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Abstract: In this research, we provide a novel approach to the development of effective numerical
algorithms for the solution of first-order IVPs. In particular, we detail the fundamental theory behind
the development of the aforementioned approaches and show how it can be applied to the Adams–
Bashforth approach in three steps. The stability of the new scheme is also analyzed. We compared
the performance of our novel algorithm to that of established approaches and found it to be superior.
Numerical experiments confirmed that, in comparison to standard approaches to the numerical
solution of Initial Value Problems (IVPs), including oscillating solutions, our approach is significantly
more effective.
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1. Introduction

Equations or systems of equations of the form

y′(t) = f(t, y), y(t0) = y0, (1)

are used to solve problems in a wide variety of fields, including astrophysics, chemistry,
physics, chemistry, electronics, nanotechnology, materials science, and more. The category
of equations with an oscillatory/periodic solution deserves extra consideration (see [1,2]).

Significant effort has been put into studying the numerical solution to the above
equation or system of equations during the past two decades (for examples, see [3–17],
and the references therein). For a more in-depth look at the techniques used to solve (1)
with solutions presenting oscillating behavior, refer to [3,8,18] and the references therein;
Quinlan and Tremaine [10] as well as [6,7,19]; and so on. All existing numerical methods for
solving (1) in the literature have several commonalities, the most prominent one being that
they are multistep or hybrid approaches. In addition, the vast majority of these techniques
were developed for the numerical solution of second-order differential equations. We
mention the following basic categories of methods and the bibliography for them:
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• Exponentially fitted, trigonometrically fitted, phase-fitted and amplification-fitted
Runge–Kutta and Runge–Kutta–Nyström methods and Runge–Kutta and Runge–
Kutta–Nyström methods with minimal phase lag (see [20–57]).

• Exponentially fitted and trigonometrically fitted phase-fitted and amplification-fitted
multistep methods and multistep methods with minimal phase lag
(see [58–121]).

From the above bibliography, it is easy to see that there has not been, until now,
a contribution to the development of multistep methods with minimal phase lag or phase-
fitted multistep methods for first-order IVPs.

In this paper, we introduce the theory for the calculation of the phase lag and amplifi-
cation error (or amplification factor) of the multistep methods for first-order IVPs.

The paper is developed as follows:

• In Section 2, we develop the general theory for the calculation of the phase lag and am-
plification error (or amplification factor) of the multistep methods for first-order IVPs.

• In Section 3, we present methodologies for the achievement of the phase lag, am-
plification factor, phase-fitted, and amplification-fitted multistep methods. More
specifically, we present methodologies for the achievement of minimal phase lag of
the multistep method, a methodology for the achievement of the amplification-fitted
multistep method, and a methodology for the achievement of the phase-fitted and
amplification-fitted multistep method.

• In Section 4, we present the stability analysis for the new proposed methods.
• In Section 5, we present the numerical results.

The numerical results show that the methodology for the development of phase-fitted
and amplification-fitted multistep methods produced the most efficient ones for problems
with solutions of oscillating behavior.

2. The Theory

In order to study the phase lag of multistep methods for the problems (1), the following
scalar test equation is used:

y′(t) = I ω y(t) (2)

The solution of the above equation is given by:

y(t) = exp(I ω t) (3)

Consider the multistep methods for the numerical solution of the above-mentioned
problem (1):

yn+k − yn+k−1 = h
k

∑
j=1

[
An+k−j(ω h) fn+k−j

]
(4)

where An+k−j(ω h), j = 1, 2, . . . , k are polynomials of ω h, and h is the step length of
the integration.

Applying (4) to (2), we achieve:

yn+k − yn+k−1 = I ω h
k

∑
j=1

[
An+k−j(ω h) yn+k−j

]
(5)

Taking into account:
v = ω h (6)

(5) gives:

yn+k − yn+k−1 = I v
k

∑
j=1

[
An+k−j(v) yn+k−j

]
(7)

and
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yn+k − (1 + I v An+k−1(v)) yn+k−1 − I v
k

∑
j=2

[
An+k−j(v) yn+k−j

]
= 0 (8)

The characteristic equation of the above difference equation is given by:

λk − [1 + I v An+k−1(v)] λk−1 − I v
k

∑
j=2

[
An+k−j(v) λk−j

]
= 0 (9)

Definition 1. Taking into account that the theoretical solution of the scalar test Equation (1) for
t = h is equal to exp(I ω h), i.e., exp(I v) (see (6)), and the numerical solution of the scalar test
Equation (1) for t = h is equal to exp(I θ(v)), we have the following definition for the phase lag:

Φ = v − θ(v) (10)

The order of the phase lag is equal to q if and only if the quantity Φ = O
(
vq+1) as v −→ 0.

Taking into account the following relation:

λn = expn I θ(v) = cos[n θ(v)] + I sin[n θ(v)] n = 1, 2, . . . (11)

we obtain:

cos[k θ(v)] + I sin[k θ(v)]− (1 + I v An+k−1)
{

cos[(k − 1) θ(v)] + I sin[(k − 1) θ(v)]
}

−
k−1

∑
j=2

I v An+k−j(v)
{

cos[(k − j) θ(v)] + I sin[(k − j) θ(v)]
}
− I v An(v) = 0 (12)

The following lemmas must be used to analyze the above relation (12).

Lemma 1. The following relation is valid:

cos[θ(v)] = cos(v) + c vq+2 + O
(

vq+4
)

(13)

For the proof, see Appendix A.

Lemma 2. The following relation is valid:

sin[θ(v)] = sin(v)− c vq+1 + O
(

vq+3
)

(14)

For the proof, see Appendix B.

