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Abstract: In this paper, the approximation of analytic functions by shifts ζP (s + iτ) of Beurling
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that the system of generalized integers NP generated by P satisfies ∑m⩽x, m∈N 1 = ax +O(xδ), a > 0,
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mean square. Proofs are based on the convergence of probability measures in some spaces.

Keywords: Beurling zeta-function; generalized integers; generalized prime numbers; weak conver-
gence of probability measures

MSC: 11M41

1. Introduction

The Riemann zeta-function ζ(s), s = σ + it, is defined, for σ > 1 by

ζ(s) =
∞

∑
k=1

1
ks = ∏

q

(
1 − 1

qs

)−1
,

where the product is taken over prime numbers q, has a meromorphic continuation to the
complex plane with the unique simple pole s = 1, Res=1ζ(s) = 1 (see, for example, [1]),
and has several generalizations. One of them is Beurling zeta-functions.

The system P of real numbers 1 < p1 ⩽ p2 ⩽ · · · ⩽ pn ⩽ · · · , pn → ∞ as n → ∞,
is called generalized prime numbers. From numbers of system P , the system NP of
generalized integers

pα1
1 pα2

2 · · · pαr
r · · · , αj ∈ N0 = N∪ {0}, j = 1, . . . , r, . . . ,

is obtained. As in the theory of rational primes q, the main attention is devoted to asymp-
totics of the function

πP (x) = ∑
p⩽x
p∈P

1, x → ∞.

Together with πP (x), the number of generalized integers m

NP (x) = ∑
m⩽x

m∈NP

1, x → ∞,

is considered. The above sums are taken by counting multiplicities of p and m, respectively.
By the Landau result [2], it is known that the estimate

NP (x) = ax + O
(

xδ
)

, 0 ⩽ δ < 1, a > 0, (1)
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implies

πP (x) =
x∫

2

du
log u

+ O
(

xe−c
√

log x
)

, c > 0.

The distribution of generalized numbers was studied by Beurling [3], Borel [4], Dia-
mond [5–7], Mallavin [8], Nyman [9], Ryavec [10], Stankus [11], Zhang [12], Hilberdink and
Lapidus [13], Schlage-Puhta and Vindas [14], Debruyne, Schlage-Puhta and Vindas [15],
and others. Among other problems studied in the above works, the central place is occupied
by the relation between

NP (x) = ax + O
(

x
(log x)α

)
, α > 0, (2)

and

πP (x) =
x∫

2

du
log u

+ O
(

x
(log x)β

)
, β > 0.

For example, in [9], it was obtained that the above estimates with arbitrary α and β
are equivalent. The papers [6,8,16] are devoted to formulae for πP (x), with the remainder
term of order O(xe−c1(log x)β

) implied by NP (x) with the remainder term O(xe−c2(log x)α
).

Beurling proved [3] that the asymptotics

πP (x) ∼ x
log x

, x → ∞, (3)

follows from (2) with α > 3/2, and this is not true with α = 3/2 for all systems of
generalized primes. Moreover, for the investigation of πP (x), he introduced the zeta-
functions ζP (s) defined in some half-planes by the Euler product

ζP (s) = ∏
p∈P

(
1 − 1

ps

)−1
,

or by the Dirichlet series

ζP (s) =
∞

∑
m∈NP

1
ms .

The convergence of the latter objects depends on the system P of generalized primes.
It is easily seen that in case (1), the series for ζP (s) is absolutely convergent for σ > 1.

Actually, the partial summation formula shows that

∑
m⩽x

m∈NP

1
ms =

1
xs NP (x) + s

x∫
1

NP (x)
xs+1 dx. (4)

Since, for σ > 1, the integral
∞∫

1

NP (x)
xs+1 dx

is absolutely and uniformly convergent for σ ⩾ 1 + ε, ∀ε > 0, and x−sNP (x) = o(1), so
from (4) we have

ζP (s) = s
∞∫

1

NP (x)
xs+1 dx. (5)
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Thus, ζP (s) is analytic in the half-plane σ > 1. Moreover, in this half-plane,

∏
p∈P

(
1 − 1

ps

)−1
= ∑

m∈NP

1
ms .

