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marco.s@verat.net

2 Department of Mathematics, National Kaohsiung Normal University, Kaohsiung 82444, Taiwan
3 Department of Engineering Sciences, Izmir Katip Celebi University, Izmir 35620, Turkey;

haliscan.koyuncuoglu@ikcu.edu.tr
4 Department for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius

University in Skopje, Partizanski Odredi 24, P.O. Box 560, 1000 Skopje, North Macedonia;
velinovd@gf.ukim.edu.mk

* Correspondence: wsdu@mail.nknu.edu.tw

Abstract: This paper investigates diverse classes of multidimensional Weyl and Doss ρ-almost
periodic functions in a general measure setting. This study establishes the fundamental structural
properties of these generalized ρ-almost periodic functions, extending previous classes such as
m-almost periodic and (equi-)Weyl-p-almost periodic functions. Notably, a new class of (equi-)Weyl-
p-almost periodic functions is introduced, where the exponent p > 0 is general. This paper delves
into the abstract Volterra integro-differential inclusions, showcasing the practical implications of
the derived results. This work builds upon the extensions made in the realm of Levitan N-almost
periodic functions, contributing to the broader understanding of mathematical functions in diverse
measure spaces.
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1. Introduction

The class of almost periodic functions was introduced by H. Bohr around 1925 and
later generalized by many other mathematicians, including V. Stepanov, H. Weyl, and
A. S. Besicovitch. Suppose that (X, ∥ · ∥) is a complex Banach space and F : Rn → X is
a continuous function (n ∈ N). Then, we say that the function F(·) is almost periodic
if and only if for each ϵ > 0 there exists l > 0 such that for each t0 ∈ Rn there exists
τ ∈ B(t0, l) ≡ {t ∈ Rn : |t − t0| ≤ l} such that∥∥F(t + τ)− F(t)

∥∥ ≤ ϵ, t ∈ Rn;

here, |t − t0| denotes the Euclidean distance in Rn between t and t0. Any trigonometric
polynomial in Rn is almost periodic, and it is well known that a continuous function F(·)
is almost periodic if and only if there exists a sequence of trigonometric polynomials in
Rn which converges uniformly to F(·). Almost periodic functions are incredibly important
in the qualitative analysis of solutions to the ordinary differential equations, the partial
differential equations, and the abstract (nonlinear) Volterra integro-differential equations.
These functions exhibit unique properties that make them indispensable for understanding
the behavior of dynamic systems. For a comprehensive exploration of almost periodic
functions and their diverse applications, readers are encouraged to delve into prominent
research monographs such as those authored by A. S. Besicovitch [1], A. M. Fink [2], G.
M. N’Guérékata [3], and S. Zaidman [4]. Furthermore, the hierarchy and classification
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of almost-periodic function spaces, as discussed by J. Andres, A. M. Bersani, and R. F.
Grande in [5], offer valuable insights into the structural aspects of this mathematical con-
cept. Additionally, M. Kostić’s extensive contributions in [6,7] and T. Diagana’s work [8]
on almost-automorphic-type and almost-periodic-type functions provides a contemporary
perspective on the subject. M. Levitan’s foundational text [9] and S. Stoiński’s comprehen-
sive treatment [10] are also essential references, offering historical and language-specific
insights into almost periodic functions. This diverse array of references forms a solid
foundation for readers seeking a nuanced understanding of almost periodic functions and
their multifaceted applications.

In physics and crystallography, modulated crystals and almost periodic measures,
as explored in works like Lee et al. [11], provide crucial mathematical frameworks for
understanding the intricate structures and behaviors of materials. Additionally, their appli-
cations extend into medicine, exemplified by E. Alvarez, S. Castillo, M. Pinto [12] work on
(ω, c)-pseudoperiodic functions, addressing phenomena in the Lasota–Wazewska model,
particularly relevant in medical contexts involving red cell production. Furthermore, the
versatility of almost periodic functions finds applications in engineering, as demonstrated
by M. F. Hasler and G. M. N’Guérékata’s [13] exploration of Bloch-periodic functions,
showcasing their utility in addressing engineering challenges with periodic characteristics.

If the function F : Rn → X is locally p-integrable, where 1 ≤ p < ∞, then we say that
F(·) is Stepanov-p-almost periodic if and only if for every ϵ > 0 there exists l > 0 such that
for each t0 ∈ Rn there exists τ ∈ B(t0, l) ∩Rn with∥∥F(t + τ + u)− F(t + u)

∥∥
Lp([0,1]n :X)

≤ ϵ, t ∈ Rn.

The class of Weyl almost periodic functions was introduced by H. Weyl in 1927 as
a generalization of the class of Stepanov-p-almost periodic functions, and this class was
later extended by A. S. Kovanko in 1944: If the function F : Rn → X is locally p-integrable,
where 1 ≤ p < ∞, then we say that F(·) is:

(i) equi-Weyl-p-almost periodic if and only if, for every ϵ > 0, there exist two finite real
numbers l > 0 and L > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, L) with

sup
t∈Rn

[
l−

n
p
∥∥F(τ + ·)− F(·)

∥∥
Lp(t+l[0,1]n :X)

]
< ϵ. (1)

(ii) Weyl-p-almost periodic if and only if, for every ϵ > 0, there exists a finite real number
L > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, L) with

lim sup
l→+∞

sup
t∈Rn

[
l−

n
p
∥∥F(τ + ·)− F(·)

∥∥
Lp(t+l[0,1]n :X)

]
< ϵ. (2)

(iii) Doss-p-almost periodic if and only if, for every ϵ > 0, there exists a finite real number
L > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, L) with

lim sup
l→+∞

[
l−

n
p
∥∥F(τ + ·)− F(·)

∥∥
Lp(B(0,l):X)

]
< ϵ. (3)

Any equi-Weyl-p-almost periodic function is Weyl-p-almost periodic, while the converse
statement is not generally true. Furthermore, any Weyl-p-almost periodic function is Doss-
p-almost periodic, while the converse statement is not generally true. By (e)-Wp AP(Rn : X),
we denote the space of all (equi-)Weyl-p-almost periodic functions F : Rn → X.

