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Abstract: In this paper, we develop a novel method to construct Goethals–Seidel (GS) sequences with
special structures. In the existing methods, utilizing Turyn sequences is an effective and convenient
approach; however, this method cannot cover all GS sequences. Motivated by this, we are devoted
to designing some sequences that can potentially construct all GS sequences. Firstly, it is proven
that a quad of ±1 polynomials can be considered a linear combination of eight polynomials with
coefficients uniquely belonging to {0,±1}. Based on this fact, we change the construction of a quad
of Goethals–Seidel sequences to find eight sequences consisting of 0 and ±1. One more motivation is
to obtain these sequences more efficiently. To this end, we make use of the k-block, of which some
properties of (anti) symmetry are discussed. After this, we can then look for the sequences with the
help of computers since the symmetry properties facilitate reducing the search range. Moreover, we
find that one of the eight blocks, which we utilize to construct GS sequences directly, can also be
combined with Williamson sequences to generate GS sequences with more order. Several examples
are provided to verify the theoretical results. The main contribution of this work is in building a
bridge linking the GS sequences and eight polynomials, and the paper also provides a novel insight
through which to consider the existence of GS sequences.
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1. Introduction

A square matrix H of order n is called a Hadamard matrix (HM) if its entries are ±1
and any two different rows (columns) are orthogonal. The order n satisfies n = 1, 2, 4m
with m being a positive integer, and a well-known conjecture related to HMs is whether a
Hadamard matrix of order 4m exists for any m. HMs are widely applied in many fields,
including signal processing, coding and cryptography, while the smallest order of an
unconstructed HM is 668. More interesting properties and applications of HMs can be
found in [1–4] and the references therein.

The construction of HMs is a classic problem in combinatorics, and many works have
been devoted to it in past decades, such as Kronecker products [5], orthogonal designs [6],
difference families [7] and many other methods [1,8–13]. In the existing methods, many are
required to construct circulant matrices and then plug these constructed circulant matrices
into some type of arrays such as the Williamson array and GS array [3,14]. In this paper,
we will make use of a GS array taking the form of

G =


A BR CR DR

−BR A DT R −CT R
−CR −DT R A BT R
−DR CT R −BT R A

,
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where A, B, C and D are four circulant matrices of order n satisfying

AAT + BBT + CCT + DDT = 4nIn, (1)

and R is the back-diagonal identity matrix of order n. The fact that A, B, C and D are
circulant matrices implies that they are sufficient for the purposes of constructing the
first rows of them, which are denoted by four sequences, i.e., a, b, c and d, respectively.
If matrices A, B, C and D with entries ±1 satisfy condition (1), then a, b, c and d are called a
quad of GS sequences, and they are particularly said to be a quad of Williamson sequences
if A, B, C and D are also symmetrical.

In [15], Goethals and Seidel conducted pioneering work on the GS array and obtained
the HMs of a GS type with orders of 36 and 52. In [16,17], Whiteman utilized the Parseval
relation to theoretically construct GS sequences of order q1+1

4 and Williamson sequences
of order q2+1

2 in a finite field GF(q2
1) and GF(q2

2), respectively, where q1 ≡ (3mod8) and
q2 ≡ (1mod4) are both prime powers. With the help of computers by exhaustive search,
Doković studied the GS array and GS sequences in numerous works, where many different
orders were obtained, as seen in [18–21] et al. Making use of Lagrange identity for polyno-
mials (LIP), Yang—in [22]—proved that a quad of Williamson sequences of order n and a
four-symbol δ-code of order m can be used to construct a quad of GS sequences of order mn.
Yang also presented some other results [23–26], where the construction of GS sequences
was mainly based on using two groups of sequences that were known beforehand.

In addition to the methods mentioned above, utilizing T-sequences directly is an
alternative method, where a quad of GS sequences could be considered a linear combination
of a quad of T-sequences, as shown in, e.g., [27]. The existing methods, however, have a
slight drawback that not each GS sequences can be represented by a linear combination of
T-sequences, as seen in Remark 1.

