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Abstract: Text mining is crucial for analyzing unstructured and semi-structured textual documents.
This paper introduces a fast and precise text mining method based on a finite automaton to extract
knowledge domains. Unlike simple words, multi-word units (such as credit card) are emphasized for
their efficiency in identifying specific semantic areas due to their predominantly monosemic nature,
their limited number and their distinctiveness. The method focuses on identifying multi-word units
within terminological ontologies, where each multi-word unit is associated with a sub-domain of
ontology knowledge. The algorithm, designed to handle the challenges posed by very long multi-
word units composed of a variable number of simple words, integrates user-selected ontologies
into a single finite automaton during a fast pre-processing step. At runtime, the automaton reads
input text character by character, efficiently locating multi-word units even if they overlap. This
approach is efficient for both short and long documents, requiring no prior training. Ontologies can
be updated without additional computational costs. An early system prototype, tested on 100 short
and medium-length documents, recognized the knowledge domains for the vast majority of texts
(over 90%) analyzed. The authors suggest that this method could be a valuable semantic-based
knowledge domain extraction technique in unstructured documents.

Keywords: text mining; knowledge extraction; finite automata; ontology; multi-word units; natural
language processing

MSC: 68T50

1. Introduction
1.1. The Growth of Natural Language Textual Documents

In this paper, we focus on natural language textual documents, whose format is typi-
cally unstructured (unstructured text data refer to text that is not organized in a predefined
way, such as natural language free-form text documents, emails, social media posts, articles,
etc.) and semi-structured (semi-structured textual data have some organization but lack
sufficient structure to be stored in a relational database. Examples include XML, JSON,
and HTML files). Until recently, the number of textual documents has remained relatively
small, allowing effective management through classical algorithmic methods. However,
in recent times, there has been a significant surge in the volume of textual data, encom-
passing books, news, research articles, web pages, emails, and social media posts (chat,
blog, forum), among other sources. This surge can be attributed to several concurrent
factors: the widespread diffusion of Big Data [1–6], the growth of corporate data, and the
widespread adoption of the Internet of Things (IoT) [7–11] and IIoT (Industrial Internet of
Things) [12–15]. This surge is further fueled by the rapid expansion of digital text docu-
ments, influenced by global government policies promoting the dematerialization of paper
documents, the increasingly widespread use of interaction tools such as chatbots [16–20]
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and, of course, the growing pervasiveness of social media in the daily lives of billions
of people.

As a consequence, a significant number of documents exist in unstructured or semi-
structured formats, with only a small percentage being structured and/or numeric data.
According to estimates in [21], at least 80% of real-world data comprises unstructured or
semi-structured natural language textual documents. Similarly, in [22], it is stated that
over 85% of current data are unstructured or semi-structured natural language textual data.
Regardless of the exact percentage, the volume of natural language textual data generated
has now taken on the consistency of Big Data: the data are enormous, heterogeneous,
poorly typed, and continuously generated.

The sheer volume of data generated surpasses the capabilities of traditional databases
and algorithmic methods, rendering these methods inadequate for efficient manipulation,
management, and processing of such data. This challenge is further exacerbated by the
necessity to process these data quickly, if not instantaneously. Consequently, there is a
demand for robust data management systems capable of handling these large datasets and
conducting real-time analytics.

1.2. Text Mining

Text mining [21–27], also referred to as text data mining or text analytics, is an interdis-
ciplinary field that integrates various technologies, including natural language processing
(NLP), machine learning, computer science, and statistical methods. The primary objective
of text mining is to automatically extract knowledge and meaningful information from
unstructured or semi-structured natural language text documents. This process may en-
compass the identification of entities (such as names and locations) and/or meaningful
patterns, leading to the revelation of new insights, the discovery of hidden relationships
between entities, as well as sentiment analysis and categorization. It is important to note
that text mining represents a specialized branch of data mining [22,28,29]. While data
mining encompasses a broad range of techniques applied to diverse types of data, text
mining specifically focuses on the analysis of unstructured or semi-structured textual docu-
ments. Despite being easily manipulated by humans, unstructured text poses significant
complexity for computer programs to handle effectively.

Text mining can be applied to a wide spectrum of domains, including industry,
academia, medicine, the web, communication, and more [23,24,29,30]. Its utilization
extends to crucial areas such as search engines, customer relationship management systems,
email and document filtering, product suggestion analysis, fraud detection, and social
media analytics. In these areas, text mining is employed for a range of tasks, such as
opinion mining and sentiment analysis, feature extraction and document classification,
trend analysis, topic modeling, summarization, and named entity recognition.

Text annotation in natural language processing (NLP) refers to the process of adding
relevant information or labels to text data. The goal is to enhance the understanding of
the text by providing additional context, structure, or meaning. Text annotation can be
performed manually by human annotators, or it can be automated using certain tools or
pre-existing datasets. The quality of text annotation is critical. The creation of annotated
datasets often requires domain expertise to ensure accurate and meaningful labeling.
One noteworthy application in the realm of research involves the classification of short
scientific texts, typically comprising a title, a brief abstract, and keywords. Text annotation
techniques are frequently employed for this purpose [31,32]. The medical field also benefits
from text annotation, as evident in studies such as [33–35].

Beyond research and medicine, text mining plays a pivotal role in various fields, in-
cluding risk management [36], predictive maintenance of industrial machines [37], financial
domains [38], finance [39], service management [40], policy-making [41], healthcare [42],
bio-medicine [43], COVID-19 literature [44], psychiatry [45], agriculture [46], social net-
works [47], social media [48], education and training [49], among others. The versatility of
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text mining makes it a valuable tool for extracting insights and patterns from textual data
in diverse and evolving fields.