On the other hand, the class of one-dimensional almost periodic functions in view of
the Lebesgue measure (m-almost periodic functions, in short) was introduced by S. Stoiński
in 1994 [14] and later reconsidered in a series of important research papers by Polish
mathematicians. Notable works include the research by D. Bugajewski and A. Nawrocki
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on the asymptotic properties and convolutions of m-almost periodic functions, with ap-
plications to linear differential equations [15,16]. Additionally, the integration of almost
periodic functions into the context of integrate-and-fire models was explored by P. Kasprzak,
A. Nawrocki, and J. Signerska-Rynkowska [17]. Furthermore, the application of convolu-
tion to linear differential equations with Levitan almost periodic coefficients was studied
by A. Nawrocki [18]. These works collectively contribute to a deeper understanding of
the rich properties and applications of m-almost periodic functions. In our recent research
article [19], we have introduced and analyzed the class of multidimensional almost periodic
functions in general measure: a Lebesgue measurable function F : Rn → X is said to be
m-almost periodic if and only if for each ϵ > 0 the set{

τ ∈ Rn : sup
t∈Rn

m
({

s ∈ t + [0, 1]n : ∥F(s + τ)− F(s)∥ ≥ ϵ
})

≤ ϵ

}

is relatively dense in Rn. Any Stepanov-p-almost periodic function F : Rn → X is m-almost
periodic (p ≥ 1), and we also know that any bounded, m-almost periodic function F :
Rn → X is Stepanov-p-almost periodic (p ≥ 1). In [19], we observed that the characteristic
function of any compact subset of Rn is not m-almost periodic; on the other hand, we
already know that this function is equi-Weyl-p-almost periodic for any finite exponent
p ≥ 1.

In this paper, we further generalize the class of m-almost periodic functions and the
class of (equi-)Weyl-p-almost periodic functions (Doss-p-almost periodic functions) by
considering a new class of (equi-)Weyl-p-almost periodic functions (Doss-p-almost periodic
functions) in general measure, with a general exponent p > 0. At this place, it should be
also worthwhile to mention that A. Michalowicz and S. Stoiński [20] have extended the
class of Levitan N-almost periodic functions in a similar manner, by considering the class
of Levitan N-almost periodic functions in the Lebesgue measure.

This paper is structurally organized as follows. After explaining the notation used
in this paper, we recall the basic definitions and results of multidimensional Weyl ρ-
almost-periodic-type functions in general metrics (Section 2). In Section 3, we introduce
and analyze the class of (equi-)Weyl (F,B, Λ′, ρ, Ω, m′, ν)-almost periodic functions; see
Definition 4. Our first structural result is given in Proposition 1. In particular, these results
show that any (equi)-Weyl-p-almost periodic function F : Rn → X is (equi)-Weyl-m-almost
periodic, as well as that any bounded, (equi)-Weyl-m-almost periodic function F : Rn → X
is (equi)-Weyl-p-almost periodic (p ≥ 1). Section 4 investigates the multidimensional Doss
ρ-almost periodic type functions in general measure. The class of Doss (F,B, Λ′, ρ, m′, ν)-
almost periodic functions is introduced in Definition 5 and our first structural result is
given in Proposition 2. In Section 5, we present some applications to the abstract Volterra
integro-differential inclusions in Banach spaces. We divide this section into two separate
subsections. In the final section, we provide several useful remarks, observations and
perspectives for the further explorations of generalized almost periodicity and generalized
almost automorphy in measure.

2. Mathematical Preliminaries and Notations

We assume henceforth that (X, ∥ · ∥) and (Y, ∥ · ∥Y) are complex Banach spaces. I
denotes the identity operator on Y, L(Y) denotes the Banach space of all bounded linear
operators from Y into Y, n ∈ N is a fixed integer, and ⌈s⌉ := inf{k ∈ Z : s ≤ k} (s ∈ R). By
B, we denote a certain collection of nonempty subsets of X which satisfies that for each
x ∈ X there exists B ∈ B such that x ∈ B, m(·) stands for the Lebesgue measure on Rn

and P(A) stands for the power set of A. Here, the abbreviation a.e. will be used almost
everywhere. The vector space Cb(I : Y), where ∅ ̸= I ⊆ Rn, consists of all continuous
functions u : I → Y satisfying that supt∈I ∥u(t)∥Y < +∞; equipped with the sup-norm
∥ · ∥∞ := supt∈I ∥ · (t)∥Y, Cb(I : Y) becomes a Banach space. We will deal henceforth with
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the space Lp
ν(Ω : Y) := {u : Ω → Y ; u(·) is Lebesgue measurable and ||u||p < ∞}, where

p > 0, ∥ · ∥p := ∥ν(t) · (t)∥Lp(Ω:Y) and ν : Ω → (0, ∞) is a Lebesgue measurable function.

Generalized ρ-almost Periodic Type Functions and Their Metrical Generalizations

In this subsection, we recall the basic definitions and facts about generalized ρ-almost
periodic type functions and their metrical generalizations. Assume now that the following
conditions hold true:

(WM1-1): ∅ ̸= Λ ⊆ Rn, ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Ω ⊆ Rn is a Lebesgue measurable set such
that m(Ω) > 0, p ∈ P(Λ), the collection of all Lebesgue measurable functions
from Λ into [1,+∞], Λ′ + Λ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0, ϕ : [0, ∞) → [0, ∞)
and F : (0, ∞)× Λ → (0, ∞).

(WM1-2): For every t ∈ Λ and l > 0, Pt,l = (Pt,l , dt,l) is a pseudometric space of functions
from Ct+lΩ containing the zero function. Define ∥ f ∥Pt,l := dt,l( f , 0) for all
f ∈ Pt,l ; P = (P, d) is a pseudometric space of functions from CΛ containing
the zero function and ∥ f ∥P := d( f , 0) for all f ∈ P. The argument from Λ will
be denoted by ·· and the argument from t + lΩ will be denoted by ·.

