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Abstract: The 3D integrated circuit (3D-IC) is garnering significant attention from academia and
industry as a key technology leading the post-Moore era, offering new levels of efficiency, power, per-
formance, and form-factor advantages to the semiconductor industry. However, thermal management
in 3D-ICs presents a critical challenge that must be overcome to ensure prosperity for this technology.
Unlike traditional thermal management solutions that perceive heat generation in 3D-ICs negatively
and aim to eliminate it, this paper proposes, for the first time, a thermal management method that
positively utilizes heat to achieve low-power operation in 3D-ICs. This approach is based on a novel
discovery that circuits can reduce power consumption at higher temperatures by leveraging the
temperature effect inversion (TEI) phenomenon in ultralow-voltage (ULV) operating circuits, a char-
acteristic of low-power techniques (TEI-LP techniques). Along with a detailed explanation of this
discovery, this paper introduces new thermal management technologies for practical application in
3D-ICs. Furthermore, to achieve optimal energy efficiency with the proposed technology, we develop
a temperature controller essential for this purpose. The developed controller is a deep learning-based
PID autotuner. This paper proves the theoretical validity of the AI control algorithm designed for
this purpose and demonstrates the functional correctness and power-saving effectiveness of the
developed controller through intensively conducted simulations.

Keywords: thermal management; 3D-IC; deep learning-based control algorithm; autotuning;
PID control; temperature effect inversion (TEI) phenomenon; ultralow voltage (ULV)

MSC: 93B51; 93C95; 94C60

1. Introduction

Moore’s Law has been a driving force in the downsizing of semiconductors over
recent decades, facilitating the integration of more transistors onto a chip. However, de-
vice scaling has now reached the quantum mechanical limits, especially in sub-nanometer
processes, leading to significantly lower yields and astronomically high chip development
costs. Chiplet technology, which divides a chip into multiple smaller chiplets instead of
creating a monolithic die, and the associated 3D integrated circuit (3D-IC) technology
that allows vertical stacking of these chiplets not only overcome the limitations of device
scaling but also offer benefits such as reduced wire delay, high interconnect bandwidth,
and improved energy efficiency. These technologies are thus considered pivotal in leading
the post-Moore era [1–3]. Despite the many advantages of 3D-ICs, the increased pack-
aging density achieved by stacking multiple dies in a 3D structure presents a critical
challenge—heat management [4,5]. The core of 3D-ICs relies almost exclusively on ther-
mal conduction through-silicon vias (TSVs), making thermal management even more
challenging. To address this, various cooling techniques [6,7] and thermal-aware floor-
planning methods [8,9] have been explored.

This paper begins by questioning whether heat should only be seen as a challenge to
be overcome in 3D-ICs. This inquiry is motivated by our recent discovery that heat is no
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longer a negative aspect in ultralow-voltage (ULV) operating chips. ULV circuit technology
has been a fundamental approach to achieving low-power chips since the early 2000s. It
has been extensively researched to overcome the major hurdle of ULV circuits, namely their
vulnerability to process, voltage, and temperature (PVT) variations [10–12]. As a result
of these efforts, ULV-operating chips have been realized. Unfortunately, the inevitable
performance sacrifice for low power in these ULV-operating chips has historically limited
the range of applications that could operate effectively on these chips, thus significantly
constraining the practicality and application of ULV circuit technology. However, recent
developments have signaled a shift to this trend. With the advent of the artificial intelligence
(AI) era, and the shift in hardware computing power from relying on a high-performance
single processing unit to multiple low-performance processing units inherently capable of
the parallel processing of AI applications [13,14], the value of ULV circuit technology has
significantly increased. As a consequence, recently, various ULV chips have been actively
developed and have emerged [15–17].

Over the past decade, we have conducted in-depth research on ULV circuits, focusing
on the unique phenomenon where circuit speed increases with rising temperature [18],
termed the temperature effect inversion (TEI) phenomenon [19]. We have dedicated our
efforts to developing TEI-aware low-power (TEI-LP) techniques, which are now in a mature
state [20–27]. Furthermore, we have recently developed a processor chip using the 28nm
FDSOI process, incorporating the TEI-LP technology. During our experiments with this
chip, we obtained a fascinating result: as the temperature rises, the power consumption
decreases. This finding is contrary to the conventional wisdom that higher temperatures
lead to increased power consumption in semiconductor chips. Our discovery highlights
the remarkable impact of TEI-LP technology in producing such an unexpected outcome. In
this paper, we present this discovery for the first time and provide a detailed analysis of its
implications and underlying mechanisms.

Our new finding suggests that heat may no longer need to be viewed negatively in
3D-ICs. Instead of unconditionally reducing chip temperature through traditional thermal
management techniques, maintaining heat at a certain level could improve the chip’s en-
ergy efficiency. However, existing control systems developed for all previous 3D-IC thermal
management technologies are not suitable for our proposed new thermal management ap-
proach, necessitating the development of a dedicated controller, which we have addressed
in this paper.

