
Citation: Chen, J.-S.; Kuo, C.-M. An

Efficient GNSS Coordinate

Classification Strategy with an

Adaptive KNN Algorithm for

Epidemic Management. Mathematics

2024, 12, 536. https://doi.org/

10.3390/math12040536

Academic Editor: Florin Leon

Received: 28 December 2023

Revised: 3 February 2024

Accepted: 7 February 2024

Published: 8 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Efficient GNSS Coordinate Classification Strategy with an
Adaptive KNN Algorithm for Epidemic Management
Jong-Shin Chen * and Chun-Ming Kuo

Department of Information and Communication Engineering, Chaoyang University of Technology,
Taichung 413310, Taiwan
* Correspondence: jschen26@cyut.edu.tw

Abstract: In times of widespread epidemics, numerous individuals are at risk of contracting viruses,
such as COVID-19, monkeypox, and pneumonia, leading to a ripple effect of impacts on others.
Consequently, the Centers for Disease Control (CDC) typically devises strategies to manage the
situation by monitoring and tracing the infected individuals and their areas. For convenience,
“targets” and “areas” represent the following individuals and areas. A global navigation satellite
system (GNSS) can assist in evaluating the located areas of the targets with pointing-in-polygon
(PIP) related technology. When there are many targets and areas, relying solely on PIP technology
for classification from targets to areas could be more efficient. The classification technique of k-
nearest neighbors (KNN) classification is widely utilized across various domains, offering reliable
classification accuracy. However, KNN classification requires a certain quantity of targets with areas
(training dataset) for execution, and the size of the training dataset and classification time often
exhibit an exponential relationship. This study presents a strategy for applying KNN technology to
classify targets into areas. Additionally, within the strategy, we propose an adaptive KNN algorithm
to enhance the efficiency of the classification procedure.

Keywords: KNN; GNSS; pointing-in-polygon; machine learning; epidemic management

MSC: 68T07

1. Introduction

Infectious diseases are diseases caused by microorganisms [1]. Many infectious dis-
eases, such as COVID-19, monkeypox, chickenpox, and influenza, are highly contagious
and seriously affect human health, economic activities, education, sports, and leisure. Re-
stricting, tracing, and isolating the movement of people (targets) during an epidemic is an
effective way to slow its spread [2,3]. Knowing the areas of targets can help allocate medi-
cal treatment or protection-related materials or personnel. GNSS technology is also very
mature and can accurately provide the current geographical coordinates of targets. These
coordinates can be converted into the areas where the targets are located. In this paper,
we will propose a coordinate classification strategy, which uses the GNSS coordinates of
the current targets and KNN technology to classify (predict) the areas where the targets
are located.

A GNSS refers to a satellite navigation system providing worldwide coverage. It
enables tiny electronic receivers to determine their longitude and latitude coordinates. In
the context of international civil aviation standards, there are currently two primary con-
stellations recognized: the U.S. global positioning system (GPS) and the global navigation
satellite system (GLONASS) [4,5]. A GNSS allows a tiny electronic receiver to determine
its current coordinates, including its longitude, latitude, and altitude, to an accuracy of
a few centimeters to a few meters by using time signals transmitted by satellite radio
along the line of sight [4,5]. Continuing, much research is devoted to more accurate GNSS

Mathematics 2024, 12, 536. https://doi.org/10.3390/math12040536 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12040536
https://doi.org/10.3390/math12040536
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8402-7128
https://doi.org/10.3390/math12040536
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12040536?type=check_update&version=2

Mathematics 2024, 12, 536 2 of 20

positioning [6–8]. In today’s environment, GNSS receivers are a widely used piece of equip-
ment. They widely exist in people’s personal belongings, such as mobile phones, tablet
computers, and watches. Therefore, obtaining the current GNSS coordinates of targets and
extending them to the current areas of targets is available. Due to their ability to furnish
accurate target location data, GNSSs have found extensive application across a range of
remote sensing endeavors [9–15], including but not limited to epidemic monitoring and
geographic information systems.

The GNSS can provide a two-dimensional coordinate of the longitude and latitude of a
target, which can be regarded as a point in a two-dimensional plane in geography. An area
in the range of geography can be represented by a polygon composed of multiple points.
Determining whether a point lies inside a polygon is a geometric problem known as the PIP
calculation. These methods can generally be distinguished by two types: the ray casting
and the winding number. These methods have their own advantages and disadvantages
according to the spatiality of the polygon, but their time complexity is generally O(n),
where n is the number of vertices of the polygon. These methods can be developed into
different procedures to calculate points that are inside or not inside the polygon. We
simply call these procedures the PIP_EPs (PIP evaluation procedures). Because the PIP_EPs
continue to have promising applications in many fields, related technologies continue to be
developed [16–23].

In order to know the spatial relations of the located polygons of the candidate points,
a PIP_EP is necessary. Assuming there is only one specified polygon and many candidate
points, planning an enumeration method with an existing PIP_EP is also a solution. Allow-
ing each candidate point to enter this PIP_EP once achieves the result, but such a method
could be more efficient, especially when the final internal points are only a tiny part of all
points. In [22], the author planned a similar enumeration method with some candidate
points excepted. In [23,24], the methods can obtain most points inside this polygon without
entering the PIP_EP. When there are many candidate points and polygons simultaneously,
it is very complicated to accurately calculate their spatial relationships. Moreover, in the
application of epidemic management, the number of candidate points and polygons is
large and constantly changing. Prediction in machine learning provides a direction to try.

KNN classification is an efficient solution to approximation, which is widely used
in various fields [25–30]. KNN classification has the remarkable property that, under
very mild conditions, the error rate of a KNN algorithm tends to be Bayes optimal as the
sample size is towards infinity [25]. If establishing a model with some training datasets is
troublesome for any data analysis application, a KNN algorithm will likely provide the best
solution [26]. In addition, KNN is also widely used in the fields of data mining [27] and
artificial intelligence (AI) [28,29]. To provide classification, a training dataset as samples
is needed. Each data point in this dataset contains multiple features and has its class.
The experimental results in [30] have shown that when the number of samples is large,
and the dimension of data points is low, the classification accuracy presented by KNN
classification will be higher. For epidemic management, the targets’ locations meet the
KNN classification feature. In [31], the author proposed a KNN-based GNSS coordinate
classification method. The time complexity of this classification is O(nTD

2), where nTD
is the size of this training dataset. From previous experience, we know that weighting
KNN technology can improve classification accuracy in many applications, especially
when the training dataset is insufficient. As the training dataset increases, the accuracy of
KNN classification will also increase. Unfortunately, the classification time will show an
exponential relationship with the size of the training dataset, and the classification accuracy
of KNN and the classification time of KNN are in a trade-off relationship. This result
shows that there are several improvements. The first is to improve the accuracy when
the number of samples is insufficient. The second is to reduce the time complexity of the
KNN classification.

The classification of geographic areas based on the latitude and longitude coordinates
provided by GNSS is a novel research topic [23,24]. KNN represents a conceptual approach

Mathematics 2024, 12, 536 3 of 20

to classification (or prediction) that extends into new research areas, as seen in recent
studies [32–34], which apply KNN in various domains. Our research aligns with this
trend. In our survey, we are the first to introduce the concept of KNN for classifying many
latitude and longitude coordinates provided by GNSS into numerous geographical areas.
Additionally, we incorporate the idea of weighting KNN [30,35] into this study to increase
the classification accuracy when the number of samples is small. Regarding classification
accuracy, the concept of both KNN and weighting KNN are beneficial in this field. However,
the significantly large number of classes and the corresponding expansion of training data
points in this study have impacted the efficiency of classification time. Therefore, we also
need to propose an adaptive KNN method for classification time.

Research on KNN classification often focuses on the issue of adaptability. In our survey,
studies [36–44] can be roughly categorized into two types. The first type involves adapting
the k value based on the precise knowledge of the samples [36–40], where k is a specific
number that uses k data points of the training dataset to classify a test point. Such studies
tend to lean towards theoretical exploration and technical extension, such as adjusting the
k value based on the underlying distribution of samples to achieve an optimal minimax
rate [36] or a desirable bias and variance tradeoff [38]. The second type extends adaptive
KNN classification methods based on problems arising in specific applications [41–43]. For
example, the method mentioned in [41] is designed for predicting diabetes, and, in [43], the
technique aims to improve the retrieval rate of leaf datasets. This study focuses on using a
test point as the center, employing a distance r as the range, and calculating the data points
within the range through a single search of the training dataset. If the number of data
points within this range is less than k, the distance r will adaptively adjust until the number
of these data points is greater than or equal to k. These points become candidates for the
k points. Another approach is to consider all of the training points as candidates. Our
method performs better during classification time by reducing the number of candidates to
a very low level.