In Definition 2 of Ref. [21], we introduced the following notion:

Definition 1. (i) By e−W(ϕ,F,ρ,Pt,l ,P)1
Ω,Λ′ ,B (Λ×X : Y), we denote the set consisting of all functions

F : Λ × X → Y such that, for every ϵ > 0 and B ∈ B, there exist two finite real numbers
l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that, for every
x ∈ B, the mapping u 7→ Gx(u) ∈ ρ(F(u; x)), u ∈ ⋃l>0;t∈Λ(t + lΩ) is well-defined, and

sup
x∈B

∥∥∥∥∥F(l, ··)ϕ(∥∥F(τ + ·; x)− Gx(·)
∥∥

P··,l

)∥∥∥∥∥
P

< ϵ. (4)

(ii) By W(ϕ,F,ρ,Pt,l ,P)1
Ω,Λ′ ,B (Λ × X : Y) we denote the set consisting of all functions F : Λ × X → Y

such that, for every ϵ > 0 and B ∈ B, there exists a finite real number L > 0 such that
for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that, for every x ∈ B, the mapping
u 7→ Gx(u) ∈ ρ(F(u; x)), u ∈ ⋃l>0;t∈Λ(t + lΩ) is well defined, and

lim sup
l→+∞

sup
x∈B

∥∥∥∥∥F(l, ··)ϕ(∥∥F(τ + ·; x)− Gx(·)
∥∥

P··,l

)∥∥∥∥∥
P

< ϵ. (5)

The multidimensional Weyl ρ-almost periodic functions are special cases of the above
introduced classes of functions, with Pt,l = Lp(·)(t + lΩ : C), the metric dt,l induced by the
norm of this Banach space (t ∈ Λ, l > 0), P = L∞(Λ : C) and the metric d induced by the
norm of this Banach space. If Pt,l = Lp(·)

ν (t + lΩ : C) (t ∈ Λ, l > 0) and P = L∞(Λ : C),
then the corresponding space will be denoted by (e-)Wp(u),ϕ,F,ν

Ω,Λ′ ,B (Λ × X : Y); similarly, if
p ∈ (0, 1), Pt,l = Lp

ν(t + lΩ : C) (t ∈ Λ, l > 0) and P = L∞(Λ : C), then the corresponding
space will be denoted by (e-)Wp,ϕ,F,ν

Ω,Λ′ ,B(Λ × X : Y). For more details about the Lebesgue

spaces with variable exponent Lp(x), we refer the reader to the monograph authored by L.
Diening et al. [22].

We need the following notion (see Definition 3.2.1(ii)-(b) of the Ref. [7] with ϕ(x) ≡ x,
and Definition 6.2.11(ii)-(b) of the Ref. [7]. Here and hereafter, Λl := Λ ∩ B(0, l)):

Definition 2. Suppose that ∅ ̸= Λ ⊆ Rn, ∅ ̸= Λ′ ⊆ Rn, Λ + Λ′ ⊆ Λ, ν : Λ → [0,+∞),
p ∈ P(Λ) [0 < p < 1] and the function F : Λ×X → Y satisfies that ∥F(·+ τ; x)− y·;x∥ · ν(·) ∈
Lp(·)(Λl) [Lp(Λl)] for all l > 0, x ∈ X, τ ∈ Λ′ and y·;x ∈ ρ(F(·; x)). Then, it is said that F(·; ·)
is Doss-(p(·), F,B, Λ′, ρ, ν)-almost periodic (Doss-(p, F,B, Λ′, ρ, ν)-almost periodic) if and only
if, for every B ∈ B and ϵ > 0, there exists L > 0 such that for each t0 ∈ Λ′ there exists a point
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τ ∈ B(t0, L)∩ Λ′ such that, for every l > 0, x ∈ B and · ∈ Λl , we have the existence of an element
y·;x ∈ ρ(F(·; x)) such that

lim sup
l→+∞

F(l) sup
x∈B

[
∥F(·+ τ; x)− y·;x∥Y · ν(·)

]
P
< ϵ, (6)

where P = Lp(·)(Λl) [P = Lp(Λl)].

The usual class of Doss-p-almost periodic functions is obtained by plugging Λ = Λ′ =
Rn, ρ = I, ν(·) ≡ 1, Ω = [−1, 1]n and F(l) ≡ l−n/p (p > 0). A very simple argumentation
shows that a p-locally integrable function F : Rn → Y is Doss-p-almost periodic if and
only if, for every ϵ > 0, there exists L > 0 such that for each t0 ∈ Rn there exists a point
τ ∈ B(t0, L) such that, for every t ∈ Rn, there exists lt > 0 such that, for every l ≥ lt,
we have [

(2l)−n
∫

t+l[−1,1]n
∥F(s + τ)− F(s)∥p

Y ds

]
≤ ϵ.

3. Multidimensional Weyl ρ-Almost-Periodic-Type Functions in General Measure

We will always assume henceforth that ∅ ̸= Λ ⊆ Rn, ν : Λ → [0, ∞), m′ : P(Rn) →
[0, ∞], m′(∅) = 0, ∅ ̸= Ω ⊆ Rn is a nonempty compact set, F : (0, ∞)× Λ → (0, ∞) and
Λ + lΩ ⊆ Λ for all l > 0. For every ϵ > 0, l > 0 and for every two functions f : Λ → Y and
g : Λ → Y, we define

dϵ,l,F,ν( f , g) := sup
t∈Λ

[
F(l, t) · m′

({
s ∈ t + lΩ : ∥ f (s)− g(s)∥Y · ν(s) ≥ ϵ

})]
(7)

and ∥ f ∥Pϵ,l,F,ν := dϵ,l,F,ν(0, f ). Then, we have 0 ≤ dϵ,l,F,ν( f , g) ≤ +∞, dϵ,l,F,ν( f , f ) = 0,
dϵ,l,F,ν( f , g) = dϵ,l,F,ν(g, f ) and dϵ,l,F,ν( f , g) = dϵ,l,F,ν( f + h, g + h) so that dϵ,l,F,ν(·; ·) is
a translation invariant pseudo-semimetric on the space of all functions from Λ into Y,
provided that for each l > 0 we have supt∈Λ F(l, t) < +∞. Moreover, the following holds:

(i) If f : Λ → Y, g : Λ → Y, h : Λ → Y and the assumptions A, B, C ⊆ Rn and
A ⊆ B ∪ C imply m′(A) ≤ m′(B) + m′(C), then we have

dϵ,l,F,ν( f , h) ≤ dϵ/2,l,F,ν( f , g) + dϵ/2,l,F,ν(g, h), ϵ > 0, l > 0. (8)

