not consider other parameters, such as capacitors. Another
method for calculating the parameters presented in [33] can use gradient calculation of the
least-squares error function. This technique can identify the actual values using the MPC
combined with the least-squares estimate method. However, the least-squares solution
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presented in [33] with the matrix belonging to R3×3 results in a complicated calculation.
In addition, it involves previously and currently measured data, resulting in degraded
dynamic performance, as mentioned in [31]. On the other hand, identifying the parameters
of the transformer may also be accomplished through the instantaneous phasor method [34]
and RLS-based parasitic parameter extraction [35]. However, these control strategies can-
not determine capacitor value on both sides of the DAB converter, and their algorithm is
also complicated.

Based on those mentioned above, this paper proposes a method for enhancing the
steady-state performance of the DAB converter with MDCS-MPC control. At the same
time, the system parameters are identified online to eliminate the effects of mismatch.
Firstly, sensitivity analyses are carried out for system parameters and the other measured
parameters to determine how each parameter impacts the steady-state performance of the
converter. After that, the online parameter identification technique is carried out to track
the most vital parameters using least-squares analysis (LSA), which is considered the most
straightforward technique to find the optimal solution of the linear equation set, according
to [36]. The contributions of this research can be summarized as follows:

1. The percentages of steady-state error for major system parameters and measurement
parameters of the DAB converter are first modeled mathematically. Based on this,
a comparison of the percentages of steady-state error is implemented, showing that
system parameters L and C2 have the most effect on the output voltage compared
to the other parameters. In addition, the effects of system parameters L and C2
are compared in depth through sensitivity analysis by the partial derivative-based
method. Then, through simulation verification, the MDCS-MPC shows that it is
adversely affected by a mismatch in the system parameters. Simulation results show
that the mathematical model is consistent with those in theory, demonstrating the
correction of the mathematical model and those in sensitivity analysis.

2. A simple parameter identification technique with the LSA is proposed to identify the
DAB converter’s actual values of system parameters. After that, by applying their
actual values in the MDCS-MPC, the steady-state performance of the output voltage
is significantly improved. Moreover, the MDCS-MPC under the match parameters is
compared to the proportional–integral (PI) control to show its effectiveness.

The outline of the paper consists of seven sections. In Section 2, the operation principle
of the DAB converter under SPS modulation is shown. In Section 3, a brief review of the
operating principle of the MDCS-MPC method is presented for perusal. Section 4 discusses
and analyzes the analysis of the parameter effects on the steady-state performance and
sensitivity analysis of the system parameters of the DAB converter. Section 5 presents the
parameter identification technique of the LSA. Simulation results of the DAB converter
under different operating scenarios are carried out to show the proposed method’s benefit
in Section 6. Finally, the conclusions of the method are presented in Section 7.

2. Operation Principle of the DAB Converter

Figure 1a shows the topology of the DAB converter. Assume that the high-frequency
transformer T has a turns ratio of n:1, and the power is transferred from the left to the right.
The input and output sides are connected to capacitors C1 and C2, respectively. The induc-
tance, denoted by L, includes the transformer’s leakage inductance and series inductance.
Figure 1b shows the waveforms produced by the DAB converter when subjected to SPS
modulation. Therefore, the power transmission between the two bridges is accomplished
with a phase-shift ratio of D. The switching frequency is denoted by f , while Th represents
the half-switching period.

Several comprehensive modeling research studies on DAB converters can be found
in [37–39]. Considering that, the DAB converter is regarded as a first-order system. Com-
pared to other models, such as the enhanced reduced-order model [40], the generalized
average model [41], and the discrete-time model [42], the reduced-order model [37,43] has
been demonstrated to be an excellent middle ground among complexity, flexibility, and
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accuracy. Reference [3] contains additional information regarding comparing various DAB
models. Because of this, the reduced-order model will be applied repeatedly throughout
this study. Thus, the current is can be represented as follows when the converter is in the
steady state

is =
nv1

2 f L
D(1 − D). (1)

According to (1), it is easy to see that the transferred power will be through the
converter when 0 ≤ D ≤ 1. The transferred power has a maximum value when D = 0.5.
Thus, from Figure 1, the output current can be obtained as follows

C2
dv2

dt
= is − i2. (2)

On the other hand, to implement the system model dynamically into the digital signal
processor (DSP) easily, the approximation of the first-order derivative can be utilized. Com-
pared to central approximation, backward and forward approximations are straightforward
to implement. Thus, the forward approximation is used to discretize (2) as follows [21]

v2[k + 1] = v2[k] +
is[k]− i2[k]

f C2
(3)

where v2[k + 1] and v2[k] are the output voltages at the (k + 1)th and kth sampling step,
respectively. is[k] and i2[k] are the bridge output current and converter output current at
the kth sampling step, respectively.