Motivated by this, we firstly defined the k-block and k-partition in this paper, which
aid in dividing a quad of sequences into k parts. Next, we proved that a quad of ±1
polynomials {Fi(ξ)}4

i=1 associated with sequences { fi}4
i=1 can uniquely be considered a

linear combination of eight polynomials {Gi(ξ)}8
i=1 that are associated with sequences

{gi}8
i=1 consisting of 0 and ±1. For now, all of the GS sequences could be taken into

consideration compared with the construction method by using T-sequences. In other
words, the construction of GS sequences { fi}4

i=1 could be transformed into finding a
group of k-partition {gi}8

i=1. Then, by supposing that { fi}4
i=1 are a quad of GS sequences,

some relationships between associated polynomials {Gi(ξ)}8
i=1 were revealed. To reduce

the complexity of discussion, it is natural and necessary to impose some constraints on
{Gi(ξ)}8

i=1, e.g., the properties of symmetry or antisymmetry. Finally, by using k-partitions
or k-blocks directly, we obtained some types of GS sequences with different symmetrical
structures of Gi(ξ). One was established by utilizing an eight partition, where three were
based on nine partitions, and two used nine blocks. As an additional application, the eight
partition mentioned above of order n, when combined with a quad of Williamson sequences
of order m, can also lead to a quad of GS sequences with order mn. The theoretical results
proposed in this paper are validated by some examples. This paper represents the first
time that a quad of ±1 sequences have been considered a combination of eight blocks,
which ensures that all the “existing” GS sequences can be taken into consideration and that
consequently more GS sequences can be potentially discovered. Moreover, when comparing
with the results in [28] (where a rough discussion of GS sequences and k-partition was
presented and there was no rigorous proof to reveal the bijective relation), in this paper,
we extended the results that we not only proved the uniqueness of the linear combination,
but also investigated some of the necessary conditions for the existence of these sequences.

The rest of the paper is organized as follows. In Section 2, we introduce some of
the necessary notations and definitions needed in later analysis. In Section 3, it is proven
that a quad of ±1 sequences can be considered a linear combination of an eight block
uniquely. Then, based on a k-block with (anti)symmetry properties, we constructed several
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GS sequences and presented some examples to verify the theoretical results. In Section 4,
by combining a quad of Williamson sequences of order m and an eight partition of order n
(which was obtained above), a quad of GS sequences of order mn was constructed. Some
conclusions will be made in Section 5.

2. Preliminaries

For a sequence a = (a0, a1, . . ., an−1), its periodic autocorrelation function Ra(τ) is
defined as

Ra(τ) =
n−1

∑
i=0

ai āi+τ , τ = 0, 1, . . ., n − 1,

where āi is the conjugate of ai, and the sum i + τ is evaluated as modulo-n. A polynomial

Φa(ξ) = a0 + a1ξ + a2ξ2 + · · ·+ an−1ξn−1

is called the associated polynomial of sequence a, where ξ is the n-th root of unity e
2π
n I

and I =
√
−1. The finite Parseval relation [17], also named the Wiener–Khinchin theo-

rem [29,30], between Ra(τ) and Φa(ξ) is presented in the following identity

Ra(τ) =
1
n

n−1

∑
j=0

∥Φa(ξ
j)∥2ξ jτ , τ = 0, 1, . . ., n − 1,

and its inverse form is

∥Φa(ξ
j)∥2 =

n−1

∑
τ=0

Ra(τ)ξ
−jτ , j = 0, 1, . . ., n − 1.

For the HMs of a GS type, their four circulant matrices possess the following property.

Lemma 1 ([16]). Let A, B, C and D denote four circulant matrices of order n whose first rows are
four sequences a = {ai}n−1

i=0 , b = {bi}n−1
i=0 , c = {ci}n−1

i=0 and d = {di}n−1
i=0 , respectively. Then,

AAT + BBT + CCT + DDT = 4nIn if and only if

∥Φa(ξ
j)∥2 + ∥Φb(ξ

j)∥2 + ∥Φc(ξ
j)∥2 + ∥Φd(ξ

j)∥2 = 4n,

j = 0, 1, . . ., n − 1, where ξ is the n-th root of unity.

Hereafter, without special clarification, a capital letter such as Fi(ξ) denotes the asso-
ciated polynomial, the bold letter fi represents the sequence and the lower case letter fij
denotes the j-th element in fi, where i and j rely on different cases. Before the discussion,
some definitions are necessary to give.

Definition 1 (GS sequences, [22]). Four ±1 sequences qi = (qi0, qi1, . . ., qi,n−1), i = 1, 2, 3, 4
are said to be a quad of GS sequences of order n if their associated polynomials Qi(ξ) satisfy

4

∑
i=1

∥Qi(ξ
j)∥2 = 4n,

where ξ is the n-th root of unity for j = 0, . . ., n − 1.

Motivated by the definition of L-matrices ([3], Definition 4.15), we define a k-block
and k-partition as follows.
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Definition 2 (k-block and k-partition). A class of sequences gi = (gi0, . . ., gi,n−1), i = 1, . . ., k,
is said to be a k-block of order n, if it holds

(i) gij ∈ {0,±1}, j = 0, 1, . . ., n − 1, i = 1, 2, . . .k,

(ii)
k
∑

i=1
|gij| = 1, j = 0, 1, . . ., n − 1.