To maximize the power reduction effect in 3D-ICs utilizing our proposed TEI-LP
technology, we developed a cooling system controller that precisely maintains the optimal
temperature without overshooting. The design of this controller encountered challenges
due to the heterogeneous configuration of the 3D-IC dies and the variety of interface
materials used in packaging [4]. To overcome these challenges, we engineered a deep
learning-based proportional–integral–derivative (PID) autotuning controller, capable of
adaptively adjusting gain values for variable thermal models. Specifically, we enhanced
a conventional autotuning PID controller [28] with a neural network, integrating a rein-
forcement learning-based secondary autotuning process. This neural network, designed
with an error-driven algorithm, enabled the controller to overcome inaccuracies in 3D-IC
thermal models. Notably, the network was trained to minimize overshooting during the
control process, thereby maximizing the power-saving benefits of the TEI-LP technology
for enhanced energy efficiency.

To validate the efficacy of our developed controller, we first implemented an auto-
tuning PID controller using the first-order plus dead-time (FOPDT) control model. Then,
we derived a simplified 3D thermal model to design the neural network and conducted a
hyperparameter optimization. Subsequently, we tested the performance of our proposed
controller not only on the derived thermal model but also on a more realistic 3D-IC struc-
ture using HotSpot [29] simulations. Through these simulations, we confirmed that our
proposed controller adaptively learned across various thermal models and robustly per-
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formed PID control with minimal overshooting. As a result, we demonstrated that the
utilization of our TEI-LP technology can achieve up to 22.1% energy savings in 3D-ICs.

The remainder of this paper is organized as follows. Section 2 introduces the TEI-LP
technology and our pioneering discovery of the positive relationship between tempera-
ture and power consumption. It also explains the impact of controller overshooting on
energy efficiency in relation to voltage scaling performance in the 3D-IC cooling system. In
Section 3, we introduce a deep learning-based autotuning PID controller for applying the
TEI phenomenon in 3D-ICs and evaluate the performance of the proposed controller under
a simplified thermal model. Section 4 presents the results of a control simulation of the
proposed controller using a more realistic 3D-IC model. Finally, Section 5 offers conclusions.

2. Application of TEI-Aware Low-Power Techniques in 3D-IC: Embracing Higher
Temperatures for Efficiency
2.1. TEI-Aware Voltage Scaling Technique

The occurrence of increased speed with rising temperature in ULV circuits contrasts
with the traditional temperature–speed relationship seen in standard circuits, marking a
significant shift in understanding. This characteristic can be analyzed by examining the
variations in the on current strength Ion of semiconductor transistors in relation to the oper-
ating temperature T. In more detail, Ion is a function of T, and its impact varies depending
on the circuit’s operating regime. In ULV circuits where the gate–source voltage Vgs (or
simply considered as the supply voltage Vdd) is close to or nearly equal to the threshold
voltage Vth, the effect of T on Ion is different compared to superthreshold voltage (STV)
operating circuits, or nominal supply voltage operations, where Vgs ≤ Vth. Mathematically,
this can be expressed as [18]:

Ion ∝

 µ(T) · e(Vgs−Vth(T))
γ

for STV regime

µ(T) · e
Vgs−Vth(T)

S(T) for ULV regime
, (1)

where γ is the velocity saturation effect factor, µ is the carrier mobility, and S is the sub-
threshold swing. From the equation, for an STV circuit, as T increases, µ(T) decreases
significantly compared to the effect of Vth(T) on Ion, resulting in a decrease in Ion. On the
other hand, in the NTV circuit operating with ULV, as T increases, it has an exponential
effect on Ion on Vth(T) and S(T), so even if µ(T) decreases, Ion increases.

Subsequently, the delay of the transistor τD can be formulated as a function of Ion in
the following manner [12]:

τD =
C
Ion

Vdd
2

, (2)

where C is the transistor capacitance. From (1) and (2), we can deduce that as the tem-
perature rises, in the STV regime, the circuit delay increases (i.e., the speed of the circuit
decreases), while in the ULV regime, the circuit delay decreases (i.e., the speed of the circuit
increases). Furthermore, when actual semiconductor transistor characteristic parameters
are applied, the extent of the speed/delay variation with temperature in the STV and ULV
regimes is markedly different, with the difference in the ULV circuit being significantly
greater than that in the STV. We previously named this phenomenon temperature effect
inversion (TEI) in our prior research [19].

The TEI phenomenon has catalyzed a paradigm shift in the low-power design field, as
it implies that increasing temperatures can generate a delay margin, which can be advanta-
geous for low-power technologies. More specifically, circuits have a defined operational
temperature range (Tmin ≤ T ≤ Tmax) to ensure normal functioning, and the circuit’s
operational speed is determined by the slowest speed within this temperature range. In
other words, the circuit’s clock speed (or target clock frequency, ftarget) is decided based on
the worst-case corner delay within the temperature range (i.e., ftarget =

1
τD

).
Thus, in ULV circuits, ftarget is determined by the delay τtarget at Tmin. As T increases,

the difference in delay, resulting from τtarget, becomes more significant, and this delay
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margin, as shown in Figure 1, is defined as the TEI benefit. We have confirmed through
previous studies that this TEI benefit is evident across the entire operating temperature
range of the chip (typically from −25 °C to 125 °C) in various semiconductor technology
processes [19,27].

