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1. Introduction
The Riemann zeta-function {(s), s = ¢ + it, is defined, for o > 1 by

o0 1 1 -1
=Y -TI(1-7)
k=1 q q
where the product is taken over prime numbers g, has a meromorphic continuation to the
complex plane with the unique simple pole s = 1, Re;—1{(s) = 1 (see, for example, [1]),
and has several generalizations. One of them is Beurling zeta-functions.

The system P of real numbers 1 < p; < pp <+ < py < -+, pp = c0aSN — 00,
is called generalized prime numbers. From numbers of system P, the system Np of
generalized integers

pypet oy, aeNg=NU{0}, j=1,...,7,...,
is obtained. As in the theory of rational primes g, the main attention is devoted to asymp-
totics of the function
mp(x) =Y. 1, x— oo
psx
peEP

Together with 71p(x), the number of generalized integers m

Np(x) = Z 1, x— oo,

m<x
mENp

is considered. The above sums are taken by counting multiplicities of p and m, respectively.
By the Landau result [2], it is known that the estimate

J\/p(x):ax—o—O(x‘s), 0<6<1,a>0, 1)
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implies
X

7ip(x) du +O(xe7CV1°g"), c>0.

—J1
2ogu

The distribution of generalized numbers was studied by Beurling [3], Borel [4], Dia-
mond [5-7], Mallavin [8], Nyman [9], Ryavec [10], Stankus [11], Zhang [12], Hilberdink and
Lapidus [13], Schlage-Puhta and Vindas [14], Debruyne, Schlage-Puhta and Vindas [15],
and others. Among other problems studied in the above works, the central place is occupied
by the relation between

./\/p(x)—axntO((logxx)a) a>0, ()

and

Tp(x) [ du +O<( a )/5)’ B >0.

B ) logu log x

For example, in [9], it was obtained that the above estimates with arbitrary « and
are equivalent. The papers [6,8,16] are devoted to formulae for 77 (x), with the remainder

term of order O(xe 1 (logx)") implied by Np(x) with the remainder term O (xe (o8 ¥)"),
Beurling proved [3] that the asymptotics

X

7ip (x) X — 0o, 3)

~ logx’

follows from (2) with & > 3/2, and this is not true with &« = 3/2 for all systems of
generalized primes. Moreover, for the investigation of 7p(x), he introduced the zeta-
functions {p (s) defined in some half-planes by the Euler product

¢r(s) =11 <1 - 1>1,

peP P
or by the Dirichlet series
= 1
ip(s) = ), ol
mENp

The convergence of the latter objects depends on the system P of generalized primes.
It is easily seen that in case (1), the series for {p(s) is absolutely convergent for ¢ > 1.
Actually, the partial summation formula shows that

X

1 1 "N
ey 1

Since, for o > 1, the integral

T Np(x)
/ xs-i—l dx
1

is absolutely and uniformly convergent for ¢ > 1+ ¢, Ve > 0, and x *Np(x) = 0(1), so
from (4) we have

op(s) = [ 22 dx. (5)
1
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Thus, {p(s) is analytic in the half-plane ¢ > 1. Moreover, in this half-plane,

-1 =5 .

S
peP p meNp

Now, the functions {p(s) are called Beurling zeta-functions.

As it was observed by Beurling [3], it suffices to consider A’p(x) in place of Np(x9),
J # 1, because the latter case reduces after normalization to N'p(x).

An important problem is the analytic continuation of the function {p(s). Suppose
that (1) is true. Then, (5) implies

ip(s) = —= +s/ ") Gy r(x) = 0(x), 5 <1,

xs+1 ’
1

the latter integral being absolutely and uniformly convergent for o > 6 +¢, Ve > 0.
Therefore, the function {p(s) has analytic continuation to the half-plane o > §, except for a
simple pole at the point s = 1 with residue a.

Much attention is devoted to analytic continuation for the function {p(s) in [13]. For
this, the generalized von Mongoldt function

ook
Ap(m):{ logp ifm=pS,peP,keN,

0 otherwise,
and
pp(x) = )., Ap(m)
m<x
mEN’p

are used. Let
Pp(x) = x+0(x*%), a€]0,1), Ve > 0.

Then, in [13], it is proved that {p(s) has an analytic continuation to the half-plane
o > a, except for a simple pole at the point s = 1. Under certain additional conditions, the
latter estimate is necessary as well.