(2)

If a k-block {gi}k
i=1 of order n additionally satisfies

(iii)
k
∑

i=1
Rgi (τ) = n, τ = 0, . . ., n − 1, (3)

we call {gi}k
i=1 a k-partition, where ξ is the n-th root of unity.

Definition 3 (symmetry and antisymmetry, [22]). Let Fi(ξ) be a polynomial associated with
sequences fi = ( fi0, . . ., fi,n−1). Fi(ξ) is symmetrical (or antisymmetrical) if it satisfies

Fi(ξ) = Fi(ξ) (or Fi(ξ) = −Fi(ξ)),

where ξ is the n-th root of unity. In other words, the coefficients ( fi0, . . ., fi,n−1) satisfy fij = fi,n−j
(or fij = − fi,n−j), j = 1, 2, . . ., n − 1.

3. Main Results

Inspired by [27], we extended the construction of GS sequences from four sequences
to eight sequences. Then, we obtained the main result that a quad of ±1 sequences
can be uniquely considered a linear combination of an eight block, as stated in the
following lemma.

Lemma 2. The associated polynomials of sequences { fi}4
i=1 and {gi}8

i=1 are denoted by {Fi(ξ)}4
i=1

and {Gi(ξ)}8
i=1, respectively. Then, given a quad of ±1 sequences { fi}4

i=1 of order n, there exists
a unique eight block {gi}8

i=1 of order n such that the associated polynomials {Fi(ξ)}4
i=1 can be

uniquely written as a linear combination of the associated polynomials {Gi(ξ)}8
i=1 that

F1(ξ) = G1(ξ) + G2(ξ) + G3(ξ) + G4(ξ) + G5(ξ) + G6(ξ) + G7(ξ)− G8(ξ),

F2(ξ) = G1(ξ) + G2(ξ)− G3(ξ)− G4(ξ) + G5(ξ) + G6(ξ)− G7(ξ) + G8(ξ),

F3(ξ) = G1(ξ)− G2(ξ) + G3(ξ)− G4(ξ) + G5(ξ)− G6(ξ) + G7(ξ) + G8(ξ),

F4(ξ) = G1(ξ)− G2(ξ)− G3(ξ) + G4(ξ)− G5(ξ) + G6(ξ) + G7(ξ) + G8(ξ),

(4)

where ξ is the n-th root of unity.

Proof. We first prove the existence. In (4), it is evident that the coefficients on the left and
right hand sides are equal to each other correspondingly. Thus, we can equivalently rewrite
(4) in the form of the matrix multiplication

F =
(

Ĥ H̃
)(Ĝ

G̃

)
,

where we denote
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F =


f1
f2
f3
f4

, Ĝ =


g1
g2
g3
g4

, G̃ =


g5
g6
g7
g8

,

Ĥ =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

, H̃ =


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

.

Then, we split F into F = F̂ + F̃ satisfying

F̂ = ĤĜ and F̃ = H̃G̃,

which implies

Ĝ =
1
4

ĤF̂ and G̃ =
1
4

H̃F̃

since both Ĥ and H̃ are symmetrical Hadamard matrices.
Denote by Fj the j-th column of a Matrix F, and by p(j) the number of 1 in Fj. Taking

the structure of Ĥ and the property of k-block (2) into consideration, it follows that p(j) ∈
{0, 2, 4}, and similarly we get p(j) ∈ {1, 3} for H̃. Then, it is natural to define

F̂j =

{
Fj, p(j) ∈ {0, 2, 4},
0, p(j) ∈ {1, 3},

and F̃j =

{
Fj, p(j) ∈ {1, 3},
0, p(j) ∈ {0, 2, 4},

(5)

j = 1, 2, . . ., n, which then guarantees the existence of the eight block {gi}8
i=1.

Further, we proceeded with the proof of uniqueness. Supposing that there exists
another

G∗ =

(
Ĝ∗

G̃∗

)
,

then we have

F̂∗ = ĤĜ∗ and F̃∗ = H̃G̃∗.

Still, we considered it in view of each column. For a given j, either Ĝ∗
j or G̃∗

j is equal to

0, because G∗ also consists of an eight block {g∗i }8
i=1, which means only one of Ĝ∗

j or G̃∗
j

contains a non-zero element. This fact yields that either F̂∗
j or F̃∗

j is equal to 0, and it must

correspond to the splitting (5). Otherwise, the converse case F̂j = F̃∗
j and F̃j = F̂∗

j could

not guarantee that the entries of G∗ belong to {0,±1}. As a result, we know F̂ = F̂∗ and
F̃ = F̃∗, which eventually ensures the uniqueness of splitting (5).