Machine learning plays a crucial role in artificial intelligence applications [44,45], with
deep learning achieving excellent results in various fields such as computer vision, speech
recognition, natural language processing, audio recognition, and bioinformatics. The deep
learning algorithm utilizes artificial neural networks as its framework for representation
learning. When applied to classification tasks with a sufficiently large dataset, frameworks
predominantly based on neural networks often provide reliable classification accuracy.
However, neural networks also have limitations. For instance, training a neural network
requires substantial computational resources, and both the training process and classifi-
cation results often lack interpretability, which implies challenges in assessing the time
required for decision making. In the context of the proposed paper, which involves making
efficient decisions for many data points, a neural network for classification may not meet
these criteria.

The KNN algorithm is one of the simplest among all machine learning algorithms,
suggesting that, compared with other classification methods, KNN classification is efficient
in terms of time. Additionally, the error rate of a KNN algorithm tends to be Bayes optimal
as the sample size approaches infinity [25], which implies that the time for classification,
the size of the training set, and the accuracy of classification should be interpretable, which
is a primary reason for choosing this classification method. Another example is fuzzy.
The application of fuzzy techniques to original data or final results with probabilistic or
possibilistic characteristics is representative. However, in this study, the original data consist
of geographical points (domain) and geographical areas (codomain), where a geographical
area is a set of geographical points. Moreover, the relation between the domain and
codomain is clear and does not possess probabilistic or possibilistic characteristics.

Based on the above discussion, we propose an effective GNSS coordinate classification
strategy using an adaptive KNN algorithm for epidemic management. This strategy con-
tains two phases. The first phase starts when many areas need attention due to the epidemic.
In this phase, when the coordinates of targets enter, these coordinates are converted into

Mathematics 2024, 12, 536 4 of 20

corresponding areas (classes). When enough targets have their coordinates and classes,
these data become the training dataset in the second stage. When there is a sufficient
training dataset, the second phase starts. This phase will classify the targets generated next.
For classification, we introduce the weighting KNN technology. In addition, we also plan
an adaptive algorithm in order to improve the classification time of weighting KNN.

2. Related Work

A GNSS provides worldwide coverage and currently consists of two prominent con-
stellations: the U.S. global positioning system (GPS) and the global navigation satellite
system (GLONASS) [4,5]. Numerous studies have employed various techniques to en-
hance the precision of GNSS positioning [6–8]. Due to their ability to provide accurate
target location data, GNSS systems have found extensive applications in remote sensing
endeavors, including prevention and control efforts [9–15]. For instance, in [9], methods
are proposed to track detailed movement patterns of individuals using GPS data, which
can be integrated into a geographic information system (GIS) to identify high-endemic
areas and high-risk groups, facilitating resource allocation decisions [10]. In [12], the study
focuses on using GNSS satellites for environmental monitoring, while [13] highlights using
smartphones to monitor COVID-19 patients and confirmed cases. Additionally, Ref. [14]
emphasizes the importance of mapping flood dynamics and extent in various contexts,
including predicting the spread of infectious diseases, with GNSS technology playing a
valuable role. Finally, Ref. [15] presents an analysis of COVID-19 trackers in India.

Determining whether a target is inside or outside a specific area can be framed as a
PIP problem. Many works in the literature have discussed related issues in the past [16–21].
In [16], the study presented a detailed discussion of the PIP problem for arbitrary polygons.
Since no single algorithm is the best in all categories, the study compared the capabilities
of different algorithms. In [17], the authors discussed the variables examined, including
various polygon types, memory usage, and preprocessing costs. In [18], the authors
outlined a fast and efficient method for determining whether a coordinate point lies within
a closed region or polygon defined by any number of coordinate points. In [19], the study
proposed an efficient polygon clipping algorithm using a parametric representation of
polygon edges and point clipping to find required intersection points with clip window
boundaries. In [20], the study presented an extension of a winding number and PIP
algorithm. Study [21] provided a provably correct implementation of a PIP method based
on the computation of the winding number. We can follow the methods in [16–21] to design
different PIP_EPs. These PIP_EPs share a common characteristic in that they can only
determine whether a point is inside a specified polygon one at a time. When calculating
points within a designated polygon from a large set of candidate points, employing an
enumeration approach with one of these PIP_EPs to process them one by one is a solving
method. However, this method is inefficient. In [22–24], these methods used preprocessing
to reduce the number of candidate points and improve efficiency.

In [22], a rectangle covering the targeted area was proposed, and only candidate points
inside this rectangle needed to enter the PIP_EP. This method is more effective than the enu-
meration approach but still has limitations. Study [24] presented a method that significantly
improves efficiency compared with [23]. It involves planning subareas covering the target
area and calculating the spatial relationships between them and polygons, considering
inner, outer, and intersected relationships. This method only allows candidate points in
intersected subareas to enter the PIP_EP.

Moreover, it considers the computer’s computing power and data access capabilities
for greater efficiency. However, this method has two problems for improvement, including
the overlapping among subareas and the subarea size. Study [24] effectively addressed
these two shortcomings.

KNN classification exhibits several remarkable properties [25–31]. The classification is
available in various fields, including data mining algorithms [27] and artificial intelligence
(AI) [28,29]. In [31], the author proposes a KNN-based GNSS coordinate method, which

Mathematics 2024, 12, 536 5 of 20

includes a PIP_EP and KNN classification. The PIP_EP is based on a casting type that
acquires the training dataset. In the KNN classification, three steps are involved for a test
data point as follows:

1. It evaluates the Euclidean distance between the sample and the test point, with a time
complexity of O(nTD), where nTD is the dataset size.

2. It sorts the training dataset based on Euclidean distances with an O(nTD
2) time complexity.

3. It uses the majority classification rule to predict the class of the test point, with a time
complexity of O(k), where k is the number of neighbors in the KNN classification.

Overall, the time complexity of this KNN classification method is O(nTD
2).

The KNN classification technique is widely applied in various fields, and the char-
acteristics of the raw data, such as the number of classes, average size of training data
points per class, and dimensions, often impact the classification performance. In [30],
the authors conducted experiments on 15 datasets with different characteristics of raw
data. These experimental results can be used for cross-referencing with our experiments
to assess the suitability of the KNN classification technique for application in this context.
Table 1 provides the information about the experimental results with results. These datasets
include between 2 and 26 classes, with 5 datasets including 10 or more classes. In the
experiment, the average classification accuracy of KNN is between 4.71% and 74.92, and
that of weighting KNN is between 5.38% and 73.61%. It is worth mentioning that in 13 of
the 15 datasets, weighting KNN improved the accuracy, but in 2 of them it did not. The
above data provide a reference for evaluating KNN technology to classify geographical
coordinates into geographical areas.

Table 1. The KNN classification accuracy of 15 datasets with different data attributes [30].

Datasets Classes Size of Training
Datasets

Average Size of Training
Data Points per Class Dimensions

Accuracy

KNN Weighting KNN

OCCUDS 10 645 64 101 13.02% 14.41%

Chess 2 335 167 36 69.00% 72.90%

CNAE 9 376 42 856 13.65% 14.51%

German 2 137 69 20 66.20% 89.70%

Ionosphere 2 45 23 34 83.60% 87.50%

Isolet 2 168 84 617 68.10% 74.50%

Letter 26 6471 249 16 4.71% 5.38%

Segment 7 820 117 19 19.43% 20.03%

USPS 10 3109 311 256 15.32% 16.71%

Vehicle 4 276 69 18 31.05% 36.33%

Waveform 3 684 228 21 49.86% 58.39%

Yeast 10 510 51 1470 48.99% 42.12%

Arcene 2 20 10 10,000 75.00% 74.10%

Carcinom 11 53 5 9182 20.61% 26.57%

CLLAUB 3 33 11 11,340 74.92% 73.61%

Research on KNN classification often centers around the issue of adaptability [36–43],
broadly including the k values’ adjustment type [36–40] and application-oriented type [41–43].
The k values’ adjustment type often provides precise knowledge of the samples, such as
the probability density function (pdf) of the samples. In [36], a sliced nearest neighbor
method is proposed that requires the pdf of the samples to achieve optimal minmax rate.
In [37], the pdf function can be estimated by unclassified samples and then the optimal k
can be acquired. In [38], the k value is selected according to the training samples to achieve

Mathematics 2024, 12, 536 6 of 20

a desirable bias and variance tradeoff. Moreover, in [39], different k values are selected for
different test samples without any knowledge of the underlying distribution. Continuously,
study [40] also pays attention to this issue. For the application-oriented type, in [41], a dis-
tance adaptive-KNN method is proposed for predicting diabetes. In [42], a wrapper-based
binary improved grey wolf optimizer approach is developed for categorizing Parkinson’s
disease with an optimal set of features using adaptive KNN. In [43], adaptive KNN for an
optimization method is proposed to improve the retrieval rate of leaf datasets. The motiva-
tions driving these methods in this category vary, making it challenging to cross-compare
the resulting approaches.