(ii) Suppose that ∅ ̸= Λ′ ⊆ Rn, Λ + Λ′ ⊆ Λ, Λ + lΩ ⊆ Λ for all l > 0, τ ∈ Λ′, M > 0,
the assumption v ∈ Λ + lΩ + τ implies ν(v − τ) ≤ Mν(v) and the assumption
A ⊆ B ⊆ Rn implies m′(A) ≤ m′(B). Then, we have

dϵ,l,F,ν( f (·+ τ), g(·+ τ)) ≤ dϵ/M,l,F,ν( f , g), (9)

for any two functions f : Λ → Y and g : Λ → Y.
(iii) Suppose that T ∈ L(Y), f : Λ → Y and g : Λ → Y. Then we have

dϵ,l,F,ν(T f , Tg) ≤ dϵ/∥T∥,l,F,ν( f , g), (10)

where dϵ/∥T∥,l,F( f , g) = 0 for T = 0.
(iv) Suppose that f : Λ → Y and g : Λ → Y. If the assumption A ⊆ B ⊆ Rn implies

m′(A) ≤ m′(B), then for each ϵ′ ∈ (0, ϵ) we have

dϵ,l,F,ν( f , g) ≤ dϵ′ ,l,F,ν( f , g) and ∥ f ∥Pϵ,l,F,ν ≤ ∥ f ∥Pϵ′ ,l,F,ν
.

(v) The triangle inequality

dϵ,l,F,ν( f , h) ≤ dϵ,l,F,ν( f , g) + dϵ,l,F,ν(g, h)
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does not hold, in general, and the assumption dϵ,l,F,ν( f , g) = 0 does not imply f = g
a.e., in general.

In particular, the property (v) shows that dϵ,l,F,ν(·; ·) is not a pseudo-metric on the
space of all functions from Λ into Y; therefore, we cannot apply Theorem 2.1 of the
Ref. [21] in order to see that liml→+∞ dϵ,l,F,ν( f , g) exists for fixed ϵ > 0, F(·; ·) and f (·), g(·).
Concerning this issue, we will state and prove the following result:

Theorem 1. Suppose that Λ = [0, ∞)n or Λ = Rn, Ω = [0, 1]n, F : Λ × X → Y and
G : Λ × X → Y. If B ⊆ X is an arbitrary nonempty set, then we define

dB
ϵ,l,F,ν(F, G) := sup

x∈B;t∈Λ

[
F(l) · m′

({
s ∈ t + lΩ : ∥F(s; x)− G(s; x)∥Y · ν(s) ≥ ϵ

})]
.

Then liml→+∞ dB
ϵ,l,F,ν(F, G) exists in [0, ∞], provided that the following conditions hold:

(i) If A, B ⊆ Rn, then m′(A ∪ B) ≤ m′(A) + m′(B).

(ii) For every l1 > 0, we have lim sup
l2→+∞

[
F(l2)
F(l1)

·
⌈

l2
l1

⌉n
]
≤ 1.

In particular, (ii) holds with F(l) ≡ l−n.

Proof. If l2 > l1 > 0, then (i) easily implies

sup
x∈B;t∈Λ

[
F(l2) · m′

({
s ∈ t + l2Ω : ∥F(s; x)− G(s; x)∥Y · ν(s) ≥ ϵ

})]

≤
[
F(l2)
F(l1)

·
⌈ l2

l1

⌉n
]

· sup
x∈B;t∈Λ

[
F(l1) · m′

({
s ∈ t + l1Ω : ∥F(s; x)− G(s; x)∥Y · ν(s) ≥ ϵ

})]
.

Applying (ii), we obtain

lim sup
l2→+∞

dB
ϵ,l2,F,ν(F, G) ≤ dB

ϵ,l1,F,ν(F, G)

and

lim sup
l2→+∞

dB
ϵ,l2,F,ν(F, G) ≤ lim inf

l1→+∞
dB

ϵ,l1,F,ν(F, G),

which simply yields the final conclusion.

In Definition 3.1 of Ref. [19], we recently introduced the following notion:

Definition 3. Suppose that ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Λ ⊆ Rn, F : Λ × X → Y is a given function,
ρ is a binary relation on Y, R(F) ⊆ D(ρ) and Λ + Λ′ ⊆ Λ. Then, we say that F(·; ·) is Bohr
(B, Λ′, ρ, Ω, m′, ν)-almost periodic if and only if for every B ∈ B and ϵ > 0 there exists L > 0
such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that, for every t ∈ Λ, x ∈ B and
s ∈ t + Ω, there exists an element ys;x ∈ ρ(F(s; x)) such that

sup
x∈B

∥∥∥F(·+ τ; x)− y·;x
∥∥∥

Pϵ,1,1,ν
≤ ϵ. (11)

Now, we would like to introduce the following notion:
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Definition 4. Suppose that ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Λ ⊆ Rn, F : Λ × X → Y is a given function, ρ
is a binary relation on Y, R(F) ⊆ D(ρ), F : (0, ∞)× Λ → (0, ∞), Λ + lΩ ⊆ Λ for all l > 0 and
Λ + Λ′ ⊆ Λ. Then, we say that:

(i) F(·; ·) is equi-Weyl (F,B, Λ′, ρ, Ω, m′, ν)-almost periodic if and only if for every B ∈ B and
ϵ > 0 there exist l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′

such that, for every t ∈ Λ, x ∈ B and s ∈ t + lΩ, there exists an element ys;x ∈ ρ(F(s; x))
such that

sup
x∈B

∥∥∥F(·+ τ; x)− y·;x
∥∥∥

Pϵ,l,F,ν
≤ ϵ. (12)

(ii) F(·; ·) is Weyl (F,B, Λ′, ρ, Ω, m′, ν)-almost periodic if and only if for every B ∈ B and ϵ > 0
there exists L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that there
exists l(τ) > 0 such that, for every t ∈ Λ, x ∈ B, l ≥ l(τ) and s ∈ t + lΩ, there exists an
element ys;x ∈ ρ(F(s; x)) such that (12) holds.

We omit the term “ν” from the notation if ν ≡ 1 and the term “Λ′” if Λ′ = Λ; furthermore, we
omit the term “B” from the notation if X = {0} and the term “ρ” from the notation if ρ = I.