In [21], a text mining system is categorized into pre-processing, text representation,
and four operational phases:

1. Pre-processing,
2. Text Representation,
3. Dimensionality Reduction,
4. Features Extraction,
5. Document Classification,
6. Evaluation.

During the initial phases (Phases 1 and 2), the primary objective is to convert unstruc-
tured text into structured features, with the aim of standardizing the input text to a uniform
format. This process involves the cleaning and preparation of raw text data to make it
suitable for analysis. Tasks within this phase may include the removal of irrelevant or un-
necessary characters and words, handling special characters, converting text to lowercase,
and tokenization—breaking the text into individual words or phrases. Figure 1 in [26]
visually depicts the interactions among the four operational phases (Phases 3–6), offering a
comprehensive illustration of the subsequent stages of the text mining process.

Figure 1. Text Mining system phases (from [26]).

1.3. Brief Description of the Proposal

This paper represents an extended version of [50], introducing AUTOMETA, a
Linguistic-Based Text Mining system employing a finite automaton grounded in the
concept of a “unit of meaning”. AUTOMETA specializes in identifying “multi-word units”,
small portions of text with high semantic content. These units facilitate the automatic
determination of the main knowledge domains within natural language text. Knowledge
identification in text mining involves extracting relevant information from unstructured
text data.

Our proposal has extensive applications, spanning diverse industries and providing
valuable insights from large volumes of unstructured textual data. Key applications include
Information Retrieval, Document Summarization, Question Answering Systems, Sentiment
Analysis, Entity Recognition, Topic Modeling, Information Extraction, Clinical Text Mining
in Healthcare, Business Intelligence, Legal Text Analysis, and more.

The algorithm is designed to address challenges presented by very long multi-word
units composed of a variable number of simple words. During pre-processing, it integrates
user-selected Multi-Word Unit ontologies into a single finite automaton. At runtime, the
Finite Automaton reads the input text character by character, concurrently identifying all
multi-word units from the selected ontologies, even if they partially or completely overlap.
Ontologies can be updated without incurring additional computational costs.

This approach demonstrates efficiency for both short and long documents and does not
require pre-training. A prototype of the system underwent testing on 100 input documents.
It interacted with a union of one generic multi-word unit ontology and 22 terminological
multi-word unit ontologies, totaling 21,396 entries. The system achieved knowledge
domain identification in 91% of cases. It is configured as stand-alone software, making it
embeddable in websites and portals for online use.

AUTOMETA is the product of decades of research in computer science and computa-
tional linguistics. The scientific basis can be traced back to studies on Lexicon–Grammar
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(LG) [51–54] and on string matching through finite automata [55–58]. AUTOMETA repre-
sents a profound evolution compared to its predecessor, CATALOGA [59–62], as in 2021
we undertook a complete redefinition, redesign and rewriting of the system. It maintains
the general approach of its predecessor and some ontologies (which we intend to review
anyway), but every other aspect underwent a thorough redesign and rewriting process.
This includes implementations of technology, algorithms and data structures, source code
and interface.

1.4. Structure of the Paper

This paper is organized as follows: in Section 2, we provide an overview of the
two primary Large Pre-trained Language Models, namely BERT and GPT; in Section 3,
we describe the distinctive features of the system; in Section 4, we provide an overview
of the algorithmic performances of the system; in Section 5, we illustrate the system
performances on real data; in Section 6, we present a brief description of a case study
designed to test the system on a set of documents; in Section 7, we delve into the primary
challenges associated with the automatic processing of natural language texts; in Section 8,
we compare the performance of the system with other existing methods; in Section 9, we
provide suggestions for potential future research and draw overall conclusions.

2. Large Language Models: A Recent Milestone in NLP

In recent years, the field of Natural Language Processing has witnessed significant
advancements, with Large Language Models (LLMs) [63], particularly Large Pre-trained
Language Models (PLMs) [64], playing a pivotal role in reshaping the NLP landscape.

2.1. Large Pre-Trained Language Models (PLM)

PLMs are designed to comprehend and generate human-like text by learning intricate
patterns and representations from extensive textual data. Their text generation capabilities
have reached a level comparable to that of human writing [65], permeating various aspects
of daily life and becoming essential in many professional workflows.

The core idea behind PLMs involves acquiring a generic, latent representation of
language through universal task learning and applying it across diverse NLP tasks. PLMs
play a crucial role in pushing the boundaries of NLP capabilities, constituting an active
area of research and development. Key characteristics of PLMs include:

• Transformer Architectures: The Transformer architecture, introduced by Vaswani et al. [66],
is a neural network architecture highly effective in capturing complex relationships in
sequential data, such as language.

• Pre-training on Extensive Datasets and Transfer Learning: PLMs undergo pre-training
on extensive datasets with diverse textual information, followed by fine-tuning for
specific tasks [67–69].

• Versatility: PLMs find applications in various NLP tasks, including text classifica-
tion, named entity recognition, question answering, sentiment analysis, language
translation, and more.

Notable PLMs achieving cutting-edge performance include BERT (introduced by Google)
and GPT (developed by OpenAI).

2.2. BERT (Bidirectional Encoder Representations from Transformers)

BERT [70–76], introduced by Google researchers in 2018 [70], has significantly ad-
vanced language-related tasks and was integrated into Google’s search engine by 2019. An
analysis published in 2020 highlighted BERT’s rapid ascent in the research world, with
over 150 scientific publications within just over a year [71]. As of December 2023, Scopus
records 3716 scientific articles with the term “BERT” in the title.

