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Abstract: We present a novel formulation of structural design optimization problems specifically
tailored to be solved by qa. Structural design optimization aims to find the best, i.e., material-efficient
yet high-performance, configuration of a structure. To this end, computational optimization strategies
can be employed, where a recently evolving strategy based on quantum mechanical effects is qa. This
approach requires the optimization problem to be present, e.g., as a qubo model. Thus, we develop a
novel formulation of the optimization problem. The latter typically involves an analysis model for
the component. Here, we use energy minimization principles that govern the behavior of structures
under applied loads. This allows us to state the optimization problem as one overall minimization
problem. Next, we map this to a qubo problem that can be immediately solved by qa. We validate the
proposed approach using a size optimization problem of a compound rod under self-weight loading.
To this end, we develop strategies to account for the limitations of currently available hardware.
Remarkably, for small-scale problems, our approach showcases functionality on today’s hardware
such that this study can lay the groundwork for continued exploration of qa’s impact on engineering
design optimization problems.

Keywords: structural design optimization; quantum annealing; applied mechanics; energy principles;
complementary energy; size optimization; compliance minimization

MSC: 68Q09

1. Introduction

Could the emergence of quantum annealing (QA) [1,2], a computational optimization
approach leveraging quantum mechanical effects, make an investigation of new strategies
for structural design optimization worthwhile? In our pursuit of unraveling an answer,
we address the particular requirements and advantages of QA in a novel formulation of
structural design optimization problems. In such a problem, one seeks the optimal configu-
ration of a structure concerning performance criteria, resource utilization, and engineering
constraints. By optimizing structural designs, engineers can create safer, more efficient,
and environmentally friendly components and structures. However, modern engineering
challenges often involve complex design spaces with numerous variables, constraints,
and objectives. These spaces may be difficult to explore using traditional design methods.
For example, these methods may struggle with problems involving a large number of
local optima or an exponential growth of solution possibilities. This is where it becomes
interesting to examine the capabilities of QA. If the above problems are formulated in
a specific way, e.g., as quadratic unconstrained binary optimization (QUBO) problems,
QA has the potential to work more efficiently on these types of problems and may be
able to find better solutions. Thus, we explore the potential of QA for structural design
optimization in this work.

Structural design optimization encompasses several approaches. One is topology
optimization, in which one is concerned with finding the optimal arrangement of material
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in a given space. In shape optimization, the goal is to find the optimal geometric shape
of a structural component. When the shape is fixed, but optimal dimensions of one or
more components are sought, a size optimization problem is considered. Finally, material
optimization explores the selection of materials with specific properties to optimize the
characteristics of a structure.

Nowadays, these problems are typically solved using computational methods that
involve two key components: an optimization algorithm to explore the design space and
an analysis model to simulate the behavior of the design. For the latter, structural design
optimization often relies on the finite element method (FEM).

In contrast, the purpose of this work is to present and evaluate a novel approach that
does not treat the optimization algorithm and the analysis model separately but uses QA
to find the optimal design and compute the structural response of a component in one go.
For the first time, we show that a structural design optimization problem, once properly
formulated, can be solved solely using QA on currently available quantum hardware.

QA has already been used to address a range of challenges across multiple scientific
disciplines. A comprehensive description covering applications from mobility, scheduling
and logistics, quantum simulation, machine learning, and finance can be found in [3].
In the field of structural mechanics, however, the existing literature is still quite limited [4].
In one contribution [5], the deformation of a rod under axial loading is computed by an
iterative algorithm that minimizes a discretized version of the system’s potential energy at
each step.

Regarding design optimization, some work related to QA has been presented recently.
A shape optimization problem for the reduction in noise has been considered in [6]. The au-
thors discuss results for optimizing the shape of a three-dimensional body in an acoustic
scattering problem. The respective analysis model was based on the classical FEM, but
optimization tasks were iteratively solved using QA.

In the field of computational electromagnetism, the optimization of a planar magnet
array [7] and topology optimization of a three-dimensional permanent magnet [8] have
been conducted. The latter was also based on an iterative procedure using FEM for the
magneto-static field computations. Both works, however, did not use actual QA hardware
but a digital annealing (DA) engine instead.

The work in [9] presents an approach for the design optimization of a printed circuit
board. The optimization goal was to use a minimum number of mounting holes while
avoiding resonance. Since the related frequency analysis based on the FEM could not be
expressed directly as a QUBO problem, a machine learning technique was used to con-
struct an appropriate model. Results have been presented for a random search approach,
simulated annealing (SA), and hybrid QA, an approach that combines QA and classical al-
gorithms. In a similar way, QA has been integrated into a black-box optimization approach
to find optimal designs of a noise filter [10]. In this approach, QA is used to solve regression
problems appearing in the sequential learning method under consideration, which relies
on the FEM for data acquisition. The results presented include a comparison of the design
obtained by incorporating QA, SA, or random search.