(a) (b)
Figure 1. Temperature–delay characteristics of semiconductor circuit when operating in the (a) STV
regime and (b) ULV regime.

TEI-LP techniques exploit the TEI benefit through various approaches, such as TEI-
aware voltage scaling (VS) [22,24,27,30], frequency scaling (FS [21], body biasing (BB) [26],
or dynamic power management (DPM) [25]. Among these, the best-known technique
is TEI-aware VS (TEI-VS), which converts the TEI benefit into power savings through
voltage downscaling. This is because Vdd is closely related to the circuit delay τD and power
consumption P. First, the relationship between Vdd and τD can be derived as follows from
(1) and (2):

τD =
C
2β

Vdd

eVdd/nVth
, (3)

where β and n are the strength of transistor and the subthreshold factor, respectively. Next,
P is the sum of dynamic power Pdynamic and static power Pstatic, each expressible as a
function of Vdd:

Pdynamic = α · C ·V2
dd · f , PStatic = Vdd ·Io f f , (4)

where α and Io f f are the activity factor and off current, respectively. Therefore, by (3), we
can reduce Vdd by the amount of TEI benefit, which translates into power savings as per (4).

2.2. TEI-VS-Based Thermal Management for 3D-IC: Utilizing the New Finding of a Positive
Relationship between Temperature and Power Savings

In our recent research, we designed an ultralow-power (ULP) system-on-chip (SoC)
based on ULV circuitry and fabricated it using a 28 nm FDSOI process [27]. We demon-
strated the significant effectiveness of TEI-VS with this chip, and Figure 2 reports the results
of applying TEI-VS at 10 ◦C intervals. Our developed chip supported an ftarget of 50 MHz
and 100 MHz, with the worst-case corner minimum Vdd for these speeds being 0.54 V
and 0.61 V, respectively, at the lowest operating temperature of −40 ◦C. For reference, the
nominal Vdd for the 28 nm FDSOI process we used is 0.7 V. As shown in the figure, the value
of VTEI-VS, which is the result of applying TEI-VS, decreases with increasing temperature.
This clearly confirms the following equation:

VTEI−VS(T1) ≥ VTEI−VS(T2) for Tmin ≤ T1 ≤ T2. (5)

Applying TEI-VS results in reduced power consumption. The power consumption
corresponding to the TEI-VS results in Figure 2 is presented in Figure 3, with results for
an ftarget of (a) 50 MHz and (b) 100 MHz. In both figures, the black line represents the
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power consumption without applying TEI-VS, at Vdd = (a) 0.54 V, (b) 0.61 V. Here, as per
common sense, power consumption increases with temperature. In contrast, the blue line
shows the results with TEI-VS applied, where, surprisingly, power consumption decreases
with increasing temperature. This is because the reduction in power consumption through
voltage scaling down with TEI-VS is greater than the increase induced by rising tempera-
tures. In addition, this phenomenon is observed across the entire operating temperature
range, with the change being more pronounced at lower temperatures. More specifically, as
the temperature increases, as shown in the figure, the rate of decrease tends to diminish,
becoming negligible around 80 °C. Consequently, by applying TEI-VS in the range from
−40 °C to 80 °C, temperature is transformed from a negative to a positive factor in terms of
power consumption.

Figure 2. Minimum Vdd derived by applying TEI-VS according to the given temperature, measured
from our ULV chip fabricated with 28 nm FDSOI technology introduced in [27].

(a) (b)
Figure 3. Power consumption results with and without TEI-VS application across temperature
changes, when ftarget is (a) 50 Mhz and (b) 100 Mhz.

This discovery has the potential to intelligently liberate 3D-ICs, which traditionally
suffer from heat treatment issues. In other words, the heat that is generated can be utilized
to reduce the power consumption of dies operating at ULV by applying TEI-VS.

However, to actualize this idea, we need to devise several practical solutions. Firstly, a
specific plan for the resolution of voltage scaling control must be established. This is due
to the limited resolution of the DC-DC converter responsible for voltage scaling within
the circuit, as typically, DC-DC converters can adjust voltage levels discretely in tens to
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hundreds of millivolts. In other words, temperature-based voltage scaling like that shown
in Figure 2 is challenging to implement in reality, and instead, temperatures must be set
according to the voltage levels provided by the DC-DC converter. To elaborate on our
proposed method, if we define the set of effective output voltage levels of the DC-DC
converter as Vs = Vs,i|1 ≤ i ≤ M, we can derive Tth,i corresponding to each Vs,i through
the following equation:

Vs,i = VTEI-VS(Tth,i). (6)

Thus, we can establish a set of controllable points, S, composed of feasible temperature
values and corresponding voltage levels for TEI-VS application, as follows:

S = {(Tth,i, Vs,i)|Tmin ≤ i ≤ Tmax} (7)

Finally, for a given die temperature Tdie, VTEI-VS is determined by finding min(k) in S
satisfying Ts,k − Tdie ≥ 0, and the paired Vs,k becomes the target VTEI-VS(Tdie).