There is another method for the analytic continuation of {p(s) cultivated in [13].
However, for our aims, we limit ourselves by the analytic continuation to the half-plane
o > 0 because, throughout the paper, we suppose the validity of the axiom (1).

The paper [17] is devoted to zero-distribution of {p(s), where various zero-density
results corresponding to those of {(s) are given. We stress that in [17], the Beurling prime
number theorem [3] was strengthened, and it was proved that asymptotics (3) is implied
by the estimate of Cesaro type

pr(t)—th AN x 3
/t<1—x> dt_o((logx)“)’ lx>§,x—>00,

1

with some m € N.

In the present paper, differently from the cited above works, including [14,17], that are
devoted to prime number theorem, analytic continuation and zeros of {p(s), we focus on
the approximation properties of the Beurling zeta-functions. More precisely, we consider
the approximation of a set of analytic functions f(s) by shifts {p(s +it), T € R, ie,such T
that, for some compact sets K and ¢ > 0,

sulg\gp(s +i71) — f(s)] < e
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The case of the Riemann zeta-function shows that the results of such a type have
serious theoretical (functional independence, zero-distribution, moment problem, ...) and
practical (approximation theory, quantum mechanics) applications, see [18]. Moreover,
investigations of the approximation of analytic functions by zeta-functions have an impact
on the Linnik-Ibragimov conjecture on the universality of the Dirichlet series; see Section 1.6
of [19].

For our aims, the mean square estimate for {p(s) is needed. Let

T
M(o, T) déf/|gp(a+z‘t)|2dt,
0

and ¢ = inf{c : M(0,T) <, T,0 > ¢é}. Suppose that ¢ < 1, and define Dp =
{s € C: 7 < ¢ < 1}. Here, and in what follows, the notationz <, y,z € C,y > 0
is a synonym of z = O(y) with implied constant depending on €. Denote by H(Dp) the
space of analytic on Dp functions endowed with the topology of uniform convergence
on compacta.

It is well-known that the Riemann zeta-function {(s) and some other zeta-functions
are universal, i.e., their shifts {(s +iT), T € R are approximately defined in certain strip
analytic functions; see [18-25] for results and problems. We believe that the function
{p(s) for some systems of generalized prime numbers P also has similar approximation
properties. However, every case of system P requires a separate investigation. In the
paper, we propose the following result for the approximation of analytic functions by shifts
{p(s+it). In what follows, m A denotes the Lebesgue measure of A C R. The main result
of the paper is the following theorem.

Theorem 1. Assume that the system P satisfies the axiom (1). Then, there exists a non-empty
closed subset Fp C H(Dp), such that, for all compact sets K C Dp, f(s) € Fpand ¢ > 0,

liminflmL T € [0,T]:sup|lp(s+it) — f(s)| <ep >0.
T—eo T seK

In addition, the limit

%ggo;mL{T € [0,T] : sup|Zp(s+it) — f(s)| < e}

seK

exists and is positive for all, but at most countably many, ¢ > 0.

Theorem 1 will be proved in Section 5.
Let B(X) stand for the Borelean o-field of the topological space X, and, for A €
B(H(Dp)),

Prp(A) = Zmi{T € [0,T]: p(s +ir) € A},

Theorem 1 will be derived from the next theorem on weak convergence of Prp as
T — oo.

Theorem 2. Suppose that the system P satisfies the axiom (1). Then Prp, as T — oo, weakly
converges to a certain measure Pp on (H(Dp), B(H(Dp))).

Theorem 2 will be proved in Section 4.
We recall some examples connected to the hypotheses of Theorems 1 and 2.



Mathematics 2024, 12, 459

50f 15

A problem of the validity of axiom (1) is not easy. The following interesting example
is known; see [13]. Let the system of generalized integers N'p be generated by the system

P =(2,v3,5,5V7,V11,13,13,...),

i.e., P includes 2, rational primes g = 1(mod 4) with multiplicity 2, and /g with rational
primes g = 3(mod 4). Then, it is known that

Np(x) = gx + O(x23/73>.