Now, the functions ζP (s) are called Beurling zeta-functions.
As it was observed by Beurling [3], it suffices to consider NP (x) in place of NP (xδ),

δ ̸= 1, because the latter case reduces after normalization to NP (x).
An important problem is the analytic continuation of the function ζP (s). Suppose

that (1) is true. Then, (5) implies

ζP (s) =
as

s − 1
+ s

∞∫
1

r(x)
xs+1 dx, r(x) = O(xδ), δ < 1,

the latter integral being absolutely and uniformly convergent for σ ⩾ δ + ε, ∀ε > 0.
Therefore, the function ζP (s) has analytic continuation to the half-plane σ > δ, except for a
simple pole at the point s = 1 with residue a.

Much attention is devoted to analytic continuation for the function ζP (s) in [13]. For
this, the generalized von Mongoldt function

ΛP (m) =

{
log p if m = pk, p ∈ P , k ∈ N,
0 otherwise,

and
ψP (x) = ∑

m⩽x
m∈NP

ΛP (m)

are used. Let
ψP (x) = x + O(xα+ε), α ∈ [0, 1), ∀ε > 0.

Then, in [13], it is proved that ζP (s) has an analytic continuation to the half-plane
σ > α, except for a simple pole at the point s = 1. Under certain additional conditions, the
latter estimate is necessary as well.

There is another method for the analytic continuation of ζP (s) cultivated in [13].
However, for our aims, we limit ourselves by the analytic continuation to the half-plane
σ > δ because, throughout the paper, we suppose the validity of the axiom (1).

The paper [17] is devoted to zero-distribution of ζP (s), where various zero-density
results corresponding to those of ζ(s) are given. We stress that in [17], the Beurling prime
number theorem [3] was strengthened, and it was proved that asymptotics (3) is implied
by the estimate of Cesàro type

x∫
1

NP (t)− at
t

(
1 − t

x

)m
dt = O

(
x

(log x)α

)
, α >

3
2

, x → ∞,

with some m ∈ N.
In the present paper, differently from the cited above works, including [14,17], that are

devoted to prime number theorem, analytic continuation and zeros of ζP (s), we focus on
the approximation properties of the Beurling zeta-functions. More precisely, we consider
the approximation of a set of analytic functions f (s) by shifts ζP (s + iτ), τ ∈ R, i.e., such τ
that, for some compact sets K and ε > 0,

sup
s∈K

|ζP (s + iτ)− f (s)| < ε.
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The case of the Riemann zeta-function shows that the results of such a type have
serious theoretical (functional independence, zero-distribution, moment problem, . . . ) and
practical (approximation theory, quantum mechanics) applications, see [18]. Moreover,
investigations of the approximation of analytic functions by zeta-functions have an impact
on the Linnik–Ibragimov conjecture on the universality of the Dirichlet series; see Section 1.6
of [19].

For our aims, the mean square estimate for ζP (s) is needed. Let

M(σ, T) def
=

T∫
0

|ζP (σ + it)|2 dt,

and σ̂ = inf{σ : M(σ, T) ≪σ T, σ > δ}. Suppose that σ̂ < 1, and define DP =
{s ∈ C : σ̂ < σ < 1}. Here, and in what follows, the notation z ≪ε y, z ∈ C, y > 0
is a synonym of z = O(y) with implied constant depending on ε. Denote by H(DP ) the
space of analytic on DP functions endowed with the topology of uniform convergence
on compacta.

It is well-known that the Riemann zeta-function ζ(s) and some other zeta-functions
are universal, i.e., their shifts ζ(s + iτ), τ ∈ R are approximately defined in certain strip
analytic functions; see [18–25] for results and problems. We believe that the function
ζP (s) for some systems of generalized prime numbers P also has similar approximation
properties. However, every case of system P requires a separate investigation. In the
paper, we propose the following result for the approximation of analytic functions by shifts
ζP (s + iτ). In what follows, mL A denotes the Lebesgue measure of A ⊂ R. The main result
of the paper is the following theorem.