Next, for the practical application of TEI-VS in 3D-ICs, designing a cooling controller
with minimal overshooting is crucial. As previously discussed, when finding k and setting
the die temperature to Ts,k for a given Tdie using a cooling controller, any overshooting
Tovershoot during control means the die’s Vdd must be VTEI-VS(Tdie − Tovershoot) instead of
Vs,k. This is because maintaining Vdd = Vs,k would prevent the circuit from meeting the
target frequency, leading to potentially critical chip errors. Furthermore, it is crucial to
note that since we cannot predict Tovershoot at runtime, we typically cannot perform voltage
scaling until the system has stably converged to the set temperature (i.e., Ts,k). As a result,
excessive Tovershoot in the cooling controller makes voltage downscaling infeasible until
stabilization, significantly diminishing the benefits of power reduction and energy savings.
Therefore, to fully exploit the power/energy-saving potential of TEI-VS in 3D-ICs, it is
necessary to develop a cooling controller that quickly converges to the set temperature
while causing minimal overshooting.

3. Deep Learning-Based Autotuning PID Controller for the 3D-IC Cooling System

PID control is a method that maintains the output of a controlled object at a desired
target value using three operations: proportional, integral, and differential. PID control has
the advantages of being simple and easy to understand, having excellent stability and ro-
bustness, and being applicable to a wide range of systems [31–33]. However, inappropriate
setting of PID gains may lead to excessive overshooting [34]. Overshooting, a phenomenon
where the output exceeds the target value, occurs when the proportional gain Kp is too
high or the integration time Ti is too short. As discussed earlier, excessive overshooting
in the cooling system controller of 3D-ICs necessitates providing a larger voltage margin.
This requirement means that to meet the target speed of the chip, a higher voltage than
the lowest level resulting from TEI-VS must be supplied. Given the difficulty in predicting
the extent of overshooting at runtime, the most stable operation choice inevitably becomes
using the nominal voltage instead of the result from TEI-VS. Consequently, this leads to an
unavoidable decrease in energy efficiency. To tackle this issue, the crux of our controller
design is to set appropriate proportional, integral, derivative, and antiwindup gains, Kp,
Ki, Kd, and Kaw, respectively, so as to minimize the overshooting.

In our situation, characterized by the heterogeneous configuration of 3D-IC dies and
the diverse interface materials used in packaging, obtaining comprehensive information
about the controlled object is challenging. This complexity makes it difficult to determine
the ideal values of the four key parameters: Kp, Ki, Kd, and Kaw. While various autotun-
ing methods, such as the Ziegler–Nichols method [35], damped oscillation method [36],
and Cohen–Coon method [37], exist for automatically calculating PID parameters, their
effectiveness can significantly diminish in scenarios where the plant characteristics fre-
quently change or external noise is present. The controller proposed in this paper leverages
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deep learning to surmount the limitations of these existing autotuning techniques, thereby
enabling robust control across various plants in 3D-IC.

3.1. Control Model

This section is dedicated to explaining traditional PID control through the adoption
of the FOPDT model [28,38]. The FOPDT model, commonly used in cooling and heating
systems, is represented by its transfer function, which can be expressed as follows:

G(s) =
Kp

τs + 1
e−θs , (8)

where τ and θ are the time constant and delay, respectively. Then, the standard form of PID
control can be expressed as follows:

u = Kpe(t) +
Kp

Ti

∫ t

0
e(t)dt + KpTd

de(t)
dt

, (9)

where u is the controller input and Ti, Td, and e(t) are the integration time, differentiation
time, and difference between the temperature set point and the actual temperature in
heating and cooling systems (error), respectively. Using Ti and Td, we can derive ki =

kp
Ti

and kd = kp × Td.
Applying antiwindup to reduce overshooting in the standard form of the PID control

in (9) allows the formula to be expressed as follows:

u = Kpe(t) +
∫ t

0

Kp

Ti
e(τ) + Kaw(usat(τ)− u(τ))dτ + kpTd

de(t)
dt

, (10)

where usat can be expressed as:

usat =


u for umin < u < umax

umax for u > umax
umin for u < umin

(11)

In (11), umax and umin are the maximum and minimum values of the control
input, respectively.

Meanwhile, in our PID control, we employed a digital first-order low-pass filter (LPF)
to filter out high-frequency noise and to reduce the impact of unnecessary sudden changes
in the signal. Accordingly, the final control model is as follows:

u = Kpe(t) +
∫ t

0

Kp

Ti
e(τ) + Kaw(usat(τ)− u(τ))dτ + kpTd

de f (t)
dt

, (12)

where e f (t) is e(t) filtered.