Built on the transformer architecture, BERT employs bidirectional pre-training (on
extensive corpora), enhancing its understanding of word context and relationships. During
pre-training, it predicts missing words, enhancing its grasp of language semantics and
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context. After pre-training, the model can be fine-tuned for NLP tasks like language
understanding, machine translation, question answering, sentiment analysis, and named
entity recognition.

BERT uses the WordPiece tokenizer algorithm to tokenize input into smaller units,
allowing for tokens to range from single characters to subword tokens; for example, the
word “running” might be tokenized into subword tokens “run” and ’‘###ing”. Special
tokens like [CLS] and [SEP] are added to delimit the text portion to be considered as a
unit of meaning, so defining where that unit begins and ends within the text. Each token is
assigned a unique ID from the BERT predefined vocabulary, facilitating the transformation
of text into numeric sequences for neural network calculations. For example, the input
“The quick brown fox jumps over the lazy dog” is tokenized as [101, 1996, 4248, 2829, 4419,
5086, 2058, 1996, 7887, 3899, 1012, 102], where 101 represents [CLS], 1996 corresponds to
the ID for “The”, 4248 to “quick”, and so on.

2.3. GPT (Generative Pre-Trained Transformer)

GPT [77–79], developed by OpenAI, is a highly versatile language model known for
generating coherent and contextually relevant text. Its evolution spans multiple iterations,
including GPT-1 (2018), GPT-2 (2019), GPT-3 (2020), and GPT-4 (2023). GPT excels in
various tasks such as text completion, translation, summarization, and question-answering.

Built on the transformer architecture, GPT undergoes pre-training a large neural
network on diverse text corpora. This initial phase equips the model with a broad under-
standing of language. Following pre-training, GPT can be fine-tuned for specific tasks or
employed as a general language model for various natural language understanding and
generation tasks.

Tokenization is a fundamental process in GPT, allowing for the model to operate on
discrete units of meaning and comprehend language structure. Tokens, the basic building
blocks for GPT’s processing, result from breaking down the text into smaller units, such as
words or subwords. Special tokens like [CLS] (classification token) and [SEP] (separator
token) are added to delimit the text portion to be considered as a unit of meaning. GPT’s
tokenization handles a wide vocabulary, incorporating rare or unseen words. The tok-
enized representation serves as input for both pre-training and fine-tuning computations.
Tokenization is conceptually similar to that of BERT, except that GPT uses left-to-right
tokenization, while BERT uses bidirectional tokenization.

Post tokenization, each token receives a unique numeric identifier (ID) using the GPT
vocabulary. This vocabulary, derived from the pre-training corpus, includes complete
words and subword units, enabling GPT to capture morphological variations and generate
flexible, contextually rich text. The final numerically represented tokenized sequence is
processed by the GPT model. For instance, the input text “The quick brown fox jumps
over the lazy dog” is tokenized as [CLS], “The”, “quick”, “brown”, “fox”, “jumps”, “over”,
“the”, “lazy”, “dog”, “.”, [SEP], with each token substituted by an appropriate numerical ID
from the GPT vocabulary, including special tokens like [CLS] and [SEP].

In summary, we note that, in addition to the common characteristics already reported
in Section 2.1 as both PLMs:

• While GPT and BERT have distinct training objectives and optimize for different
tasks, their shared foundation highlights commonalities in handling contextualized
language representations.

• Both GPT and BERT aim to capture contextual understanding of language. GPT
achieves this by predicting the next word in a sequence (left-to-right), while BERT
focuses on bidirectional representations, considering context from both the left and
right sides of a word.

• Both GPT and BERT are designed to be versatile and adaptable to various natural
language processing tasks. They can be fine-tuned for specific applications, such as
sentiment analysis, named entity recognition, question answering, and more.
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3. System Description

In this paper, we delve into AUTOMETA ([50]), a Linguistic-Based Text Mining system
that employs a finite automaton to efficiently identify small portions of text with very
high semantic content within an input document. The primary goal is to automatically
determine the main knowledge domains of the text.

We must, first of all, define the linguistic constructs on which the system is based:
the Multi-word units (MWUs) and the MWUs ontologies; then, we offer an idea of the
algorithms and the related computational complexities on which the system is based.

3.1. Simple Words and Multi-Word Units

The words in a sentence can be broadly classified into two main categories: simple
words, which are meaningful, uninterrupted sequences of letters delimited by spaces, and
multi-word units (MWUs) [80–82], also known as multi-word expressions (MWEs). MWUs
are composed of two or more simple words separated by spaces or other diacritical marks.
These combinations of words function together as a single semantic unit, and the meaning
of multi-word units is, to some extent, independent of that of their individual components.

A multi-word unit, can be exemplified by the following: credit card (“It is a card that
allows the holder to obtain, from businesses managed by the institution that issues the card itself, or
from those affiliated with the issuer, goods or services without the simultaneous payment of the related
prices, which are instead debited to an account the balance of which is subject to periodic collection.”)
(Enciclopedia online Treccani, https://www.treccani.it/ (accessed on 15 September 2023)).
It is typically monosemic, precisely identifying a semantic area or a well-defined object and
nothing else. Multi-word units can encompass idioms, collocations, phrasal verbs, and
other lexical combinations. Here are some examples:

• Idiomatic Expressions: Kick the bucket (to die) or Break a leg (good luck) or Hit the hay
(go to sleep).

• Collocations: Make a decision or Take a shower or Strong coffee.
• Phrasal Verbs: Turn on (activate) or Look up (search for information).
• Proverbs: Too many cooks spoil the broth (when too many people are involved in a task,

it may not turn out well) or Don’t count your chickens before they hatch (do not make
plans or celebrate success prematurely).