Theorem 1. Assume that the system P satisfies the axiom (1). Then, there exists a non-empty
closed subset FP ⊂ H(DP ), such that, for all compact sets K ⊂ DP , f (s) ∈ FP and ε > 0,

lim inf
T→∞

1
T

mL

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}
> 0.

In addition, the limit

lim
T→∞

1
T

mL

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}

exists and is positive for all, but at most countably many, ε > 0.

Theorem 1 will be proved in Section 5.
Let B(X) stand for the Borelean σ-field of the topological space X, and, for A ∈

B(H(DP )),

PT,P (A) =
1
T

mL{τ ∈ [0, T] : ζP (s + iτ) ∈ A}.

Theorem 1 will be derived from the next theorem on weak convergence of PT,P as
T → ∞.

Theorem 2. Suppose that the system P satisfies the axiom (1). Then PT,P , as T → ∞, weakly
converges to a certain measure PP on (H(DP ),B(H(DP ))).

Theorem 2 will be proved in Section 4.
We recall some examples connected to the hypotheses of Theorems 1 and 2.
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A problem of the validity of axiom (1) is not easy. The following interesting example
is known; see [13]. Let the system of generalized integers NP be generated by the system

P = (2,
√

3, 5, 5,
√

7,
√

11, 13, 13, . . . ),

i.e., P includes 2, rational primes q ≡ 1(mod 4) with multiplicity 2, and
√

q with rational
primes q ≡ 3(mod 4). Then, it is known that

NP (x) =
π

4
x + O

(
x23/73

)
.

In [11], the system P of shifted rational primes q = π(r) + 1 with r > 0, π(r) = ∑q⩽r 1,
was considered, and it was obtained that

NP (x) = ax + O

(
x exp

{
−
(

1 −
c log3 x
log2 x

)√
1
2

log x log2 x

})
,

where logn x = log . . . log︸ ︷︷ ︸
n

x, a > 0, c > 0. This shows that the estimate (1), even for a

comparatively simple system P , is difficult to reach.
Write generalized numbers in another form

1 = ν1 < ν2 < · · ·

with corresponding multiplicities 1 = a1, a2, . . . . Then, we have

NP (x) = ∑
νm⩽x

am,

and

ζP (s) =
∞

∑
m=1

am

νs
m

.

In [26], the following result has been obtained. Suppose that (1) is true, and νm+1 −
νm ≫ exp{−νκ

m} with every κ > 0. Then, for σ > (1 + δ)/2,

lim
T→∞

1
2T

T∫
−T

|ζP (σ + it)|2 dt =
∞

∑
m=1

a2
m

ν2σ
m

.

This implies that σ̂ = (1 + δ)/2 < 1 in this case.
We divide the proof of Theorem 2 into parts. We start with weak convergence of

probability measures in comparatively simple spaces and finish in the space H(DP ).

2. Case of Compact Group

Define the set
Ω = ∏

p∈P
{s ∈ C : |s| = 1}.

The elements of Ω are all functions ω : P → {s ∈ C : |s| = 1}. We equipped Ω
with the product topology and operation of pointwise multiplication. Since the unit circle
is a compact set, by the Tikhonov theorem [27], Ω is a compact topological group. For
A ∈ B(Ω), set

PΩ
T,P (A) =

1
T

mL

{
τ ∈ [0, T] :

(
p−iτ : p ∈ P

)
∈ A

}
.

Lemma 1. PΩ
T,P weakly converges to a certain measure PΩ

P on (Ω,B(Ω)) as T → ∞.
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Proof. It suffices to show that the Fourier transform of PΩ
T,P converges to a certain continu-

ous function. Characters of Ω have the form

∏
p∈P

ωkp(p),

where ω(p) denotes the pth component of ω ∈ Ω, and kp are integer rational numbers,
where only a finite number of them are not zero. Therefore,

FT,P (k) =
1
T

T∫
0

(
∏
p∈P

∗ p−iτkp

)
dτ,

where k = (kp : p ∈ P), and the star ∗ shows that kp ̸= 0 for a finite set of generalized
primes p, is the Fourier transform of the measure PΩ

T,P . Define two sets of k:

K1 =

{
k : ∑

p∈P

∗ kp log p = 0

}
, K2 =

{
k : ∑

p∈P

∗ kp log p ̸= 0

}
.