Assuming that there is not a significant change in the load current during one sampling
period, this results in

i2[k] = i2[k + 1]. (4)

Thus, the prediction of the output voltage at the (k + 1)th sampling step is as follows

v2[k + 2] = v2[k + 1] +
is[k + 1]− i2[k]

f C2
. (5)

Substituting v2[k + 2] into (3)–(5), (6) is obtained as follows

v2[k + 2] = v2[k] +
is[k + 1] + is[k]− 2i2[k]

f C2
. (6)

3. Review of Moving Discretized Control Set Model Predictive Control (MDCS-MPC)

In this section, the operating principle of MDCS-MPC will be briefly summarized
from [20–24]. Considering the delay computation, MDCS-MPC has a prediction horizon
that spans two sampling intervals. As a result, the following cost function is proposed
as follows

g[k] = c1(v2r − v2[k + 2])2 + c2(v2[k + 2]− v2[k])
2. (7)

In (7), the weighting factor c1 adjusts the output voltage error from the reference value
v2r, while the weighting factor c2 determines the voltage fluctuation. Obviously, tuning c1
and c2 is intuitively crucial to the performance of the MDCS-MPC. In addition, a relative
weighting factor c can be chosen as follows

c =
c1

c2
. (8)

In (8), if c is chosen too small, the system cannot always converge. However, if c is
chosen too large, the control bandwidth of the controller will be reduced. Actually, selecting
weighting factors requires a sequence of trial and error.

For digital control, the phase-shift ratio D must be discretized. The precision of the
discretization depends on the control platform being utilized, with the value ∆ f being the
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finest phase-shift value. As shown in (9), the phase-shift ratio is discretized for simple
analysis when the power is transferred in a unidirectional mode

D ∈
{

0, ∆ f , 2∆ f , . . . , 0.5
}

. (9)

Figure 2 shows an intuitive mechanism of the MDCS-MPC method. For example,
during the control interval from k to k + 1, the number of points µ = 3 is examined. The
discretized control set is

{
δ − ∆ f , δ, δ + ∆ f

}
. After every period of sampling, the center

point is recalculated. According to Figure 2, the optimal value of D, as shown in the red
line, is changed from δ + ∆ f to δ + 2∆ f when the sampling step evolves from k to k + 1.
Thus, the discretized control set continuously progresses within the value range, as shown
in (9). Obviously, increasing µ can improve the transition dynamics. However, it also places
a significant computational burden on the controller. Thus, an adaptive step is utilized as
follows

V∆ =

{
|v2r − v2[k]| |v2r − v2[k]| ≤ Vm

Vm |v2r − v2[k]| > Vm
(10)

∆a = ∆ f (1 + λV∆) (11)

where Vm is the saturated voltage; λ is a coefficient determined according to the requirement
of transition performance.
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A concise summary of the MDCS-MPC operation principle for the DAB converter can
be found as follows. Firstly, the evaluation process begins with calculating the adaptive
step, as shown in (10) and (11). Once this is completed, the iteration for MDCS-MPC
begins with D shifts within the range described in (9). Then, to compare the minimal, cost
functions, as shown in (7), are computed with each corrected voltage prediction value, as
shown in (6). Finally, the optimal values of D are then used to control the DAB converter
through a pulse width modulation generator.

4. Analysis of the Parameter Effects on the Steady-State Performance

As presented in Section 2, six model parameters of the DAB converter, including
system parameters (L, C2, and n) and measurement parameters (v1, v2, and i2), affect the
steady-state performance.