3.2. Proposed Deep Learning-Based Autotuning Method

We propose a deep learning-based autotuning process for precise temperature con-
trol while minimizing overshooting. Our designed process is composed of a two-phase
approach: the first phase involves a coarse-grain autotuning using conventional methods,
and the second phase is a fine-grain autotuning process that sets the PID gain based on
deep learning.

In the first coarse-grain autotuning phase, as shown in Figure 4a, the user sets the set
point, which is the desired temperature and the maximum and minimum margins around
this set temperature. Then, as depicted in Figure 4b, the output of the cooler (or heater) is
set to on (100%) or off (0%), and the response of the target die within the 3D-IC is observed.
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Based on the results of this observation, the PID gain determined by the initial autotuning
can be set as follows:

Kp = 0.35
4

πydi f f
, Ti = 0.5Tosc, Td = 0.125Tosc, Kaw =

1√
Ti · Td

, (13)

where ydi f f and Tosc means ymax − ymin and (Tosc1+Tosc2)
2 , respectively; ymax and ymin are the

maximum and minimum values of the control response, respectively; Tosc represents the
period of oscillation, as also illustrated in Figure 4a; and Kaw can be derived from [39].

(a) (b)
Figure 4. The first coarse-grain autotuning process. (a) Time-domain response of controller according
to set point, and (b) status of cooler. The cooler operates on/off without duty ratio during the
first autotuning.

Following the first autotuning phase, the second step of fine-grain autotuning is ex-
ecuted based on the PID gains that were set. This second tuning phase employs deep
learning. For the learning process, PID control is carried out with variations in the set
point (i.e., the target temperature), relying on the PID gains established by the first auto-
tuning and the output from the neural network. The employed learning algorithm is a
reinforcement learning model, based on an error-driven approach. This involves using the
temperature difference between the plant’s response under PID control and the set point
temperature (i.e., the error) as the input for the neural network. As previously mentioned,
minimizing overshooting when the target temperature is lower than the current tempera-
ture is critical. Hence, the set point is systematically lowered from a higher temperature at
regular intervals, enabling the neural network to adequately learn about and respond to
overshooting scenarios. The learning process and its components are depicted in a block
diagram in Figure 5.

Figure 5. Block diagram of the proposed fine-grain tuning process based on neural network.

The detailed structure of the neural network is depicted in the block diagram in
Figure 6. The neural network consists of fully connected layers with a configuration of
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8 × 200 × 400 × 400 × 3, and its outputs are Td, Ti, and Kaw. Since the neural network’s
output is directly utilized as the input for the PID controller, a negative parameter value
could lead to divergence in the controller’s output. It is crucial to recognize that the neural
network includes a switching layer, which ensures that the outputs, Td, Ti, and Kaw, do
not become negative. The switching layer is a recursive layer where the output is fed back
as input. If the output of the nth input in the switching layer is negative, then the output
of the (n − 1)th input is used as the nth output again. The output at the switching layer is
determined independently for each parameter.

Figure 6. Detailed structure of the neural network.

To facilitate the training of the neural network in a direction that reduces overshooting
in the PID controller, we incorporated an overshooting term into the loss function for
weight updates. We defined the loss function of the neural network as follows:

L =
1
2
(ysp − youtput)

2 + (overshooting), (14)

overshooting =

{
0 for youtput > ysp

e(youtput−ysp) for youtput < ysp
, (15)

where ysp and youtput are the set point (i.e., target temperature) and the actual output inside
the plant through the plant’s control input, respectively.

In addition, we adopted the Adam (adaptive moment estimation) algorithm [40] as
the optimizer for its widely recognized performance benefits. Adam combines the strengths
of momentum and RMSprop optimization methods and is known for its computational
efficiency and robustness, becoming a popular choice for deep learning applications. To
minimize time overhead in the second-phase tuning process, we set the learning rate to 1,
leveraging Adam’s ability to adaptively adjust learning rates based on the magnitude
of gradients.

3.3. Validation of the Proposed Method with a Basic 3D-IC Thermal Modeling

We planned a two-step experimental process—simulations in a basic thermal model
and simulations in a complex 3D-IC model—to verify the proper functioning of the pro-
posed autotuning controller and assess its improvement over traditional methods. First,
this section describes the initial simulations in the basic thermal model. In the basic model,
the heat source is located at the center of the unit volume modeling the 3D-IC, with the
surrounding dies acting as the receivers of heat. Additionally, we omit the interface material
between each die, assuming a uniform thermal conductivity for all dies. As illustrated in
Figure 7, the heat energy flowing into the system per unit time, Ėin, and the heat energy
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released from the system per unit time, Ėout, are each defined within a three-dimensional
Cartesian coordinate system as follows:

Ėin = qx + qy + qz, (16)

Ėout = qx+dx + qy+dy + qz+dz, (17)

where qx+dx, qy+dy, and qz+dz are defined, respectively, as follows:

qx+dx = qx +
∂qx

∂x
, qx+dy = qy +

∂qy

∂x
, qx+dz = qz +

∂qz

∂z
. (18)

Figure 7. Heat energy flow diagram for the definition of a basic thermal model.