Then, we have

FT,P (k) =

 1 if k ∈ K1,
1−exp{−iT ∑∗

p∈P kp log p}
iT(1−exp{−i ∑∗

p∈P kp log p}) if k ∈ K2.

Thus,

lim
T→∞

FT,P (k) =

{
1 if k ∈ K1,
0 if k ∈ K2.

The limit function is continuous in the discrete topology; therefore, this implies that
PΩ

T,P weakly converges to the measure PΩ
P on (Ω,B(Ω)) given by the Fourier transform

FP (k),

FP (k) =

{
1 if k ∈ K1,
0 if k ∈ K2.

Remark 1. If the system P is linearly independent over the field of rational numbers, then

FP (k) =

{
1 if k = (0),
0 if k ̸= (0).

In this case, the limit measure PΩ
P is the Haar measure PH , which is invariant with respect to

translations by elements ω ∈ Ω, i.e., for every ω ∈ Ω and A ∈ B(Ω),

PH(A) = PH(ωA) = PH(Aω).

Obviously, in this case, the numbers of P must be different.

Lemma 1 is a starting point to consider limit distributions in space H(DP ). The
simplest case is of an absolutely convergent Dirichlet series. Let η > 1 − σ̂ be fixed. For
m ∈ NP and n ∈ N, set

an(m) = exp
{
−
(m

n

)η}
,

and

ζn,P (s) = ∑
m∈NP

an(m)

ms .
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It is not difficult to see that the series for ζn,P (s) is absolutely convergent, say, for
σ > 0. Thus, ζn,P (s) is an element of H(DP ). For A ∈ B(H(DP )), define

PT,n,P (A) =
1
T

mL{τ ∈ [0, T] : ζP ,n(s + iτ) ∈ A}.

Lemma 2. Assume that the system P satisfies the axiom (1). Then, PT,n,P weakly converges to a
certain measure Pn,P on (H(DP ),B(H(DP ))) as T → ∞.

Proof. Extend the function ω(p) to the set NP by using the equality

ω(m) = ωa1(p1) · · ·ωar (pr)

for m = pa1
1 · · · par

r . Consider the mapping hn,P : Ω → H(DP ) given by

hn,P (ω) = ∑
m∈NP

ω(m)an(m)

ms , ω ∈ Ω.

The latter definition implies that

hn,P
(

p−iτ : p ∈ P
)
= ∑

m∈NP

an(m)

ms+iτ = ζn,P (s + iτ). (6)

Moreover, the absolute convergence of the series

∑
m∈NP

ω(m)an(m)

ms

for σ > 0 ensures the continuity of the mapping hn,P . In view of (6), we have

PT,n,P (A) =
1
T

mL

{
τ ∈ [0, T] :

(
p−iτ : p ∈ P

)
∈ h−1

n,P A
}
= PΩ

T,P

(
h−1

n,P A
)

for all A ∈ B(H(DP )). This shows that PT,n,P = PΩ
T,Ph−1

n,P , where

PΩ
T,Ph−1

n,P (A) = PΩ
T,P

(
h−1

n,P A
)

, A ∈ B(H(DP )),

and h−1
n,P A denotes the preimage of the set A. These remarks, Lemma 1, and the preservation

of weak convergence under continuous mappings (see, for example, [28], Chapter 5) prove
that PT,n,P , as T → ∞ weakly converges to the measure Pn,P = h−1

n,PPΩ
P , where PΩ

P is from
Lemma 1.