First, the mismatch ratios of the inductance (mL) and output capacitance (mC2) are
defined as shown in (12)

mL = Lact
L

mC2 = C2act
C2

(12)

where Lact and C2act are the actual values of L and C2, respectively.
In the steady state, the average current flowing through the output capacitor is deemed

equal to zero. Thus, it is possible to assume that the current is = i2 = v2/R [44]. Conse-
quently, from (1), (12), and the fact that v2 is controlled as v2 = v2r, the output voltage
according to mL and mC2 is rewritten as follows

v2,LC2 =
f RC2mLmC2v2r

1 − mL + f RC2mLmC2
. (13)
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From (13), the percentage of steady-state error ∆v2,LC2% is derived as follows

∆v2,LC2% =
v2,LC2 − v2r

v2r
× 100% =

mL − 1
1 − mL + f RC2mLmC2

× 100%. (14)

Figure 3 shows the percentage of steady-state error ∆v2,LC2% according to mL and mC2.
Mismatch ratios mL and mC2 are shown in Table 3, considering the maximum mismatches
as analyzed in Section 1. The parameters of the converter are shown in Table 4. According
to Figure 3, ∆v2,LC2% has a maximum value of 0.9560% when mL = 1.2 and mC2 = 0.8. On
the other hand, ∆v2,LC2% shows the minimum value of −1.4006% when mL = mC2 = 0.8.
Meanwhile, when mL = 1, ∆v2,LC2% has a value of 0, which means that if L has a perfect
match value, v2 has no steady-state error, even if C2 contains mismatches.
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Table 3. Range of mismatch ratios.

Mismatch Ratio Value

mL ±20%
mC2 ±20%
mn ±0.1%
mv1 ±0.9%
mi2 ±0.9%
mv2 ±0.9%

Table 4. System parameters.

Meaning Symbol Value

Switching frequency f 10 kHz
Inductance L 50 µH
Input capacitance C1 440 µF
Output capacitance C2 220 µF
Input voltage v1 100 V
Output voltage v2 80 V
Transformer turn ratio n 1
Resistive load R 10 Ω

Similar to the above analysis, the mismatch ratios of the transformer turn ratio n and
input voltage v1 are defined as

mn = nact
L

mv1 = v1act
v1

(15)

where nact and v1act are the actual values of n and v1, respectively.
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Thus, the output voltage in the steady state is shown as follows

v2,nv1 =
f RC2v2r

−1 + mnmv1 + f RC2
. (16)

From (16), the percentage of steady-state error ∆v2,nv1% according to mn and mv1 is
derived as follows

∆v2,nv1% =
v2,nv1 − v2r

v2r
× 100% =

1 − mnmv1

−1 + mnmv1 + f RC2
× 100%. (17)

Figure 4 shows the percentage of steady-state error ∆v2,nv1% according to mn and mv1.
The range of mismatch ratios is shown in Table 3. According to LEM manufacture (current
transducer LA 55-P and voltage transducer LV 25-P), the sensor accuracy is typically less
than 0.9%. For the accuracy of n, it is easily measured by electronic equipment. Thus, it is
clear that the mismatch of 0.1% is acceptable. From Figure 4, it is easy to see that ∆v2,nv1%
has a maximum value of 0.0454% and a minimum value of −0.0455%. Obviously, these
values are close to zero.
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Similarly, the mismatch ratios of the output current i2 and output voltage v2 are
defined as

mi2 = i2act
i2

mv2 = v2act
v2

(18)

where i2act and v2act are the actual values of i2 and v2, respectively.
Thus, the output voltage in the steady state is as follows

v2,i2v2 =
f RC2mi2mv2v2r

1 − mi2mv2 + f RC2mi2mv2
. (19)

From (19), the percentage of steady-state error ∆v2,i2v2% according to mi2 and mv2 is
derived as follows

∆v2,i2v2% =
v2,i2v2 − v2r

v2r
× 100% =

mi2mv2 − 1
1 − mi2mv2 + f RC2mi2mv2

× 100%. (20)

Figure 5 shows the percentage of steady-state error ∆v2,i2v2% according to mi2 and
mv2. The range of mismatch ratios is shown in Table 3. ∆v2,i2v2% has a maximum value
of 0.0808% and a minimum value of −0.0829%. Similar to ∆v2,nv1%, these values are close
to zero.
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Figure 5. Percentage of steady-state error ∆v2,i2v2% according to mi2 and mv2.