Lemma 3. The following relation is valid:

cos[j θ(v)] = cos(j v) + c j2 vq+2 + O
(

vq+4
)

(15)

sin[j θ(v)] = sin(j v)− c j vq+1 + O
(

vq+3
)

(16)

For the proof, see Appendix C.
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Taking into account relations (15) and (16), relation (12) becomes:

cos[k v] + c k2 vq+2 + I
[
sin[k v]− c k vq+1

]
−(1 + I v An+k−1)

{[
cos[(k − 1) v] + c (k − 1)2 vq+2

]
+I

[
sin[(k − 1) v]− c (k − 1) vq+1

]}
−

k−1

∑
j=2

I v An+k−j(v)
{[

cos[(k − j) v] + c (k − j)2 vq+2
]

+I
[
sin[(k − j) v]− c (k − j) vq+1

]}
− I v An(v) = 0 (17)

The above relation (17) can be divided into two parts: the real part and the imagi-
nary part.

• The Real Part

The real part gives:

cos[k v] + c k2 vq+2 − cos[(k − 1) v]− c (k − 1)2 vq+2

+v An+k−1

[
sin[(k − 1) v]− c (k − 1) vq+1

]
+

k−1

∑
j=2

v An+k−j(v)
[
sin[(k − j) v]− c (k − j) vq+1

]
= 0 (18)

The relation (18) gives:

cos[k v]− cos[(k − 1) v] +
k−1

∑
j=1

v An+k−j(v) sin[(k − j) v]

= −c vq+2
[
k2 − (k − 1)2 −

k−1

∑
j=1

v An+k−j(v)
]
=⇒

−c vq+2 =
cos[k v]− cos[(k − 1) v] + ∑k−1

j=1 v An+k−j(v) sin[(k − j) v]

2 k − 1 − ∑k−1
j=1 An+k−j(v) (k − j)

(19)

This is the direct formula for the computation of the phase lag of the multistep
method (4). Below, we will describe the procedure for the computation of the phase
lag of method (4).

• The Imaginary Part

The imaginary part gives:

sin[k v]− c k vq+1 − sin[(k − 1) v] + c (k − 1) vq+1

−v An+k−1

[
cos[(k − 1) v] + c (k − 1)2 vq+2

]
−

k−1

∑
j=2

v An+k−j(v)
[
cos[(k − j) v] + c (k − j)2 vq+2

]
− v An = 0 (20)

Relation (20) gives:
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sin[k v]− sin[(k − 1) v]−
k−1

∑
j=1

v An+k−j(v) cos[(k − j) v]− v An

= −c vq+1
[
− 1 −

k−1

∑
j=1

v2 An+k−j(v)(k − j)2
]
=⇒

−c vq+1 =
sin[k v]− sin[(k − 1) v]− ∑k−1

j=1 v An+k−j(v) cos[(k − j) v]− v An

−1 − ∑k−1
j=1 v2 An+k−j(v)(k − j)2 (21)

This is the direct formula for the computation of the amplification factor of the multi-
step method (4).

3. Methodologies for Achievement of the Phase Lag, Amplification Factor, Phase-Fitted
and Amplification-Fitted Methods
3.1. Classical Methods—Methods with Constant Coefficients Known in the Literature

We will focus our examples on the well-known method of Adams–Bashforth of the
third algebraic order, i.e., on the method:

ψn+1 − ψn =
h

12

(
23 ψ′

n − 16 ψ′
n−1 + 5 ψ′

n−2

)
(22)

with the local truncation error (LTE) given by:

LTE =
3
8

h4 y{(4)}(t) + O
(

h5
)

(23)

In order to determine the phase lag and amplification error of this method, we apply
the theory developed in Section 2.

Application of the method (22) to the test Equation (2) leads to the difference
Equation (7) with k = 3 and

A2(v) =
23
12

, A1(v) = −4
3

, A0(v) =
5
12

(24)

Based on the above formula (19) and using Taylor series expansion for cos(m v), sin(m v),
m = 1, 2, we obtain:

cos(3 v)− cos(2 v) + v A2(v) sin(2 v) + v A1(v) sin(v)
5 − 2 A2(v)− A1(v)

=

3
20

v4 − 61
360

v6 + . . . (25)

Consequently, q = 2 and c = − 3
20 . The third algebraic order Adams–Bashforth method

is of the second-order phase lag.
Based now on the above formula (21) and using Taylor series expansion for cos(m v),

sin(m v), m = 1, 2, we obtain:

sin(3 v)− sin(2 v)− v A2(v) cos(2 v)− v A1(v) cos(v)− v A0(v)
−1 − 4 v2 A2(v)− v2 A1(v)

=

−193
360

v5 +
54967
15120

v7 + . . . (26)

Consequently, q = 4 and c = 193
360 . The third algebraic order Adams–Bashforth method

is of the fourth order amplification error. For our computational purposes, we will call the
third algebraic order Adams–Bashforth method Method I.
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3.2. Minimal Phase Lag

In order to investigate the minimization of the phase lag, we study the following
general four-step method:

ψn+1 − ψn = h
(

A2(v), ψ′
n + A1(v)ψ′

n−1 + A0(v)ψ′
n−2

)
(27)

3.2.1. Algorithm for the Minimization of the Phase Lag

The algorithm for the minimization of the phase lag is the following:

• Elimination of the amplification factor.
• Computation of the phase lag based on the coefficient obtained by the previous step.
• Taylor series expansion of the phase lag computed above.
• Determination of the system of equations in order to achieve minimal phase lag.
• Computation of the new coefficients.

Based on the above algorithm, we obtain the following two methods with mini-
mal phase lag.