• Technical Terms: Artificial intelligence (the simulation of human intelligence in ma-
chines) or Climate change (long-term change in the average weather patterns).

• Compound Words: Airplane (Air+plane) or Raincoat (Rain+coat) or Sunglasses (Sun+glasses).
• Fixed Expressions (or Prepositional Phrases): By the way (incidentally) or In the mean-

time (meanwhile) or All of a sudden (unexpectedly).
• Named Entities: New York City or United States or Mona Lisa (the name of a picture).
• Acronyms and Initialisms: NASA (National Aeronautics and Space Administration)

or UNESCO (United Nations Educational, Scientific and Cultural Organization).
• Technical Terminology: Quantum mechanics or Genetic engineering or Nuclear fusion.

An algorithmic challenge arises from the fact that a multi-word unit lacks explicit ter-
minators to signal its start and end, unlike white space or punctuation that separates simple
words. This poses a significant challenge in the automatic treatment of multi-word units
since they can be very long and composed of any number of simple words. Consequently,
when reading an input text, it remains uncertain how many consecutive elementary words
must be read to form a multi-word unit. Furthermore, there is a close relationship between
multi-word units and terminology. Specialized field lexicons are primarily composed of
multi-word units, but this relationship extends beyond specialized lexical domains and
encompasses all semantic areas. In a particular knowledge domain, the terminological
multi-word units can be regarded as metadata for the corresponding ontology.

In contrast, a simple word (credit or card, taken individually) is usually polysemic,
having various meanings and belonging to many different semantic areas, often distant
from the specific context (for example, for the word “credit”: banking, but also psychology,

https://www.treccani.it/
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mathematics, medicine, economics, industry, etc.; similarly, for the word “card”: material,
literature, medicine, commerce, economy, computer science, etc.).

A single word almost always requires inclusion in a sentence to be disambiguated.
In contrast, a multi-word unit retains its meaning regardless of the sentences in which it
occurs and specifies its semantic content (e.g., Alice performed market analysis). Multi-word
units are considered units of fixed meaning with specific formal and semantic characteristics:
they are not extemporaneous combinations of simple words. Established linguistic studies
indicate that, in natural language, the majority of cognitive information is conveyed through
multi-word units.

3.2. Ontology System

AUTOMETA accesses terminological ontologies where each entry is assigned an on-
tological identification, comprising tags (or labels) referencing one or more knowledge
domains or semantic fields (metadata) where the entry is commonly used and holds an
unambiguous meaning. This tagging system is referred to as a lexical ontology, establish-
ing a distinct and unequivocal relationship between a multi-word unit in a terminology
dictionary and one or more tags denoting the semantic domain(s) to which it pertains.
Essentially, it specifies the particular domain(s) of knowledge where that multi-word unit
possesses a well-defined meaning. To illustrate, the multi-word unit analisi cliniche (clinical
analysis) is tagged with MEDIC, signifying Medicine, while the multi-word unit carta di
credito (credit card) is tagged with ECONO, signifying Economy. Each ontology undergoes
creation and verification under the supervision of experts in the respective sector. It is
important to note that our lexical ontologies do not serve encyclopedic purposes. For
instance, while they may not encompass Subnuclear Physics, they provide all the ontology
used by Subnuclear Physics to unequivocally reference a set of established, standardized,
and universally shared knowledge.

The connection between multi-word units and domain field tags is ontological, es-
tablishing the unambiguous meaning that multi-word units hold within specific cognitive
contexts. As previously mentioned, it has been emphasized that the information conveyed
in any text is predominantly conveyed by terminological multi-word units. This implies
that by extracting terminological multi-word units from a given text, we automatically
extract its general meaning in the form of ontology strings, comprising a multi-word unit
and an unambiguous domain field tag.

3.3. System Functionality

The system comprises a preliminary linguistic phase for the design and development
of the IT data structure for the ontologies, followed by an algorithmic phase.

3.3.1. Preliminary Linguistic Step

For AUTOMETA to recognize a specific knowledge domain, the system requires
the existence of an ontology of terminological multi-word units for that domain. If the
ontology is not available, it must be created. This operation is a one-time task and should be
conducted in collaboration with experts in the relevant sector. At runtime, the system allows
the combination of multiple ontologies from different knowledge domains, integrating
them into a unified structure.

The preliminary linguistic phase involves the following elementary steps:

Step 1 Multi-Word Unit Choice and Normalization: Experts in the sector identify all
multi-word units of the knowledge domain (metadata) and normalize the data
by transforming the set of multi-word units into a standard format, following the
normalization choices determined in the previous step.

Step 2 Association of the Semantic Domain with Each Multi-Word Unit: The system builds
a linguistic model that associates one or more semantic domains with each of the
multi-word units identified in the previous step.
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Step 3 Ontology Construction: A digital data structure is created, containing all possible
multi-word units in the form of an ontology. Each line in the ontology includes a
multi-word unit and its associated semantic domains.

3.3.2. Algorithmic Step

The algorithmic process comprises a one-time pre-processing phase and a two-stage
processing phase for each input text: Matching and Analysis.

Pre-Processing: The system builds a finite automaton data structure based on user-selected
ontologies.

Matching: The algorithm reads the input text character by character, navigating
through the finite automaton, where each character of the input text cor-
responds to a state of the finite automaton. It identifies terminological
multi-word units immediately and simultaneously, even if they are par-
tially or completely overlapped, without revisiting previous characters.

Analysis: After reading the entire input text, the algorithm analyzes metadata and
classifies the text based on its knowledge domains.