Before proceeding any further, we would like to observe the following fact:

Remark 1. In place of (12), we can also consider a slightly stronger condition:

sup
l2≥l;x∈B

∥∥∥F(·+ τ; x)− y·;x
∥∥∥

Pϵ,l2,F,ν
≤ ϵ. (13)

If F(l, t) ≡ l−n, then Theorem 1 shows that this condition is equivalent to (12).

Any Bohr (B, Λ′, ρ, Ω, m′, ν)-almost periodic function has to be equi-Weyl
(1,B, Λ′, ρ, Ω, m′, ν)-almost periodic, provided that Λ + lΩ ⊆ Λ for all l > 0. It is also clear
that any equi-Weyl (F,B, Λ′, ρ, Ω, m′, ν)-almost periodic function is Weyl (F,B, Λ′, ρ, Ω, m′, ν)-
almost periodic.

For simplicity, we will consider here the case in which ϕ(x) ≡ x. The notion of
(equi)-Weyl-(Doss)-m-almost periodicity for a Lebesgue measurable function F : Rn → Y is
obtained by plugging F(t, l) ≡ l−n/p, Λ′ = Rn, ρ = I, Ω = [0, 1]n and ν(·) ≡ 1.

We continue by stating the following result. We can also consider general measures
here (cf. Proposition 3.4 of Ref. [19]):

Proposition 1. Suppose that (WM1-1) holds. Then, we have the following:

(i) Suppose that F ∈ (e−)Wp(u),x,F,ν
Ω,Λ′ ,B (Λ × X : Y) or F ∈ (e−)Wp,x,F,ν

Ω,Λ′ ,B(Λ × X : Y) for some
p ∈ (0, 1). Then F(·; ·) is (equi-)Weyl (F,B, Λ′, ρ, Ω, m, ν)-almost periodic.

(ii) Suppose that ρ = T ∈ L(Y), F(·; ·) is (equi-)Weyl (F,B, Λ′, ρ, Ω, m, ν)-almost periodic,
there exists M > 0 such that ν(t) ≤ M for all t ∈ Λ, there exists l0 > 0 such that
supl≥l0,t∈Λ[F(l, t)ln/p] < +∞ and for each set B ∈ B we have supx∈B;t∈Λ ∥F(t; x)∥Y <

+∞. Then, for every p ≥ 1, we have F ∈ (e−)Wp,x,F,ν
Ω,Λ′ ,B(Λ × X : Y).

Proof. The proof of (i) is almost trivial and therefore is omitted. To deduce (ii), define

Aϵ,l,t,x :=
{

s ∈ t + lΩ : ∥F(s + τ; x)− F(s; x)∥Y · ν(s) ≥ ϵ
}

, ϵ > 0, l > 0, t ∈ Λ, x ∈ X.
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Then, the final conclusion simply follows from the prescribed assumptions and the estimate
(B ∈ B; τ ∈ Λ′):

sup
x∈B;t∈Λ

F(l, t)

(∫
t+lΩ

∥∥F(s + τ; x)− TF(s; x)
∥∥p

Y · νp(s) ds

)1/p

≤ sup
x∈B;t∈Λ

F(l, t)

(
m
(

Aϵ,l,t,x
)[
(1 + ∥T∥) · sup

x∈B;t∈Λ
∥F(t; x)∥Y

]p
+ ϵpln Mp

)1/p

.

We will not reconsider the statement of Proposition 3.8 of Ref. [19] here. Concerning
the statement of Theorem 3.10 of Ref. [19], we have the following result:

Theorem 2. Suppose that M > 0, ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Λ ⊆ Rn, F : Λ × X → Y is a given
function, ρ = T ∈ L(Y), F : (0, ∞) → (0, ∞), ν : Λ → [0, ∞) and Λ + Λ′ ⊆ Λ. Suppose further
that, for every k ∈ N, the function Fk : Λ × X → Y is (equi-)Weyl-(F,B, Λ′, ρ, Ω, m′, ν)-almost
periodic and, for every ϵ > 0, l > 0 and B ∈ B, we have

lim
k→+∞

sup
x∈B

∥∥Fk(·; x)− F(·; x)
∥∥

Pϵ,l,F,ν
= 0.

Then, F(·; ·) is (equi-)Weyl-(F,B, Λ′, ρ, Ω, m′, ν)-almost periodic, provided that the assumptions
A, B, C ⊆ Rn and A ⊆ B ∪ C imply m′(A) ≤ m′(B) + m′(C), and the assumption v ∈
Λ + lΩ + τ for some τ ∈ Λ′ and l > 0 implies ν(v − τ) ≤ Mν(v).

Proof. The proof is very similar to the proof of the above-mentioned theorem. If k ∈ N,
x ∈ X and τ ∈ Λ′, then the estimates (8)–(10) imply:∥∥F( ·+τ; x)− TF(·; x)

∥∥
Pϵ,l,F,ν

≤
∥∥F(·+ τ; x)− Fk(·+ τ; x)

∥∥
Pϵ/2,l,F,ν

+
∥∥Fk(·+ τ; x)− TF(·; x)

∥∥
Pϵ/2,l,F,ν

≤
∥∥F(·+ τ; x)− Fk(·+ τ; x)

∥∥
Pϵ/2,l,F,ν

+
∥∥Fk(·+ τ; x)− TFk(·; x)

∥∥
Pϵ/4,l,F,ν

+
∥∥TFk(·; x)− TF(·; x)

∥∥
Pϵ/4,l,F,ν

≤
∥∥F(·; x)− Fk(·; x)

∥∥
Pϵ/2M,l,F,ν

+
∥∥Fk(·+ τ; x)− TFk(·; x)

∥∥
Pϵ/4,l,F,ν

+
∥∥Fk(·; x)− F(·; x)

∥∥
Pϵ/4∥T∥,l,F,ν

.

This simply completes the proof.