In [11], the system P of shifted rational primes g = 7t(r) + 1 withr > 0, 7t(r) = L« 1,
was considered, and it was obtained that

B clog, x 1
Np(x) = ax—l—O(xexp{—(l " Togyx )1/210gxlog2x}>,

where log, x = log...logx, a > 0, ¢ > 0. This shows that the estimate (1), even for a
——

n
comparatively simple system P, is difficult to reach.
Write generalized numbers in another form

=1 <1p< -

with corresponding multiplicities 1 = a1, 4y, . ... Then, we have
N p(x) = Z Am,
V<X
and
[ee] am
fp(s) = -
v
m=1 "m

In [26], the following result has been obtained. Suppose that (1) is true, and v;,41 —
U > exp{—v},} with every « > 0. Then, for o > (1+46)/2,

T
. 1 N2 ad a2
lim — t)|-dt = a2
Jim o [lep(e+inPar= )
_T -

This implies that ¢ = (14 J)/2 < 1 in this case.
We divide the proof of Theorem 2 into parts. We start with weak convergence of
probability measures in comparatively simple spaces and finish in the space 7 (Dp).

2. Case of Compact Group
Define the set

Q=]]{seC:|s|=1}.

peP

The elements of () are all functions w : P — {s € C : |s| = 1}. We equipped Q
with the product topology and operation of pointwise multiplication. Since the unit circle
is a compact set, by the Tikhonov theorem [27], () is a compact topological group. For
A € B(Q), set

P%;(A) = %mL{T €fo,7T]: (p_” ip € 79) € A}.

Lemma 1. P%p weakly converges to a certain measure Pg on (O, B(Q)) as T — co.
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Proof. It suffices to show that the Fourier transform of P?P converges to a certain continu-
ous function. Characters of () have the form

[T«* ),

peP

where w(p) denotes the pth component of w € (), and k, are integer rational numbers,
where only a finite number of them are not zero. Therefore,

T
1 * 714
Frp(k) = T/(H 4 Tk”) dr,
0

peP

where k = (k, : p € P), and the star * shows that k, # 0 for a finite set of generalized
primes p, is the Fourier transform of the measure P?P. Define two sets of k:

Klz{]k: Z*kplogp:o}, Kzz{]kzz*kplogp#O}.
peP peP
Then, we have

Frp(k) = 1—exp{—iTL* epkplogp} i
5 fk € K».
iT(1—exp{—i C*pep kplogp}) Hheh

Thus,
. (1 ifkeK,
Jim Frp (k) = { 0 ifke K.

The limit function is continuous in the discrete topology; therefore, this implies that
P2, weakly converges to the measure PS on (), B(Q))) given by the Fourier transform

Fp(k),
(1 ifkeKk,
fp(]k)_{ 0 ifk € K.

O

Remark 1. If the system ‘P is linearly independent over the field of rational numbers, then

[ 1 ik=(0),
709={ g iz (o)

In this case, the limit measure Pg is the Haar measure Py, which is invariant with respect to
translations by elements w € ), i.e., for every w € Qand A € B(Q)),

Obuviously, in this case, the numbers of P must be different.

Lemma 1 is a starting point to consider limit distributions in space H(Dp). The
simplest case is of an absolutely convergent Dirichlet series. Let 7 > 1 — 7 be fixed. For

m € Npand n € N, set
oo -(2)')

gn,P(S): Z ﬂnn(;”l)

mENp

and
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It is not difficult to see that the series for {, p(s) is absolutely convergent, say, for
o > 0. Thus, {,, p(s) is an element of H(Dp). For A € B(H(Dp)), define

Prap(A) = 2 {7 € [0,T): {pu(s +i7) € A},

Lemma 2. Assume that the system P satisfies the axiom (1). Then, Pr ,, p weakly converges to a
certain measure P, p on (H(Dp), B(H(Dp))) as T — .

Proof. Extend the function w(p) to the set N'p by using the equality

w(m) = @™ (p1)--- " (pr)

for m = p{' - - - py". Consider the mapping h,, p : Q — H(Dp) given by

w(m)a,(m
hyp(w) =Y %, w € Q.
WZENP
The latter definition implies that
_i an(m .
hp(p T ipeP)= ¥ M — (o v i), ©)
mENp m

Moreover, the absolute convergence of the series

Y w(m)an(m)

S
mENp m

for o > 0 ensures the continuity of the mapping h, p. In view of (6), we have
1 _ _ _
Prp(A) = me{T eloT): (p":peP)enha} =Plp(i}A)
forall A € B(H(Dp)). This shows that P, p = P%Ph;};, where
PRph 1 (A) = PRy (I hA), A€ B(H(Dp)),

and h;})A denotes the preimage of the set A. These remarks, Lemma 1, and the preservation
of weak convergence under continuous mappings (see, for example, [28], Chapter 5) prove
that Pr,, p, as T — co weakly converges to the measure P, p = h;% P79, where Pg is from
Lemmal. O

3. Some Estimates

To pass from the function ,, p(s) to {p(s), we need some estimates between these
functions. We start with an integral representation for ,, p(s). As usual, let I'(s) stand for
the Euler gamma-function, and, for n € N, define

In(s) = 17711”(17715) n’,
where the number 7 is from the definition of a, (m).