In another study [11], the authors performed a topology optimization for a minimum
compliance problem in which they considered a rectangular domain with a unit point force
acting on it. To that end, they transform the original mixed integer nonlinear programming
(MINLP) problem into a sequence of mixed integer linear programming (MILP) problems
by separating field and design variables that are updated in an iterative manner. In each
step, the field variables are the solution of the linear system resulting from the analysis
model in use, namely the FEM. The MILP problem for the design variables, on the other
hand, is converted to QUBO form. Since the resulting QUBO problem involves all-to-all
interactions and may become too large, another splitting is performed: one part of the
problem is solved classically, and for the other part, QA and hybrid QA are used to tackle a
reduced QUBO problem.
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Finally, the optimization of two-dimensional truss structures has been addressed
in [12] as size optimization problems. The approach aims to find the optimal distribution of
cross-sectional areas per truss element to minimize the difference between the truss element
stress and the maximum limit stress. Here, the stress evaluation is based on a symbolic FEM,
a bottleneck of the approach, as the authors state. The presented method further requires
an iterative procedure to transform the resulting fractional objective function into QUBO
form. In this form, all-to-all interactions occur, which has been tackled by a complexity
reduction through the removal and truncation of specific terms. That allowed them to
present optimization results for examples that range from two- to four-truss systems.

In distinction to the former methods, which rely on the FEM as an analysis model,
the novel formulation proposed in this work integrates the respective governing equations
directly into the optimization problem. The crucial point is that we compute the response of
the structural system under applied loads through the principle of minimum complemen-
tary energy. The minimization character of this approach allows us to combine it with the
objective of the optimization, which is typically also formulated as a minimization problem.
To this end, we will consider a minimum compliance problem, a common use case in struc-
tural design optimization. The resulting overall minimization problem can be formulated
as a QUBO problem just using existing strategies such as degree reduction. The solution to
the QUBO problem can then be obtained by QA and represents both the optimal design
and the response of the structure. It is worthwhile to emphasize that, in contrast to the
referenced works, the presented method does not include any iterative procedure but only
requires the solution of a single QUBO problem, although the probabilistic nature of the
approach demands a certain number of evaluations. Furthermore, the formulation leads to
an advantageous structure of the problem, i.e., it does not contain any all-to-all connections
between its variables but only limited local interactions.

To illustrate the aptitude of the approach, we apply it to a size optimization problem
for a rod under self-weight loading. The rod will consist of multiple components, with the
respective cross-sectional areas being the design choices. Here, the complexity of the
example is adapted to the currently available QA hardware. At the moment, the hardware
clearly limits the scale of feasible problems. Nevertheless, the presented concept itself
is fundamental enough to serve as a new paradigm in structural design optimization
using QA and, thus, is worthwhile to be studied in parallel with the ongoing development
of hardware.

In the remainder of this work, we will first present the formulation of the minimum
compliance problem in combination with the principle of minimum complementary energy
in Sections 2.1 and 2.2. In a subsequent step, we transform the resulting overall mini-
mization problem into a QUBO problem suitable for QA (see Section 2.3). To validate the
approach, Section 3 presents results from numerical experiments for a rod under self-weight
loading, which is composed of multiple elements. Finally, we provide a discussion of the
results in Section 4.

2. Materials and Methods

In the following, we will derive the QUBO formulation of the structural design op-
timization problem. First, we discuss the principle of minimum complementary energy
and state the pure structural analysis problem, i.e., for a fixed design. In the next step, we
extend this problem by additional design variables and introduce the minimum compliance
problem as a structural design optimization problem. In this context, we consider a size
optimization problem for a rod under self-weight loading. For both the analysis and the
design optimization problems, we introduce a finite-dimensional ansatz that leads to the
corresponding QUBO formulations.

2.1. The Principle of Minimum Complementary Energy

The principle of minimum complementary energy has a long tradition in solid mechanics.
It can be traced back to the work presented in [13,14]. Detailed descriptions can also be
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found in current textbooks [15,16], which serve as the basis for the following explanation.
The principle can be used to predict how a structure will behave under external loads. We
refer to this as the structural analysis problem .

To illustrate the usage of the principle, we consider a generic elastic body given in the
domain Ω (c.f. Figure 1). The principle is formulated with respect to the structure’s stress
field σij, where ti = σijnj is the traction for a unit normal vector nj. The displacement is
given as ui, and a body force density fi may act on the entire domain. The boundary of the
body is denoted by Γ, where surface traction t̂i and displacement ûi are prescribed on the
portions Γσ and Γu, respectively.

Ω

�̂�𝑖
Γ𝑢

𝑡𝑖

Γ𝜎

𝑡𝑖

𝑓𝑖

Figure 1. A generic elastic body Ω under external loading with prescribed surface traction t̂i and
displacement ûi on the boundary portions Γσ and Γu, respectively, and body force density fi.

The principle’s field of application results from the underlying assumptions in its
derivation. These assumptions will be outlined next. First, the principle applies to the
response of an elastic body due to a specific load that, in our case, will be static. Furthermore,
we assume that only small deformations and infinitesimal strains occur. A central condition
is the existence of potentials. Thus, we assume that a complementary energy potential or
complementary strain energy density U∗

0 exists such that the strain tensor εij is given by

εij =
∂U∗

0
∂σij

. (1)

As an additional consequence, we only consider conservative external loads, i.e., loads
that can be derived from corresponding potentials for volumetric and surface forces. They
are denoted as W∗V

0 and W∗S
0 , respectively.