3. System Model

In this system model, each target needs a mobile device with a tiny GNSS receiver. It
also needs a server with a data storage device. The server provides related calculations and
data storage required for the location management of targets. The target’s mobile device
will regularly receive GNSS signals, convert them into coordinate data, and then send these
data to the server. A target with latitude and longitude coordinates is a geographic point.
For a geographical point (target) g, (gx, gy) represents its two-dimensional coordinate. The
considered areas are in the form of polygon data types. A polygon P is composed of n
edges with n geographical points. For convenience, we use P = {p0, p1, . . ., pn−1, pn} to
define a polygon P with n points, where p0 = pn and the straight line segment from point pi
to pi+1 is the edge for i = 0, 1, . . ., n − 1.

Moreover, we also assume PA = {P0, P1, . . ., Pm−1} is a set of m polygons in all areas.
As shown in Figure 1, the system model includes a platform for finishing the task of a
two-phase procedure, i.e., the positioning and classification that a computer server could
implement. The considered areas are generated and transformed into the data with polygon
type and the system starts. The positioning phase performs the following.

Mathematics 2024, 12, 536 7 of 20

(a) Positioning

(b) Classification

Figure 1. System model. It includes a platform for completing a two-phase procedure, i.e., position-
ing and classification.

4. Proposed Algorithms
The proposed algorithms include a PIP positioning algorithm and a KNN classifica-

tion algorithm.

4.1. PIP Positioning Algorithm
Given a point g and a polygon set PA = {P0, P1, …, Pm−1}, where point g is inside a polygon

P of set PA, the goal of positioning is to assess this polygon P from set PA. We use a posi-
tioning technique with ray-casting technology to achieve this goal. This positioning
method determines the number of intersections between the ray of point g and the candi-
date polygon.

Figure 2 illustrates a polygon with points and their rays. This polygon P consists of
six points labeled as p0, p1, ..., and p6, where p0 is equal to p6. The line segment connecting
point pi to pi+1 forms the edge for i = 0, 1, ..., and 5. There are three geographic points g0, g1,
and g2 with the corresponding rays ray(g0), ray(g1), and ray(g2). The number of intersections
between ray(g0) and edges of P is 1 (odd number) that g0 is the inner point of P. The num-
bers of intersections of ray(g1) and edges of P and ray(g1) and edges of P, respectively, are
2 and 0 that both numbers are even. It means that point g1 and point g2 both are the outer
points of P.

In order to count these intersections, a procedure for evaluating the intersection of
two lines is required [46]. Consider two lines: line 1 and line 2. Line 1 intersects points ga
and gb, and line 2 intersects points gc and gd. The intersection between the lines is accord-
ing to (1), where if α is 0, there is no intersection; otherwise, there is an intersection. The
intersection of line 1 is according to (2), where if κ1 is between 0 and 1, then the intersec-
tion is between points ga and gb. The intersection of line 2 is according to (3), where if κ2
is between 0 and 1, the intersection is between points gc and gd. Correspondingly, the
condition for the intersection of two line segments from points ga to gb and points gc to
gd is that both κ1 and κ2 are between 0 and 1. Algorithm 1 formally expresses the proce-
dure to evaluate the intersection of two line segments (SegSegInt). Given two line seg-
ments from points ga to gb and points gc to gd, according to the procedure of SegSegInt,
it can result in 0 or 1, indicating that the two segments are intersected or not intersected.

Figure 1. System model. It includes a platform for completing a two-phase procedure, i.e., positioning
and classification.

Mathematics 2024, 12, 536 7 of 20

1. The data sent from the mobile devices of targets will be stored as unclassified geo-
graphic points.

2. The server will individually take out a point from the unclassified points and position
which polygon this point is inside.

3. The server will store these geographical points with their classes.

The task of this phase is to collect and position sufficient training datasets for the
classification phase task.

The classification procedure entails selecting candidate samples from the training
dataset based on their proximity to the target’s coordinates and evaluating the target’s
assigned area (class). The classification phase performs the following.

1. The real-time data sent from targets’ mobile devices arrive to the server.
2. The server extracts candidate points from the storage of classified targets.
3. The server will classify the targets into their located areas according to the candidate

points.

4. Proposed Algorithms

The proposed algorithms include a PIP positioning algorithm and a KNN classification
algorithm.

4.1. PIP Positioning Algorithm

Given a point g and a polygon set PA = {P0, P1, . . ., Pm−1}, where point g is inside
a polygon P of set PA, the goal of positioning is to assess this polygon P from set PA.
We use a positioning technique with ray-casting technology to achieve this goal. This
positioning method determines the number of intersections between the ray of point g and
the candidate polygon.

Figure 2 illustrates a polygon with points and their rays. This polygon P consists of
six points labeled as p0, p1, . . ., and p6, where p0 is equal to p6. The line segment connecting
point pi to pi+1 forms the edge for i = 0, 1, . . ., and 5. There are three geographic points
g0, g1, and g2 with the corresponding rays ray(g0), ray(g1), and ray(g2). The number of
intersections between ray(g0) and edges of P is 1 (odd number) that g0 is the inner point
of P. The numbers of intersections of ray(g1) and edges of P and ray(g1) and edges of P,
respectively, are 2 and 0 that both numbers are even. It means that point g1 and point g2
both are the outer points of P.

Mathematics 2024, 12, 536 8 of 20

α = (gax − gbx) × (gcy − gdy) − (gay − gby) × (gcx − gdx) (1)

κ1 = ((gax −gcx) × (gcy − gdy) − (gay −gcy) × (gcx −gdx))/α (2)

κ2 = ((gax −gbx) × (gay − gcy) − (gay − gby) × (gax −gbx))/α (3)

Figure 2. Example of a polygon with points and their rays.

Algorithm 1: SegSegInt (point ga, point gb, point gc, point gd).
Input: ga, gb, gc, gd are points that form a segment from ga to gb and a segment from gc to gd

Output: The result is 1 or 0, indicating which two line segments intersect or do not.
Method://an algorithm for evaluating the intersection of two segments
1. result := 0;
2. α := (gax − gbx) × (gcy − gdy) − (gay − gby) × (gcx − gdx);
3. if α = 0 then
4. result := 0;
5. else
6. κ1 := ((gax − gcx) × (gcy − gdy) − (gay − gcy) × (gcx − gdx))/α;
7. κ2 := ((gax − gbx) × (gay − gcy) − (gay − gby) × (gax − gbx))/α;
8. if (κ1 ≥ 0 and κ1 ≤ 1) and (κ2 ≥ 0 and κ2 ≤ 1)
9. then
10 result := 1;
11 else
12 result := 0;
13 end if
14 end if
15 output result.

In order to calculate the number of intersections of the ray of point g with polygon P
= {p0, p1, …, pn−1, pn}, a line segment from points g to point g’ can simplify the ray of point
g with coordinate (gx, gy), where the y-coordinate of point g’ is the same as gy and the x-
coordinate value is 0. For an edge from pi to pi+1 of polygon P, where i = 0, 1, …, n and the
line segment from points g to g’, according to the procedure of SegSegInt, it can acquire
this relation of intersection between this edge and the line segment. Expanding the line seg-
ment to each edge of polygon P with SegSegInt can achieve the number of intersections be-
tween the line segment and the polygon P. If the number is odd, point g is inside polygon P;
otherwise, point g is not inside polygon P. Algorithm 2 formally expresses our proposed pro-
cedure of the PIP_EP. Given a point g and a polygon P, according to the procedure of PIP_EP,
it can result in 0 or 1, indicating that point g is inside or not inside polygon P.

Since the located polygon of point g is indeed a polygon of the set PA, an enumeration
procedure can solve this problem by passing the polygons of set PA one by one through
PIP_EP. The polygon to which the point belongs can be determined. Algorithm 3 formally

Figure 2. Example of a polygon with points and their rays.

In order to count these intersections, a procedure for evaluating the intersection of
two lines is required [46]. Consider two lines: line 1 and line 2. Line 1 intersects points
ga and gb, and line 2 intersects points gc and gd. The intersection between the lines is
according to (1), where if α is 0, there is no intersection; otherwise, there is an intersection.

Mathematics 2024, 12, 536 8 of 20

The intersection of line 1 is according to (2), where if κ1 is between 0 and 1, then the
intersection is between points ga and gb. The intersection of line 2 is according to (3), where
if κ2 is between 0 and 1, the intersection is between points gc and gd. Correspondingly, the
condition for the intersection of two line segments from points ga to gb and points gc to gd
is that both κ1 and κ2 are between 0 and 1. Algorithm 1 formally expresses the procedure
to evaluate the intersection of two line segments (SegSegInt). Given two line segments
from points ga to gb and points gc to gd, according to the procedure of SegSegInt, it can
result in 0 or 1, indicating that the two segments are intersected or not intersected.

α = (gax − gbx) × (gcy − gdy) − (gay − gby) × (gcx − gdx) (1)

κ1 = ((gax −gcx) × (gcy − gdy) − (gay −gcy) × (gcx −gdx))/α (2)

κ2 = ((gax −gbx) × (gay − gcy) − (gay − gby) × (gax −gbx))/α (3)

Algorithm 1: SegSegInt (point ga, point gb, point gc, point gd).