Using the definition provided in (17) and (18) can be expressed as follows:

Ėout = (qx +
∂qx

∂x
dx) + (qy +

∂qy

∂y
dy) + (qz +

∂qz

∂z
dz). (19)

Regarding the energy generated in unit volume per unit time, Ėg, it can be expressed
as follows:

Ėg = q̇dxdydz. (20)

Moreover, in the time-dependent system, the energy difference within the volume, Ėst,
can be expressed as:

Ėst = ρcp
∂T
∂t

dxdydz, (21)

where ρ and cp are the density and specific heats at constant pressure, respectively.
Applying (16)–(21) to the law of conservation of energy, it can be expressed as follows:

Ėin − Ėout + Ėg = Ėst, (22)

(−∂qx

∂x
dx) + (−

∂qy

∂y
dy) + (−∂qz

∂z
dz) + q̇dxdydz = ρcp

∂T
∂t

dxdydz (23)

Meanwhile, by applying Fourier’s law of heat conduction, the terms qx, qy, and qz can
be articulated as follows:

qx = −k(dydz)
dT
dx

, qy = −k(dzdx)
dT
dy

, qz = −k(dxdy)
dT
dz

, (24)

where k is the thermal conductivity. Substituting (24) into (23), we can derive the
following result:

∂

∂x
(k

∂T
∂x

) +
∂

∂x
(k

∂T
∂x

) +
∂

∂x
(k

∂T
∂x

) + q̇ = ρcp
∂T
∂t

. (25)

Assuming that the thermal conductivity of each die in the 3D-IC is the same, and
since the heat conduction equation is being obtained at the specific coordinates of the
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die that does not generate heat, (25) can be reformulated as follows, by disregarding the
boundary condition:

k∇2T = ρcp
∂T
∂t

. (26)

Differentiating both sides of (26) with time and assuming that this is the heat conduc-
tion equation at specific coordinates, the equation can be expressed as follows:

α
dT(x0, y0, z0, t)

dt
=

d2T(x0, y0, z0, t)
dt2 , (27)

where α (α = k
ρcp

) is the heat capacity. Based on differential Equation (27), if there is no
output from the cooler and only heat generation by the core is assumed, the temperature at
a specific coordinate of the die will exhibit an exponential change over time.

We validated the functionality of the controller using the derived thermal model. In
the FOPDT model transfer function (8), the values of each parameter used in the simulation
were set as kp = −10, τ = 0.5, and θ = 0.1. The simulation scenario was as follows: the core
temperature was initially set to 50 ◦C, and the temperature at a specific coordinate of the
die was also assumed to be in a steady state converging to 50 ◦C. For the second autotuning,
the set point was reduced by 10 ◦C. It was assumed that after the second-phase (deep
learning-based) autotuning was completed and the PID gain was set, the core thermally
ran away, causing both the core and die temperatures to increase to 130 ◦C. Subsequently,
we simulated a scenario where the set point was lowered to 80 ◦C using the set PID gain.

The simulation results are shown in Figure 8: Figure 8a displays the outcome of imple-
menting only the coarse-grain autotuning, while Figure 8b illustrates the results after apply-
ing our proposed two-phase autotuning, which includes both coarse-grain autotuning fol-
lowed by deep learning-based fine-grain autotuning. The control parameters for each case
are reported in Table 1. As depicted, in both cases, the temperature converges to the set point
of 80 ◦C under the control of the proposed autotuning controller. However, in Figure 8a,
an overshooting by up to 11 ◦C occurs relative to the set point, whereas in Figure 8b
where the second tuning is applied, the overshooting is significantly reduced to within
1 ◦C. Furthermore, the time taken to stabilize at the set 80 ◦C is substantially shorter in the
latter case.

(a) (b)
Figure 8. The simulation results of the different autotuning controllers using the developed basic
thermal model with (a) conventional autotuning and (b) proposed autotuning method applied.
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Table 1. Control parameters for the conventional autotuning and the proposed autotuning used
in Figure 8.

Kp Ti Td Kaw

Conv. −0.0181 0.3244 1.2975 1.5414

Proposed −0.0181 0.0451 0.0098 0.0261

Meanwhile, to demonstrate that PID autotuning shows superior performance com-
pared to traditional static PID control, we designed a static PID controller and conducted
experiments in the same environment as the previous ones. The results are presented
in Figure 9.

(a) (b)
Figure 9. The simulation results of the static PID controllers using arbitrarily set control parameters.
Kp, Td, Ti, Kaw were set to (a) −0.8, 0.1, 2.5, 2 and (b) −0.5, 2.0, 0.2, 0.05, respectively.