4. Multidimensional Doss ρ-Almost-Periodic-Type Functions in General Measure

In this section, we extend the class of Doss ρ-almost periodic functions from Definition 2,
provided that the function F(·; ·) does not depend on the second argument, by considering
the class of Doss (F,B, Λ′, ρ, m′, ν)-almost periodic functions. The precise definition goes
as follows:

Definition 5. Suppose that ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Λ ⊆ Rn, F : Λ × X → Y is a given function, ρ
is a binary relation on Y, R(F) ⊆ D(ρ), F : (0, ∞) → (0, ∞), ν : Λ → [0, ∞), and Λ + Λ′ ⊆ Λ.
Then, we say that F(·; ·) is Doss (F,B, Λ′, ρ, m′, ν)-almost periodic if and only if for every B ∈ B
and ϵ > 0 there exists L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that,
for every s ∈ Λ and x ∈ B, there exists an element ys;x ∈ ρ(F(s; x)) such that

lim sup
l→+∞

[
F(l) sup

x∈B
m′
({

s ∈ Λl :
∥∥F(s + τ; x)− ys;x

∥∥
Y · ν(s) ≥ ϵ

})]
≤ ϵ. (14)
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We omit the term “ν” from the notation if ν ≡ 1 and the term “Λ′” if Λ′ = Λ. Furthermore, we
omit the term “B” from the notation if X = {0} and the term “ρ” from the notation if ρ = I.

The proof of the following result is simple and therefore omitted:

Proposition 2. Suppose that ∅ ̸= Λ′ ⊆ Rn, ∅ ̸= Λ ⊆ Rn, F : Λ × X → Y is a given function,
ρ is a binary relation on Y, R(F) ⊆ D(ρ), F : (0, ∞) → (0, ∞), ν : Λ → [0, ∞) and Λ + Λ′ ⊆ Λ.

(i) If F(·; ·) is Doss-(p, F,B, Λ′, ρ, ν)-almost periodic and p ∈ D+(Λ), then F(·; ·) is Doss
(F,B, Λ′, ρ, m, ν)-almost periodic.

(ii) If ρ = T ∈ L(Y), there exists M > 0 such that ν(s) ≤ M for a.e. s ∈ Λ,

lim sup
l→+∞

[F(l)ln/p] < +∞,

F(·; ·) is Doss (F,B, Λ′, ρ, m, ν)-almost periodic and supx∈B;t∈Λ ∥F(t; x)∥Y < +∞ for each
set B ∈ B, then F(·; ·) is Doss-(p, F,B, Λ′, ρ, ν)-almost periodic for each p ≥ 1.

(iii) If 0 ∈ Λ, lΩ = Λl for all l > 0 and F(·; ·) is Weyl (F,B, Λ′, ρ, Ω, m′, ν)-almost periodic
with F(l, t) ≡ F(l), then F(·; ·) is Doss (F,B, Λ′, ρ, m′, ν)-almost periodic with F = F.

The class of Doss (F,B, Λ′, ρ, m, ν)-uniformly recurrent functions can be introduced in
the same way as above. Keeping this observation in mind, Proposition 2(ii) and the estimate
established on p. 113, line 1 of Ref. [7] can be used to prove that there does not exist a
nonempty subset Λ′ of R such that the function f (·) analyzed in Example 3.2.3 of Ref. [7] is
Doss (l−1, Λ′, ρ, m, 1)-uniformly recurrent with ρ(t) = 1 for all t ∈ R. The interested reader
may try to reformulate Theorem 2 and the conclusions established in Example 3.2.4 of
Ref. [7] for multidimensional Doss almost periodic type functions in general measure. The
statement of the Theorem 3.7 of Ref. [19] cannot be properly formulated for these classes of
functions, which follows from the analysis carried out in Example 3.2.7 of Ref. [7].

5. Some Applications

In this section, we present some applications of Weyl and Doss almost-periodic-type
functions to the abstract Volterra integro-differential inclusions in Banach spaces.

5.1. Invariance of Generalized Almost Periodicity in Measure under the Actions of
Convolution Products

In this subsection, we examine the invariance of Weyl and Doss almost periodicity
in measure under the actions of convolution products. For simplicity, we consider the
one-dimensional setting only. We start by stating the following result:

Theorem 3. Suppose that ∅ ̸= Λ′ ⊆ R, f : R → Y is a bounded function, ρ = T ∈ L(Y),
F : (0, ∞)× R → (0, ∞), F1 : (0, ∞)× R → (0, ∞) and Ω = [0, 1]. Suppose, further, that
(R(t))t>0 ⊆ L(X, Y) is a strongly continuous operator family such that

∫
(0,∞) ∥R(t)∥ dt < ∞. If

f (·) is (equi-)Weyl (F, Λ′, ρ, Ω, m)-almost periodic, then the function F : R → Y, given by

F(t) :=
∫ t

−∞
R(t − s) f (s) ds, t ∈ R, (15)

is bounded, continuous, and (equi-)Weyl (F1, Λ′, ρ, Ω, m)-almost periodic, provided that the follow-
ing condition holds true:

(Q1) For every ϵ > 0, there exists ϵ′ ∈ (0, ϵ/[2(1 +
∫
(0,∞) ∥R(t)∥ dt)]) such that, for every l > 0

and t ∈ R, we have

m

({
s ∈ [t, t + l] : (1 + ∥T∥)∥ f ∥∞

+∞

∑
k=0

∥R(·)∥L∞ [kl,(k+1)l]

F(l, s − (k + 1)l)
<

ϵ

2ϵ′

})
≥ l − ϵ

F1(l, t)
.
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Proof. We consider the class of equi-Weyl (F, Λ′, ρ, [0, 1], m)-almost periodic functions only.
We can simply prove that F(·) is well-defined, bounded, and continuous. Let ϵ > 0 be
given, and let ϵ′ > 0 be determined from condition (Q1). Then, we know that there exist
l > 0 and L > 0 such that for each t0 ∈ Λ′ there exists τ ∈ B(t0, L) ∩ Λ′ such that∥∥∥ f (·+ τ)− T f (·)

∥∥∥
Pϵ′ ,l,F

≤ ϵ′.

Furthermore, we have

∥F(s + τ)− TF(s)∥Y

≤
∫ +∞

0
∥R(r)∥ · ∥ f (s + τ − r)− T f (s − r)∥Y dr

=
+∞

∑
k=0

∫ (k+1)l

kl
∥R(r)∥ · ∥ f (s + τ − r)− T f (s − r)∥Y dr

≤ (1 + ∥T∥)∥ f ∥∞ · ϵ′ ·
+∞

∑
k=0

∥R(·)∥L∞ [kl,(k+1)l]

F(l, s − (k + 1)l)
+ ϵ′ ·

+∞

∑
k=0

∫ (k+1)l

kl
∥R(r)∥ dr.