3. Some Estimates

To pass from the function ζn,P (s) to ζP (s), we need some estimates between these
functions. We start with an integral representation for ζn,P (s). As usual, let Γ(s) stand for
the Euler gamma-function, and, for n ∈ N, define

ln(s) = η−1Γ
(

η−1s
)

ns,

where the number η is from the definition of an(m).

Lemma 3. Suppose that axiom (1) is valid. Then, for s ∈ D, the representation

ζn,P (s) =
1

2πi

η+i∞∫
η−i∞

ζP (s + z)ln(z)dz (7)
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holds.

Proof. Let a and b be positive numbers. Then, the classical Mellin formula

1
2πi

a+i∞∫
a−i∞

Γ(z)b−z dz = e−b

is valid. Therefore, for m ∈ NP ,

1
2πi

η+i∞∫
η−i∞

m−zln(z)dz =
1

2πi

η+i∞∫
η−i∞

Γ
(

z
η

)(m
n

)(−z/η)η
d
(

z
η

)
= an(m).

Hence,

ζn,P (s) = ∑
m∈NP

an(m)

ms =
1

2πi ∑
m∈NP

η+i∞∫
η−i∞

1
ms+z ln(z)dz

=
1

2πi

η+i∞∫
η−i∞

(
∑

m∈NP

1
ms+z

)
ln(z)dz. (8)

Since η > 1 − σ̂, we have Re(s + z) > 1. Moreover, the properties of the function Γ(s)
ensure the change in order integration and summation. Thus, (8) implies the representation
of the lemma.

There is a sequence of compact embedded sets {Kl : l ∈ N} ⊂ DP , DP =
∞
∪

l=1
Kl , such

that every compact set K ⊂ DP lies in some Kl . Then,

ρ(g1, g2) =
∞

∑
l=1

2−l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
, g1, g2 ∈ H(DP ),

is a metric in H(DP ) inducing its topology of uniform convergence on compacta.

Lemma 4. Suppose that axiom (1) is valid. Then,

lim
n→∞

lim sup
T→∞

1
T

T∫
1

ρ(ζP (s + iτ), ζn,P (s + iτ)) = 0.

Proof. By the formula for ρ, it is sufficient to prove that, for every compact set K ⊂ DP ,

lim
n→∞

lim sup
T→∞

1
T

T∫
1

sup
s∈K

|ζP (s + iτ)− ζn,P (s + iτ)| = 0. (9)

Thus, fix a compact set K ⊂ DP . Then, there is ε > 0 satisfying σ̂ + ε ⩽ σ ⩽ 1− ε/2 for
σ + it ∈ K. We apply Lemma 3. Let η = 1, and η1 = σ̂ + ε/2− σ with above σ. Then η1 < 0.
The integrand in (7) possesses a simple pole at z = 0 (a pole of Γ(s)), and a simple pole at
z = 1 − s (a pole of ζP (s + z)). Actually, it is obvious that 0 ∈ (η1, η) and 1 − σ ∈ (η1, η).
Moreover, since η1 ⩾ σ̂ + ε/2 − 1 + ε/2, σ̂ − 1 + ε > −1, the pole z = −1 of Γ(s) does not
lie in the strip η1 < Rez < η.
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Now, the residue theorem and Lemma 3 yields, for s ∈ K,

ζn,P (s)− ζP (s) =
1

2πi

η1+i∞∫
η1−i∞

ζP (s)ln(z)dz + Res
z=1−s

ζP (s + z)ln(z).

Hence, for s ∈ K,

ζn,P (s + iτ)− ζP (s + iτ)

=
1

2π

∞∫
−∞

ζP
(

σ̂ +
ε

2
+ iτ + it + iu

)
ln
(

σ̂ +
ε

2
− σ + iu

)
du + aln(1 − s − iτ)

=
1

2π

∞∫
−∞

ζP
(

σ̂ +
ε

2
+ iτ + iu

)
ln
(

σ̂ +
ε

2
− s + iu

)
du + aln(1 − s − iτ)

≪
∞∫

−∞

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu

)∣∣∣ sup
s∈K

∣∣∣ln(σ̂ +
ε

2
− s + iu

)∣∣∣du + sup
s∈K

|ln(1 − s − iτ)|.