3.2.2. First Method with Minimal Phase Lag (Method with Minimal Phase Lag and
Eliminated Amplification Factor with Third Algebraic Order)

We consider the method (27) with A0(v) = 5
12

Using the direct formula for the computation of the amplification factor (21), we obtain:

AF =
sin(3 v)− sin(2 v)− A2(v) v cos(2 v)− A1(v) v cos(v)− A0(v) v

−4 v2 A2(v)− v2 A1(v)− 1
(28)

where AF declares the amplification factor.
Requiring the elimination of the amplification factor, i.e., requiring AF = 0, we obtain:

A2(v) =
−A1(v) v cos(v)− A0(v) v + sin(3 v)− sin(2 v)

v cos(2 v)
(29)

Substituting the values of A0(v) and A2(v) given above into the direct formula for the
computation of the phase lag (19), we obtain:

PhErr =
v
(

5
6 sin(v) cos(v) v + A1(v) v sin(v)− cos(v) + 1

)
A3(v)

(30)

where

A3(v) = 2 [cos(v)]2 v A1(v) + 8 sin(v) [cos(v)]2 − 10 [cos(v)]2 v

−2 A1(v) v cos(v)− 4 sin(v) cos(v)− A1(v) v +
25 v

6
− 2 sin(v) (31)

and PhErr declares the phase lag.
Taking the Taylor series expansion of the formula (30), we obtain:

PhErr =

(
4
3 + A1(v)

)
v2

−A1(v)− 23
6

+
v4 A4(v)

−A1(v)− 23
6
+ . . . (32)

where

A4(v) = −43
72

− 1
6

A1(v) + 2
(4 + 3 A1(v))

(
−A1(v) + 11

3

)
6 A1(v) + 23

(33)
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Requesting the minimization of the phase lag, we obtain the following equation:(
4
3 + A1(v)

)
v2

−A1(v)− 23
6

= 0 =⇒ A1(v) = −4
3

. (34)

The characteristics of this new method are:

A0(v) =
5
12

A1(v) = −4
3

A2(v) =
1

12
16 v cos(v) + 48 sin(v) cos(v)2 − 12 sin(v)− 24 sin(v) cos(v)− 5 v

v cos(2 v)

LTE =
3
8

h4 y{(4)}(t) + O
(

h5
)

PhErr =
3

20
v4 +

467
1800

v6 + . . . (35)

The Taylor series expansion of the coefficient A2(v) is given by:

A2(v) =
23
12

+
193
360

v4 +
12583
15120

v6 + . . . (36)

We will call the above new method Method II for our computational purposes.

3.2.3. Second Method with Minimal Phase Lag (Method with Minimal Phase Lag and
Eliminated Amplification Factor with Second Algebraic Order)

We consider again the general four-step method presented in (27). Our strategy is
the following.

Elimination of the Amplification Factor

In order to achieve this target, we have the following procedure:

• Using the direct formula for the computation of the amplification factor (21) for k = 3,
we obtain the relation (28).

• Requiring the elimination of the amplification factor for k = 3, i.e., requiring AF = 0,
we obtain the relation (29).

Minimization of the Phase Lag

• Using the direct formula for the computation of the phase lag (19) with the value of
A2(v) calculated by (29), we obtain:

PhErr =
v
(

2 cos(v) sin(v) v A0(v) + A1(v) v sin(v)− cos(v) + 1
)

A5(v)
(37)

where
A5(v) = 2 (cos(v))2 v A1(v) + 8 sin(v) [cos(v)]2

−10 [cos(v)]2 v − 2 A1(v) v cos(v)− 4 cos(v) sin(v)
−A1(v) v − 2 A0(v) v − 2 sin(v) + 5 v (38)

and PhErr declares the phase lag.
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• Taking the Taylor series expansion of the formula (37), we obtain:

PhErr = −1
2
(4 A0(v) + 2 A1(v) + 1) v2

A1(v) + 3 + 2 A0(v)
+

1
24

A6(v) v4(
A1(v) + 3 + 2 A0(v)

)2

− A7(v) v6

720
(

A1(v) + 3 + 2 A0(v)
)3 +

A8(v) v8

120960
(

A1(v) + 3 + 2 A0(v)
)4

− A9(v) v10

725760
(

A1(v) + 3 + 2 A0(v)
)5 + . . . (39)

where

A6(v) = 28 A1(v)
2 + 88 A1(v) A0(v) + 64 A0(v)

2

−63 A1(v)− 78 A0(v)− 41

A7(v) = 1266 A1(v)
3 + 4536 A1(v)

2 A0(v) + 4392 A1(v) A0(v)
2

+768 A0(v)
3 − 3331 A1(v)

2 − 7324 A1(v) A0(v)− 4204 A0(v)
2

+6852 A1(v) + 11244 A0(v) + 4717

A8(v) = 305448 A1(v)
4 + 1251120 A1(v)

3 A0 + 1587168 A1(v)
2 A0(v)

2

+625728 A1(v) A0(v)
3 + 24576 A0(v)

4 − 1138857 A1(v)
3 − 3145374 A1(v)

2 A0(v)

−2160972 A1(v) A0(v)
2 + 116376 A0(v)

3 + 2964871 A1(v)
2 + 7033180 A1(v) A0(v)

+3960796 A0(v)
2 − 3414051 A1(v)− 6053454 A0(v)− 2816419

A9(v) = 2654582 A1(v)
5 + 12221120 A1(v)

4 A0(v) + 18932720 A1(v)
3 A0(v)

2

+11125120 A1(v)
2 A0(v)

3 + 1823200 A1(v) A0(v)
4 + 16384 A0(v)

5

−12358419 A1(v)
4 − 40966656 A1(v)

3 A0(v)− 38619576 A1(v)
2 A0(v)

2

−4641600 A1(v) A0(v)
3 + 3584400 A0(v)

4 + 42485492 A1(v)
3

+121231992 A1(v)
2 A0(v) + 91483728 A1(v) A0(v)

2 + 5748064 A0(v)
3

−73555030 A1(v)
2 − 167703472 A1(v) A0(v)− 84236488 A0(v)

2

+63314574 A1(v) + 132127224 A0(v) + 61142641 (40)

• Requesting the minimization of the phase lag, we obtain the following system
of equations:

(4 A0(v) + 2 A1(v) + 1)
A1(v) + 3 + 2 A0(v)

= 0

A6(v)(
A1(v) + 3 + 2 A0(v)

)2 = 0 (41)

• Solving the above system of Equation (41), we obtain:

A1(v) = − 7
12

, A0(v) =
1
24

. (42)

The characteristics of this new method are:
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A0(v) =
1

24

A1(v) = − 7
12

A2(v) =
1
24

14 v cos(v) + 24 sin(3 v)− 24 sin(2 v)− v
v cos(2 v)

LTE =
3
8

h3
(

y{(3)}(t) + ω2 y′(t)
)
+ O

(
h5
)

PhErr = − 11
3600

v6 − 2423
504000

v8 + . . . (43)

The Taylor series expansion of the coefficient A2(v) is given by:

A2(v) =
37
24

− 3
8

v2 +
7

1440
v4 − 761

60480
v6 − . . . (44)

We will call the above new method Method III for our computational purposes.