4. Algorithm Performances

The system processes input text by navigating a finite automaton, searching for Multi-
Word Units from selected ontologies. When reaching a state corresponding to the end of a
multi-word unit, it outputs the associated semantic domain(s). The algorithms are highly
performant, fast, and precise, capable of identifying all occurrences of multi-word units,
even if they partially or completely overlap.

Phase 1: Preprocessing

Initially, the user selects ontologies, and the system constructs a finite automaton in
the computer’s memory based on these choices. This occurs once per session and whenever
reference ontologies change. The time complexity of the preprocessing phase (i.e., the total
number of elementary algorithmic steps, hence the number of state transitions on the finite
automaton) is O(m) [55], where m is linearly proportional to the sum of the lengths of all
entries in the selected ontologies (n elements), as given by

m =
n

∑
i=1

length(ai).

Phase 2: Matching

The automaton continuously reads lines of input text, character by character, never
stepping back through the input text. The characters guide it through the finite automaton;
when it encounters a state corresponding to the end of a multi-word unit, it emits its
associated semantic domains. All terminological multi-word units are recognized simulta-
neously in a single pass (i.e., with only one reading of the input text) even if partially or
totally overlapping, however long the multi-word units are. Thus, the algorithm works
in linear time with respect to the number of characters in the input text [55]; therefore,
its performance does not depend on the size of the ontologies (i.e., the set of all possible
multi-word units). It also runs on a data structure entirely in the computer’s main memory.

Phase 3: Analysis

At the end of the Matching phase, when the input text is completely read, the system
counts the frequency of each semantic field that emerges and proposes a classification of
the input text knowledge domain based on the most frequent ones.

5. System Performances

The system operates on a standard architecture without specific hardware or software
requirements. The tests were conducted using the following hardware configuration:
Laptop: DELL INSPIRON 16;
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CPU: 11th Gen Intel(R) Core(TM) i7-11800H @ 2.30GHz 2.30 GHz;
RAM: 32.0 GB;
OS: Windows 11 Home, 64-bit, x64, ver. 22H2.

There is no need for a particular video card or mass memory beyond standard speci-
fications. The software was developed using “Embarcadero Delphi 11.2”, a robust RAD
(Rapid Application Development) visual software development tool based on an Object
Programming Language. The computer was running system applications during pro-
gram execution.

5.1. AUTOMETA at Work

In this paper, we present a test conducted on an Astronomy document titled “Two
potentially habitable exo-earths discovered 16 light years from us” from “Le Scienze” (the
Italian edition of ”Scientific American”) dated 15 December 2022 (https://www.lescienze.
it/news/). The document consists of 625 words, 4231 characters, and 12 paragraphs. We
performed the test in five different scenarios:

1. On the entire document.
2. On the first two thirds of the document.
3. On the first third of the document.
4. On the central part of the document.
5. On the union of the first and last paragraphs of the document.

It is noteworthy that the system effectively identifies target information even with
very few words, less than 200. The analysis results for the entire document are summarized
in Figure 2, and the outcomes of the five tests are presented in Table 1.

Figure 2. Example of AUTOMETA output.

https://www.lescienze.it/news/
https://www.lescienze.it/news/
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Table 1. Summary of the 5 subtests for the example.

Words Chars Knowledge Domains

647 4270 Astronomy (7), Architecture (1), Aircraft (1), Optics (1)

440 2884 Astronomy (7), Aircraft (1), Optics (1)

168 1093 Astronomy (6)

186 1220 Astronomy (2)

182 1178 Astronomy (3), Architecture (1)

5.2. Running System Performances

During the startup phase, the software constructs a Finite Automaton in RAM, encom-
passing all chosen ontologies. The system includes one generic multi-word unit ontology
and 22 terminological multi-word unit ontologies, totaling 21,396 entries. The time needed
to build the finite automaton for the entire set of ontologies ranges from 8 to 12 s, depending
on system overhead.

The pre-processing time for a text varies from 0.1 s for the smallest text (103 words
and 644 characters) to 2.86 s for the longest text (556,907 words and 3,449,325 characters).

The processing time for a text ranges from 0.1 s for the smallest text to 1.35 s for the
longest text.

The maximum space used by the entire system, including the Finite Automaton and
23 ontologies with 21,396 elements, is 709 MB for the longest text.

6. Case Study Description

An early prorotype of the system correctly recognized the knowledge domains for the
vast majority of texts (over 90%) analyzed.

6.1. Corpus

We worked on a dataset of 100 short-length texts (a few hundred words) and medium-
length texts (a few thousand words), selected from the websites of the main national and
regional newspapers, as well as from specialized magazines. The average length of the
corpus is 766 words and 5436 characters. The minimum-length text contains 252 words and
1777 characters, while the maximum-length text contains 8800 words and 56,715 characters.

The total number of Multi-Word Units is 21,396 which comes from the union of
1 generic multi-word unit ontology and 22 terminological multi-word unit ontologies.

6.2. Methodology

After conducting a personal (human) reading of each text, we subjectively classified
the documents by associating each with a maximum of three knowledge domains, those
which, in our opinion, exhibited the closest correspondence between text and content.

In the second operational phase, we subjected the same documents to the text mining
system and then compared the results obtained with the previous “human” categorization,
summing the percentages of all the words found that belong to one of the three domains
associated with the text in the first step.

6.3. Results

When the sum of the percentages from the computer analysis, compared to the human
analysis, was

• from 85% upwards, we considered the objective fully achieved;
• between 70% and 84%, we considered the objective well achieved;
• between 50% and 69%, we considered the objective achieved;
• between 30% and 49%, we considered the objective poorly achieved;
• from 29% down, we considered the objective not reached.
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The results of the test are resumed in Table 2.

Table 2. Results of the test on 100 documents.