Table 5 and Figure 6 compare all the percentages of steady-state error. It is clear
that ∆v2,LC2% has the highest absolute value, while both ∆v2,nv1% and ∆v2,i2v2% have
very small values. That means system parameters L and C2 have the most effect on the
output voltage compared to the other parameters. Thus, the effects of the transformer
turn ratio n and the sensor accuracies (v1, v2, and i2) can be considered trivial. Moreover,
this effect can be overcome if a robust and adaptable controller is utilized. Fortunately,
MDCS-MPC combined with the parameter identification technique is regarded as one of
the advanced control methods with a high capacity of robustness and adaptiveness [1–6].
The effectiveness of the proposed controller will be presented in detail in Section 5.

Table 5. Comparison of the percentages of steady-state error.

Percentage of Steady-State Error Minimum Maximum

∆v2,LC2% –1.4006% 0.9560%
∆v2,nv1% –0.0455% 0.0454%
∆v2,i2v2% –0.0829% 0.0808%
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From the analysis mentioned above, it is concluded that system parameters L and
C2 primarily affect the output voltage compared to the others. To analyze the effect of
system parameters L and C2, the sensitivity theory is studied on how the uncertainty
of the system model affects the steady-state performance [45,46]. Many approaches to
performing a sensitivity analysis of multiple parameters have been developed, including
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derivative-based methods [47], one-at-a-time sampling [48], and regression analysis [49]. In
this paper, the partial derivative-based method [47] involves taking the partial derivative of
the output Y with respect to an input factor X, which is utilized to achieve the task. Thus,
the sensitivity can be derived by the following general equation

SY
X =

∂Y
Y

∂X
X

=
X
Y

∂Y
∂X

. (21)

Therefore, the sensitivities Sv2
mL and Sv2

mC2 of L and C2 to the output voltage v2, respec-
tively, are derived according to (13) and (21) as follows

Sv2
mL =

mL
v2

∂v2

∂mL
=

f RC2mLmC2v2r

v2(1 − mL + f RC2mLmC2)
2 (22)

Sv2
mC2 =

mC2

v2

∂v2

∂mC2
=

f RC2mLmC2v2r(1 − mL)

v2(1 − mL + f RC2mLmC2)
2 . (23)

From (22) and (23), the values of Sv2
mL and Sv2

mC2 are shown in Figure 7 with parameters in
Table 4. Obviously, Sv2

mL is a greater distance from 0 than Sv2
mC2 , and as a result, the sensitivity

of L has a more significant impact on the system compared to C2. Sv2
mC2 has minimum

and maximum values at −0.0097 and 0.0138, respectively, while Sv2
mL has minimum and

maximum values at 0.0320 and 0.0690, respectively. Moreover, according to Figure 3, it
is easy to see that when L has a mismatch, C2 also affects ∆v2,LC2%. Therefore, L and
C2 must be identified online together to improve the steady-state performance of the
DAB converter.
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Figure 8 shows simulation results of MDCS-MPC with various mismatches of L and
C2. System parameters are shown in Table 4, and the control variables of MDCS-MPC are
shown in Table 6. Note that the number of points µ is chosen to balance performance and
complexity. The output voltage is controlled at 80 V. Obviously, there is no steady-state
error from 0.08 s to 0.11 s when L and C2 have actual values (L = 50 µH and C2 = 220 µF,
meaning mL = mC2 = 1). When mL = mC2 = 0.8, the steady-state error has a minimum value,
while it has a maximum value when mL = 1.2 and mC2 = 0.8. In other instances of mismatch,
there are also the steady-state errors. On the other hand, the simulation result is primarily
consistent with the theoretical analysis, proving the effectiveness of theoretical analysis
and the effect of L and C2 on MDCS-MPC in steady-state operation.
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Table 6. Controller parameters.

Meaning Symbol Value

Number of points µ 11
Weighting factor c1 1
Weighting factor c2 5
Finest phase shift ∆ f 1 × 10−5

Coefficient λ 1
Saturated voltage Vm 10 V

5. Parameter Identification Technique

As in the detailed analysis in Section 4, there are steady-state errors of v2 in MDCS-
MPC when the system parameters L and C2 have mismatch values. Thus, their parameters
are identified online using a simple parameter identification technique, as presented below.