3.3. Amplification Fitted Method

We consider the method (27) with A1(v) = − 4
3 and A0(v) = 5

12 .
Using the direct formula for the computation of the amplification factor (21), we obtain:

AF = −1
4

A10(v)
12 A2(v) v2 − 4 v2 + 3

(45)

where AF declares the amplification factor and

A10(v) = −24 A2(v) v[cos(v)]2 + 48 sin(v) [cos(v)]2

−24 sin(v) cos(v) + 16 v cos(v) + 12 A2(v) v − 12 sin(v)− 5 v (46)

Requiring the elimination of the amplification factor, i.e., requiring AF = 0, we obtain:

A2(v) =
1

12
16 v cos(v) + 12 sin(3 v)− 12 sin(2 v)− 5 v

v cos(2 v)
(47)

Substituting the value of A2(v) given above into the direct formula for the computation
of the phase lag (19), we obtain:

PhErr =
v
(

5 v sin(v) cos(v)− 8 v sin(v)− 6 cos(v) + 6
)

A11(v)
(48)

where
A11(v) = 48 sin(v) [cos(v)]2 − 76 [cos(v)]2 v

−24 sin(v) cos(v) + 16 v cos(v)− 12 sin(v) + 33 v (49)

Taking the Taylor series expansion of the formula (48), we obtain:

PhErr =
3

20
v4 +

467
1800

v6 +
245629
504000

v8 + . . . (50)

Remark 1. Consequently, q = 2 and c = − 3
20 . The amplification-fitted Adams–Bashforth method

developed in this section is of the second-order phase lag, i.e., has the same phase lag order of the the
third algebraic order Adams–Bashforth method.

The Taylor series expansion of the coefficient A2(v) is given by:
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A2(v) =
23
12

+
193
360

v4 +
12583
15120

v6 +
13973
10368

v8 + . . . (51)

The characteristics of this new method are:

A0(v) =
5

12

A1(v) = −4
3

A2(v) =
1
12

16 v cos(v) + 12 sin(3 v)− 12 sin(2 v)− 5 v
v cos(2 v)

LTE =
3
8

h4 y{(4)}(t) + O
(

h5
)

PhErr =
3
20

v4 +
467

1800
v6 + . . . (52)

We will call the above new method Method IV for our computational purposes.

3.4. Phase Fitted and Amplification Fitted Method

We consider the method (27).
Using the direct formula for the computation of the phase lag and (19) the amplification

factor (21), we obtain:

PhErr =
cos(3 v)− cos(2 v) + A2(v) v sin(2 v) + A1(v) v sin(v)

5 − 2 A2(v)− A1(v)
(53)

AF =
sin(3 v)− sin(2 v)− A2(v) v cos(2 v)− A1(v) v cos(v)− A0(v) v

−4 A2(v) v2 − v2 A1(v)− 1
(54)

where PhErr is the phase lag, and AF declares the amplification factor.
Requiring the elimination of the phase lag and the amplification factor, i.e., requiring

PhErr = 0 and AF = 0, and considering that A0 = 5
12 , we obtain:

A1(v) =
1
6

5 v
[
sin(v)

]3
− 5 v sin(v) + 6

[
cos(v)

]2
− 6 cos(v)

sin(v) cos(v) v
(55)

A2(v) =
1

12

5 v sin(v) + 12 − 24
[
cos(v)

]2
+ 12 cos(v)

v sin(v)
(56)

Taking the Taylor series expansion of the above formulae, we obtain:

A1(v) = −4
3
+ 3/8 v2 − 7 v4

180
+

89 v6

120960
− 23 v8

362880
− 1963 v10

479001600
(57)

A2(v) =
23
12

− 3/8 v2 +
v4

80
− 11 v6

13440
− v8

26880
− 233 v10

53222400
+ . . . (58)

The characteristics of this new method are:

A0(v) =
5

12
A1(v) see (55)

A2(v) see (56)

LTE =
3
8

h4
[
y{(4)}(t) + ω2 y{(2)}(t)

]
+ O

(
h5
)

PhErr = 0

AF = 0 (59)
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We will call the above new method Method V for our computational purposes.

4. Stability Analysis

Let us consider the general form of Adams–Bashforth four-step methods:

ψn+1 − ψn = h
(

C2 fn + C1 fn−1 + C0 fn−2

)
(60)

where fn+j = y′n+j, j = −2(1)0
The obtained methods in the previous section, i.e., the methods (24), (35), (36), (43),

(44), (51), (52), (58), and (59), belong to the general method (60).
Applying the scheme (60) to the scalar test equation

ψ′ = λ y where λ ∈ C (61)

we obtain the following difference equation:

ψn+1 − A(H)ψn − B(H)ψn−1 − C(H)ψn−2 = 0 (62)

where H = λ h and

A(H) = 1 + C2 H, B(H) = C1 H, C(H) = C3 H (63)

The characteristic equation of (62) is given by

r3 − A(H) r2 − B(H) r − C(H) = 0 (64)

Solving the above equation in H and substituting r = exp(i θ), where i =
√
−1, we

can plot the stability regions for θ ∈ [0, 2 π]. In Figures 1–5, we present the stability region
for the obtained Methods I–V. For the cases of Methods II–V, we present the stability
regions for v = 1, v = 10, and v = 100.