Next, we investigated the relationships between G1(ξ), G2(ξ), . . ., G8(ξ). From (4), we
arrive at

4

∑
i=1

∥Fi(ξ)∥2 = 4
8

∑
i=1

∥Gi(ξ)∥2 + 2U(ξ) + 2U(ξ)

with
U(ξ) = G1(ξ)G5(ξ) + G1(ξ)G6(ξ) + G1(ξ)G7(ξ) + G1(ξ)G8(ξ)

+ G2(ξ)G5(ξ) + G2(ξ)G6(ξ)− G2(ξ)G7(ξ)− G2(ξ)G8(ξ)

+ G3(ξ)G5(ξ)− G3(ξ)G6(ξ) + G3(ξ)G7(ξ)− G3(ξ)G8(ξ)

− G4(ξ)G5(ξ) + G4(ξ)G6(ξ) + G4(ξ)G7(ξ)− G4(ξ)G8(ξ).

(6)
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Further, if f1, . . ., f4 are a quad of GS sequences of order n, then we obtain

4n =
4

∑
i=1

∥Fi(ξ)∥2 = 4
8

∑
i=1

∥Gi(ξ)∥2 + 2U(ξ) + 2U(ξ). (7)

Remark 1. Note that the definition of the k-partition is actually the special case of L-matrices ([3],
Definition 4.15). The reason why we emphasize it specifically in this paper is due to the important
role it plays in the construction of GS sequences. After such construction has taken place, then it
will be convenient to describe them. In particular, a quad of T-sequences [14] is a four partition.

Remark 2. In the existing works, e.g., [27], the method for constructing GS sequences is based on
a quad of a four partition and the structure H̃. In the proof of Theorem 2, it is seen that this method
could not guarantee that all GS sequences can be taken into consideration. The result is extended
that we construct the GS sequences from using a four partition into an eight partition.

3.1. GS Sequences Based on a k-Partition

In this subsection, we begin with the identities (4) and (7) to construct GS sequences.
From the definition of an eight partition, it is natural to obtain the following lemma.

Lemma 3. For an eight partition {gi}8
i=1, { fi}4

i=1 are a quad of GS sequences if and only if

U(ξ) + U(ξ) = 0,

with ξ being the n-th root of unity, where U(ξ) and U(ξ) are defined in (6).

Proof. A combination of (3) and (7) leads to the results immediately.

Thus, we only need to construct an eight partition satisfying U(ξ) + U(ξ) = 0. How-
ever, it is still challenging to find an eight partition directly, and—as a reduction—we
imposed some conditions on the polynomials Gi(ξ), i = 1, 2, . . ., 8, such as properties of
symmetry or antisymmetry. We first recall an existing result.

Lemma 4 ([28]). Let {gi}8
i=1 be an eight partition of order n and their associated polynomials

{Gi(ξ)}8
i=1 satisfy the following symmetry properties

G1(ξ) = G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = G3(ξ), G4(ξ) = G4(ξ),

G5(ξ) = −G5(ξ), G6(ξ) = −G6(ξ), G7(ξ) = −G7(ξ), G8(ξ) = −G8(ξ),
(8)

where ξ is the n-th root of unity. Then, there exist a quad of GS sequences { fi}4
i=1 that are associated

with the polynomials F1(ξ), . . ., F4(ξ) generated by (4).

It is evident that there exist a great deal of polynomial groups satisfying U(ξ)+U(ξ) =
0. Here, we simply provide one more condition with different types of {Gi(ξ)}8

i=1.

Theorem 1. For an eight partition {g1}8
i=1, if their associated polynomials {Gi(ξ)}8

i=1 satisfy the
following symmetry properties

G1(ξ) = G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = −G3(ξ),

G4(ξ) = −G4(ξ), G5(ξ) = −G6(ξ), G7(ξ) = −G8(ξ),
(9)

with ξ being the n-th root of unity, then f1, . . ., f4 are a quad of GS sequences formed in (4).