Since the static PID controller does not have autotuning, users must manually input
the control parameters. Therefore, we arbitrarily set the parameters and performed simula-
tions as shown in Figure 9a,b. While the static PID controller does not require the setup
time demanded by autotuning, and appropriate user-selected parameters can yield good
results as shown in Figure 9a, inputting suboptimal parameters can lead to a significant
overshooting and increased stabilization time, as illustrated in Figure 9b.

Finally, based on the results of the simulation, it is evident that our proposed method
is the most energy-efficient, maximizing the TEI-VS effect. In the case of applying TEI-VS,
for the former scenario, TEI-VS cannot be applied for a significant duration (about 415 s)
until the plant’s temperature stabilizes at 80 ◦C, thus requiring the supply of the nominal
supply voltage without any voltage scaling down. In contrast, for the latter scenario, as
the system stabilizes quickly within 140 s, TEI-VS can be immediately applied thereafter to
reduce power consumption. Based on the fact established in Section II that ULV circuits
with TEI-VS exhibit more energy-efficient characteristics at higher temperatures, these
results validate our proposed two-phase autotuning solution as a technology capable of
maximizing energy efficiency.

4. Experimental Result

In this section, we report the temperature control performance of the proposed con-
troller on a realistic 3D-IC and the energy efficiency improvements achieved through the
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application of the TEI-VS technique. The simulations conducted for evaluation were a
cosimulation of the thermal simulation of the 3D-IC and the proposed controller simulation.
We modeled a 3D-IC and extracted temperature data according to the RPM values of the
fan using the HotSpot tool. Subsequently, heat control simulations were performed using
the obtained heat trace data.

Figure 10a displays the 3D-IC model used in the simulations. It includes crucial
components like a heatsink and heat spreader, along with detailed information on the
TSVs and thermal interface material (TIM). In this structure, based on our discovery that
the core die operating under ULV conditions becomes more energy-efficient at higher
temperatures due to the effects of TEI-VS, we positioned the target die in the center of the
3D structure where it experienced relatively higher temperatures. The target die comprised
the Alpha 21264/EV6 microprocessor core [41] provided by the HotSpot simulator [29],
and the thermal map of this die obtained from the simulation is depicted in Figure 10b.

(a) (b)
Figure 10. (a) The structural diagram of the 3D-IC model used in the simulation and (b) the thermal
map of the target ULV operating die.

For the verification of the functional validity and effectiveness of the proposed AI-
based PID autotuning controller, we performed a cosimulation combining the thermal
simulation of the 3D-IC and the proposed controller. Initially, we conducted a steady-state
simulation of the 3D-IC using key parameters outlined in Table 2. The heat capacity and
conductance of various materials, including silicon, and the specifications for heatsinks and
heat spreaders, were adopted from the default values provided by HotSpot. In the context
of TEI-VS, due to the power/area overhead of the multiple on-chip DC-DC converters, in
general, one DC-DC converter is equipped per die, so that voltage scaling is only feasible
at the level of each die. Therefore, the reference temperature of Tdie should be the lowest
temperature for each die, as TEI-VS performs a lower voltage scaling at higher temperatures.
Accordingly, we performed a thermal transient simulation for 100 s based on the lowest
temperature block within the die, as shown in Figure 10b. The transient simulation results
for each RPM value of the fan are displayed in Figure 11. At 100 s, the temperature of the
target block reached 92.9 ◦C and 74.1 ◦C at fan speeds of 1 RPM and 1000 RPM, respectively.
Based on these results, we mapped the minimum and maximum outputs of the proposed
controller to the effective RPM range of the fan.
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Figure 11. Thermal transient simulation results for the target block at various RPM settings.

Table 2. List of parameters applied to 3D-IC’s thermal simulation.

Parameter Value (◦C) Parameter Value (m)

Initial temp. 80.0 Fan radius 0.02
Ambient temp. 40.0 Motor radius 0.01

Thermal threshold 120.0

Subsequently, we performed a control simulation using the heat trace data of the
target block. The control simulation using the new thermal model was conducted in
the same manner as in Section 3.3 to ensure a fair evaluation. Additionally, all target
temperatures used in both the learning phase of the neural network and the control phase
were set identically.

Figure 12 displays the results of the control simulation using a realistic 3D-IC ther-
mal model: Figure 12a shows the results for the conventional coarse autotuning, while
Figure 12b presents the outcomes of the proposed two-phase autotuning, which includes
coarse-grain autotuning followed by deep learning-based fine-grain autotuning. The con-
trol parameters for each are reported in Table 3. Compared to the results in Figure 8, the
tendency for overshooting was different with conventional autotuning. Although it ap-
peared as a slight improvement, the control simulation was conducted fairly with only the
thermal model differing, suggesting a high dependence of the conventional controller on
the thermal model, indicating a limitation. In contrast, the proposed controller adaptively
learned from different thermal models via the neural network, showing simulation results
with minimal overshooting, similar to previous simulations. These results validate the
robust control capability of the proposed controller in varying thermal models of 3D-ICs.