Based on this, we can define the internal and the external complementary energy, re-
ferred to as U∗ and W∗, respectively. The latter contains volumetric and surface-related
contributions W∗V and W∗S, i.e., W∗ = W∗V + W∗S. These quantities are given as:

U∗ =
∫

Ω
U∗

0 dΩ, W∗V =
∫

Ω
W∗V

0 dΩ, W∗S =
∫

Γu
W∗S

0 dΓ. (2)

The total complementary energy Π∗ follows as

Π∗ = U∗ + W∗. (3)

Before we can state the final principle, we have to consider only stress fields σij that
are statically admissible, i.e., they are in equilibrium with a given body force density fi in Ω
and satisfy the traction boundary conditions on Γσ:

σij,j + fi = 0 in Ω, (4)

σijnj = t̂i on Γσ. (5)
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Then, it can be shown that, in this case, the total complementary energy takes a
stationary value:

δΠ∗ = δ(U∗ + W∗) = 0, (6)

and we can state the principle of minimum complementary energy, which is formulated
in [17] (Theorem 15b) as follows:

Theorem 1. The total complementary potential is a minimum with respect to variations in stress
when the system is in its true state of equilibrium.

So, we consider the total complementary energy Π∗ as a functional of the stresses σ,
that is

Π∗[σ] = U∗[σ] + W∗[σ], (7)

and formulate the structural analysis problem as a minimization problem:

min
σ∈S

{Π∗[σ]}, (8)

where S denotes the set of all statically admissible stress fields. Consequently, the optimal
solution σopt of Equation (8) will be the one that corresponds to the actual equilibrium
configuration of the elastic body.

Although the principle itself is not restricted to the linear elastic case, for the re-
mainder of this article, we will use the generalized Hooke’s law, such that the internal
complementary energy reads

U∗ =
1
2

∫
Ω

Cijklσijσkl dΩ, (9)

where Cijkl is the compliance tensor.
For completeness, we also provide the expressions used for the external complemen-

tary energy:

W∗V = −
∫

Ω
ui fi dΩ, W∗S = −

∫
Γu

ûiti dΓ. (10)

2.2. The Structural Design Optimization Problem

In structural design optimization, one is interested in finding the best design that is
effective—in the sense that it meets specific performance criteria—while minimizing cost
and resource utilization within given constraints. As a well-known example of this type of
problem, we consider the minimum compliance problem in the following. By minimizing a
component’s compliance, its stiffness is inherently maximized, which means it will resist
deformation and deflection more effectively under applied loads.

To assess compliance, it is necessary to solve a structural analysis problem, such as
the one described in Section 2.1. While the solution to this problem provides information
about the performance of the design, the resource usage and constraints, on the other
hand, are related to the design itself. To that end, design variables αi and a set of admissible
design variables A are introduced. For now, we consider the design variables αi to be
generic so that different types of design optimization approaches, as described in Section 1,
are covered. For example, these variables may describe a distribution of material in a
topology optimization problem. In another scenario, α may instead refer to a choice of
component dimensions or material when dealing with a size or material optimization
problem, respectively.

The final structural design optimization problem is obtained by extending the struc-
tural analysis problem from Equation (8) to include the design variables α. To indicate that
the total complementary energy is no longer just a functional of the stresses σ, but addition-
ally parametric in the design variables, we write Π∗[σ; α]. So, the minimum compliance
problem can be stated as follows (c.f. [18] Equation (1.7)):
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min
α∈A

min
σ∈S

{Π∗[σ; α]}. (11)

The solution to this problem {σopt, αopt} then yields both the true stress field and the
best design, i.e., the design with minimal compliance.

2.3. Problem Formulations for a Rod under Self-Weight Loading

Next, we will consider a specific problem to lay the foundation for formulating the
QUBO problems in Section 2.4. To ensure that the resulting problem complexity is appro-
priate for existing QA hardware, we use a rather simple example here. In particular, we
consider the one-dimensional problem for a rod of length L under self-weight loading
via the body force density f . The rod will be composed of several elements e = 1, . . . , ne
spanning from xi to xi+1, where i = 1, . . . , ne + 1 represents the interfaces or, from a purely
one-dimensional point of view, nodes between elements. Figure 2 shows an example setup
for illustrative purposes. Each element can have an individual cross-sectional area Ae and
Young’s modulus Ee. Stress and traction related to each element are denoted by σe(x) and
te(x), respectively. In addition, we refer to ue as the corresponding displacement.

For a better understanding of the notation below, note that from an element point
of view, the corresponding nodes are unique, i.e., e ⇒ {i, i + 1}, and we can use e and i
interchangeably. However, the reverse is not true since one node is part of two elements, so
i ⇏ e.

𝑥

L

1

𝑥1 = 0

𝑥2

𝑥𝑖
𝑒

𝑥𝑖+1

𝑥𝑛𝑒

𝑛𝑒

𝑥𝑛𝑒+1 = 𝐿

𝑓

Figure 2. Generic setup for a rod under self-weight loading that is composed of multiple elements e.