Since ϵ/ < 1/[2(1 +
∫ ∞

0 ∥R(r)∥ dr)], the above calculation implies{
s ∈ [t, t + l] :

+∞

∑
k=0

∥R(·)∥L∞ [kl,(k+1)l]

F(l, s − (k + 1)l)
<

ϵ

2ϵ′∥ f ∥∞(1 + ∥T∥)

}

⊆
{

s ∈ [t, t + l] : ∥F(s + τ)− TF(s)∥Y < ϵ

}
,

the final conclusion simply follows from condition (Q1).

We continue with the following illustrative example:

Example 1. Suppose that the function f ∈ C2(R3) has a compact support. Then, we know that
the function

u(x) =
1

4π

∫
R3

f (x − y)
|y| dy, x ∈ R3,

is a unique classical solution of the partial differential equations ∆u = − f . Since for each T ∈
L(R3), l > 0 and ϵ′ > 0 we have

|u(x + τ)− Tu(x)| ≤ 1
4π

∫
R3

| f (x − y + τ)− T f (x − y)|
|y| dy,

≤ ϵ′

4π

∫
R3

dy
|y| · F(l, x − y)

, x ∈ R3,

it readily follows that the (equi-)Weyl (F, Λ′, T, Ω, m)-almost periodicity of f (·) implies the
(equi-)Weyl (F1, Λ′, T, Ω, m)-almost periodicity of u(·), provided that the following condition holds:

(D) For every ϵ > 0, there exists ϵ′ > 0 such that, for every l > 0 and t ∈ R3, we have

m

({
x ∈ t + lΩ :

∫
R3

dy
|y| · F(l, x − y)

<
ϵ

4πϵ′

})
≥ m(lΩ)− ϵ

F1(l, t)
.

Remark 2. The invariance of (equi-)Weyl-p-almost periodicity under the actions of the infinite
convolution products has been investigated in Proposition 2.11.1, Theorem 2.11.4 of Ref. [6]. These
results can be also formulated with a general operator ρ = T ∈ L(Y) and a general set Λ′ of the
corresponding Weyl-ϵ-almost periods. Because of that, the case in which F(l, t) ≡ l−n/p will not
occupy our attention here.
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For the sake of completeness, we provide the main details of the proof of the following
result:

Theorem 4. Suppose that ∅ ̸= Λ′ ⊆ R, f : R → Y is a bounded function, ρ = T ∈ L(Y),
F : (0, ∞) → (0, ∞), F1 : (0, ∞) → (0, ∞) and (R(t))t>0 ⊆ L(X, Y) is a strongly continuous
operator family such that

∫
(0,∞) ∥R(t)∥ dt < ∞. If f (·) is Doss (F, Λ′, T, m)-almost periodic, then

the function F : R → Y, given by (15), is bounded, continuous and Doss (F1, Λ′, T, m)-almost
periodic, provided that the following condition holds true:

(Q2) For every ϵ > 0, there exist ϵ′ ∈ (0, ϵ/[2(1 +
∫
(0,∞) ∥R(t)∥ dt)]) and l0 > 0 such that, for

every l ≥ l0, we have

m

({
s ∈ [−l, l] : (1 + ∥T∥)∥ f ∥∞ · ϵ′ · lim sup

v→+∞

∥R(·)∥L∞ [0,v]

F(v + |s|) <
ϵ

2

})
≥ 2l − ϵ

F1(l)
.

Proof. Let ϵ > 0 be given, and let ϵ′ > 0 and l0 > 0 be determined from condition
(Q1). Then, we know that there exists L > 0 such that for each t0 ∈ Λ′ there exists
τ ∈ B(t0, L) ∩ Λ′ such that

F(l)m
({

s ∈ [−l, l] : ∥ f (s + τ)− T f (·)
∥∥

Y ≥ ϵ′
})

≤ ϵ′.

Furthermore, we have:

∥F(s + τ)− TF(s)∥Y

≤
∫ +∞

0
∥R(r)∥ · ∥ f (s + τ − r)− T f (s − r)∥Y dr

= lim
v→+∞

∫ l

0
∥R(r)∥ · ∥ f (s + τ − r)− T f (s − r)∥Y dr

≤ (1 + ∥T∥)∥ f ∥∞ · ϵ′ · lim sup
v→+∞

∥R(·)∥L∞ [0,v]

F(v + |s|) + ϵ′ ·
+∞

∑
k=0

∫ +∞

0
∥R(r)∥ dr,

so that {
s ∈ [−l, l] : (1 + ∥T∥)∥ f ∥∞ · ϵ′ · lim sup

v→+∞

∥R(·)∥L∞ [0,v]

F(v + |s|) <
ϵ

2

}

⊆
{

s ∈ [−l, l] : ∥F(s + τ)− TF(s)∥Y < ϵ

}
.

The final conclusion now follows from condition (Q2).

It is clear that Theorems 3 and 4 can be applied in the analysis of Weyl [Doss] al-
most periodic solutions in the Lebesgue measure for a large class of the abstract Volterra
integro-differential inclusions without boundary conditions (cf. [6] for more details about
this problematic).

In this context, we end this section with the following illustrative application to the Gaus-
sian semigroup. The Gaussian semigroup is related to the solution of certain partial differential
equations (PDEs), particularly those involving heat conduction or diffusion processes.

Example 2. Let p ∈ [1, ∞) and (G(t)) be the Gaussian semigroup

(G f )(x) = (4πt)−
n
2

∫
Rn

f (x − y)e−
|y|2
4t dy, t > 0, f ∈ Lp(Rn), x ∈ Rn.
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This semigroup can be extended to a bounded analytic C0-semigroup of angle π
2 , generated by the

Laplacian ∆Lp , with maximal distributional domain in Lp(Rn). Suppose that, ∅ ̸= Λ′ ⊆ Λ = Rn,
Ω = [0, 1]n, ρ = T ∈ L(Lp(Rn)), f ∈ L(Rn : C) is (equi)-Weyl (F1, Λ′, ρ, Ω, m)-almost periodic
function and supt∈Rn ∥ f (t)∥ < ∞. Furthermore, suppose that the functions F : (0, ∞)×Rn →
(0, ∞) and F1 : (0, ∞)×Rn → (0, ∞) does not depend on t and (Q1) holds. By Theorem 3, the
function u(x, t0) ≡ (G(t0) f )(x) is (equi)-Weyl (F1, Λ′, ρ, Ω, m)-almost periodic.