Input: ga, gb, gc, gd are points that form a segment from ga to gb and a segment from gc to gd
Output: The result is 1 or 0, indicating which two line segments intersect or do not.
Method://an algorithm for evaluating the intersection of two segments
1. result := 0;
2. α := (gax − gbx) × (gcy − gdy) − (gay − gby) × (gcx − gdx);
3. if α = 0 then
4. result := 0;
5. else
6. κ1 := ((gax − gcx) × (gcy − gdy) − (gay − gcy) × (gcx − gdx))/α;
7. κ2 := ((gax − gbx) × (gay − gcy) − (gay − gby) × (gax − gbx))/α;
8. if (κ1 ≥ 0 and κ1 ≤ 1) and (κ2 ≥ 0 and κ2 ≤ 1)
9. then
10. result := 1;
11. else
12. result := 0;
13. end if
14. end if
15. output result.

In order to calculate the number of intersections of the ray of point g with polygon
P = {p0, p1, . . ., pn−1, pn}, a line segment from points g to point g’ can simplify the ray of
point g with coordinate (gx, gy), where the y-coordinate of point g’ is the same as gy and the
x-coordinate value is 0. For an edge from pi to pi+1 of polygon P, where i = 0, 1, . . ., n and
the line segment from points g to g’, according to the procedure of SegSegInt, it can acquire
this relation of intersection between this edge and the line segment. Expanding the line
segment to each edge of polygon P with SegSegInt can achieve the number of intersections
between the line segment and the polygon P. If the number is odd, point g is inside polygon
P; otherwise, point g is not inside polygon P. Algorithm 2 formally expresses our proposed
procedure of the PIP_EP. Given a point g and a polygon P, according to the procedure of
PIP_EP, it can result in 0 or 1, indicating that point g is inside or not inside polygon P.

Since the located polygon of point g is indeed a polygon of the set PA, an enumeration
procedure can solve this problem by passing the polygons of set PA one by one through
PIP_EP. The polygon to which the point belongs can be determined. Algorithm 3 formally
expresses the procedure of point positioning (PtPos). Given a point g and a polygon set PA,
according to the procedure of PtPos, it can result in a number i indicating point g inside
polygon Pi of set PA.

Mathematics 2024, 12, 536 9 of 20

Algorithm 2: PIP_EP (point g, polygon P).

Input: g is a point and P = {p0, p1, . . ., pn} is a polygon.
Output: The result is 1 or 0, indicating that g is located in P or not.
Method://an algorithm for positioning a point to a polygon
1. count := 0; result := 0;
2. for i :=0 to n − 1 do //each edge of polygon P
3. g′x := 0; g′y := gy;
4. if SegSegInt (pi, pi+1, g, g′) = 1 then
5. count := count + 1;
6. end if
7. end for
8. if (count%2 = 1) then result := 1;
9. else result := 0;
10. end if
11. output result.

Algorithm 3: PtPos (point g, polygon set PA).

Input: g is a point and PA = {P0, P1, . . ., Pm−1} is a polygon set.
Output: The result is a value i indicating that point g is located in polygon Pi, where 0 ≤ i ≤ m−1.
Method: an algorithm for positioning the located polygon of point g.
1. for i := 0 to m − 1 do
2. if PtInPy(g, Pi) = 1 then
3. break;
4 end
5. end for
6. output i.

4.2. KNN Classification

For a point g, the located polygon is one of PA = {P0, P1, . . ., Pm−1}. Simply, if point g
is located in polygon Pi, where 0 ≤ i ≤ m − 1, the class of point g is class i and gpc is used to
represent the class of point g, i.e., gpc = i. Through KNN classification, point g can also have
a class. For convenience, we use gcc to represent the class of point g in KNN classification.
If gcc is equal to gpc, the classification of point g is accurate. For KNN classification, the
domain is PA and the training dataset is T. KNN classification involves determining the
category of a test point by evaluating a specific number of data points from the training
dataset. The process relies on assessing the characteristics of these data points and inferring
the result accordingly. For convenience, we use ‘k’ to represent this specific number. For a
point g, let NB be a set of its k-nearest neighbors. Moreover, NB is a subset of T. The KNN
classification for a point g is as (4), where Pi ∈ PA and I(−) is an indicator function. For
each data point g′ in set NB, the KNN classification will make statistics on the class g’pc of
g’ using I(−), find the class i with the largest number, and then assign it to gcc, i.e., gcc = i.

gcc = arg
i
(max ∑

g′∈NB
I(g′pc = i)) (4)

In the majority rule, the k-nearest neighbors of point g are implicitly assumed to have
equal weight, regardless of their relative distance to point g. It is conceptually better to
give different weights to the k-nearest neighbors depending on their distance to point g,
with closer neighbors having greater weight. The Euclidean distance can be applied to give
weights. The Euclidean distance of two points ga and gb is as (5), where (gax, gay) is the
coordinate value of point ga and (gbx, gby) is the coordinate value of point gb.

d(ga, g b) =
√
(gax − gbx)

2 − (gay − gby)
2 (5)

The weighting KNN classification for point g is as follows:

Mathematics 2024, 12, 536 10 of 20

gcc = arg
i
(max ∑

g′∈NB
I(g′pc = i)× d(g, g′)−1) (6)

Algorithm 4 formally presents a procedure of an adaptive KNN classification (Adap-
tKNN). Given a point g, a numerical value r, a training dataset T, a polygon set PA, and a
k value, according to the procedure of AdaptKNN, it can result in the class gcc of point g.
The procedure includes four steps. In lines 1 to 9, Step 1 includes a search of nb neighbors
from set T. Based on a distance r′, it searches for points within the distance 0.5r′ from point
g and stores them in NB, where the initial value of r′ is set as r. If the size nb of NB is
less than k, it enlarges this distance r′ by r for this search. After this step, NB(i) denotes
the neighbor i of point g, where i = 0, 1, . . ., and nb − 1. In lines 10 to 11, Step 2 assigns
weight to each neighbor NB(i), denoted as NB(i)w. In lines 13 to 19, Step 3 is a sort of NB
that rearranges the elements of NB according to the weight value from high to low. Step
4 includes two phases that classify point g, where NB(i)pc is the class of point NB(i). Step
4-1 is an accumulation of weight for the class of the point in NB. After Step 4-1, V(i) is the
accumulation of weight of class i for the k neighbors. Step 4-2 is a search of class gcc that
the accumulation of weight is largest.

Algorithm 4: AdaptKNN (point g, numerical value r, training dataset T, PA, integer k).

Input: g is a point, r is a numerical value, T is a training dataset, and k is a specific number.
Output: the class of point g
Method://an algorithm for adaptive KNN classification
Notation and Initialization:

. m: the size of polygon set PA

. NB: a set for storing the neighbors of point g, where the arrangement of NB is ((NB(0), NB(1),. . .)

. V: a numerical list (V(0), V(1), . . ., NB(m − 1)) for a vote. The initial value of V(i) is 0 for 0 ≤ i ≤ m − 1

1. r′ := 0; nb := 0;
2. while nb < k do /*Step 1: a search of nb neighbors*/
3. r′ := r′ + r; nb := 0;
4. for each g′ in T do
5. if gx ≥ (g′x − 0.5r′) and gx ≤ (g′x + 0.5r′) and gy ≥ (g′y − 0.5r′) and gy ≤ (g′y + 0.5r′) then
6. NB(nb) := g′; nb := nb + 1;
7. end if
8. end for
9. end while
10. for i := 0 to nb − 1 do/* Step 2: an assign of weight to each neighbor NB(i) */
11. NB(i)w := 1/d(g, NB(i));
12. end for
13. for i := 0 to nb − 2 do /* Step 3: a sort of NB */
14. for j := i + 1 to nb − 1 do
15. if NB(j)w > NB(j + 1)w then //Swapping of NB(j) and NB(j + 1)
16. g′ := NB(j); NB(j) := NB(j + 1); NB(j + 1) := g′;
17. end if
18. end for
19. end for

/* Step 4: a classification for point g*/
20. for i := 0 to k − 1 do/* Step 4-1: An accumulation of weight for the class NB(i)pc */
21. t := NB(i)pc; V(t) := V(t) + NB(i)w;
22. end for
23. gcc := 0;/* Step 4-2: A search of class gcc that the accumulation of weight is largest */
24. for i := 1 to nPA − 1 do
25. if V (i) > V(gcc) then
26. gcc := i;
27. end if
28. end for
29. output gcc.

Mathematics 2024, 12, 536 11 of 20

Assuming that when there is a test point g, the classification procedure will achieve
k neighbors after evaluating the nearest neighbors process. When k is 3, the data of k
neighbors will be recorded in NB(0), NB(1), and NB(2) and assume that their classes are P0,
P0, and P1, respectively. The KNN classification will specify that the class of g is P0. The
weighting KNN classification will incorporate the Euclidean distances of the test point g
and the three neighbors into the evaluation. Assuming that these Euclidean distances are 4,
2, and 1, respectively, then V(0) is 0.75(=1/4 + 1/2) and V(1) is 1 (=1/1). Because V(1) is
greater than V(0), the weighting KNN classification will specify that the class of point g
is P1.