Proof. It is easy to verify U(ξ) + U(ξ) = 0 from (6) and (9).
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Two following groups of sequences are shown to verify Theorem 1. For n = 8,

g1 = (+, 0, 0, 0,−, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 0, 0, 0, 0, 0), g4 = (0, 0,+, 0, 0, 0,−, 0),

g5 = (0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0,−, 0, 0, 0,−), g8 = (0,+, 0, 0, 0,+, 0, 0),

by (4), the GS sequences of order eight are

f1 = (+,−,+,−,−,−,−,−), f2 = (+,+,−,+,−,+,+,+),

f3 = (+,+,−,−,−,+,+,−), f4 = (+,+,+,−,−,+,−,−), ,

for n = 9, they are

g1 = (+, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g4 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0,+,−, 0, 0), g6 = (0, 0, 0,+,−, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0,−,−), g8 = (0,+,+, 0, 0, 0, 0, 0, 0),

and the GS sequences are

f1 = (+,−,−,+,−,+,−,−,−), f2 = (+,+,+,+,−,+,−,+,+),

f3 = (+,+,+,−,+,+,−,−,−), f4 = (+,+,+,+,−,−,+,−,−)..

In the process of creating the constructions above, discovering the relations between
g1, g2, . . ., g8 still seemed complex. As such, we next changed the structure of {Gi(ξ)}8

i=1
further. For a quad of Williamson sequences [31] wi = (wi0, wi1, . . ., wi,n−1), i = 1, 2, 3, 4,
it holds w10 = w20 = w30 = w40 = 1 and the associated polynomials potentially take the
form of

W1(ξ) = 1 − G1(ξ) + G2(ξ) + G3(ξ) + G4(ξ),

W2(ξ) = 1 + G1(ξ)− G2(ξ) + G3(ξ) + G4(ξ),

W3(ξ) = 1 + G1(ξ) + G2(ξ)− G3(ξ) + G4(ξ),

W4(ξ) = 1 + G1(ξ) + G2(ξ) + G3(ξ)− G4(ξ),

where ξ is the n-th root of unity and the coefficients of {Gi(ξ)}4
i=1 are of a four block.

The associated polynomials W1(ξ), W2(ξ), W3(ξ), W4(ξ) satisfy

4n =
4

∑
i=1

∥Wi(ξ)∥2 =
4

∑
i=1

∥2Gi(ξ) + 1∥2.

Inspired by this, it is reasonable to assume that the constant in (4) is contained in G1(ξ)
and is 1, and following the analogous manner we can separate the constant 1 out. As a
result, and slightly different from (4), the associated polynomials F1(ξ), . . ., F4(ξ) can be
rewritten as

F1(ξ) = 1 + G1(ξ) + G2(ξ) + G3(ξ) + G4(ξ) + G5(ξ) + G6(ξ) + G7(ξ)− G8(ξ),

F2(ξ) = 1 + G1(ξ) + G2(ξ)− G3(ξ)− G4(ξ) + G5(ξ) + G6(ξ)− G7(ξ) + G8(ξ),

F3(ξ) = 1 + G1(ξ)− G2(ξ) + G3(ξ)− G4(ξ) + G5(ξ)− G6(ξ) + G7(ξ) + G8(ξ),

F4(ξ) = 1 + G1(ξ)− G2(ξ)− G3(ξ) + G4(ξ)− G5(ξ) + G6(ξ) + G7(ξ) + G8(ξ),

(10)
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where ξ is the n-th root of unity and the coefficients of G1(ξ), . . ., G8(ξ) are of an eight block.
Then, we have

4

∑
i=1

∥Fi(ξ)∥2 = 4 + 4
8

∑
i=1

∥Gi(ξ)∥2 + 2U(ξ) + 2U(ξ) + 2V(ξ) + 2V(ξ), (11)

with
U(ξ) = G1(ξ)G5(ξ) + G1(ξ)G6(ξ) + G1(ξ)G7(ξ) + G1(ξ)G8(ξ)

+ G2(ξ)G5(ξ) + G2(ξ)G6(ξ)− G2(ξ)G7(ξ)− G2(ξ)G8(ξ)

+ G3(ξ)G5(ξ)− G3(ξ)G6(ξ) + G3(ξ)G7(ξ)− G3(ξ)G8(ξ)

− G4(ξ)G5(ξ) + G4(ξ)G6(ξ) + G4(ξ)G7(ξ)− G4(ξ)G8(ξ)

and
V(ξ) = G5(ξ) + G6(ξ) + G7(ξ) + G8(ξ) + 2G1(ξ).

Consequently, we only need to construct the eight block {gi}8
i=1 of order n, which together

with e := (1, 0, . . ., 0) of order n actually makes up a nine partition.
Analogous to Lemma 3, { fi}4

i=1 are a quad of GS sequences if and only if U(ξ)+U(ξ)+

V(ξ) + V(ξ) = 0. In this case, an observation of the structure of V(ξ) led to some more
concrete relationships between G1(ξ) and G5(ξ)-G8(ξ). We still added some symmetry
properties, as shown in the theorems below, and omitted the proof for compactness.