Lemma 3. Suppose that axiom (1) is valid. Then, for s € D, the representation

URNES
Gpls) = 5 [ Epls+ () d: ?

y—i

100
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holds.
Proof. Let a and b be positive numbers. Then, the classical Mellin formula

1 a-+ico

— | T *dz=e"?

7o / (2) z=e

a—100
is valid. Therefore, for m € Np,
1+ico 1+ico (—2/m)
z\ (m\(=z/my [z
Tl ( ri=J(— d{ =) = .
27'(1 " 27'(1 / (n)(n) (;7) an(m)
1 —ico 1 —ico
Hence,
( ) 1 1+ico .
an(m
Cnp(s) = Z = — Z ——1,(z)dz
meNp me 27t meNp 17— ico metE
1+ico
1 1
= / ( y W)zn(z) dz. ®)
—ico meNp

Since 7 > 1 — 7, we have Re(s + z) > 1. Moreover, the properties of the function I'(s)
ensure the change in order integration and summation. Thus, (8) implies the representation
of the lemma. O

There is a sequence of compact embedded sets {K; : | € N} C Dp, Dp = 181 Kj, such

that every compact set K C Dp lies in some K;. Then,

£yt _SUPaci [81(5) — 20

7 7 EHD 7
L2 T o mE) —m() Sv82 € HDP)

p(g1,82) =

is a metric in % (Dp) inducing its topology of uniform convergence on compacta.

Lemma 4. Suppose that axiom (1) is valid. Then,

lim hmsup /p p(s+it),lpp(s+it)) =0.

n—oo T—

Proof. By the formula for p, it is sufficient to prove that, for every compact set K C Dp,

lim hmsup T /sup|§p s+iT) — {yp(s+it)| =0. )

n—oo seK

Thus, fix a compact set K C Dp. Then, there is € > 0 satisfying v+e<o<1l—¢/2for
o+ it € K. We apply Lemma 3. Lety = 1,and 171 = 0 4 ¢/2 — 0 with above 0. Then 77 < 0.
The integrand in (7) possesses a simple pole at z = 0 (a pole of I'(s)), and a simple pole at
z =1—s (apole of {p(s + z)). Actually, it is obvious that 0 € (1,7) and 1 — o € (11, 7).
Moreover, sincey; >0 +¢/2—1+¢/2,0 —1+4¢ > —1, the pole z = —1 of I'(s) does not
lie in the strip 771 < Rez < 7.
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Now, the residue theorem and Lemma 3 yields, for s € K,

71 +ico
o [ o) dz+ Res To(s+ 2)h(a).

171—i00

Cnp(s) —Tp(s) =

Hence, for s € K,

Cnp(s+iT) — {p(s +iT)

o)

/ gp((H—2+zr—|—zt+zu)ln(o+§—a~l—zu) du+al,(1—s—it)

—00

27r

[ee]
1 A e . ) ., € ) .
—2—/§p U+§+zr+zu)ln(a+§fs+zu>du+aln(1fsfzr)

sup

< /‘@p o+ = +17+1u)
seK

ln((7+f —s+zu)‘du+sup|ln(1—s—zT)|
2 seK

Therefore,

T
7 [suplp(s +i0) — Gup(s+ i) de

sek

0
/( /‘@p a+2—0—17+1u>’dr) sup|ly(1 —s+iu)|du

seK
T

/suII<3|l (1—-s—it)|dt
o €

e . (10)

By the definition of 7,

T

/‘gp(a+§+n)‘2dr < T
0

Therefore, in view of the Cauchy-Schwarz inequality,

T T 1/2
/’@p(ﬁ—kg—i—ir—i—iu)‘d'rg ﬁ(/’ép(a'—i-;-i-i'[-i-iu)'zdl’)
0 0

1/2
T+ Jul /

< VT / ‘§p<?r+§+i’r>‘2dr

= ul
< VT(T + |u))V? <, ﬁ(ﬁ+ \/a)
<e T(14 Vu). (11)
The most important ingredient of the function /,,(s) is T'(s) and is estimated as

I'(c+it) < exp{—c|t|]}, ¢>0.
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Therefore, for s € K,

Iy (?T+ % +1—s+ iu) < nt 2T exp{—clu — t|} <gx n"?exp{—ci|ul}, ¢ >0.