Algorithm 4 employs the technology of the weighting KNN classification for classi-
fying points into areas. In addition, Step 1 of this algorithm calculates the candidates of k
neighbors based on a numerical value r. When necessary, the value of r will be adaptively
adjusted until the number of candidates is greater than or equal to k. So, the candidates of k
neighbors in Steps 2, 3, and 4 are k or slightly more than k data points, not the total training
dataset. In this way, we improve the classification time.

4.3. Analysis

The proposed strategy includes a positioning method and a classification method.
In this positioning method, given two line segments, the SegSegInt is used to evaluate
the intersection with time complexity O(1). Given a point and a polygon, the PIP_EP can
position whether this point is inside or not inside this polygon. The PIP_EP employs the
SegSegInt to evaluate the intersection of the ray of this point and each edge of the polygon,
where the time complexity is O(n), where n is the number of edges of this polygon. Given a
point and a polygon set, the PtPos can evaluate the located polygon of this point in which
the PIP_EP is used for each polygon of this set until ensuring the located polygon of this
point. Assuming nmax is this polygon’s largest edge number of this polygon set and m is
the size of the given polygon set, the PtPos can position a point in O(m × nmax) time. It
follows from the above that we can conclude the following property.

Property 1. Given a point g and a polygon set PA with size m, if point g is inside one of set PA,
Algorithm PtPos positions point g in O(m × nmax) time, where nmax is this polygon’s largest edge
number of this polygon set.

The classification method includes four steps. Step 1 includes a search for neighbors.
This search collects candidates within a fixed range from the training dataset T that can be
achieved in O(nT) time, where nT is the size of dataset T. Step 2 is a weight assignment of
the candidate points that can be achieved in O(nb), where nb is the number of the candidate
points. In step 3, there are types of candidate points that can be achieved in O(nb2) time. In
step 4, there is a vote according to the classes of k neighbors that can be achieved in O(k)
time. Since nT is much greater than nb2 and nb2 also is greater than k, we can conclude the
following property.

Property 2. Given a point g and a training dataset T with size nT, algorithm AdaptKNN classifies
point g in O(nT) time.

5. Experiment

The experimental environment consists of the scope of a geographic area and a set of
geographic points within the area. The area is a famous city, ranging from 120.6 to 122.9 east
longitude and 24.8 to 25.4 north latitude. The administrative division of this area includes
12 districts or 456 villages, which are 2 types of classes: Type-1 and Type-2.

The initial data for the experiment include geographical points and geographical
regions within the selected area. These geographical points, totaling 89,209, are represented
by check-in places provided by a well-known social networking platform. We can acquire

Mathematics 2024, 12, 536 12 of 20

the necessary check-in places according to the method in [22]. Taiwan’s open data platform
can provide the geographical regions of these 12 districts [47] or 456 villages [48]. Figure 3
provides the distribution of the data points, in which the enclosed range is the area and the
purple color points are the locations of geographical points, for which 10,000 points are
randomly selected from the dataset. Figure 4 provides the class distributions of Type-1 and
Type-2.

Mathematics 2024, 12, 536 12 of 20

5. Experiment
The experimental environment consists of the scope of a geographic area and a set of

geographic points within the area. The area is a famous city, ranging from 120.6 to 122.9
east longitude and 24.8 to 25.4 north latitude. The administrative division of this area in-
cludes 12 districts or 456 villages, which are 2 types of classes: Type-1 and Type-2.

The initial data for the experiment include geographical points and geographical re-
gions within the selected area. These geographical points, totaling 89,209, are represented
by check-in places provided by a well-known social networking platform. We can acquire
the necessary check-in places according to the method in [22]. Taiwan�s open data plat-
form can provide the geographical regions of these 12 districts [47] or 456 villages [48].
Figure 3 provides the distribution of the data points, in which the enclosed range is the
area and the purple color points are the locations of geographical points, for which 10,000
points are randomly selected from the dataset. Figure 4 provides the class distributions of
Type-1 and Type-2.

Figure 3. The distribution of data points. The non-English terms in this figure are Chinese place names.

(a) Type-1 (b) Type-2

Figure 4. The class distributions of Type-1 and Type-2. Type-1 has 12 classes and Type-2 has 256 classes.

Figure 3. The distribution of data points. The non-English terms in this figure are Chinese
place names.

Mathematics 2024, 12, 536 12 of 20

5. Experiment
The experimental environment consists of the scope of a geographic area and a set of

geographic points within the area. The area is a famous city, ranging from 120.6 to 122.9
east longitude and 24.8 to 25.4 north latitude. The administrative division of this area in-
cludes 12 districts or 456 villages, which are 2 types of classes: Type-1 and Type-2.

The initial data for the experiment include geographical points and geographical re-
gions within the selected area. These geographical points, totaling 89,209, are represented
by check-in places provided by a well-known social networking platform. We can acquire
the necessary check-in places according to the method in [22]. Taiwan�s open data plat-
form can provide the geographical regions of these 12 districts [47] or 456 villages [48].
Figure 3 provides the distribution of the data points, in which the enclosed range is the
area and the purple color points are the locations of geographical points, for which 10,000
points are randomly selected from the dataset. Figure 4 provides the class distributions of
Type-1 and Type-2.

Figure 3. The distribution of data points. The non-English terms in this figure are Chinese place names.

(a) Type-1 (b) Type-2

Figure 4. The class distributions of Type-1 and Type-2. Type-1 has 12 classes and Type-2 has 256 classes. Figure 4. The class distributions of Type-1 and Type-2. Type-1 has 12 classes and Type-2 has
256 classes.

The other experimental setting for classification includes the k neighbors and the size,
i.e., the average number of the training data points per class. For each type, the training
dataset contains n × size points, where n is the number of classes and size as 2, 4, 8, 16,

Mathematics 2024, 12, 536 13 of 20

32, 64, and 128. Moreover, the values of k include 1, 3, 5, 7, 9, and 11. In the following
content, we use “knn”, “wknn”, and “awknn” to represent the methods of (4), (6), and
Algorithm 4, respectively. In this experiment, the PC is equipped with CPU: Intel®Core™
i5-12400, RAM:32GB DDR5, and OS: Windows 11 Pro, and the software is equipped with
PHP (version 8.2.4) and MariaDB (version 10.4.28). We conducted the experiments using
knn, wknn, and awknn classifications.

Accuracy and precision are both types of measurement. KNN classification belongs
to the accuracy type of measurement. The accuracy type is typically measured by true
positive, true negative, false positive, or false negative values and extended into various
metrics such as specificity, sensitivity, balanced accuracy, and negative predictive values.
The measurement for KNN classification includes only true positive and false negative,
representing the instances where the actual classification of the test data point matches or
differs from the classification assigned by the classifier. These two measurements alone
cannot calculate specificity, sensitivity, balanced accuracy, or negative predictive values. In
the experimental results, the accuracy is as (7), where TP is the true positive value and FN
is the false negative value.

Accuracy =
TP

TP + FN
(7)

First, we show the classification time. Tables 2 and 3 provide the classification time of
knn, wknn, and awknn in Type-1 and Type-2 based on different size values. In the Type-1
experiment, when size value is 2 to 128, to classify a test data point, the time required by knn
is 5.24 × 10−6 to 9.43 × 10−3 s; the time required by wknn is 6.66 × 10−6 to 9.90 × 10−3 s;
awknn takes 3.08 × 10−6 to 1.79 × 10−4 s. Similarly, in the Type-2 experiment, the time
required by knn is 3.17 × 10−3 to 2.29 × 10−1 s; the time required by wknn is 3.21 × 10−3

to 2.31 × 10−1 s; the time required by awknn is 5.51 × 10−6 to 4.07 × 10−2 s.

Table 2. Classification time based on different sizes in Type-1, where size is the average number of
training data points per class.

Classification

Size
2 4 8 16 32 64 128

knn 5.24 × 10−6 1.42 × 10−5 4.36 × 10−5 1.52 × 10−4 5.80 × 10−4 2.30 × 10−3 9.43 × 10−3

wknn 6.66 × 10−6 1.57 × 10−5 5.17 × 10−5 1.61 × 10−4 5.95 × 10−4 2.41 × 10−3 9.90 × 10−3

awknn 3.08 × 10−6 5.42 × 10−6 6.25 × 10−6 1.27 × 10−5 1.96 × 10−5 5.07 × 10−5 1.79 × 10−4

Note: unit—seconds.Page: 13

Table 3. Classification time based on different size in Type-2.