We begin with a brief description of the boundary and coupling conditions considered
in this test case. At the upper boundary (x = 0), the rod is fixed such that û|x=0 = 0. For the
opposite, free-hanging boundary, we prescribe zero traction t̂|x=L = 0. At each interface
between two elements e − 1 and e, we require the equilibrium of forces:

te−1(xe)Ae−1 = −te(xe)Ae. (12)

In the following, we consider each element e separately and couple adjacent elements
through the force equilibrium condition stated above. Thus, let us explain the resulting
individual boundary conditions for each element. For the first element (e = 1), we set the
displacement at its boundary located at x1 = 0 to zero, that is

û1|x=0 = 0. (13)
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Each element is coupled to its predecessor through Equation (12). Since the first
element has no predecessor, no additional condition needs to be considered here. On the
contrary, all other elements are coupled through Equation (12), which results in correspond-
ing traction boundary conditions

t̂e|x=xe = −te−1|x=xe

Ae−1

Ae
, e = 2, . . . , ne. (14)

Finally, for the last element ne, we additionally demand that

t̂ne |x=L = 0, (15)

due to the zero-traction boundary condition at the free-hanging end.
Next, we will derive the expression for the total complementary energy that we

will minimize with respect to σe later. The internal complementary strain energy (c.f.
Equation (9)) is given in terms of the element-specific stresses σe by

U∗
e [σe] =

1
2

∫ xe+1

xe

1
Ee

Aeσ2
e (x)dx. (16)

For the external complementary energy in each element W∗
e , we have, on the one

hand, the element-wise volumetric contributions of W∗V , i.e., W∗V
e . On the other hand,

we also have the surface-related external complementary energy W∗S. It is defined over
Γu and, thus, only relevant for element 1, where the displacement is prescribed at x = 0.
Nevertheless, we have W∗S

1 = 0 in this case since û|x=0 = 0. For the total complementary
energy, it follows that

Π∗[σe] =
ne

∑
e=1

U∗
e [σe] +

ne

∑
e=1

W∗
e . (17)

As has been described in Section 2.1, the minimization of Π∗ is constrained through
the set of statically admissible stress fields S . In the same manner, we define the set of
statically admissible stress fields per element S e such that the equilibrium conditions

∂σe(x)
∂x

+ f = 0, in [xe, xe+1], e = 1, . . . , ne, (18)

and the traction boundary conditions from Equations (14) and (15) are fulfilled. Analo-
gously to Equation (8), we state the structural analysis problem for the composed rod in
minimization form as

min
σe∈S e

Π∗[σe]. (19)

For the structural design optimization problem, we define the element-specific variants
of the design variables and the set of admissible designs as αe and Ae, respectively. In the
case of the rod considered here, the design variables could be given, e.g., by Young’s moduli
Ee or cross-sectional areas Ae. As mentioned above, we will consider the latter in this paper.
Regardless of the specific choice for the design variables, the structural design optimization
problem can be stated as

min
αe∈Ae

min
σe∈S e

Π∗[σe; αe]. (20)

2.4. QUBO Formulations for a Rod under Self-Weight Loading

Based on the problem formulations of the structural analysis and design optimization
problem for the rod in the minimization form given in Equations (19) and (20), we can
derive the corresponding problem statements in the QUBO form. In this regard, we already
keep in mind the limitations of current QA hardware and, e.g., try to keep the number of
required qubits as low as possible.
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For the problem presented in Section 2.3, it turns out to be advantageous to switch from
a description in terms of stresses σe(x) to an equivalent description in terms of undirected
force functions Fe(x), i.e.,

Fe(x) = |σe(x) · n|Ae, (21)

with unit normal vector n ∈ {−1, 1}. Before we can explain the effects of this step,
we first need to introduce the finite-dimensional approximation of Fe(x) through linear
interpolation functions ϕI/II

e (x) and scalar, real-valued coefficients aI/II
e ∈ R:

Fe(x) ≈ aI
eϕI

e(x) + aII
e ϕII

e (x), (22)

with
ϕI

e(x) =
xe+1 − x
xe+1 − xe

, ϕII
e (x) =

x − xe

xe+1 − xe
. (23)

The element-wise interpolation functions ϕI/II
e (x) as well as the related coefficients

aI/II
e are illustrated in Figure 3. Since a QUBO problem needs to be defined in binary

variables, we represent each real-valued coefficient aI/II
e using a vector of qubits qa

e that
collects binary variables qa

l ∈ {0, 1}. We restrict ourselves to cases in which it holds that
aI/II

e ∈ [0, 1] and use the following representation using nq qubits:

aI/II
e [qa

e ] =
1

2nq − 1

nq

∑
l=1

2lqa
l . (24)

𝑥

𝑥1 = 0

𝑒 − 1

𝑒

𝑥𝑖−1

𝑥𝑖

𝑥𝑖+1

𝜙I
𝑒−1(𝑥)

𝜙II
𝑒−1(𝑥)

𝜙I
𝑒(𝑥)

𝜙II
𝑒 (𝑥)

𝑎II𝑒−1
𝑎I𝑒

𝑎𝑖

Figure 3. Element-wise interpolation functions ϕI/II
e (x) and related coefficients aI/II

e for the approxi-
mation of the force functions Fe(x).