Table 3. Control parameters for the conventional autotuning and the proposed autotuning used
in Figure 12.

Kp Ti Td Kaw

Conv. −0.0743 43.8125 10.9525 0.0457

Proposed −0.0743 0.0288 0.0063 0.0217
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(a) (b)
Figure 12. The simulation results of the different autotuning controllers using heat trace from the
HotSpot thermal model simulation at a set temperature of 80 °C with (a) conventional autotuning and
(b) proposed autotuning method applied.

Finally, we discuss the energy savings achievable by applying TEI-VS to 3D-ICs using
the proposed autotuning technique instead of conventional methods. In the simulation,
power values were derived from measurements obtained from our chip developed using
a 28 nm process (refer to Figure 3), and the maximum operating temperature was set to
80 ◦C. As depicted in Figure 12, the time taken to stabilize at the set temperature point of
80 ◦C, tsettling, was 556.86 s for conventional autotuning and 190.36 s for our proposed
method. Considering that TEI-VS could not be applied during tsettling, the faster stabi-
lization of the proposed method led to more energy-efficient results. In other words, the
conventional method could not utilize TEI-VS during the tsettling of 556.86 s, requiring a
0.54 V supply at the 50 MHz operating frequency and a 0.61 V supply at the 100 MHz
operating frequency, whereas the proposed method can operate at 80 ◦C TEI-VS results of
0.44 V supply at 50 MHz operating frequency and 0.49 V supply at 100 MHz operating
frequency after 190.36 s. Table 4 reports the energy consumption results based on these
differences. The proposed controller achieved 20.7% and 22.1% energy savings at 50 MHz
and 100 MHz, respectively, compared to the conventional controller.

Table 4. Energy saving results based on the settling time of the conventional method, when the target
temperature was set to 80 ◦C.

Clock Frequency: 50 MHz Clock Frequency: 100 MHz

EConv. (J) 1.430 3.151
EProposed (J) 1.134 2.455

Energy saving (%) 20.70 22.09

Additionally, to demonstrate that our proposed controller still performs well and
achieves excellent power consumption reduction at different set points, we also conducted
simulations with the set temperature point at 60 ◦C. The results are depicted in Figure 13,
with each figure representing (a) the conventional method, and (b) our proposed method.
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The control parameter values for the conventional method were the same as in Table 3,
while for our proposed method, Kp = −0.0743, Ti = 0.0302, Td = 0.0002, and Kaw = 0.0108.
Compared to the results in Figure 12, while the tsettling increased to achieve a lower set
temperature, our proposed method’s tsettling of 255 s was still significantly faster than the
638 s of the conventional method. The energy savings from this experiment are reported in
Table 5. The proposed controller showed remarkable savings, achieving 17.8% and 16.3%
reductions in energy consumption at 50 MHz and 100 MHz, respectively, when compared
to the conventional controller.

(a) (b)
Figure 13. The simulation results of the different autotuning controllers using heat trace from the
HotSpot thermal model simulation at a set temperature of 60 °C with (a) conventional autotuning and
(b) proposed autotuning method applied.

Table 5. Energy saving results based on the settling time of the conventional method, when the target
temperature is set to 60 ◦C.

Clock Frequency: 50 MHz Clock Frequency: 100 MHz

EConv. (J) 1.571 3.491
EProposed (J) 1.334 2.921

Energy saving (%) 17.77 16.33

5. Conclusions

The 3D-IC is garnering significant attention from academia and industry as a key
technology leading the post-Moore era, offering new levels of efficiency, power, perfor-
mance, and form-factor advantages to the semiconductor industry. We have successfully
challenged the traditional approach to thermal management in 3D-ICs, which typically
views heat generation negatively and focuses on its elimination. Instead, our novel ap-
proach utilizes this heat positively to achieve low-power operation in 3D-ICs. Central
to our method is the innovative use of the TEI phenomenon in ULV operating circuits,
a key feature of the TEI-VS technique. This approach allows for a reduction in power
consumption as temperatures rise, overturning conventional understandings of ther-
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mal effects in 3D-ICs that includes plants with ULV operation. We not only introduced
new thermal management technologies suitable for practical implementation in 3D-ICs
but also developed a critical component for achieving optimal energy efficiency: a deep
learning-based PID autotuning temperature controller. The effectiveness and theoreti-
cal soundness of this AI control algorithm were thoroughly validated through exten-
sive simulations, demonstrating both its functional accuracy and its ability to enhance
power efficiency.

Our work represents a significant stride towards more efficient and sustainable semi-
conductor technologies. By embracing and utilizing the inherent thermal properties of
3D-ICs, we pave the way for more innovative and energy-efficient solutions in semiconduc-
tor design and operation. Moreover, our solution concretely demonstrates that optimization
can be achieved through AI-based algorithms and control, clearly showing that semicon-
ductor design and operation can be a prime application area for the improvement of AI
algorithms and systems.
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