Figure 1. Stability region for the classical third-order Adams–Bashforth method (Method I).
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Figure 2. Stability region for the amplification-fitted Adams–Bashforth method (Method II).

 

Figure 3. Cont.
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Figure 3. Stability region for the amplification-fitted Adams–Bashforth method (Method III).

 

Figure 4. Stability region for the amplification-fitted Adams–Bashforth method (Method IV).
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Figure 5. Stability region for the phase-fitted and amplification-fitted Adams–Bashforth method
(Method V).

5. Numerical Results
5.1. Problem of Stiefel and Bettis

We consider the following almost periodic orbit problem studied by Stiefel and Bet-
tis [122]:

y′′1 (x) = −y1(x) + 0.001 cos(x), y1(0) = 1, y′1(0) = 0

y′′2 (x) = −y2(x) + 0.001 sin(x), y2(0) = 0, y′2(0) = 0.9995 (65)

The exact solution is

y1(x) = cos(x) + 0.0005x sin(x),

y2(x) = sin(x)− 0.0005x cos(x). (66)

For this problem, we use ω = 1.
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Equation (65) is solved numerically for 0 ≤ x ≤ 100,000 using the following methods:

• The classical Adams–Bashforth method of the third order, which is mentioned as
Comp. Meth. I.

• The classical Adams–Bashforth method of the fifth order, which is mentioned as Comp.
Meth. II.

• The Runge–Kutta Dormand and Prince fourth-order method [54], which is mentioned
as Comp. Meth. III.

• The Runge–Kutta Dormand and Prince fifth-order method [54], which is mentioned
as Comp. Meth. IV.

• The Runge–Kutta Fehlberg fourth-order method [123], which is mentioned as Comp.
Meth. V.

• The Runge–Kutta Fehlberg fifth-order method [123], which is mentioned as Comp.
Meth. VI.

• The Runge–Kutta Cash and Karp fifth-order method [124], which is mentioned as
Comp. Meth. VII.

• The Adams–Bashforth method with minimal phase lag (1st Case) which is developed
in Section 3.2.2, which is mentioned as Comp. Meth. VIII.

• The Adams–Bashforth method with minimal phase lag (2nd Case) which is developed
in Section 3.2.3, which is mentioned as Comp. Meth. IX.

• The Adams–Bashforth amplification fitted method which is developed in Section 3.3,
which is mentioned as Comp. Meth. X.

• The Adams–Bashforth phase-fitted and amplification-fitted method, which is devel-
oped in Section 3.4, which is mentioned as Comp. Meth. XI.

In Figure 6, we present the maximum absolute error of the solution achieved by each
of the above-mentioned numerical methods for the problem of Stiefel and Bettis [122].

From Figure 6, we can observe the following:

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X give approximately the same
results

• Comp. Meth. IV gives more accurate results than the Comp. Meth. I, Comp. Meth.
VIII, and Comp. Meth. X methods.

• Comp. Meth. VII gives more accurate results than the Comp. Meth. IV method.
• Comp. Meth. II gives more accurate results than the Comp. Meth. VII method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. VI gives more accurate results than the Comp. Meth. V method.
• Comp. Meth. III gives better results than the Comp. Meth. VI method for the most

step sizes, but for small step sizes, it gives approximately the same results as Comp.
Meth. VI.

• Comp. Meth. IX gives mixed results. For big step sizes, it gives better results than
Comp. Meth. III. For middle step sizes, it gives better results than Comp. Meth.
VII but worse results than Comp. Meth. III, Comp. Meth. V, and Comp. Meth. VI.
For small step sizes, it gives better results than Comp. Meth. IV but worse results than
Comp. Meth. VII.

• Finally, Comp. Meth. XI, gives the most accurate results.
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Figure 6. Numerical results for the problem of Stiefel and Bettis [122].

5.2. Problem of Franco et al. [125]

We consider the following inhomogeneous linear problem studied by Franco et al. [125]:

y′′1 (x) = −1
2

(
µ2 + 1

)
y1(x)− 1

2

(
µ2 − 1

)
y2(x), y1(0) = 1, y′1(0) = 1

y′′2 (x) = −1
2

(
µ2 − 1

)
y1(x)− 1

2

(
µ2 + 1

)
y2(x), y2(0) = −1, y′2(0) = −1 (67)

The exact solution is

y1(x) = cos(x) + sin(x),

y2(x) = − cos(x)− sin(x). (68)

where µ = 104. For this problem, we use ω = 1.
The system of Equation (67) is solved numerically for 0 ≤ x ≤ 100,000 using the

methods presented in Section 5.1.
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Figure 7. Numerical results for the problem of Franco et al. [125].

From the Figure 7, we can observe the following:

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X give approximately the same
results

• Comp. Meth. II gives more accurate results than the Comp. Meth. I, Comp. Meth.
VIII, and Comp. Meth. X methods.

• Comp. Meth. IV gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. IV method.
• Comp. Meth. VII gives more accurate results than the Comp. Meth. V method.
• Comp. Meth. III gives more accurate results than the Comp. Meth. VII method.
• Comp. Meth. VI gives results with the same accuracy as the Comp. Meth. III method.
• Comp. Meth. IX gives better results than the Comp. Meth. VI and Comp. Meth. III

methods.
• Finally, Comp. Meth. XI gives the most accurate results.

5.3. Problem of Franco and Palacios [126]

We consider the following problem studied by Franco and Palacios [126]:

y′′1 (x) = −y1(x) + ε cos(ϑ x), y1(0) = 1, y′1(0) = 0

y′′2 (x) = −y2(x) + ε sin(ϑ x), y2(0) = 0, y′2(0) = 1 (69)
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The exact solution is

y1(x) =
1 − ε − ϑ2

1 − ϑ2 cos(x) +
ε

1 − ϑ2 cos(ϑ x),

y2(x) =
1 − ε ϑ − ϑ2

1 − ϑ2 sin(x) +
ε

1 − ϑ2 sin(ϑ x). (70)

where ε = 0.001 and ϑ = 0.01. For this problem, we use ω = max
(

1, |ϑ|
)

.
The system of Equation (69) is solved numerically for 0 ≤ x ≤ 100,000 using the

methods presented in Section 5.1.
From Figure 8, we can observe the following:

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X give approximately the same
results.