Theorem 2. For a nine partition e, g1, . . ., g8 of order n, if the associated polynomials Gi(ξ) of
sequences gi, i = 1, . . ., 8, satisfy

G1(ξ) = −G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = G4(ξ),

G5(ξ) = −G5(ξ), G6(ξ) = −G6(ξ), G7(ξ) = −G7(ξ), G8(ξ) = −G8(ξ),

then we obtain a quad of GS sequences generated by (10).

In this case, note that all polynomials Gi(ξ), i = 5, 6, 7, 8, are antisymmetrical. The fol-
lowing two examples are shown to verify Theorem 2. For n = 10, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0,+,−,+, 0, 0, 0),

g3 = (0, 0, 0, 0, 0, 0, 0,+,+, 0), g4 = (0, 0,+,+, 0, 0, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0,+, 0, 0, 0, 0, 0, 0, 0,−),

which together with (10) lead to a quad of GS sequences of order 10 as follows

f1 = (+,−,+,+,+,−,+,+,+,+), f2 = (+,+,−,−,+,−,+,−,−,−, ),

f3 = (+,+,−,−,−,+,−,+,+,−), f4 = (+,+,+,+,−,+,−,−,−,−).

For n = 12,

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0,+, 0, 0, 0,+, 0, 0, 0,+, 0),

g3 = (0,+, 0, 0, 0,−, 0, 0, 0,+, 0, 0), g4 = (0, 0, 0,+, 0, 0, 0,−, 0, 0, 0,+),

g5 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0,+, 0, 0, 0,−, 0, 0, 0),

we can obtain a quad of GS sequences of order 12

f1 = (+,+,+,+,−,−,+,−,+,+,+,+), f2 = (+,−,+,−,+,+,+,+,−,−,+,−),

f3 = (+,+,−,−,+,−,−,+,−,+,−,−), f4 = (+,−,−,+,+,+,−,−,−,−,−,+).
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Similarly, we can construct two more types of GS sequences in view of V(ξ).

Corollary 1. For e, g1, . . ., g8 of order n being a nine partition, the associated polynomials satisfy

G1(ξ) = −G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = −G4(ξ),

G5(ξ) = −G5(ξ), G6(ξ) = −G6(ξ), G7(ξ) = −G8(ξ),

with the n-th root of unity ξ. Then, we obtain a quad of GS sequences { fi}4
i=1 defined by (10).

Here, in Gi(ξ), i = 5, 6, 7, 8, we obviously choose two of them as they were antisymmet-
rical and another two as they were antisymmetrical with each other. Again two examples
are illustrated to verify Corollary 1. For n = 6, we have

g1 = (0, 0, 0, 0, 0, 0), g2 = (0, 0, 0,+, 0, 0),

g3 = (0, 0, 0, 0,−, 0), g4 = (0, 0,+, 0, 0, 0),

g5 = (0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0,−), g8 = (0,+, 0, 0, 0, 0),

which together with (10) leads to a quad of GS sequences of order 6

f1 = (+,−,+,+,−,−), f2 = (+,+,−,+,+,+),

f3 = (+,+,−,−,−,−, ), f4 = (+,+,+,−,+,−).

For n = 9, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 0, 0,+,−, 0, 0), g4 = (0, 0, 0,+,−, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0,−,−), g8 = (0,+,+, 0, 0, 0, 0, 0, 0),

which we can use to obtain a quad of GS sequences of order 9

f1 = (+,−,−,+,−,+,−,−,−), f2 = (+,+,+,−,+,−,+,+,+),

f3 = (+,+,+,−,+,+,−,−,−), f4 = (+,+,+,+,−,−,+,−,−).

Corollary 2. For a nine partition e, g1, . . ., g8 of order n, the associated polynomials Gi(ξ) satisfy

G1(ξ) = −G1(ξ), G2(ξ) = G2(ξ), G3(ξ) = G4(ξ),

G5(ξ) = −G6(ξ), G7(ξ) = −G8(ξ),

where ξ is the n-th root of unity. Then, the { fi}4
i=1 defined in (10) is a quad of GS sequences.

The last case is that in these four polynomials, two pairs are antisymmetrical with
each other. We also provide two examples to verify Corollary 2. For n = 6, we have

g1 = (0, 0, 0, 0, 0, 0), g2 = (0, 0, 0,+, 0, 0),

g3 = (0, 0, 0, 0,+, 0), g4 = (0,+, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0,−), g6 = (0,+, 0, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0, 0, 0).
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(10) yields a quad of GS sequences of order 6

f1 = (+,+,+,+,+,−), f2 = (+,+,−,+,−,−),

f3 = (+,−,−,−,+,−), f4 = (+,+,+,−,−,+).