Goal Documents Avg. Words Avg. Chars Avg. Percentage

Fully Achieved 52 721.50 5279.87 93.56%

Well Achieved 31 956.93 6731.37 75.97%

Achieved 8 698.25 4598.13 52.50%

Poorly Achieved 2 581.50 3687.50 37.50%

Not Achieved 7 440.71 2716.14 2.86%

It should be noted that 6 out of 7 documents that did not reach the objective were
passages taken from literary works (by Shakespeare, Sartre, Eliot, Plautus, Fruttero and
Lucentini, De Carlo).

7. Natural Language Texts Main Issues

Text mining faces several intrinsic problems when dealing with unstructured or semi-
structured natural language texts. Analyzing these types of documents poses difficulties
for computers, in contrast to the ease with which humans can manipulate them. These
challenges need to be addressed by all text mining systems, regardless of their approach
and techniques.

These issues arise mainly because natural language textual documents originate
from diverse sources, primarily created by human beings with different backgrounds and
cultures. Human language is inherently complex, ambiguous, and variable, and these
issues are mainly related to semantics, context, formatting, and standardization.

While some issues can be addressed automatically through effective text processing
or neutralized by algorithmic and statistical–mathematical methods, others demand deep
linguistic and semantic understanding of the text.

The field of text analysis is currently focused on processing, employing statistical and
mathematical analyses that are linguistically superficial and fall short of achieving the
deep semantic understanding accomplished by humans [21]. In essence, the more a text
mining approach relies on language knowledge, the better it can overcome some of these
problems. Until these challenges are overcome, semantic compromises may be necessary in
text analysis. Here are some of the main issues in text mining natural language texts:

7.1. Ambiguity
7.1.1. Lessical Ambiguity

Polysemous Words (words with multiple inflections) require context for disambigua-
tion (e.g., “park”: a public area OR the act of parking a vehicle).

7.1.2. Syntactical Ambiguity

Understanding syntactic ambiguity is particularly challenging. For example, the written
sentence “Mario saw Franco in the park with binoculars” can be interpreted in four different
ways, highlighting the complexity of language comprehension:

1. Mario is in the park and (Mario) has binoculars (with which he saw Franco);
2. Mario is in the park and saw Franco (who may not be in the park) who has binoculars;
3. Franco is in the park and Mario has binoculars (with which he saw Franco);
4. Franco is in the park and has binoculars and Mario saw him.

Incidentally, we note that this problem is so difficult that, simply in its written formu-
lation, it cannot be solved even by human beings, unless other information derived from
other senses (e.g., sight) or other knowledge is added.
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7.2. Word Variability
7.2.1. Synonyms

Different words might have very similar, but not exact, meanings; sometimes the
nuances could be very important for understanding the written text.

7.2.2. Variations in Spelling

Variations in spelling refer to different ways words can be written, leading to differ-
ences in their appearance. These variations can occur due to regional differences, language
evolution, historical influences, individual preferences, and errors. It is important to rec-
ognize these variations, especially in natural language processing and text mining, where
understanding different forms of words is crucial for accurate analysis and interpretation.
Here are some examples:

• British vs. American English: Color (American) vs. Colour (British)
• Alternative Spellings: Traveling vs. Travelling
• Abbreviations and Contractions: Can’t vs. Cannot
• Improper Word Usage due to dialectical habits (e.g., “the teacher learns me to speak”

instead of ’‘teaches”)
• Neologisms: Emergence of new words borrowed from online dialogues (e.g., “L8er”

for “later”)

7.2.3. Typos and Misspellings

In a text, there could be typos and/or misspelling that could be of two main types:

• non-existing word (e.g., banf instead of band);
• existing word (e.g., bank instead of band) that could change the meaning of a sentence

(“the bank went bankrupt” is a possible thing, just like “the band went bankrupt”).

7.3. Writing Style: Standardization and Formatting Problems

These problems are primarily due to the absence of universal rules for writing texts
that a computer can consistently understand:

• Various uses of accented characters (only for vowel “a” there are 10 variants: á, à, â, ǎ, ă,
ã, ā, a⃗, ȧ, ä),

• Varied use of apostrophes (e.g., pò instead of po’ in Italian) highlights dialectical nuances.
• Variations in punctuation and capitalization.
• Diverse sentence structures contribute to the uniqueness of writing styles.
• Colloquial Expressions are also widely present, ranging from online texts to more formal

contexts like literature, politics, and journalism.

7.4. Hidden Information

These problems arise from the complexity of the problem and the cognitive limita-
tions of computers. Instead, these issues require “linguistic–cognitive” methods closer to
human comprehension to understand the information hidden at deeper levels than the
simple frontal text, since humans use natural language to express thoughts, emotions, and
feelings, employing

• Euphemisms, Disguises, and Metaphors to convey nuanced meanings.
• Irony and Rhetorical Figures to add layers of meaning.

These features often hide information beyond direct readability, posing a significant
challenge for technology due to the need for deep understanding and reasoning. For
example: ”Bob left us yesterday” (Where did Bob go? Did he move, change jobs, or die?),
or “You are the apple of my eyes”, or “Messi is a poor footballer” (ironically said about
Lionel Messi after just one bad match) or “Ronaldo is an ex-player” (ironically said about
Cristiano Ronaldo because he is an old player).
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8. Comparisons

Let us now focus our attention mainly on the comparison between AUTOMETA and
PLMs, both because the latter are the most scientifically advanced systems, and those
with the highest level of diffusion and success, and because non-linguistic text mining
approaches present, in principle, the same problems of PLMs.