• Comp. Meth. IV gives more accurate results than the Comp. Meth. I, Comp. Meth.
VIII, and Comp. Meth. X methods.

• Comp. Meth. II gives more accurate results than the Comp. Meth. IV method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. VII gives more accurate results than the Comp. Meth. V method.
• Comp. Meth. III gives more accurate results than the Comp. Meth. VII method.
• Comp. Meth. VI gives results with the same accuracy as the Comp. Meth. III method.
• Comp. Meth. IX gives better results than the Comp. Meth. VI and Comp. Meth. III

methods.
• Finally, Comp. Meth. XI gives the most accurate results.

Figure 8. Numerical results for the problem of Franco and Palacios [126].
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5.4. A Nonlinear Orbital Problem [127]

We consider the following nonlinear orbital problem studied by Simos in [127]:

y′′1 (x) = −φ2 y1(x) +
2 y1(x) y2(x)− sin(2 φ x)(

y1(x)2 + y2(x)2
) 3

2
, y1(0) = 1, y′1(0) = 0

y′′2 (x) = −φ2 y2(x) +
y1(x)2 − y2(x)2 − cos(2 φ x)(

y1(x)2 + y2(x)2
) 3

2
, y2(0) = 0, y′2(0) = φ (71)

The exact solution is

y1(x) = cos(φ x), y2(x) = sin(φ x). (72)

where φ = 10. For this problem, we use ω = 10.
The system of Equation (71) is solved numerically for 0 ≤ x ≤ 100,000 using the

methods presented in Section 5.1.
From Figure 9, we can observe the following:

Figure 9. Numerical results for the nonlinear orbital problem of [127].

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X give approximately the same
results.

• Comp. Meth. II gives more accurate results than the Comp. Meth. I, Comp. Meth.
VIII, and Comp. Meth. X methods.

• Comp. Meth. IV gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. IV method.
• Comp. Meth. VII gives more accurate results than the Comp. Meth. V method.
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• Comp. Meth. VI gives results with the same accuracy as the Comp. Meth. VII method.
• Comp. Meth. III gives more accurate results than the Comp. Meth. VI method.
• Comp. Meth. IX gives better results than the Comp. Meth. VI and Comp. Meth. III

method.
• Finally, Comp. Meth. XI gives the most accurate results.

5.5. Nonlinear Problem of Petzold [128]

We consider the following nonlinear problem studied by Petzold [128]:

y′1(x) = λ y2(x), y1(0) = 1

y′2(x) = −λ y1(x) +
α

λ
sin(λ x), y2(0) = − α

2 λ2 (73)

The exact solution is

y1(x) =
(

1 − α

2 λ
x
)

cos(λ x),

y2(x) = −
(

1 − α

2 λ
x
)

sin(λ x)− α

2 λ2 cos(λ x) (74)

where λ = 1000, α = 100. For this problem, we use ω = 1000.
The system of Equation (73) is solved numerically for 0 ≤ x ≤ 1000 using the methods

presented in Section 5.1.
From Figure 10, we can observe the following.

Figure 10. Numerical results for the nonlinear problem of [128].
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• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X give approximately the same
results.

• Comp. Meth. IV gives more accurate results than the Comp. Meth. I, Comp. Meth.
VIII, and Comp. Meth. X methods.

• Comp. Meth. II gives more accurate results than the Comp. Meth. IV method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. VII gives more accurate results than the Comp. Meth. V method.
• Comp. Meth. VI gives results with the same accuracy as the Comp. Meth. VII method.
• Comp. Meth. III gives more accurate results than the Comp. Meth. VI method.
• Comp. Meth. IX gives mixed results. For big step sizes, it gives better results than

Comp. Meth. III. For middle step sizes, it gives better results than Comp. Meth. VII but
worse results than Comp. Meth. III and Comp. Meth. VI. For small step sizes, it gives
better results than Comp. Meth. IV and Comp. Meth. V but worse results than Comp.
Meth. VII.

• Finally, Comp. Meth. XI gives the most accurate results.

5.6. Two-Body Gravitational Problem

We consider the two-body gravitational problem

y′′1 (x) = − y1(x)(
y1(x)2 + y2(x)2

) 3
2

, y1(0) = 1, y′1(0) = 0

y′′2 (x) = − y2(x)(
y1(x)2 + y2(x)2

) 3
2

, y2(0) = 0, y′2(0) = 1 (75)

The exact solution is

y1(x) = cos(x),

y2(x) = sin(x). (76)

For this problem, we use ω = 1(
y1(x)2+y2(x)2

) 3
4

.

The system of Equations (75) is solved numerically for 0 ≤ x ≤ 100,000 using the
methods presented in Section 5.1.

From Figure 11, we can observe the following:

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X are not convergent to the
solution.

• Comp. Meth. II gives more accurate results than the Comp. Meth. VII method.
• Comp. Meth. VI gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. VI method.
• Comp. Meth. III gives more accurate results than the Comp. Meth. V method.
• Comp. Meth. IX gives results with the same accuracy as the Comp. Meth. III method.
• Comp. Meth. IV gives results with approximately the same accuracy as the results

given by the Comp. Meth. IX method.
• Finally, Comp. Meth. XI gives the most accurate results.
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Figure 11. Numerical results for two-body gravitational problem (Kepler’s plane problem).