Note that, due to the form of the interpolation functions, the coefficients aI
e and aII

e
correspond to the nodes i and i + 1, respectively. As a result, formulating the problem
in terms of forces has the following advantage. At the interface, i.e., node, between two
elements e − 1 and e, we can merge the corresponding two coefficients into one nodal
coefficient ai (c.f. Figure 3):

aII
e−1

[
qa

e−1
]
= aI

e[q
a
e ] = ai[qa

i ], (25)

where ai
[
qa

i
]

are the nodal coefficients located at coordinates xi using the same binary
representation as stated in Equation (24) and a corresponding vector of qubits qa

i with
qa

i ∈ {0, 1}. Consequently, the force equilibrium from Equation (12) is satisfied by design,
and the number of unknown coefficients, and thus the number of qubits, can be significantly
reduced by a factor of about two.
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So, using Equations (16) and (21)–(25), we can first derive an expression for the internal
complementary energy on an element e with nodes i and i + 1 in terms of the corresponding
vectors of qubits qa

i and qa
i+1:

U∗
e
[
qa

i , qa
i+1

]
=

1
2

∫ xe+1

xe

1
Ee Ae

F2
e
[
qa

i , qa
i+1

]
(x)dx (26)

What remains is to incorporate the conditions for statically admissible stress fields
(c.f. Equations (15) and (18)), re-formulated in terms of forces as well. The zero-traction
boundary condition from Equation (15) is directly considered by setting

ane+1 = 0, (27)

without using any qubits for this coefficient. The equilibrium constraints stated in Equation (18)
are taken into account by introducing a penalty term π. Starting from Equation (18) and using
Equations (21)–(23), we can derive the element-wise contributions

πe
[
qa

i , qa
i+1

]
=

ai+1
[
qa

i+1
]
− ai

[
qa

i
]

Ae
+ (xi+1 − xi) f !

= 0, e = 1, . . . , ne. (28)

By collecting all vectors of qubits for the nodal coefficients qa
i for i = 1, . . . , ne + 1 into

a vector of qubits qa, we can combine the contributions into one penalty term:

π[qa] =
1
ne

ne

∑
e=1

(
πe

[
qa

i , qa
i+1

])2. (29)

In addition, we introduce a vector q that contains all the qubit variables present in
a problem, where for the structural analysis problem, we have q = qa. Consequently,
we define the objective function J[q] that accounts both for the minimization of the total
complementary energy Π∗[q] and the constraints from S e through the penalty term π[q]:

J[q] = Π∗[q] + λπ[q], (30)

where λ is the penalty weight. Finally, the structural analysis problem in QUBO form is given as

min
q

J[q]. (31)

This problem is in QUBO form, since (i) the objective function J[q] only contains
combinations of qubits that are quadratic (c.f. Equations (26) and (29)), (ii) all constraints
originally given are incorporated via the penalty term in Equation (30), (iii) all remaining
unknowns are described by qubits and, thus, binary variables, and, (iv) Equation (31) is an
optimization problem.

Based on the formulation of the structural analysis problem, we will now derive the
structural design optimization problem. In particular, we consider the cross-sectional areas
of each element Ae as the design variables αe and allow them to be chosen from a set of
admissible designs, here a set of two choices:

A = {A1,A2}, (32)

where A1 and A2 are two options for each cross-sectional area Ae. The representation of
this quantity through qubits is discussed next. As can be seen in Equations (26) and (28),
the cross-sectional area appears only in the denominator. Therefore, we use the following
representation in terms of a single qubit variable qA

e ∈ {0, 1} to choose Ae between A1 and
A2 for each element:

1
Ae

=
1
A1

+

(
1
A2

− 1
A1

)
qA

e . (33)
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Similar to the above, we collect all the qubits qA
e for e = 1, . . . , ne in a corresponding

vector of qubits qA .
Now that additional variables Ae are introduced in terms of qubits qA

e , the expres-
sions for the complementary strain energy from Equation (26) and the penalty terms from
Equation (28) contain combinations of qubits that are up to order three. Thus, the same
holds for the objective function J

[
qa, qA], now depending on both qa and qA . To recover a

quadratic form, we make use of so-called quadratization or degree reduction techniques [19].
As a drawback of this step, a number of auxiliary qubit variables q̂ need to be intro-
duced [3]. Applying one of these techniques to the objective function J

[
qa, qA] will yield

a quadratic version Ĵ
[
qa, qA , q̂

]
, which, in addition, depends on the auxiliary qubits q̂.

Finally, the structural design optimization problem in QUBO form reads:

min
qa , qA , q̂

Ĵ
[
qa, qA , q̂

]
. (34)

In the following, we will also refer to the qubits that originally resulted from the problem
formulation, i.e., qa and qA , as input qubits, while using the term logical qubits for all the
qubits present in the final problem formulation q, potentially including the auxiliary qubits
q̂ from the degree reduction. We will denote the number of corresponding input or logical
qubits by Nq and N̂q, respectively.

Although the motivation for the proposed problem formulation is specific to QA,
the flexibility of the QUBO form extends beyond QA and remains compatible with classical
optimization methods such as SA. However, as explained in Section 1, these methods are
not favored here because they can have drawbacks, including computational intensity
and susceptibility to becoming trapped in local minima, leading to suboptimal designs.
Nevertheless, they offer valuable alternatives for problems that cannot be solved with
today’s QA hardware due to its limited capacity in terms of problem size.

3. Results

In order to demonstrate the suitability of the presented formulation for solving both
structural analysis and design optimization problems using QA, we present results for two
test cases. In the first test case (Section 3.1), we consider the structural analysis problem
for the rod composed of multiple elements, in this case still with fixed cross-sectional
areas. In the second case (Section 3.2), we allow each cross-sectional area to be chosen
independently to find the optimal design of minimum compliance. For both cases, we
discuss the features of the resulting QUBO formulations and assess the quality of the results
by means of the respective analytic solutions.