5.2. Abstract Semilinear Cauchy Inclusions

In this subsection, we analyze the existence and uniqueness of (equi-)Weyl almost
periodic solutions for the following abstract semilinear Cauchy inclusion

Dt
γ,+u(t) ∈ Au(t) + f (t, u(t)), t ∈ R, (16)

where Dt
γ,+u(t) denotes the Weyl–Liouville fractional derivative of order γ ∈ (0, 1), A is a

multivalued linear operator and f (·, ·) has some extra features. It is well-known that there
exists a large class of multivalued linear operators A for which the solution operator family
(R(t))t>0 for (16) has the growth

∥R(t)∥ ≤ M
tβ−1

1 + tγ
, t > 0, (17)

for some finite real constants M ≥ 1, β ∈ (0, 1] and γ > β (cf. [6] for more details).
Moreover, a unique mild solution of (16) is given by

u(t) =
∫ t

−∞
R(t − s) f (s, u(s)) ds, t ∈ R. (18)

Here, we consider the space e − W∞(R : X) := Cb(R : X)
⋂

p≥1 e − Wp AP(R : X). It
is clear that e − W∞(R : X) := Cb(R : X)

⋂
p>1/β e − Wp AP(R : X); equipped with the

sup-norm, e − W∞(R : X) is a Banach space. Observe also that Proposition 1 yields that
e − W∞(Rn : X) is the Banach space of all bounded continuous functions f : R → X
which are equi-Weyl almost periodic in the Lebesgue measure. By e − W∞,rc(R : X) we
denote the Banach subspace of e − W∞(R : X) which contains functions with a relatively
compact range.

Keeping in mind the Banach contraction principle, Proposition 2.11.1, Theorem 2.11.4
of the Ref. [6], and the composition principles established in Theorem 2.2, Theorem 2.3 of
Ref. [23], it readily follows that there exists a unique mild solution of (16) which belongs to
the space e − W∞,rc(R : X), provided that the following conditions hold:

(i) There exists L > 0 such that L ·
∫ ∞

0 ∥R(r)∥ dr < 1 and ∥ f (t, x)− f (t, y)∥ ≤ L∥x − y∥
for all t ∈ R and x, y ∈ X.

(ii) For every relatively compact set K ∈ X, the set { f (t, x) : t ∈ R, x ∈ K} is relatively
compact in X.

(iii) The conditions (i) and (iii) given in the formulation of the Theorem 2.2 of Ref. [23]
hold for any exponent p > 1/β.

We can similarly analyze the existence and uniqueness of (equi-)Weyl almost periodic
solutions for the following semilinear integral equation:

u(t) = f (t) +
∫ t1

−∞

∫ t2

−∞
· · ·

∫ tn

−∞
a(t − s)F(s; u(s)) ds, t ∈ Rn, (19)

where X = Y is a finite-dimensional complex Banach space, a ∈ L1((0, ∞)n) and f ∈
W∞(Rn : X) (cf. [19] for more details).



Mathematics 2024, 12, 548 13 of 14

6. Conclusions and Final Remarks

In this paper, we analyzed various classes of multidimensional Weyl and Doss ρ-
almost-periodic-type functions in general measure. This establishes a foundation by ex-
plaining the notation and presenting basic definitions. The introduced classes of (equi-)Weyl
(F,B, Λ′, ρ, Ω, m′, ν)-almost periodic functions and Doss (F,B, Λ′, ρ, m′, ν)-almost periodic
functions are analyzed, revealing essential structural results. The obtained structural results
contribute to a deeper comprehension of these mathematical entities. The applications to
abstract Volterra integro-differential inclusions in Banach spaces highlight the practical
implications of the theoretical framework. This paper concludes with valuable remarks
and observations, contributing to the ongoing exploration of generalized almost periodicity
and almost automorphy in measure. Overall, this paper makes a contribution to advancing
the understanding of these mathematical concepts and their practical implications.

Let us finally mention some important topics which are not considered in this paper:

1. In Definition 2.13.2 of Ref. [6], we introduced the class of one-dimensional Besicovitch-
Doss-p-almost periodic functions. The conditions (ii), (iii) (already performed for
Doss-p-almost periodic functions in measure), and (iv) in this definition can be fur-
ther extended by considering the same condition in view of the general measure.
In such a way, we can extend the class of Besicovitch–Doss-p-almost periodic func-
tions (p ≥ 1). We can also consider the case in which 0 < p < 1 here and some
multidimensional analogs.

2. We can analyze various classes of Stepanov quasi-asymptotically ρ-almost periodic
type functions in general measure.

3. We can also consider Weyl and Besicovitch almost-automorphic-type functions in
general measure.
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23. Kostić, M. Composition principles for generalized almost periodic functions. Bull. Cl. Sci. Math. Nat. Sci. Math. 2018, 43, 65–80.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11005-020-01337-2
http://dx.doi.org/10.1186/s13661-019-1217-x
http://dx.doi.org/10.5186/aasfm.2017.4250
http://dx.doi.org/10.1007/s10231-022-01270-2
http://dx.doi.org/10.1016/j.jde.2017.10.025
http://dx.doi.org/10.12775/TMNA.2017.015
https://www.researchgate.net/publication/375645038
https://www.researchgate.net/publication/375645038
http://dx.doi.org/10.1515/ms-2023-0035

	Introduction
	Mathematical Preliminaries and Notations
	Multidimensional Weyl -Almost-Periodic-Type Functions in General Measure
	Multidimensional Doss -Almost-Periodic-Type Functions in General Measure
	Some Applications
	Invariance of Generalized Almost Periodicity in Measure under the Actions of Convolution Products
	Abstract Semilinear Cauchy Inclusions

	Conclusions and Final Remarks
	References