8.1. PLM Family Systems Main Issues

In their exploration of Large Language Models (LLMs), Zhang et al. [83] state that
“Despite its powerful modeling and description capabilities, LLMs present significant problems
and limitations”.

An article by the editors of “MIT Technology Review” on 24 February 2021 (https://
www.technologyreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021)
states that “GPT-3 can mimic human-written text with uncanny—and at times bizarre—realism,
making it the most impressive language model yet produced using machine learning. But GPT-3
doesn’t understand what it’s writing, so sometimes the results are garbled and nonsensical. It takes
an enormous amount of computation power, data, and money to train, creating a large carbon foot-
print and restricting the development of similar models to those labs with extraordinary resources.
And since it is trained on text from the internet, which is filled with misinformation and prejudice,
it often produces similarly biased passages”.

In a statement on 20 November 2022 (https://openai.com/blog/chatgpt#OpenAI),
OpenAI acknowledges challenges with ChatGPT’s accuracy. They note that “ChatGPT
sometimes writes plausible-sounding but incorrect or nonsensical answers. Fixing this issue is
challenging, as: (1) during training, there’s currently no source of truth; (2) training the model to be
more cautious causes it to decline questions that it can answer correctly; and (3) supervised training
misleads the model because the ideal answer depends on what the model knows, rather than what the
human demonstrator knows”.

Now, let us delve into the primary issues associated with PLMs.

Pre-training: The process involves training a language model on a corpus of textual data.
Schramowski et al. [84] explore the ethical and moral dimensions of LLMs. They
emphasize that during pre-training, PLMs, exposed to vast amounts of unfiltered
textual data, not only capture linguistic knowledge but also implicitly retain general
knowledge present in the data.

• Data size: Pre-training requires a huge quantity of unfiltered data. The system’s
statistical engine improves with the quantity of data it processes. As of 28 May
2020, GPT-3 counts 570 GB (300 billion words) of data from CommonCrawl,
WebText, English Wikipedia, and two books corpora (Books1 and Books2) [85].

• Data quality: There is no certainty that the pre-training data are correct, as
online text is rife with errors, biases, malicious content, and misinformation.
In some cases, pre-training data may violate moral and legal laws or contain
potentially sensitive information, as discussed by Huang et al. [86] in their
analysis of the personal information disclosure tendencies of individuals with
PLMs. Consequently, PLMs inherit and perpetuate biases from the training data,
resulting in uncontrollable texts with distorted and biased content.

Tokenization: PLMs break the text into tokens, then transform each token into a number
and thereafter look for patterns in these tokens. PLMs implicitly capture information
about words and their relationships based on the patterns and sequences they observe
in the tokens from the data they were trained on. These models are capable of
recognizing or generating coherent text, but they do not have explicit knowledge
of semantics or the ability to understand concepts in the same way humans do.
The model generates contextually appropriate text by predicting the next token in a
sequence based on the preceding tokens.

Semantics: Tokenization is performed without considering meanings or semantics. Conse-
quently, these models lack a deep understanding of written language. This implies

https://www.technologyreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021
https://www.technologyreview.com/2021/02/24/1014369/10-breakthrough-technologies-2021
https://openai.com/blog/chatgpt#OpenAI
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that the models cannot justify or explain exactly what they emit, which is particularly
critical in applications such as healthcare and finance. Furthermore, recognizing
ambiguity, both lexical and syntactic, is not straightforward. In general, questions
related to the semantic knowledge of a text, such as detecting hidden meanings,
remain challenging to resolve.

Multi-Word Units: Multi-word units (MWUs) are “units of meaning” with high semantic
value, but processing them is not straightforward.

• MWUs in PLMs: PLMs have no explicit knowledge of multiword units (MWUs)
or phrases as atomic entities; they process an MWU as sequences of individual
tokens. For example, the phrase “natural language processing” would be tok-
enized into three separate tokens: “natural”, “language”, and “processing”. Each
token is considered independently during the model’s training and inference.

• MWU Size: An MWU can be very long and is composed of any number of simple
words, as discussed in Section 3.1. An MWU has no “end unit” symbol (like a
space or punctuation for a simple word). In real life, an MWU could theoretically
extend to the end of the entire text. In the tokenization process, PLM determines
where a “unit of meaning” stops and puts an “end of sentence” token.

• Occurrences of MWUs: In texts, MWUs occur with low frequency compared
to single words; therefore, in an overall statistical analysis, they tend to be
overlooked. To address this problem, it would be advisable to separate MWU
statistics from simple word statistics.

Spelling:

• Text Flaws: A text, both in the pre-training phase and in the mining phase, could
contain spelling errors, typos, misspellings, and features of writing styles. Every
word and every little part of a text is important in both the pre-training and
mining processes, so a text should be corrected for these issues.

• Pre-processing: Pre-processing cleaning of the input text is necessary, but this
is an expensive, time-consuming operation, and often it is not even possible. A
pre-processing routine might detect a spelling error, but it might not correct it.
Sometimes it may not even detect the error; for example, if there is a word that
is lexically but not semantically correct.

Behavior with texts of rare or unknown topics to the model: These models do not work
reasonably well on rare or unknown events. LLMs may struggle to provide accurate
responses or predictions for rare or unprecedented events due to their heavy reliance
on learned patterns from historical data.

Resource: These models, mainly for the pre-training process, require a lot of computational
power, resources, and capital investment.

Management: These models could be managed only by very large companies.

8.2. A Comparison between PLMs and AUTOMETA

Pre-Training

PL Typically, these techniques necessitate a significant initial learning process, often
involving the analysis of millions of documents. The system’s statistical engine
improves with the quantity of data it processes.

AU In contrast, the proposed system does not require an extensive initial learning
process and can recognize the semantic domain of a document without the need
to read other documents from the same knowledge domain.