This, together with (11), yields

+oo
Ji <gen ? / (1+ Vu) exp{—ci|u|} du < x n~ /> (12)

—00

Similarly, as above, we obtain that, for s € K,
Li(1—s—it) < n'"Texp{—c|t+ 1|} <k n' " Cexp{—cy|7|}, 2> 0.

Therefore,
1 T
L <k nl_‘f_g? /exp{—czh\}dr g ntTrErTL
0

The latter bound, (12) and (10), prove (9). The lemma is proved. O

4. Proof of Theorem 2

We derive Theorem 2 from Lemmas 2 and 4 and the following statement (see, for
example, [28], Theorem 4.2) is applied to the case (Dp).

Lemma 5. Assume that &, and &,, n,k € N, are H(Dp)-valued random elements given on a
space (X, B(X),v). Let

D D
— —
Cnk = Gk Ck P ¢

and fore > 0,
lim lim sup v{p (En,gnk) > z—:} =0,

k—eo 30
D e > D
where — stands for the convergence in distribution. Then ¢y, — ¢.
n—o00
We remind the reader that P, p is from Lemma 2. Using Lemma 5 requires some

convergence properties for P, p. Recall that the sequence {P, p : n € N} is tight if, for
every € > 0, there is a compact set K C H(Dp) such that

Pyp(K)>1—¢
with all n € N,

Lemma 6. Suppose that the system P satisfies the axiom (1). Then, the sequence {P,p : n € N}
is tight.

Proof. Let K| be a fixed compact set in the definition of p. Then, the Cauchy integral
theorem, for s € Kj, implies

gp(S-l-l'T) = ﬁ/wdzl
L

zZ—S
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where L is a closed simple curve lying in D and enclosing the set K;. Hence,

. d . | .
sup|Zp (s + i) 2 < /|Z|_Z||2/|Cp(z+zr)|2|dz| <K, /|Cp(Rez+zImz+lT)\2|dz|.
SGKZ T S T 7

Therefore,

T
1 ) .
T /su1}<)|§p s+it))*dr <K /(T/|Cp(Rez+zImz+zT)|2dT) |dz| <k, 1 < B; < co.
sl r 0

From this, we have

T
1
limsup — /sup\Cp(s—l—iTﬂ dr < /By
T—o0 T sekK;
Then, in view of (9),
1/ r
sup limsup — /sup\gn p(s+it)|dT <suplimsup = [ sup|lp(s+iT) — {pp(s+iT)|dT
neN T—oo TO s€K; neN T—oo TO se€K;
+ limsup — /sup|§p s+it)|dt
T—c0 T s€K;
<G < oo (13)

Let Br be the random variable on the space (O, A,v) and uniformly distributed in
[0, T]. Define H(Dp)-valued random elements

&t =T n(s) = Cup(s +iPr)

and &, = &(s) having the distribution P, p. We fixe > 0, and set V = V; = 27le71C;.
Then, in virtue of (13) and Lemma 2,

v{sup|§n(s)| > Vl} < limsupv{sup|(;‘T,n(s)| > Vl}

sek; T—c0 sek;
T

< suplimsup — /sup|§n,p(s +it)|dT = il (14)
neN T—oo Vl seK; 2

foralln € N. LetK = {h € H(Dp) : supseg, |h(s)| < Vi, 1 € N}. Then, K is a compact set
in H(Dp), and, by (14),

Pyp(K)=1-Pyp(H(Dp)\K) =1-Pyp (g(S) € H(Dp) : 3l s;l}f 1g(s)] = Vz)

1 —Pn,p@{g(s) & H(Dp) : sup g(s)| > w})

I=1 sek;

im( ) € H(Dp) sup|g<s>>w>

=1 s€K;

= iv{supén(ﬂ/ } 1—522_—1—8

1=1 SGK]
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for all n € N. This proves the lemma. [J

Proof of Theorem 2. We will apply Lemma 5. Since by Lemma 6, the sequence {P, p :
n € N} is tight, it is relatively compact in virtue of the classical Prokhorov theorem; see,
for example, [28], Theorem 6.1. This means that every subsequence of {P, p } possesses
a subsequent weak convergent to a probability measure on (H(Dp), B(H(Dp))). Thus,
thereis {P,, p} C {P,p} and a probability measure Pp on (*(Dp), B(H(Dp))) such that
P,, p converges weakly to Pp as r — co. Using the notation of the proof of Lemma 6,
we have

D
Cn, — = Pp-. (15)
Moreover, in view of Lemma 2,
D
ST — Gn- (16)
T—o0

Define one more # (Dp )-valued random element

&r = Cr(s) = {p(s +iPr).