Therefore,

1
T

T∫
0

sup
s∈K

|ζP (s + iτ)− ζn,P (s + iτ)|dτ

≪
∞∫

−∞

 1
T

T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu

)∣∣∣dτ

 sup
s∈K

|ln(1 − s + iu)|du

+
1
T

T∫
0

sup
s∈K

|ln(1 − s − iτ)|dτ

def
= J1 + J2. (10)

By the definition of σ̂,

T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ

)∣∣∣2 dτ ≪ε T.

Therefore, in view of the Cauchy–Schwarz inequality,

T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu

)∣∣∣dτ ⩽
√

T

 T∫
0

∣∣∣ζP(σ̂ +
ε

2
+ iτ + iu

)∣∣∣2 dτ

1/2

⩽
√

T

 T+|u|∫
−|u|

∣∣∣ζP(σ̂ +
ε

2
+ iτ

)∣∣∣2 dτ


1/2

≪ε

√
T(T + |u|)1/2 ≪ε

√
T
(√

T +
√

u
)

≪ε T
(
1 +

√
u
)
. (11)

The most important ingredient of the function ln(s) is Γ(s) and is estimated as

Γ(σ + it) ≪ exp{−c|t|}, c > 0.
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Therefore, for s ∈ K,

ln
(

σ̂ +
ε

2
+ 1 − s + iu

)
≪ nσ̂+ε/2−σ exp{−c|u − t|} ≪K n−ε/2 exp{−c1|u|}, c1 > 0.

This, together with (11), yields

J1 ≪K,ε n−ε/2
+∞∫

−∞

(
1 +

√
u
)

exp{−c1|u|}du ≪ε,K n−ε/2. (12)

Similarly, as above, we obtain that, for s ∈ K,

ln(1 − s − iτ) ≪ n1−σ exp{−c|t + τ|} ≪K n1−σ̂−ε exp{−c2|τ|}, c2 > 0.

Therefore,

J2 ≪K n1−σ̂−ε 1
T

T∫
0

exp{−c2|τ|}dτ ≪K n1−σ̂−εT−1.

The latter bound, (12) and (10), prove (9). The lemma is proved.

4. Proof of Theorem 2

We derive Theorem 2 from Lemmas 2 and 4 and the following statement (see, for
example, [28], Theorem 4.2) is applied to the case H(DP ).

Lemma 5. Assume that ξnk and ξ̂n, n, k ∈ N, are H(DP )-valued random elements given on a
space (X,B(X), ν). Let

ξnk
D−−−→

n→∞
ξk, ξk

D−−−→
k→∞

ξ,

and for ε > 0,
lim
k→∞

lim sup
n→∞

ν
{

ρ
(

ξ̂n, ξnk

)
⩾ ε
}
= 0,

where D−→ stands for the convergence in distribution. Then ξ̂n
D−−−→

n→∞
ξ.

We remind the reader that Pn,P is from Lemma 2. Using Lemma 5 requires some
convergence properties for Pn,P . Recall that the sequence {Pn,P : n ∈ N} is tight if, for
every ε > 0, there is a compact set K ⊂ H(DP ) such that

Pn,P (K) > 1 − ε

with all n ∈ N.

Lemma 6. Suppose that the system P satisfies the axiom (1). Then, the sequence {Pn,P : n ∈ N}
is tight.

Proof. Let Kl be a fixed compact set in the definition of ρ. Then, the Cauchy integral
theorem, for s ∈ Kl , implies

ζP (s + iτ) =
1

2πi

∫
L

ζP (z + iτ)
z − s

dz,
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where L is a closed simple curve lying in D and enclosing the set Kl . Hence,

sup
s∈Kl

|ζP (s + iτ)|2 ≪
∫
L

|dz|
|z − s|2

∫
L

|ζP (z + iτ)|2|dz| ≪Kl

∫
L

|ζP (Rez + iImz + iτ)|2|dz|.