All of the results have been calculated using the open-source software EngiOptiQA [20],
which we have developed in the course of this work. For the formulation of the QUBO
model, the software relies on the Fixstars Amplify software developing kit (SDK) [21]
(amplify 0.11.2), whereas the solution process is performed via D-Wave’s Ocean SDK [22]
(dwave-cloud-client 0.11.1, dwave-samplers 1.2.0, dwave-system 1.21.0).

3.1. Results for the Structural Analysis Problem

For the structural analysis problem, we consider a rod of length L = 1.5, which is
composed of ne = 5 elements with identical cross-sectional areas Ae ≡ A = 0.25 and
Young’s moduli Ee ≡ E = 1.0. The rod is subject to self-weight loading through the body
force density f = 1.5. The values of all relevant quantities are given in Table 1 and a sketch
of the setup of the problem is provided in Figure 4a. In this case, the analytic solution for
the force function F∗(x) can be found to be

F∗(x) = A f (L − x). (35)
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Table 1. Structural Analysis problem: test case settings.

L ne A E f

1.5 5 0.25 1.0 2.5

𝑥

L

𝑓

𝐴

(a)

0 10 20 30 40
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2𝑛𝑞

2𝑛𝑞
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Index 𝑗

In
d
ex

𝑖

QUBO Pattern

(b)
Figure 4. Structural analysis problem: Setup and QUBO pattern. (a) Setup for the composed rod with
identical cross sections; (b) pattern of the interactions between the input qubits qi and qj.

Next, we will consider the QUBO form of the problem, which has been derived in Section 2.3.
For the binary representation of ai

[
qa

i
]

given in Equation (24), we use nq = 10 qubits, which
sums up to N̂q = 50 logical qubits in q for the entire problem. The corresponding pattern is
shown in Figure 4b and renders a diagonal matrix of overlapping blocks, where each triangular
block, such as the one outlined in red, represents the interaction between two adjacent nodes
on an element. Consequently, the block width is always 2nq. This local character of interactions
results in the visible sparsity pattern and will also be maintained when scaling up the problem,
e.g., by increasing the number of rod elements.

After specifying the QUBO problem for the structural analysis problem, we now dis-
cuss relevant aspects of solving it on QA hardware and present a strategy that we developed
for this purpose. To solve the problem on QA hardware, we have used the Leap™ quantum
cloud service offered by D-Wave [23]. In particular, computations have been performed on
the Advantage_system4.1 machine, which uses the Advantage performance update quantum
processing unit (QPU). The latter is based on the so-called Pegasus architecture [24], which
consists of a lattice of physical qubits and connections between pairs of them. Due to the
probabilistic nature of QA, the solution process involves running the annealing phase
multiple times. The corresponding number of samples, or reads, will be referred to as nreads,
with the annealing time per read denoted by tA.

On the hardware level, the probability of an individual physical qubit being in a
particular state can be influenced by biases, while the preference for certain combinations
of binary values is shaped by couplers that yield a corresponding interaction strength.
The values for these biases and coupling strengths are given by the linear and quadratic
coefficients of the QUBO problem. However, there may not be a one-to-one correspondence
between the QPU and the variables and interactions in the QUBO problem. This is the
reason why a minor embedding, i.e., a mapping of the logical qubits and interactions of the
QUBO problem onto the physical qubits and couplers of the QPU, is required. For example,
it may be necessary to represent a single logical qubit by a group of physical qubits forming
a so-called chain. Consequently, all physical qubits in such a chain need to have the same
value for a consistent sample of the logical variable. To achieve this, the qubits in the chain
are coupled more strongly than for interactions with other qubits, increasing the probability
that all qubits in the chain will have identical values. Note, however, that we do not have to
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take care of the minor embedding manually but it is automated through the Ocean software
(dwave-system 1.21.0) provided by D-Wave.

Another practically relevant aspect is the fact that the QPU only supports a certain
range of values for the biases and coupling strengths, i.e., the linear and quadratic coeffi-
cients. Consequently, only finite precision is provided in these coefficients. In this regard,
the real-valued and high-precision coefficients resulting from the proposed formulation
pose a challenge and give great importance to the scaling of the problem. The latter is
especially influenced by the penalty weight λ. While one would like to set this weight as
high as possible to ensure fulfillment of the constraints, i.e., static admissibility, this strategy
may not be useful on QA hardware. The reason for this is that this approach would lead to
large differences in the magnitudes of the penalty term λπ and the complementary energy
Π∗, which are present in the objective function J. As a consequence of the imprecision issue
mentioned above, a proper minimization of Π∗ is no longer ensured in this case.

To address this problem, we developed the following strategy. First, we relax the
constraint for static admissibility and choose a “small” penalty weight λ = λsmall to per-
form QA for a number of reads nreads. This yields a set of solutions with near minimum
complementary energy, which may slightly violate static admissibility. To filter out so-
lutions violating the constraint, we apply an additional post-processing step on classical
hardware. In particular, we update the problem formulation with an increased penalty
weight λ = λlarge. For the updated problem, we use each QA sample as an initial point for a
fast local search to identify the nearest minimum. This search is based on a steepest descent
algorithm, where at each step the direction to descend is determined by the variable flip
that induces the most significant reduction in the objective function. From the resulting
set of improved samples, the optimal solution, i.e., the solution that has the minimum
complementary energy and is statically admissible, can then be selected as the sample with
the minimum value of the objective function J. Given the logical qubits from this sample,
we can evaluate the ansatz for the force function F(x) to obtain the solution to the structural
analysis problem.