Classification

Size
2 4 8 16 32 64 128

knn 3.17 × 10−3 1.34 × 10−2 6.38 × 10−2 2.74 × 10−1 1.12 × 100 4.91 × 100 2.29 × 101

wknn 3.21 × 10−3 1.37 × 10−2 6.48 × 10−2 2.79 × 10−1 1.14 × 100 5.02 × 100 2.31 × 101

awknn 5.51 × 10−5 2.47 × 10−4 5.39 × 10−4 2.09 × 10−3 7.55 × 10−3 2.96 × 10−2 4.07 × 10−2

Note: unit—seconds.Page: 13

Figure 5 provides comparisons of classification times for Type-1 and Type-2 between
wknn versus knn and knn versus awknn. Figure 5a shows the result of wknn and knn. For
classification time, in Type-1, wknn is 1.03 to 1.27 times larger than knn; in Type-2, knn is
1.01 to 1.02 times larger than awknn. Figure 5b shows the results of knn and awknn. In
Type-1, knn is 2.16 to 52.68 times that of awknn; in Type-2, knn is 57.53 to 562.65 times that
of awknn. The above results show that the classification time of wknn is slightly larger
than that of knn, and the classification time of knn is much larger than that of awknn. As
the training dataset increases, this difference becomes more considerable. The reason is as
follows. When knn’s technology is used for a test point, it will search each training data

Mathematics 2024, 12, 536 14 of 20

point and calculate the Euclidean distance of the two points. Then, it sorts the training data
points based on the Euclidean distance and obtains the closest k neighbors. The technology
of wknn is similar to the technology of knn, but it also needs to convert the value of
Euclidean distance into a multiplicative inverse. This process causes the technology of
wknn to be more complicated than the technology of knn, so the classification time of
wknn is also slightly higher than that of knn. It is worth mentioning that both knn and
wknn technologies require sorting all training points, which is the most time-consuming
part of these two technologies. The search procedure of awknn does not need to calculate
the Euclidean distance between the test point and the training point. Therefore, when
comparing search procedures, the performance of awknn is better than that of wknn or
knn. When comparing the ranking process, awknn only processes a few candidate points,
while wknn or knn process all training data points. This is why the classification time of
awknn is much lower than that of wknn and knn.

Mathematics 2024, 12, 536 14 of 20

In Type-1, knn is 2.16 to 52.68 times that of awknn; in Type-2, knn is 57.53 to 562.65 times
that of awknn. The above results show that the classification time of wknn is slightly larger
than that of knn, and the classification time of knn is much larger than that of awknn. As
the training dataset increases, this difference becomes more considerable. The reason is as
follows. When knn�s technology is used for a test point, it will search each training data
point and calculate the Euclidean distance of the two points. Then, it sorts the training
data points based on the Euclidean distance and obtains the closest k neighbors. The tech-
nology of wknn is similar to the technology of knn, but it also needs to convert the value
of Euclidean distance into a multiplicative inverse. This process causes the technology of
wknn to be more complicated than the technology of knn, so the classification time of
wknn is also slightly higher than that of knn. It is worth mentioning that both knn and
wknn technologies require sorting all training points, which is the most time-consuming
part of these two technologies. The search procedure of awknn does not need to calculate
the Euclidean distance between the test point and the training point. Therefore, when
comparing search procedures, the performance of awknn is better than that of wknn or
knn. When comparing the ranking process, awknn only processes a few candidate points,
while wknn or knn process all training data points. This is why the classification time of
awknn is much lower than that of wknn and knn.

(a) (b)

Figure 5. Cross-comparison of classification times. (a) wknn and knn; (b) knn and awknn.

The accuracy of a classification method is generally higher with more training data
points, but this comes at the cost of increased classification time. The choice of the different
k values also affects accuracy. Therefore, the critical observation for evaluating a classifi-
cation method lies in understanding the relationship between the number of training data
points and accuracy under different k values. Hence, Figure 6 or Figure 7 illustrate the
accuracy provided by different classification methods with varying k values as the number
of training data points increases in Type-1 or Type-2.

Generally, the classification accuracy provided by KNN technology will increase
with the increase in training data points. In Figures 6 and 7, the classification accuracy
provided by knn, wknn, and awknn conforms to this characteristic. For example, in Figure
6a, when size value is 2, the classification accuracy of knn is between 31.84% and 66.67%;
the classification accuracy of wknn is between 54.05% and 66.67%; the classification accu-
racy of awknn is between 54.05% and 66.67%. The accuracy ranges from 53.96% to 66.52%.
As the training data points (size) increase, the accuracy of these methods will also increase.
In Figure 6g, when size value is 128, the classification accuracy of knn ranges from 94.17%
to 95.92%; the classification accuracy of wknn ranges from 95.65% to 96.03%; the classifi-
cation accuracy of awknn ranges from 95.65% to 96.04%.

Figure 5. Cross-comparison of classification times. (a) wknn and knn; (b) knn and awknn.

The accuracy of a classification method is generally higher with more training data
points, but this comes at the cost of increased classification time. The choice of the different k
values also affects accuracy. Therefore, the critical observation for evaluating a classification
method lies in understanding the relationship between the number of training data points
and accuracy under different k values. Hence, Figure 6 or Figure 7 illustrate the accuracy
provided by different classification methods with varying k values as the number of training
data points increases in Type-1 or Type-2.

Generally, the classification accuracy provided by KNN technology will increase with
the increase in training data points. In Figures 6 and 7, the classification accuracy provided
by knn, wknn, and awknn conforms to this characteristic. For example, in Figure 6a,
when size value is 2, the classification accuracy of knn is between 31.84% and 66.67%; the
classification accuracy of wknn is between 54.05% and 66.67%; the classification accuracy
of awknn is between 54.05% and 66.67%. The accuracy ranges from 53.96% to 66.52%. As
the training data points (size) increase, the accuracy of these methods will also increase. In
Figure 6g, when size value is 128, the classification accuracy of knn ranges from 94.17% to
95.92%; the classification accuracy of wknn ranges from 95.65% to 96.03%; the classification
accuracy of awknn ranges from 95.65% to 96.04%.

Under the same classification conditions, the classification accuracy provided by KNN
technology will decrease as the number of categories increases. The results of comparing
Figures 6 and 7 are also consistent with this characteristic. Taking Figures 6c and 7c as an
example, the accuracy of knn in Figure 6c ranges from 73.36% to 84.45%; the accuracy of
knn in Figure 7c ranges from 68.56% to 77.02%.

Mathematics 2024, 12, 536 15 of 20
Mathematics 2024, 12, 536 15 of 20

(a) size: 2 (b) size: 4

(c) size: 8 (d) size: 16

(e) size: 32 (f) size: 64

(g) size: 128

Figure 6. Classification accuracy based on Type-1 for different size values with different k values. Figure 6. Classification accuracy based on Type-1 for different size values with different k values.

Mathematics 2024, 12, 536 16 of 20
Mathematics 2024, 12, 536 16 of 20

(a) size: 2 (b) size: 4

(c) size: 8 (d) size: 16

(e) size: 32 (f) size: 64

(g) size: 128

Figure 7. Classification accuracy based on Type-2 for different size values with different k values. Figure 7. Classification accuracy based on Type-2 for different size values with different k values.

Mathematics 2024, 12, 536 17 of 20

The results from Figures 6 and 7 also demonstrate that, even with the same number of
training data points, different k values can still impact accuracy. Consequently, Table 4 or
Table 5 presents the average accuracy of each classification method under a fixed size value
for Type-1 or Type-2, considering k values ranging from 2 to 128. For example, in Figure 6a,
under different k values, the classification accuracy of knn ranges from 31.84% to 66.67%,
with an average value of 47.79%.

Table 4. Average accuracy of different k values in Type-1.

Classification

Size
2 4 8 16 32 64 128

knn 47.79 64.75 78.54 86.07 90.57 93.70 95.00

wknn 59.31 (11.52) 72.91 (8.16) 82.98 (4.44) 88.82 (2.75) 92.27 (1.70) 94.82 (1.12) 95.85 (0.85)

wknn 59.30 (11.51) 72.86 (8.11) 82.94 (4.40) 88.79 (2.72) 92.27 (1.70) 94.83 (1.13) 95.85 (0.85)
Note: unit—%.

Table 5. Average accuracy of different k values in Type-2.

Classification

Size
2 4 8 16 32 64 128

knn 51.88 62.53 72.62 79.30 83.64 87.56 91.20

wknn 59.21 (7.33) 68.11 (5.58) 76.17 (3.55) 81.85 (2.55) 85.98 (2.34) 89.77 (2.21) 92.84 (1.64)

awknn 59.20 (7.32) 68.11 (5.58) 76.17 (3.55) 81.84 (2.54) 85.98 (2.34) 89.77 (2.21) 92.77 (1.57)
Note: unit—%.

The results from Figures 6 and 7 also demonstrate that, even with the same num-
ber of training data points, different k values can still impact accuracy. Consequently,
Tables 4 and 5 present the average accuracy of each classification method under a fixed size
value for Type-1 or Type-2, considering k values ranging from 2 to 128. Moreover, Tables 4
and 5 provide the average accuracy based on different size values in Type-1 and Type-2.
Through the analysis of Tables 4 and 5, we can better understand the relationship between
training data points and classification accuracy.