From (1)–(6), the constraint of the output voltage between sampling steps is derived
as follows

v2[k + 2] =
nv1[k + 1]

2 f 2LC2
D[k + 1](1 − D[k + 1]) +

nv1[k]
2 f 2LC2

D[k](1 − D[k])− 2
f C2

i2[k] + v2[k]. (24)

By rearranging (24), we obtain

n
2 f 2 (v1[k + 1]D[k + 1](1 − D[k + 1]) + v1[k]D[k](1 − D[k]))

1
L
+ (v2[k]− v2[k + 2])C2 =

2
f

i2[k]. (25)

From (25), the following is obtained

α[k]
1
L
+ u[k]C2 = β[k] (26)

where
α[k] =

n
2 f 2 (v1[k + 1]D[k + 1](1 − D[k + 1]) + v1[k]D[k](1 − D[k])) (27)

β[k] =
2
f

i2[k] (28)
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u[k] = v2[k]− v2[k + 2]. (29)

By rearranging (25) to the matrix form, the following is obtained

Ax=b (30)

where A ∈ Rk×2, x ∈ R2, and b ∈ Rk×1, presented as follows

A =


α[k]

εα[k − 1]
...

εk−1α[1]

u[k]
εu[k − 1]

...
εk−1u[1]

 (31)

x =
[ 1

L C2
]T (32)

b =
[
β[k] εβ[k − 1] . . . εk−1β[1]

]T . (33)

In (31)–(33), constant ε is the forgetting factor. Considering that the abrupt alteration
in operating scenarios (for instance, reference voltage steps up, etc.) and the system
parameters (for instance, one of the parallel capacitors is damaged, etc.) renders the
previously measured data less critical, and the impacts of such data must rapidly disappear.
When v2 is somewhat near v2r, the previously measured data should be required less
frequently as the sampling step increases. In most cases, the range 0 < ε < 1 is selected
for the variable to provide versatility. If ε is too small (close to zero), the estimator’s
performance will suffer since it will be more susceptible to being affected by noise or
disturbance. On the contrary, when ε approaches 1, there is a slight forgetting effect. This
means that the solution of the proposed approach is mainly driven by the previously
obtained data, which slows down the convergence speed. In regular hardware operation,
L and C2 are usually subject to slow variation, resulting in ε needing to be set as close as
possible to 1. In this paper, ε = 0.99 is used.

From (30)–(33), the following expression is obtained

e = Ax − b. (34)

By using the LSA according to [36], a mean square error is derived as follows

L(x) = ∥e∥2 = (Ax − b)T(Ax − b). (35)

In order to obtain a unique minimizer, a derivation is as follows

∂L(x)
∂x

= 2ATAx − 2ATb = 0. (36)

As a result, x is obtained as follows

x =
(

ATA
)−1

ATb. (37)

The online identification of x is accomplished by substituting (31)–(33) into (37). On the
other hand, the matrix and vector both have a growing number of rows, which significantly
burdens the controller and makes the solution impracticable. Therefore, (38) should be
rewritten to reduce the dimensionality of all the matrices and vectors

x = (Ω)−1φ (38)

where

Ω =

[
ω11[k − 1] ω12[k − 1]
ω21[k − 1] ω22[k − 1]

]
= ATA (39)
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φ =

[
φ1[k − 1]
φ2[k − 1]

]
= ATb. (40)

Therefore, the elements from (39) and (40) can be calculated as follows

ω11[k − 1] =
k−1
∑

h=1

(
εk−1−hα[h]

)2

ω12[k − 1] = ω21[k − 1] =
k−1
∑

h=1

(
εk−1−h

)2
α[h]u[k]

ω22[k − 1] =
k−1
∑

h=1

(
εk−1−hu[k]

)2

φ1[k − 1] =
k−1
∑

h=1

(
εk−1−h

)2
α[h]β[h]

φ2[k − 1] =
k−1
∑

h=1

(
εk−1−h

)2
β[h]u[k].

(41)

From the point of view of (41), there is a successive recurrence relation of the elements
in order to ensure the easy implementation of the proposed approach, as shown in (42)

ω11[k − 1] = α2[k − 1] + ε2ω11[k − 2]
ω12[k − 1] = ω21[k − 1] = α[k − 1]u[k] + ε2ω12[k − 2]
ω22[k − 1] = u2[k] + ε2ω22[k − 2]
φ1[k − 1] = α[k − 1]β[k − 1] + ε2 φ1[k − 2]
φ2[k − 1] = β[k − 1]u[k] + ε2 φ2[k − 2].