Therefore,

1
T

T∫
0

sup
s∈Kl

|ζP (s + iτ)|2 dτ ≪Kl

∫
L

 1
T

T∫
0

|ζP (Rez + iImz + iτ)|2 dτ

|dz| ≪Kl 1 ⩽ Bl < ∞.

From this, we have

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

|ζP (s + iτ)|dτ ⩽
√

Bl .

Then, in view of (9),

sup
n∈N

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

|ζn,P (s + iτ)|dτ ⩽ sup
n∈N

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

|ζP (s + iτ)− ζn,P (s + iτ)|dτ

+ lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

|ζP (s + iτ)|dτ

⩽Cl < ∞. (13)

Let βT be the random variable on the space (Ω̂,A, ν) and uniformly distributed in
[0, T]. Define H(DP )-valued random elements

ξT,n = ξT,n(s) = ζn,P (s + iβT)

and ξn = ξn(s) having the distribution Pn,P . We fix ε > 0, and set V = Vl = 2−lε−1Cl .
Then, in virtue of (13) and Lemma 2,

ν

{
sup
s∈Kl

|ξn(s)| ⩾ Vl

}
⩽ lim sup

T→∞
ν

{
sup
s∈Kl

|ξT,n(s)| ⩾ Vl

}

⩽ sup
n∈N

lim sup
T→∞

1
Vl

T∫
0

sup
s∈Kl

|ζn,P (s + iτ)|dτ =
ε

2l (14)

for all n ∈ N. Let K =
{

h ∈ H(DP ) : sups∈Kl
|h(s)| ⩽ Vl , l ∈ N

}
. Then, K is a compact set

in H(DP ), and, by (14),

Pn,P (K) = 1 − Pn,P (H(DP ) \ K) = 1 − Pn,P

(
g(s) ∈ H(DP ) : ∃l : sup

s∈Kl

|g(s)| ⩾ Vl

)

= 1 − Pn,P

(
∞⋃

l=1

{
g(s) ∈ H(DP ) : sup

s∈Kl

|g(s)| ⩾ Vl

})

⩾ 1 −
∞

∑
l=1

Pn,P

(
g(s) ∈ H(DP ) : sup

s∈Kl

|g(s) ⩾ Vl

)

= 1 −
∞

∑
l=1

ν

{
sup
s∈Kl

|ξn(s)| ⩾ Vl

}
⩾ 1 − ε

∞

∑
l=1

2−l = 1 − ε
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for all n ∈ N. This proves the lemma.

Proof of Theorem 2. We will apply Lemma 5. Since by Lemma 6, the sequence {Pn,P :
n ∈ N} is tight, it is relatively compact in virtue of the classical Prokhorov theorem; see,
for example, [28], Theorem 6.1. This means that every subsequence of {Pn,P} possesses
a subsequent weak convergent to a probability measure on (H(DP ),B(H(DP ))). Thus,
there is {Pnr ,P} ⊂ {Pn,P} and a probability measure PP on (H(DP ),B(H(DP ))) such that
Pnr ,P converges weakly to PP as r → ∞. Using the notation of the proof of Lemma 6,
we have

ξnr
D−−−→

r→∞
PP . (15)

Moreover, in view of Lemma 2,

ξT,n
D−−−→

T→∞
ξn. (16)

Define one more H(DP )-valued random element

ξ̂T = ξ̂T(s) = ζP (s + iβT).

Then Lemma 4 implies that, for every ε > 0,

lim
r→∞

lim sup
T→∞

ν
{

ρ
(

ξ̂T , ξT,n

)
⩾ ε
}

= lim
r→∞

lim sup
T→∞

1
T

mL{τ ∈ [0, T] : ρ(ζP (s + iτ), ζnr ,P (s + iτ)) ⩾ ε}

⩽ lim
r→∞

lim sup
T→∞

1
εT

T∫
0

ρ(ζP (s + iτ), ζnr ,P (s + iτ))dτ = 0.