Tables 4 and 5 provide the average accuracies of different k values in Type-1 and Type-
2. The values in parentheses are the differences in accuracy between wknn (or awknn) and
knn. KNN technology is used in many fields. In most fields, the technology of weighting
KNN can improve classification accuracy, but it is not possible. For example, in Table 1,
for datasets such as Yeast, Arcene, and CLLAUB, weighting KNN technology enlarges the
classification complexity but is not reflected in the accuracy. Fortunately, the technology of
weighting KNN achieves the expected results in this field.

Next, we discuss the classification accuracy of KNN or weighting KNN technology.
From the results in Table 1, we know that this technology has limited performance in some
fields. For example, in the Letter dataset, under 26 classes with 249 average training data
points per class conditions, the accuracy is only 4.71% in KNN and 5.38% in weighting.
In this field, despite limited training data points, such as size value of 2, wknn technol-
ogy can achieve an accuracy of nearly 60%. In Table 1, German, with a size value of 69,
and Ionosphere, with a size value of 23, can obtain an accuracy of 89.70% and 87.50%,
respectively. It is worth mentioning that the number of classes in these datasets with better
accuracy performance is 2. Type-1 has 12 classes, and the size value is 16; KNN technology
can achieve similar accuracy. Even in Type-2, the number of classes is as high as 256, and
when the dataset is sufficient, the accuracy can be as high as 90% or more. Therefore, KNN
technology is very suitable for this field. The technology of awknn retains the advantages
of weighting KNN technology, and the classification time is also superior.

Mathematics 2024, 12, 536 18 of 20

6. Conclusions

In this paper, we have planned a strategy, including positioning and classification
phases, which can be used when epidemic management or other applications need to track
the location of some targets or people. In positioning phases, the areas where the target
is located can be obtained through the latitude and longitude coordinates of targets. This
strategy can determine the required training data points according to the accuracy required
by different applications. The classification phase can start when the training data points are
sufficient. In this phase, weighting KNN technology is introduced into this field to calculate
the area where the target is located. Compared with the classification accuracy of KNN
in other fields, KNN or weighting KNN technology is very suitable for this application.
The classification time of KNN-based technology is O(nTD

2), where nTD is training data
points. For this phase, we have planned an adaptive KNN algorithm. The experimental
results show no significant difference between the accuracy provided by this algorithm
and the accuracy provided by weighting KNN. When a target object needs to determine
its area, this algorithm will plan a square range with the target as the center and, through
a search of the training data points, obtain the data points within this range as candidate
points when voting in KNN. When the candidate points are insufficient, this algorithm
will adaptively adjust the square range to meet the needs. Generally, KNN technology
will treat all training data points as voting candidate points. However, in the algorithm
we planned, only a few training data points will become candidate points, which achieves
O(nTD) classification time. When the epidemic spreads, many people must be classified by
area. The traditional KNN technology may not be able to handle the classification time,
but our method can meet the needs. At present, although we have good performance
in classification accuracy and classification time, in the future, we still aim to improve
accuracy and reduce classification time.

Emerging infectious diseases have been an essential topic in epidemiology in recent
years [49,50]. Preventing and slowing down the spread of these infectious diseases is
crucial at the onset of an epidemic. Once the situation reaches a full-blown outbreak, it
consumes significant medical resources and adversely affects public health. In public health,
conducting systematic epidemic investigations, accurately identifying the footprint of virus
spread, and deducing models for the spread of the epidemic are crucial but challenging
tasks. The challenges arise from the unknown transmission pathways and transmission
capabilities of emerging infectious diseases. Only when microbiologists discover the
characteristics of these microorganisms will we rely on more traditional methods, such as
contagious disease reporting and telephone-based contact tracing, which are less efficient,
resource-intensive, and prone to oversight. This approach can create vulnerabilities in
epidemic control, leading to widespread dissemination. To address these issues, in addition
to the traditional roles played by healthcare professionals, public health experts, and
government agencies in epidemic prevention, the development of more efficient epidemic
monitoring and predictive diffusion model analysis using technology and the internet
has become increasingly important, which is also a project valued and emphasized by
us. We hope this research can help epidemic management understand the spread of these
pathogens and enable us to make predictions and preparations earlier, significantly as the
infection numbers rapidly increase.

Author Contributions: Conceptualization, J.-S.C.; software, C.-M.K.; validation, J.-S.C.; formal
analysis, J.-S.C.; investigation, J.-S.C.; data curation, C.-M.K.; writing—original draft, J.-S.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2024, 12, 536 19 of 20

References
1. Nath, T.C.; Bhuiyan, M.J.U.; Mamun, M.A.; Datta, R.; Chowdhury, S.K.; Hossain, M.; Alam, M.S. Common infectious diseases of

goats in Chittagong district of Bangladesh. Int. J. Sci. Res. Agric. Sci. 2014, 1, 43–49. [CrossRef]
2. Edmond, M. Isolation. Infect. Control. Hosp. Epidemiol. 1997, 18, 58–64. [CrossRef] [PubMed]
3. Li, T. Diagnosis and clinical management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: An

operational recommendation of Peking Union Medical College Hospital (V2. 0) working group of 2019 novel coronavirus, Peking
union medical college hospital. Emerg. Microbes Infect. 2020, 9, 582–585. [PubMed]

4. International Civil Aviation Organization Annex 10 to the Convention of International Civil Aviation; International Civil Aviation
Organization: Montreal, QC, Canada, 2007; Volume I.

5. Hegarty, C.J.; Chatre, E. Evolution of the Global Navigation Satellite System (GNSS). Proc. IEEE 2008, 96, 1902–1917. [CrossRef]
6. Zhang, Z.; Li, B.; Shen, Y.; Gao, Y.; Wang, M. Site-Specific Unmodeled Error Mitigation for GNSS Positioning in Urban

Environments Using a Real-Time Adaptive Weighting Model. Remote Sens. 2018, 10, 1157. [CrossRef]
7. Li, T.; Zhang, H.; Gao, Z.; Chen, Q.; Niu, X. High-accuracy positioning in urban environments using single-frequency multi-GNSS

RTK/MEMS-IMU integration. Remote Sens. 2018, 10, 205. [CrossRef]
8. Cai, C.; Pan, L.; Gao, Y. A precise weighting approach with application to combined L1/B1 GPS/BeiDou positioning. J. Navig.

2014, 67, 911–925. [CrossRef]
9. Zhbankov, G.A.; Danilkin, N.P.; Maltseva, O.A. Influence of the ionosphere on the accuracy of the satellite navigation system.

Acta Astronaut. 2022, 190, 194–201. [CrossRef]
10. Gupta, R.; Jay, D.; Jain, R. Geographic Information Systems for the Study and Control of Infectious Diseases. In Proceedings of

the Map India Conference, New Delhi, India, 28–31 January 2003.
11. Awange, J.L. Environmental Monitoring Using Gnss: Global Navigation Satellite Systems; Springer: Berlin/Heidelberg, Germany, 2012.
12. Awange, J. Gnss Environmental Sensing; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10, pp. 978–983.
13. Cahyadi, M.N.; Susanto, L.O.F.; Rokhmana, C.A.; Sulistiawan, S.S.; Waloejo, C.S.; Raharjo, A.B.; Atok, M. Telemedicine technology

application for COVID-19 patient tracing using smartphone gnss. Int. J. Geoinform. 2022, 18, 103–117.
14. Chew, C.; Small, E. Estimating inundation extent using cygnss data: A conceptual modeling study. Remote Sens. Environ. 2020,

246, 111869. [CrossRef]
15. Gupta, R.; Bedi, M.; Goyal, P.; Wadhera, S.; Verma, V. Analysis of COVID-19 tracking tool in India: Case study of Aarogya Setu

mobile application. Digit. Gov. Res. Pract. 2020, 1, 1–8. [CrossRef]
16. Hormann, K.; Agathos, A. The point in polygon problem for arbitrary polygons. Comput. Geom. 2001, 20, 131–144. [CrossRef]
17. Haines, E. Point in polygon strategies. Graph. Gems 1994, 4, 24–46.
18. Taylor, G. Point in polygon test. Surv. Rev. 1994, 32, 479–484. [CrossRef]
19. Dimri, S.C.; Tiwari, U.K.; Ram, M. An efficient algorithm to clip a 2D-polygon against a rectangular clip window. Appl. Math.-A J.

Chin. Univ. 2022, 37, 147–158. [CrossRef]
20. Kumar, G.N.; Bangi, M. An extension to winding number and point-in-polygon algorithm. IFAC-Pap. 2018, 51, 548–553. [CrossRef]
21. Moscato, M.M.; Titolo, L.; Feliú, M.A.; Munoz, C.A. Provably correct floating-point implementation of a point-in-polygon

algorithm. In International Symposium on Formal Methods; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–37.
22. Chang, S.C.; Huang, H.Y.; Huang, Y.F.; Yang, C.Y.; Hsu, C.Y.; Chen, J.S. An Efficient Geographical Place Mining Strategy for Social

Networking Services. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW),
Yilan, Taiwan, 20–22 May 2019; pp. 1–2.