(42)

Different from the matrix A and vector b having many elements, Ω ∈ R2×2 and
φ ∈ R2. Thus, a simple calculation of the inverse matrix Ω−1 significantly mitigates the
calculation burden.

The flowchart of the proposed method is shown in Figure 9. First, α and β are derived
from (27) and (28), respectively. Then, Ω and φ are calculated from (42), while x is calculated
from (38). After the system parameters L and C2 are identified online from (32), the adaptive
step of MDCS-MPC is calculated based on (10) and (11). MDCS-MPC will generate a range
of phase-shift ratios with the number of points µ. Then, the iteration starts for MDCS-MPC
by comparing values of the cost function of corresponding phase-shift ratios to find the
optimal values of D.
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6. Simulation Verification

In this section, the effectiveness of the proposed method is verified through simulation.
In addition, the dynamic performance of MDCS-MPC is compared with PI control under
match system parameters. Gains of PI control are designed according to [50].

Figure 10 shows the steady-state error of v2 in MDCS-MPC before and after parameter
identification. Initially, MDCS-MPC operates under mismatch parameters, as shown in
Figure 10a, showing the steady-state error from 0.04 s to 0.1 s. However, when the parameter
identification technique is applied at 0.1 s, the steady-state error immediately disappears,
meaning the steady-state performance is immediately improved. Moreover, the values of
L and C2 are also identified online as the actual values. Obviously, when MDCS-MPC is
combined with the parameter identification technique, the steady-state performance of
the proposed controller is significantly improved. Similar to Figure 10a, other cases of
mismatch system parameters are shown in Figure 10b–d. When the parameter identification
technique is applied, the steady-state error immediately disappears. It is easy to conclude
that both steady-state and identification performances also prove the effectiveness of the
proposed method.

As shown in Figure 11, MDCS-MPC is compared with the PI control under the match
system parameters. When v2r steps up at 0.04 s, the MDCS-MPC costs 2 ms for settling time
with overshoot-free, while the PI control costs 8 ms with a slight overshoot value. On the
other hand, when v2r steps down at 0.06 s, the MDCS-MPC costs 3 ms for settling time with
undershoot-free, while the PI control costs 11 ms with an undershoot of 4.5 V. Obviously,
compared to the PI control, the MDCS-MPC provides better dynamic performance for the
reference voltage change step.
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Figure 12 compares the dynamic performance of the output voltage of the two methods
under the match system parameters. When i2 steps up at 0.06 s, the MDCS-MPC shows
1 V for undershoot, while the PI control shows 2.1 V. On the other hand, when i2 steps
down at 0.08 s, the MDCS-MPC shows 1 V for overshoot, while the PI control shows
2.2 V for overshoot with 8 ms for settling time. Obviously, compared to the PI control, the
MDCS-MPC also provides better dynamic performance when changing the output current.
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parameters.

Figure 13 shows the simulation results when the input voltage v1 steps up from 95 V to
100 V at 0.06 s and steps down from 100 V to 95 V at 0.1 s under the match system parameters.
When v1 changes, both MDCS-MPC and PI control have good dynamic performance, but
there are more voltage ripples in the PI control compared to the MDCS-MPC.
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7. Conclusions

This paper proposed a combination of MDCS-MPC and the online parameter identi-
fication technique for controlling the DAB converter, aiming to improve the steady-state
performance of the output voltage. The contributions are briefly summarized as follows:
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1. Key model parameters for the DAB converter are found by analysis of the percentage
of steady-state error of the output voltage, and sensitivity analysis of the system
parameters is derived mathematically;

2. LSA is used to identify online system parameter values, resulting in improved steady-
state performance.

Furthermore, the dynamic performance of MDCS-MPC reveals that it is superior to
PI control. Simulation verification was carried out to demonstrate the robustness of the
proposed method in terms of parameter variation.
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Acronyms

Abbreviation Definition
DAB Dual Active Bridge
DPS Dual Phase-Shift
DSP Digital Signal Processor
EPS Extended Phase-Shift
ESS Energy Storage System
LSA Least-Squares Analysis
MDCS-MPC Moving Discretized Control Set-Model Predictive Control
PI Proportional–Integral
RLS Recursive Least-Squares
SOC State of Charge
SPS Single Phase-Shift
SST Solid-State Transformer
TPS Triple Phase-Shift
ZVS Zero-Voltage Switching
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