Then Lemma 4 implies that, for every e > 0,

lim lim supv{p(g’T, gT,n) > 8}

r—00 T—co

= lim limsup 1mL{T €[0,T]:p(Cp(s+1iT),Cn,p(s+iT)) > €}

r—e0 o T

©
= T—o0

T
< lim limsup% /p(gp(s+ir),§nr,p(s+ir))dT =0.
0

This equality, together with (15) and (16), shows that for ¢y,, 1, and 5 T, the conditions
of Lemma 5 are fulfilled. Therefore, the relation

&r —2— Pp
T—o0

holds, and this implies the weak convergence of Prp to Pp as T — oco. The proof is
completed. [

5. Proof of Theorem 1

Theorem 1 is a consequence of Theorem 2 and the equivalents of weak convergence.

We remind the reader that the support of the measure Pp is a closed minimal set
Sp C H(Dp) satisfying Pp(Sp) = 1. The set Sp contains all ¢ € H(Dp) such that for any
open neighborhood G of g, the inequality Pp(G) > 0 holds.

Proof of Theorem 1. Let Fp be the support of the limit measure Pp in Theorem 2. Then,
Fp is a closed set, and Fp # @ because Pp(Fp) = 1. We will prove that the set Fp has
approximation properties of the theorem.

Suppose that f(s) € Fp, and

Ge = {h € H(Dp) : sup |i(s) — f(s)| < e},

seK

i.e., G, is an open neighborhood of an element f(s) of the support Fp. Hence, by the
support property,

Pp(Ge) > 0. 17)
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Moreover, using Theorem 2 and Theorem 2.1 of [28] with open sets implies the inequality
T—c0

Thus, the notations for Prp and G; lead to

liminflmL T € [0,T] :sup|lp(s+it) — f(s)] <ep > 0.
T—00 T seK

To prove the second statement of the theorem, we deal with continuity sets. We remind
the reader that a set A € B(X) is a continuity set of a measure P on (X, B(X)) if P(0A) =0,
where dA is the boundary of A.

The set dG; of the set G, belongs to the set

{h € H(Dp) : sup |h(s) — f(s)| = s}.

seK

Hence, the sets 0G,, and G, for different £; and e, have no common elements. From
this remark, it follows that Pp(dG,) > 0 for at most countably many values of ¢, or, in
the above terminology, the set G, is a continuity set of the measure Pp for all but at most
countably many & > 0. Thus, Theorem 2 and Theorem 2.1 of [28] with continuity sets show
that the limit

lim Prp(Ge) = Pp(Ge)
T—o0

exists, and in view of (17), is positive for all but at most countably many ¢ > 0. This
and the notations for Pr p and G give the second assertion of the theorem. The theorem
is proved. 0O

6. Conclusions

Every system P of real numbers 1 < p; < pp < -+ < pr < -+, limyseo pn =
is called generalized prime numbers. We consider the zeta-function {p(s), s = o + it
associated with the system P. We assume that the system of generalized integers Np
obtained from P satisfies the axiom

Y 1=ax+0(x’), a>0,0<d<1
m<x

meN

Then, for o > 1, the function {p (s) is defined by

Ips)= ¥ — = n(l—pﬂ)l,

men M peP

and has analytic continuation to the region § < ¢ < 1. Additionally, we suppose that {p(s)
has the bounded mean square

T
/O p(o+it)2dt <o T, T — oo,

for some o > ¢ with some 6 < 7 < 1.

We consider probabilistic and approximation properties of the function {p(s). We
prove a limit theorem for {p(s) in the space of analytic functions H(Dp), Dp = {s € C:
0 <0 <1},ie., that

%ML{T €[0,T): ip(s+it) € A}, A€ B(H(Dp)),
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converges weakly to a certain probability measure Pp as T — co. From this, we deduce
that the shifts {p (s + iT) approximate a certain closed subset of H(Dp).

For identification of the limit measure Pp and universality of the function (p(s),
some stronger restrictions for the system P are needed. We are planning to apply this in
the future.
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