5.7. Perturbed Two-Body Gravitational Problem
5.7.1. Case µ = 0.1

We consider the perturbed two-body Kepler’s problem

y′′1 (x) = − y1(x)(
y1(x)2 + y2(x)2

) 3
2
− µ

(
µ + 2)

y1(x)(
y1(x)2 + y2(x)2

) 5
2

,

y1(0) = 1, y′1(0) = 0

y′′2 (x) = − y2(x)(
y1(x)2 + y2(x)2

) 3
2
− µ

(
µ + 2)

y2(x)(
y1(x)2 + y2(x)2

) 5
2

,

y2(0) = 0, y′2(0) = 1 + µ (77)

The exact solution is

y1(x) = cos(x + µ x),

y2(x) = sin(x + µ x). (78)

For this problem, we use ω =

√
1+µ

(
µ+2

)
(

y1(x)2+y2(x)2
) 3

4
.

The system of Equation (77) is solved numerically for 0 ≤ x ≤ 100,000 with µ = 0.1
and using the methods presented in Section 5.1. From Figure 11, it is obvious that the
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Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X methods are not convergent to
the solution.

From Figure 12, we can observe the following.

Figure 12. Numerical results for perturbed two-body gravitational problem (perturbed Kepler’s
problem) with µ = 0.1.

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X are not convergent to the
solution.

• Comp. Meth. VI gives more accurate results than the Comp. Meth. VII method.
• Comp. Meth. V gives more accurate results than the Comp. Meth. VI method.
• Comp. Meth. III gives more accurate results than the Comp. Meth. V method.
• Comp. Meth. II gives more accurate results than the Comp. Meth. III method.
• Comp. Meth. IV gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. IX gives more accurate results than the Comp. Meth. IV method.
• Finally, Comp. Meth. XI gives the most accurate results.

5.7.2. Case µ = 0.4

The system of Equation (77) is solved numerically for 0 ≤ x ≤ 100,000 with µ = 0.4
and using the methods presented in Section 5.1. From Figure 12, it is obvious that the
Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X methods are not convergent to
the solution.

From Figure 13, we can observe the following:

• Comp. Meth. I, Comp. Meth. VIII, and Comp. Meth. X are not convergent to the
solution.

• Comp. Meth. V gives more accurate results than the Comp. Meth. VII method.
• Comp. Meth. VI gives more accurate results than the Comp. Meth. V method.
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• Comp. Meth. III gives more accurate results than the Comp. Meth. VI method.
• Comp. Meth. II gives more accurate results than the Comp. Meth. III method.
• Comp. Meth. IV gives more accurate results than the Comp. Meth. II method.
• Comp. Meth. IX gives more accurate results than the Comp. Meth. IV method.
• Finally, Comp. Meth. XI gives the most accurate results.

Figure 13. Numerical results for perturbed two-body gravitational problem (perturbed Kepler’s
problem) with µ = 0.4.

For the above numerical illustrations, we have the following conclusions:

• The phase-fitted and amplification-fitted methods (Comp. Meth. XI) give the most
efficient results for all the problems.

• The Adams–Bashforth method with minimal phase lag (1st Case) (Comp. Meth.
VIII) and the Adams–Bashforth amplification-fitted method (Comp. Meth. X) give
approximately the same results as the classical Adams–Bashforth method of the third
order (Comp. Meth. I).

• The Adams–Bashforth method with minimal phase lag (2nd Case) (Comp. Meth. IX)
gives the second most efficient results for most of the problems.

From the above conclusions, we can see that the methodologies presented in this paper
which prepare the most efficient methods are as follows:

• The methodology which emphasizes the minimization of the phase lag (ignoring the
algebraic order of the method), which is developed in Section 3.2.3;

• The methodology which emphasizes on the vanishing of the phase lag and the ampli-
fication error of the method, which is developed in Section 3.4.

It is easy to see that the efficiency of the frequency-dependent methods (like the newly
introduced) is dependent on the choice of the parameter v. In many problems, this choice is
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easy to be defined from the model of the specific problem. For the cases that this is not easy,
methodologies for the determination of the parameter v are introduced in the literature
(see [129,130]).

Remark 2. For the solution of systems of high-order ordinary differential equations using the above-
mentioned newly introduced techniques, we note that there are well-known methods for reducing a
system of high-order ordinary differential equations into a system of first-order differential equations,
for example: variable substitution, the introduction of new variables, rewriting the system of higher-
order ordinary differential equations as a system of first-order differential equations by introducing
new variables for each derivative, etc. (see [131]).

For the solution of systems of partial differential equations using the above-mentioned newly
introduced techniques, we note that there are well-known methods for reducing a system of partial
differential equations into a system of first-order differential equations, for example, the method of
characteristics (see [132]).

6. Conclusions

In the present paper, we developed the theory of the phase lag and amplification
error analysis for the multistep methods of the first-order initial-value problems. Based
on the above developed theory, we presented several methodologies for the develop-
ment of efficient methods for the multistep methods. More specifically, we developed
methodologies for the following:

• Methodology for the minimization of the phase lag.
• Methodology for the development of an amplification-fitted method.
• Methodology for the development of a phase-fitted method.

Using the above-mentioned methodologies, we developed several multistep methods.
We used as a basic method the Adams–Bashforth method of the third algebraic order.

The above produced methods were applied to several problems with oscillating
solutions, in order to test their efficiency.

All calculations adhered to are carried out using a quadruple precision arithmetic
data type.
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Appendix A

Proof of Lemma 1. The phase lag order q and the phase lag constant c are given by its
definition (10) as follows:

Φ = v − cos[θ(v)] = c vq+1 + O
(

vq+2
)

(A1)

then, and since (see (10))
θ(v) = v − Φ (A2)

using expansions of trigonometric functions, we achieve:

cos[θ(v)] = cos(v − Φ) =

= cos(v) cos(Φ) + sin(v) sin(Φ) (A3)

Using (A1), the relation (A3) gives:

cos[θ(v)] = cos(v) cos
[
c vq+1 + O

(
vq+2

)]
+ sin(v) sin

[
c vq+1 + O

(
vq+2

)]
(A4)
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With the help of the Taylor series expansions of the functions cos
[
c vq+1 + O

(
vq+2)],

sin
[
c vq+1 + O

(
vq+2)] and sin(v), relation (A4) gives:

cos[θ(v)] = cos(v) + c vq+2 − 1
6

c vq+4 + . . . = cos(v) + c vq+2 + O
(

vq+4
)

(A5)

and the lemma is proved.