This equality, together with (15) and (16), shows that for ξnr , ξT,n and ξ̂T , the conditions
of Lemma 5 are fulfilled. Therefore, the relation

ξ̂T
D−−−→

T→∞
PP

holds, and this implies the weak convergence of PT,P to PP as T → ∞. The proof is
completed.

5. Proof of Theorem 1

Theorem 1 is a consequence of Theorem 2 and the equivalents of weak convergence.
We remind the reader that the support of the measure PP is a closed minimal set

SP ⊂ H(DP ) satisfying PP (SP ) = 1. The set SP contains all g ∈ H(DP ) such that for any
open neighborhood G of g, the inequality PP (G) > 0 holds.

Proof of Theorem 1. Let FP be the support of the limit measure PP in Theorem 2. Then,
FP is a closed set, and FP ̸= ∅ because PP (FP ) = 1. We will prove that the set FP has
approximation properties of the theorem.

Suppose that f (s) ∈ FP , and

Gε =

{
h ∈ H(DP ) : sup

s∈K
|h(s)− f (s)| < ε

}
,

i.e., Gε is an open neighborhood of an element f (s) of the support FP . Hence, by the
support property,

PP (Gε) > 0. (17)
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Moreover, using Theorem 2 and Theorem 2.1 of [28] with open sets implies the inequality

lim inf
T→∞

PT,P (Gε) ⩾ PP (Gε).

Thus, the notations for PT,P and Gε lead to

lim inf
T→∞

1
T

mL

{
τ ∈ [0, T] : sup

s∈K
|ζP (s + iτ)− f (s)| < ε

}
> 0.

To prove the second statement of the theorem, we deal with continuity sets. We remind
the reader that a set A ∈ B(X) is a continuity set of a measure P on (X,B(X)) if P(∂A) = 0,
where ∂A is the boundary of A.

The set ∂Gε of the set Gε belongs to the set{
h ∈ H(DP ) : sup

s∈K
|h(s)− f (s)| = ε

}
.

Hence, the sets ∂Gε1 and ∂Gε2 for different ε1 and ε2 have no common elements. From
this remark, it follows that PP (∂Gε) > 0 for at most countably many values of ε, or, in
the above terminology, the set Gε is a continuity set of the measure PP for all but at most
countably many ε > 0. Thus, Theorem 2 and Theorem 2.1 of [28] with continuity sets show
that the limit

lim
T→∞

PT,P (Gε) = PP (Gε)

exists, and in view of (17), is positive for all but at most countably many ε > 0. This
and the notations for PT,P and Gε give the second assertion of the theorem. The theorem
is proved.

6. Conclusions

Every system P of real numbers 1 < p1 ⩽ p2 ⩽ · · · ⩽ pr ⩽ · · · , limn→∞ pn = ∞
is called generalized prime numbers. We consider the zeta-function ζP (s), s = σ + it
associated with the system P . We assume that the system of generalized integers NP
obtained from P satisfies the axiom

∑
m⩽x
m∈N

1 = ax + O(xδ), a > 0, 0 ⩽ δ < 1.

Then, for σ > 1, the function ζP (s) is defined by

ζP (s) = ∑
m∈N

1
ms = ∏

p∈P

(
1 − 1

ps

)−1
,

and has analytic continuation to the region δ < σ < 1. Additionally, we suppose that ζP (s)
has the bounded mean square∫ T

0
|ζP (σ + it)|2 dt ≪σ T, T → ∞,

for some σ > σ̂ with some δ < σ̂ < 1.
We consider probabilistic and approximation properties of the function ζP (s). We

prove a limit theorem for ζP (s) in the space of analytic functions H(DP ), DP = {s ∈ C :
σ̂ < σ < 1}, i.e., that

1
T

mL{τ ∈ [0, T] : ζP (s + iτ) ∈ A}, A ∈ B(H(DP )),
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converges weakly to a certain probability measure PP as T → ∞. From this, we deduce
that the shifts ζP (s + iτ) approximate a certain closed subset of H(DP ).

For identification of the limit measure PP and universality of the function ζP (s),
some stronger restrictions for the system P are needed. We are planning to apply this in
the future.
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