For n = 9, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

g3 = (0, 0, 0, 1, 0, 0, 0, 1, 0), g4 = (0, 0, 1, 0, 0, 0, 1, 0, 0),

g5 = (0, 0, 0, 0, 1, 0, 0, 0,−1), g6 = (0, 1, 0, 0, 0,−1, 0, 0, 0),

g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0, 0, 0, 0, 0, 0),

which together with (10) results in a quad of GS sequences of order 9

f1 = (+,+,+,+,+,−,+,+,−), f2 = (+,+,−,−,+,−,−,−,−),

f3 = (+,−,−,+,+,+,−,+,−), f4 = (+,+,+,−,−,−,+,−,+).

3.2. GS Sequences Based on a Nine Block

In addition, if we only discuss the term U(ξ) + U(ξ) in (11), then we can obtain some
results related to GS sequences.

Corollary 3. For a nine block e, g1, . . ., g8, the associated polynomials mentioned in (10) satisfy

G1(ξ) = −G1(ξ), G2(ξ) = −G2(ξ), G3(ξ) = G3(ξ),

G4(ξ) = G4(ξ), G5(ξ) = G6(ξ), G7(ξ) = G8(ξ),

and
4

∑
i=1

∥Fi(ξ)∥2 = 4
4

∑
i=1

∥Gi(ξ)∥2 +
8

∑
i=5

∥2Gi(ξ) + 1∥2 = 4n,

where ξ is the n-th root of unity. Then, we have a quad of GS sequences by (10).

There is an example through which to verify Corollary 3. For n = 5, we have

g1 = (0, 0, 0, 0, 0), g2 = (0, 0,−,+, 0),

g3 = (0, 0, 0, 0, 0), g4 = (0, 0, 0, 0, 0),

g5 = (0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0),

g7 = (0,+, 0, 0, 0), g8 = (0, 0, 0, 0,+),

which together with (10) leads to a quad of GS sequences

f1 = (+,+,−,+,−), f2 = (+,−,−,+,+),

f3 = (+,+,+,−,+), f4 = (+,+,+,−,+).

Corollary 4. For a nine block e, g1, . . ., g8, the associated polynomials satisfy

G1(ξ) = G2(ξ), G3(ξ) = G4(ξ), G5(ξ) = −G6(ξ), G7(ξ) = G8(ξ)

and
4

∑
i=1

∥Fi(ξ)∥2 = 4
6

∑
i=3

∥Gi(ξ)∥2 + ∑
i∈{1,2,7,8}

∥2Gi(ξ) + 1∥2 = 4n,

where ξ is the n-th root of unity. Then, a quad of GS sequences are generated by (10).
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One example is presented to verify the results of Corollary 4. For n = 9, we have

g1 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g2 = (0, 0, 0, 0, 0, 0, 0, 0, 0),
g3 = (0, 0, 0,+,−, 0, 0, 0, 0), g4 = (0, 0, 0, 0, 0,−,+, 0, 0),
g5 = (0,+,+, 0, 0, 0, 0, 0, 0), g6 = (0, 0, 0, 0, 0, 0, 0,−,−),
g7 = (0, 0, 0, 0, 0, 0, 0, 0, 0), g8 = (0, 0, 0, 0, 0, 0, 0, 0, 0).

which also yields a quad of GS sequences

f1 = (+,+,+,+,−,−,+,−,−), f2 = (+,+,+,−,+,+,−,−,−),
f3 = (+,+,+,+,−,+,−,+,+), f4 = (+,−,−,−,+,−,+,−,−).

Remark 3. In order to construct the GS sequences, we transformed it into the construction of
eight polynomials G1(ξ), . . ., G8(ξ). For some special cases, we were able to obtain Gi(ξ) via
a four partition such as through T-sequences and, in actuality, we also searched them directly
with computers in some more general cases, where utilizing known symmetry and antisymmetry
properties may significantly reduce the search range.

4. GS Structures of Two Groups of Polynomials

We analyzed a quad of GS sequences with different structures in Section 3, and we
now intend to utilize two groups of polynomials {Ei(ξ)}8

i=1 and {Gi(ξ)}8
i=1, which are

associated with sequences {ei}8
i=1 and {gi}8

i=1 to construct several different GS sequences.
We changed the conditions from an eight partition to a four partition, which produced

the following result.

Theorem 3. Let {Ei(ξ)}4
i=1 be the associated polynomials of Williamson sequences {ei}4

i=1 of
order m, and let G1(ξ), G2(ξ), G7(ξ), G8(ξ) of order n be chosen in Theorem 1, i.e., satisfying

G1(ξ) = G1(ξ), G2(ξ) = G2(ξ), G7(ξ) = −G8(ξ).