To solve the structural analysis problem for the rod, we used the settings collected in
Table 2. The result for F(x) is shown in Figure 5 next to the analytical solution F∗(x). Both
functions are visually in very good agreement. Additionally, we consider the relative error
in the H1 norm

ϵH1 =
∥F(x)− F∗(x)∥H1

∥F∗(x)∥H1
. (36)

Table 2. Structural analysis problem: settings for QA.

nq Nq ≡ N̂q λsmall λlarge nreads tA

10 50 2 × 101 109 500 400 µs

The choice of the H1 norm is motivated by the fact that it naturally corresponds to the
objective function in our formulation. More precisely, the contributions from the function
values themselves and the values for the derivative to the H1 norm correspond to the com-
plementary energy and the penalty term for statically permissible solutions, respectively.
Consequently, minimizing the objective function also minimizes the error in the H1 norm.
For the presented test case, the relative error in the H1 norm is ϵH1 = 9.78 × 10−4. In addi-
tion, we have also performed comparative calculations with SA, which show exactly the
same results as with QA. Taken together, this demonstrates that the proposed formulation
is capable of solving the structural analysis problem using QA. As mentioned before, this is
an essential building block for solving the combined design optimization problem that will
be considered next.
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Figure 5. Structural analysis problem: solution for the force function F(x) obtained by QA compared
to the analytical solution F∗(x).

3.2. Results for the Structural Design Optimization Problem

The structural design optimization problem is given through a size optimization of
the compound rod introduced before. In particular, we choose the element-specific cross-
sectional areas Ae as design variables αe. As described in Section 2.3, we have two choices,
A1 and A2, for the cross section of each component. All relevant quantities and a sketch of
the setup of the problem are given in Table 3 and Figure 6, respectively.

Table 3. Structural design optimization problem: test case settings.

L ne A E f

1.5 2 {0.25, 0.5} 1.0 2.5

𝑥

L 𝑓

𝐴𝑒 ∈ A

Figure 6. Structural design optimization problem: setup for a composed rod with variable
cross sections.

For the QUBO problem, we use nq = 3 qubits for the real-valued coefficients ai
[
qa

i
]

(c.f.
Equation (24)) and one qubit qA

e for each design variable Ae (c.f. Equation (33)), resulting
in Nq = 8 input qubits. As explained above, the resulting polynomial for the objective
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function J involves terms up to order three in the input qubits qa and qA . To transform the
cubic polynomial to a quadratic one, the negative term reductions by Kolmogorov, Zabih,
Freedman, and Drineas (NTR-KZFD) [25,26] and the positive term reductions (PTR) by
Ishikawa [27] are applied. The degree reduction introduces a number of auxiliary qubits
q̂, leading to N̂q = 26 logical qubits, and corresponding additional interactions. This is
reflected in the resulting pattern shown in Figure 7a. Ignoring the auxiliary qubits, the sub-
pattern in Figure 7b, on the one hand, shows the block structure seen in the structural
analysis problem and, on the other hand, a number of new blocks related to the qubits
qA for the additional design variables for each element e. These blocks have a maximum
size of nq × 2 (see the one outlined in red) since each element, i.e., each rod component, is
formed by two adjacent nodes. Nevertheless, the characteristics of the final QUBO problem
for the design optimization problem are different from those for the structural analysis
problem discussed in the previous section due to the prerequisite application of a degree
reduction technique.

We will discuss the consequences of this difference in terms of its practical impact
on the use of QA hardware in the following. The introduction of additional logical qubits
and interactions by the degree reduction technique decreases the sparsity in the QUBO
pattern. This makes the minor embedding onto the QPU more challenging. In fact, it may
result in longer chains that are more susceptible to errors due to decoherence or thermal
fluctuations, decreasing the quality of the QA outcomes.

However, this quality is of special importance to the design optimization problem.
The reason for this is the fact that the strategy of relaxing the penalty weight for the QA
and post-processing the results with a local search for an increased penalty weight cannot
be used here. If we apply this strategy to the design optimization problem, suboptimal
designs that satisfy the static admissibility constraint may be preferred to solutions with
optimal designs but constraint violations during the post-processing step due to the large
penalty weight. Yet, it is the optimal design that we are primarily interested in. Thus,
we need to obtain high-quality outcomes directly from the QA where the sample with
minimum objective value represents the optimal design and fulfills the constraint with
sufficient accuracy.

This requires that the susceptibility to inaccuracies or errors during the annealing
phase be minimized by carefully setting up the QUBO problem. On the one hand, this
limits the size of the penalty weight, since too large values will lead to precision problems,
as explained above. On the other hand, we need to reduce the number of chains created in
the course of the minor embedding and their length as much as possible. This basically
restricts the complexity of the QUBO problem that results from the additional qubits and
interactions by the degree reduction technique. Eventually, this limits the scale and the
complexity of the problems that can be solved on the available QA hardware and is the
reason why we consider such a small-scale example here. Note, however, that this is not an
inherent limitation of the formulation presented, and that future developments in hardware
or problem formulation, as well as the use of other architectures, may address the above
issues (see also Section 4).