23. Lin, C.B.; Hung, R.W.; Hsu, C.Y.; Chen, J.S. A GNSS-based crowd-sensing strategy for specific geographical areas. Sensors 2020,
20, 4171. [CrossRef]

24. Chen, J.S.; Kuo, C.M.; Hung, R.W. An Efficient GNSS Coordinate Recognition Algorithm for Epidemic Management. Algorithms
2023, 16, 132. [CrossRef]

25. Lei, Z.; Jiang, Y.; Zhao, P.; Wang, J. News event tracking using an improved hybrid of kNN and SVM. In International Conference on
Future Generation Communication and Networking; Springer: Berlin/Heidelberg, Germany, 2009; pp. 431–438.

26. 30 Questions to Test a Data Scientist on k-Nearest Neighbors (kNN) Algorithm. Available online: https://www.analyticsvidhya.
com/blog/2017/09/30-questions-test-k-nearest-neighbors-algorithm/ (accessed on 23 January 2024).

27. Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S.; et al. Top 10
algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [CrossRef]

28. Zhu, X.; Zhang, S.; He, W.; Hu, R.; Lei, C.; Zhu, P. One-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 2019, 31,
2022–2034. [CrossRef]

29. Zhu, X.; Zhang, S.; Li, Y.; Zhang, J.; Yang, L.; Fang, Y. Low-rank sparse subspace for spectral clustering. IEEE Trans. Knowl. Data
Eng. 2019, 31, 1532–1543. [CrossRef]

30. Zhang, S. Challenges in KNN Classification. IEEE Trans. Knowl. Data Eng. 2022, 34, 4663–4675. [CrossRef]
31. Hsu, C.Y.; Kuo, C.M.; Hung, R.W.; Chen, J.S. Research on KNN-Based GNSS Coordinate Classification for Epidemic Management.

In International Computer Symposium; Springer Nature: Singapore, 2022; pp. 493–500.
32. Syamsuddin, I.; Barukab, O.M. SUKRY: Suricata IDS with Enhanced kNN Algorithm on Raspberry Pi for Classifying IoT Botnet

Attacks. Electronics 2022, 11, 737. [CrossRef]

https://doi.org/10.12983/ijsras-2014-p0043-0049
https://doi.org/10.2307/30141965
https://www.ncbi.nlm.nih.gov/pubmed/9013248
https://www.ncbi.nlm.nih.gov/pubmed/32172669
https://doi.org/10.1109/JPROC.2008.2006090
https://doi.org/10.3390/rs10071157
https://doi.org/10.3390/rs10020205
https://doi.org/10.1017/S0373463314000320
https://doi.org/10.1016/j.actaastro.2021.10.004
https://doi.org/10.1016/j.rse.2020.111869
https://doi.org/10.1145/3416088
https://doi.org/10.1016/S0925-7721(01)00012-8
https://doi.org/10.1179/sre.1994.32.254.479
https://doi.org/10.1007/s11766-022-4556-0
https://doi.org/10.1016/j.ifacol.2018.05.092
https://doi.org/10.3390/s20154171
https://doi.org/10.3390/a16030132
https://www.analyticsvidhya.com/blog/2017/09/30-questions-test-k-nearest-neighbors-algorithm/
https://www.analyticsvidhya.com/blog/2017/09/30-questions-test-k-nearest-neighbors-algorithm/
https://doi.org/10.1007/s10115-007-0114-2
https://doi.org/10.1109/TKDE.2018.2873378
https://doi.org/10.1109/TKDE.2018.2858782
https://doi.org/10.1109/TKDE.2021.3049250
https://doi.org/10.3390/electronics11050737

Mathematics 2024, 12, 536 20 of 20

33. Vommi, A.M.; Battula, T.K. A hybrid filter-wrapper feature selection using Fuzzy KNN based on Bonferroni mean for medical
datasets classification: A COVID-19 case study. Expert Syst. Appl. 2023, 218, 119612. [CrossRef]

34. Sotiropoulou, K.F.; Vavatsikos, A.P.; Botsaris, P.N. A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability
analysis using kNN and SVM regression models in northeastern Greece. Renew. Energy 2024, 221, 119795. [CrossRef]

35. Dudani, S.A. The distance-weighted k-nearest-neighbor rule. IEEE Trans. Syst. Man Cybern. 1976, 4, 325–327. [CrossRef]
36. Gadat, S.; Klein, T.; Marteau, C. Classification in general finite dimensional spaces with the k-nearest neighbor rule. Ann. Stat.

2016, 44, 982–1009. [CrossRef]
37. Cannings, T.I.; Berrett, T.B.; Samworth, R.J. Local nearest neighbour classification with applications to semi-supervised learning.

arXiv 2017, arXiv:1704.00642. [CrossRef]
38. Zhao, P.; Lai, L. Minimax Rate Optimal Adaptive Nearest Neighbor Classification and Regression. arXiv 2019, arXiv:1910.10513.

[CrossRef]
39. Zhao, P.; Lai, L. Efficient Classification with Adaptive KNN. In Proceedings of the AAAI Conference on Artificial Intelligence,

Online, 2–9 February 2021; Volume 35, pp. 11007–11014.
40. Fan, Z.; Huang, Y.; Xi, C.; Liu, Q. Multi-View Adaptive K-Nearest Neighbor Classification. IEEE Trans. Artif. Intell. 2023.

[CrossRef]
41. Jayasri, N.P.; Aruna, R. A Novel Diabetes Prediction Model in Big Data Healthcare Systems Using DA-KNN Technique. Int. J.

Image Graph 2023, 2550046. [CrossRef]
42. Rajammal, R.R.; Mirjalili, S.; Ekambaram, G.; Palanisamy, N. Binary grey wolf optimizer with mutation and adaptive k-nearest

neighbour for feature selection in Parkinson’s disease diagnosis. Know.-Based Syst. 2022, 246, 108701. [CrossRef]
43. Su, J.; Wang, M.; Wu, Z.; Chen, Q. Fast Plant Leaf Recognition Using Improved Multiscale Triangle Representation and KNN for

Optimization. IEEE Access 2020, 8, 208753–208766. [CrossRef]
44. Saranya, A.; Subhashini, R. A systematic review of Explainable Artificial Intelligence models and applications: Recent develop-

ments and future trends. Decis. Anal. J. 2023, 7, 100230.
45. Mukhamediev, R.I.; Popova, Y.; Kuchin, Y.; Zaitseva, E.; Kalimoldayev, A.; Symagulov, A.; Levashenko, V.; Abdoldina, F.;

Gopejenko, V.; Yakunin, K.; et al. Review of Artificial Intelligence and Machine Learning Technologies: Classification, Restrictions,
Opportunities and Challenges. Mathematics 2022, 10, 2552. [CrossRef]

46. Antonio, F. Faster line segment intersection. In Graphics Gems III (IBM Version); Morgan Kaufmann: Burlington, MA, USA, 1992;
pp. 199–202.

47. Taipei City District Boundary Map. Available online: https://data.gov.tw/dataset/121199 (accessed on 23 January 2024).
48. Taipei City Village Boundary Map. Available online: https://data.gov.tw/dataset/121163 (accessed on 23 January 2024).
49. Cappi, R.; Casini, L.; Tosi, D.; Roccetti, M. Questioning the seasonality of SARS-CoV-2: A Fourier spectral analysis. BMJ Open

2022, 12, e061602. [CrossRef]
50. Davis, J.T.; Chinazzi, M.; Perra, N.; Mu, K.; Pastore y Piontti, A.; Ajelli, M.; Dean, N.E.; Gioannini, C.; Litvinova, M.; Merler, S.;

et al. Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave. Nature 2021, 600, 127–132. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2023.119612
https://doi.org/10.1016/j.renene.2023.119795
https://doi.org/10.1109/TSMC.1976.5408784
https://doi.org/10.1214/15-AOS1395
https://doi.org/10.1214/19-AOS1868
https://doi.org/10.1109/TIT.2021.3062078
https://doi.org/10.1109/TAI.2023.3296092
https://doi.org/10.1142/S0219467825500469
https://doi.org/10.1016/j.knosys.2022.108701
https://doi.org/10.1109/ACCESS.2020.3037649
https://doi.org/10.3390/math10152552
https://data.gov.tw/dataset/121199
https://data.gov.tw/dataset/121163
https://doi.org/10.1136/bmjopen-2022-061602
https://doi.org/10.1038/s41586-021-04130-w

	Introduction
	Related Work
	System Model
	Proposed Algorithms
	PIP Positioning Algorithm
	KNN Classification
	Analysis

	Experiment
	Conclusions
	References