Appendix B

Proof of Lemma 2. Using expansions of trigonometric functions, we achieve:

sin[θ(v)] = sin(v − Φ) =

= sin(v) cos(Φ)− cos(v) sin(Φ) (A6)

Using (A1), the relation (A6) gives:

sin[θ(v)] = sin(v) cos
[
c vq+1 + O

(
vq+2

)]
− cos(v) sin

[
c vq+1 + O

(
vq+2

)]
(A7)

With the help of the Taylor series expansions of the functions cos
[
c vq+1 + O

(
vq+2)],

sin
[
c vq+1 + O

(
vq+2)] and cos(v), relation (A7) gives:

sin[θ(v)] = sin(v)− c vq+1 +
1
2

c vq+3 + . . . = sin(v)− c vq+1 + O
(

vq+3
)

(A8)

and the lemma is proved.

Appendix C

Proof of Lemma 3 (Proof for the relation (15)).
We will prove first the relation (15). We can write (15) as follows:

• Let us examine the case j = 1 for the relation (15):

cos[1 θ(v)] = cos(1 v) + c 12 vq+2 + O
(

vq+4
)
=⇒

cos[θ(v)] = cos(v) + c vq+2 + O
(

vq+4
)

(A9)

which is valid (see Lemma 1).
• Let us consider the relations (15) to be valid for j = k, i.e., let us consider that the

relations:
cos[k θ(v)] = cos(k v) + c k2 vq+2 + O

(
vq+4

)
(A10)

are valid.
• We will prove that the relation (15) is valid for j = k + 1. For j = k + 1, we have:

cos[(k + 1) θ(v)] = cos
[
(k) θ(v) + θ(v)

]
=

cos
[
(k) θ(v)

]
cos

[
θ(v)

]
− sin

[
(k) θ(v)

]
sin

[
θ(v)

]
(A11)

Taking into account the following:

– cos[k θ(v)] = cos(k v) + c k2 vq+2 + O
(
vq+4) (see (A10))

– cos[θ(v)] = cos(v) + c vq+2 + O
(
vq+4) (see (13)

– sin[k θ(v)] = sin(k v)− c k vq+1 + O
(
vq+3) (see (A14))

– sin[θ(v)] = sin(v)− c vq+1 + O
(
vq+3) (see (14))

the relation (A11) becomes:
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cos[(k + 1) θ(v)] = cos[(k + 1) v] + c vq+2 + c k2 vq+2

−1
2

c k2 vq+4 +
1

24
c k4 vq+6 − 1

2
c k2 vq+4 +

1
24

c k2 vq+6

+c2 k2 v2 q+4 + . . . + c k vq+2 − 1
6

c k3 vq+4 +
1

120
c k5 vq+6

+c k vq+2 − 1
6

c k vq+4 +
1

120
c k vq+6 + c k v2 q+2 + · · · =⇒

cos[(k + 1) θ(v)] = cos[(k + 1) v] + c vq+2 + 2 c k vq+2 + c k2 vq+2

−1
6

c k vq+4
(

k2 + 6 k + 1
)
+

1
120

c k
(

k4 + 5 k3 + 5 k + 1
)

vq+6 + . . . =⇒

cos[(k + 1) θ(v)] = cos[(k + 1) v] + c (k + 1)2 vq+2 − 1
6

c k vq+4
(

k2 + 6 k + 1
)
+ . . . (A12)

and the relation (15) is proved for j = k + 1.

Proof of Lemma 3 (Proof for the relation (16)).
We will prove now the relation (16). We can write (16) as follows:

• Let us examine the case j = 1 for the relation (16):

sin[1 θ(v)] = sin(1 v)− c 1 vq+1 + O
(

vq+3
)
=⇒

sin[θ(v)] = sin(v)− c vq+1 + O
(

vq+3
)

(A13)

which is valid (see Lemma 2).
• Let us consider that relation (16) is valid for j = k, i.e., let us consider that the relation:

sin[k θ(v)] = sin(k v)− c k vq+1 + O
(

vq+3
)

(A14)

is valid
• we will prove that relation (16) is valid for j = k + 1. For j = k + 1, we have:

sin[(k + 1) θ(v)] = sin
[
(k) θ(v) + θ(v)

]
=

sin
[
(k) θ(v)

]
cos

[
θ(v)

]
+ cos

[
(k) θ(v)

]
sin

[
θ(v)

]
(A15)

We take into account the following:

– sin[k θ(v)] = sin(k v)− c k vq+1 + O
(
vq+3) (see (A14))

– cos[θ(v)] = cos(v) + c vq+2 + O
(
vq+4) (see (13)

– cos[k θ(v)] = cos(k v) + c k2 vq+2 + O
(
vq+4) (see (A10))

– sin[θ(v)] = sin(v)− c vq+1 + O
(
vq+3) (see (14))

and relation (A15) becomes:

sin[(k + 1) θ(v)] = sin[(k + 1) v]− c k vq+3 − 1
6

c k3 vq+5

+
1

120
c k5 vq+7 − . . . − c vq+1 +

1
2

c k2 vq+3 − 1
24

c k4 vq+5 + . . .

+c k2 vq+3 − 1
6

c k2 vq+5 +
1

120
c k2 vq+7 − . . .

−c k vq+1 +
1
2

c k vq+3 − 1
24

c k vq+5 − c (k + 1) v2 q+3 + · · · =⇒

sin[(k + 1) θ(v)] = sin[(k + 1) v]− c (k + 1) vq+1

+
1
2

c k vq+3
(

3 k2 + 1
)
− 1

24
c k vq+5

(
k3 + 4 k2 + 4 k + 1

)
+ . . . (A16)
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and relation (16) is proved for j = k + 1.
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