Pre-processing

PL Natural language texts lack a standard format (refer to Section 7), requiring an
effort to make a text as “standard” as possible. Achieving this involves both
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a syntactic pre-processing phase and a deep understanding of the language,
which statistical methods lack. This phase is delicate and time consuming,
particularly because simple words, the focus of these methods, are numerous in
a text. Probabilistically, they are often not very distinct from each other, making
them easily confused. For instance, in a sentence discussing one’s bank, the
phrase “my band is far away” might remain unnoticed as a writing error where
“band” should have been “bank”. Context investigation is necessary to identify
such errors.

AU In contrast, the proposed system involves a “small” pre-processing phase to
normalize the formal spelling of words, as multi-word units are few and diverse,
minimizing pre-processing and dimensionality reduction. The system recognizes
that these tasks are time consuming, error prone, and language specific.

auto-correction

PL Due to the lexical proximity among simple words, implementing auto-correcting
techniques for errors is challenging.

AU In contrast, the proposed system aims to auto-correct as many errors as possible
in “useful” but ill-written text.

polysemic

PL In natural language, simple words are inherently polysemous, belonging to
multiple semantic domains.

AU In contrast, the proposed system detects as few “pieces of text” as possible,
each carrying a substantial amount of semantic information and having few
synonymy relationships.

8.3. A Comparison between AUTOMETA and Other Methods

AUTOMETA is a Linguistic-Based Text Mining system that utilizes a finite automaton
to efficiently identify small portions of text with very high semantic content (MWUs) within
an input text. These MWUs are then compared with MWU ontologies to automatically
determine the main knowledge domains of the text.

8.3.1. Different Strategies from AUTOMETA

Algorithmically, employing a different method for matching simple words or MWUs
against a dictionary can be highly time consuming and depends on the size of the dictionary:
the larger it is, the longer the wait for a response. Identifying a multi-word unit from an
ontology with m elements in a text with n words requires O(log m) accesses to an ordered
data structure for each single search and globally O(n) accesses to the data structure for
each single word in the input text. This is because the complete chain with all the successive
words of the focused word has to be attempted. Thus, the comprehensive cost to analyze
a single word in the input text requires at least O(n log m) accesses to a data structure if
it is maintained sorted with respect to the alphabetical order of the items. Since the input
text contains n words, there are necessary O(n2 log m) searches in the ontology to analyze
the entire input text. In addition, in the case of deletion, insertion, or modification of an
entry in an ontology, such an operation must be performed while maintaining the order in
the ontology. This costs at least O(log m) accesses to the ontology, possibly involving the
physical movement of entries from one memory area to another.

Furthermore, simple word text-mining systems tend to perform better on long texts
and less effectively on shorter documents. This is attributed to the presence of numerous
simple words in a text, making it easier for statistical regularities to emerge in longer texts.
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8.3.2. AUTOMETA

• Independent of the length and number of elementary words in a multi-word unit,
it addresses challenges posed by very long units composed of a variable number of
simple words.

• The processing time for a text of k characters requires O(k) state transitions. The Finite
Automaton reads the input text character by character, concurrently identifying all
multi-word units from selected ontologies, performing the analysis in linear time.

• Can handle large dictionary sizes without issues.
• Recognizes partially or completely overlapping multi-word units without additional

computational effort.
• The entire ontology, stored in a finite automaton in central memory, ensures signifi-

cantly faster access times compared to secondary memory.
• Ontologies do not need to be sorted, making addition, modification, or deletion of

entries virtually computationally cost-free; we simply insert a new word at the end of
the ontology or modify or delete a word without touching the others.

• Recognizes multi-word units directly while reading the input text, without providing
feedback.

• Efficient for both short and long documents.
• Does not require a pre-training process.

9. Conclusions and Future Research Perspectives
9.1. Conclusions

This paper introduces an efficient algorithmic–linguistic text mining approach that
identifies knowledge domains within a text by detecting terminological multi-word units
and comparing them with ontologies. The algorithm utilizes a finite state automaton for
all ontologies, emitting knowledge domains upon recognizing multi-word units. Upon
reading the entire input text, the algorithm analyzes the metadata issued to associate one or
more knowledge domains with the document. This approach is applicable to both long
and short texts, showcasing high efficiency, speed, and precision.

In conclusion, we assert that our semantics-based text mining and information retrieval
approach is well-suited for achieving the goals of automatic recognition and the related
semantic cataloging of (semi) unstructured natural language texts.

9.2. Future Research Perspectives

To achieve efficient semantic-based text mining, special attention must be paid to
analyzing and promptly capturing linguistic changes, primarily driven by the evolving
facets of civilization. Potential avenues for future research could include:

• Ontology Structure Update: Focus on updating existing ontologies and creation
of new electronic terminology ontologies for various semantic domains, such as e-
government, biomedicine, ecological transition, etc. The flexibility of our approach
allows modifications without the need to reorder ontology items.

• Testing and Validation: Conduct of comprehensive testing and validation of existing
ontologies by applying them to more extensive corpora.

• Integration into Websites and Portals: Exploration of the integration of ontologies and
software tools into websites and portals, allowing for internet users to test the system
and provide feedback on its quality and usability.

• Automatic Translation of Multi-Word Units: Investigation of the addition of a trans-
lation feature to our approach, enabling the translation of multi-word units from
one language to another. This capability is crucial, as translating multi-word units is
not always straightforward by translating their individual components, given that
a multi-word unit is a whole. The rapid translation feature could address errors in
technological and scientific translation caused by the lack of reliable terminological
bilingual electronic glossaries/dictionaries.
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