Then, the four new polynomials, which are defined by

F1(ξ) = E1(ξ)G1(ξ) + E2(ξ)G2(ξ) + E3(ξ)G7(ξ) + E4(ξ)G8(ξ),

F2(ξ) = E1(ξ)G2(ξ)− E2(ξ)G1(ξ) + E3(ξ)G8(ξ)− E4(ξ)G7(ξ),

F3(ξ) = E1(ξ)G7(ξ)− E2(ξ)G8(ξ)− E3(ξ)G1(ξ) + E4(ξ)G2(ξ),

F4(ξ) = E1(ξ)G8(ξ) + E2(ξ)G7(ξ)− E3(ξ)G2(ξ)− E4(ξ)G1(ξ),

(12)

satisfy
4

∑
i=1

∥Fi(ξ)∥2 =
4

∑
i=1

∥Ei(ξ)∥2
4

∑
i=1

∥Gi(ξ)∥2 = 4mn.

Moreover, if (m, n) = 1, then the sequences f1, . . ., f4 made up of the coefficients of F1(ξ), . . ., F4(ξ)
are a quad of GS sequences.

Proof. Since Williamson sequences {ei}4
i=1 are symmetrical, it is easy to verify the results

4
∑

i=1
∥Fi(ξ)∥2 = 4mn. Further, (m, n) = 1 guarantees that { fi}4

i=1 consists of ±1.

We now give an example for the sequences g1, g2, g7, g8 of the associated polynomials
G1(ξ), G2(ξ), G7(ξ), G8(ξ) in Theorem 3 of order n = 8,

g1 = (+, 0, 0, 0,+, 0, 0, 0), g2 = (0, 0,+, 0, 0, 0,+, 0),
g7 = (0, 0, 0,+, 0, 0, 0,−), g8 = (0,+, 0, 0, 0,−, 0, 0)
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and a quad of Williamson sequences ei of order m = 7

e1 = (+,+,−,−,−,−,+), e2 = (+,−,+,+,+,+,−),
e3 = (+,+,−,+,+,−,+), e4 = (+,+,−,+,+,−,+).

As the application of (12), we can obtain a quad of GS sequences of order mn = 56
as follows

f1 = (+,−,+,−,−,−,−,+,+,+,+,−,−,+,+,+,−,−,+,+,+,+,−,−,−,−,+,−,
+,+,+,+,−,+,−,−,+,−,+,+,−,−,+,−,−,+,+,−,+,−,−,+,−,+,+,+),

f2 = (+,−,+,+,+,−,−,−,−,+,+,+,+,+,−,−,+,−,+,−,−,+,−,+,+,−,+,+,
+,+,+,−,+,+,−,+,−,−,+,−,+,−,−,+,+,+,+,+,−,−,−,−,+,+,+,−),

f3 = (+,+,+,−,+,+,−,+,+,−,−,−,−,−,−,−,−,−,−,−,+,−,−,+,+,−,+,+,
+,−,+,+,+,−,−,−,+,+,−,+,−,+,−,+,−,+,−,+,+,+,−,−,+,+,+,−),

f4 = (+,−,−,−,+,−,+,−,+,+,+,−,−,+,+,−,−,+,+,−,+,−,+,+,+,+,−,+,
+,+,−,+,+,+,+,+,+,−,+,+,−,−,+,+,−,−,+,+,+,+,+,−,+,−,−,−).

5. Conclusions

In this paper, we studied several special structures of a quad of GS sequences by
using k-partitions or k-blocks with different symmetry properties. It has been rigorously
proven that a quad of ±1 sequences can be determined uniquely by an eight block. Then,
we can write a quad of GS sequences into two forms (4) or (10), and we can then let
U(ξ) + U(ξ) = 0 in (7) or U(ξ) + U(ξ) + V(ξ) + V(ξ) = 0 in (11), respectively. This,
consequently, reveals some of the relationships between these k-partitions or k-blocks,
which are based on whether we can add some symmetry properties to obtain GS sequences
with different structures. Moreover, through making use of some of the special structures
of {Gi(ξ)}8

i=1 of order n and Williamson sequences of order m, we managed to construct a
quad of GS sequences of order 4mn.

For now, to obtain the k-partitions and k-blocks, we completely made use of the com-
puter by using an exhaustive search based on the symmetry and antisymmetry properties,
which reduced the degree of computational consumption significantly. In the future, we
will be devoted to discussing more sufficient or necessary conditions for the existence
of a k-block in order to obtain more of the relationships between a k-block serving for
the purposes of improving searching efficiency, and we will also try to determine the
k-partition theoretically.
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