Next, we present the results for the structural design optimization problem obtained
using QA with the settings from Table 4.

Table 4. Structural design optimization problem: settings for QA.

nq Nq N̂q λ nreads tA

3 8 26 5 800 400 µs

Again, we will compare the solution F(x) to the analytical solution F∗(x). Here, the op-
timal design can be determined analytically as αopt = [A2,A1] = [0.5, 0.25]. Using QA, we
also find this optimal design through the sample with the minimum value for the objective
function. In addition, the corresponding force function is shown in Figure 8 and there is a
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good match between the numerical and analytical solutions. The respective relative error
in the H1 norm amounts to ϵH1 = 1.59 × 10−2. As with the structural analysis problem,
comparative calculations using SA confirmed the QA results as the respective solutions were
identical.
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Figure 7. Structural design optimization problem: QUBO patterns. (a) Pattern of interactions between
logical qubits, i.e., qa, qA , and q̂; (b) sub-pattern of interactions between input qubits, i.e., qa and qA .

These findings demonstrate that the proposed formulation is suitable for solving
design optimization problems on today’s QA hardware. We would like to stress that this
direct approach does not require iterations or classical methods for the structural problem.
Nevertheless, it can also be seen that the complexity of the problem is limited for the
practical reasons described above. In the following section, we will turn our attention to
contextualizing these results within the broader landscape of QA for design optimization.
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Figure 8. Structural design optimization problem: solution for the force function F(x) obtained by
QA compared to the analytical solution F∗(x).

4. Discussion

In this study, we introduced a novel formulation for structural design optimization
problems tailored to leverage QA capabilities. Our findings show that the proposed
formulation can indeed be used to solve such optimization problems and, for small-scale
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problems, already runs on today’s QA hardware. This demonstrates its potential for
advancing computational methods in structural design optimization.

In addition to the validation of the proposed formulation, we found that it is important
to account for the limitations of the QA hardware and, where possible, develop correspond-
ing strategies. This applies to both the number of available physical qubits and couplers
and external disturbances, which can introduce noise and interfere with the quantum states.
Regarding the former, we showed that specific choices in the formulation—in this case
switching from a description in stresses to an equivalent one in forces—can significantly
decrease the number of required input qubits. In addition, we have seen that the additional
logical qubits and interactions due to the degree reduction technique, which is necessary
for the design optimization problem, pose a challenge to the hardware by leading to longer
chains that are more susceptible to disturbances. Lastly, we observed that precision issues
can arise when the range of values in the problem formulation exceeds the dynamic range
of the control parameters, an aspect that is closely related to the scaling and weighting of
the individual terms in the problem. In this regard, we found that it is important to care-
fully choose the penalty weight. Furthermore, we showed that, for the structural analysis
problem, it can be useful to relax the penalty weight used for QA and add a classical local
search with increased penalty weight as a post-processing step.

Comparing our results with existing literature that investigates QA for design op-
timization problems, our results align with the findings that the proposed approaches,
which use QA to different extents, can be useful. However, we also find that currently only
problems of limited scale and complexity are suitable to be solved by these methods due to
limitations in the available hardware. In distinction to previous studies, however, we were
able to obtain results through an approach that solely relies on QA, specifically without the
use of classical analysis models and methods, such as the FEM, or iterative procedures.

Although we were able to demonstrate the functionality of the formulation and
find an optimal structural design, our research is not without limitations. Most notably,
the application of the proposed methodology in its current form to large-scale problems is
constrained by the available hardware. While the formulation proves effective for small-
scale optimization problems, scaling it up struggles with a lack of robustness in its practical
application. As mentioned above, this is related to the emergence of long chains during
the minor embedding, especially when the design optimization problem relies on a degree
reduction technique. In addition, the limited precision in mapping the coefficients from the
problem formulation onto the hardware preventsthe enforcement of the constraint of static
admissibility via a large penalty weight. Ways to overcome these limitations will require
both advances in the capabilities of the hardware and further developments in the course
of the formulation of the optimization problem.

In this sense, our findings highlight the need for further research to tackle the scalability
challenges imposed by current hardware limitations. Thus, future work, on the one hand,
may focus on refining the proposed formulation, e.g., by replacing the penalty term with
an ansatz that fulfills the constraint of static admissibility by construction, which would
address the precision issues mentioned above. On the other hand, it may also be worthwhile
to explore alternative architectures for QA that allow higher-order interactions [28] and
would obviate the need for degree reduction techniques. Finally, the development of
efficient hybrid approaches represents an alternative direction that may allow us to fully
exploit existing hardware and extend the scope of the presented formulation towards
large-scale problems.

In conclusion, our work contributes a novel formulation for structural design opti-
mization problems to exploit the potential of QA. While the current study can be seen
as a proof of concept for our approach, the scalability limitations imposed by existing
hardware necessitate further research that focuses both on theoretical advancements in the
problem formulation as well as on practically relevant strategies for solving these problems
on available QA systems. Parallel to the progress made in ongoing hardware develop-
ment, the evolving field of QA-based approaches for engineering design optimization
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problems presents exciting opportunities for future advancements. Here, our work can lay
the groundwork for continued exploration in this promising intersection of engineering
optimization problems and innovative quantum-based computing approaches like QA.
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