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Abstract: In accordance with the actual production circumstances of enterprises, a scheduling
problem model is designed for open-shop environments, considering AGV transport time. A
Q-learning-based method is proposed for the resolution of such problems. Based on the characteris-
tics of the problem, a hybrid encoding approach combining process encoding and AGV encoding is
applied. Three pairs of actions are constituted to form the action space. Decay factors and a greedy
strategy are utilized to perturb the decision-making of the intelligent agent, preventing it from falling
into local optima while simultaneously facilitating extensive exploration of the solution space. Finally,
the proposed method proved to be effective in solving the open-shop scheduling problem considering
AGV transport time through multiple comparative experiments.
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1. Introduction

The open-shop scheduling problem (OSP) constitutes a paradigmatic NP-hard class
problem [1]. In contrast to the job-shop scheduling problem (JSP), where job operations
adhere to a fixed sequence of processing steps, the OSP employs a non-fixed sequence-
processing methodology. The OSP adopts a non-fixed sequence-processing methodology
to mitigate the challenges associated with a fixed sequencing of operations during job
processing. This approach enhances the flexibility of manufacturing processes within
enterprises, consequently promoting advancements in machine-utilization rates and overall
production efficiency. It is noteworthy that the OSP has a larger solution space compared
to the traditional JSP, thereby containing greater potential for optimization.

Presently, the minimization of maximum completion time stands as the most widely
studied performance-evaluation metric in the field of open-shop scheduling. Wan et al. [2]
proposed a method for solving the open-shop scheduling problem through link prediction
with graph convolutional networks. They represented the state of the open-shop scheduling
problem using a disjunctive graph and designed a scheduling model and algorithm based
on graph convolutional networks. Finally, they demonstrated that their approach achieved
better and more stable experimental results when solving random instances of the problem.
Rahimi et al. [3] formulated a no-wait open-shop scheduling problem model considering
transportation time, with the objective of minimizing the maximum completion time. They
devised a hybrid simulated annealing metaheuristic algorithm to solve small-scale instances
of the problem. Experimental results indicate a significant improvement in performance
with the enhanced approach. Li et al. [4] incorporated discounting memory into a graph
neural-network model to address the open-shop scheduling problem with the objective of
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minimizing makespan. They utilized the construction of incremental graph representations
to transform the scheduling problem into a sequence problem. In the final experimental
results, they demonstrated that their method outperformed traditional approaches and
could achieve higher-quality solution sets. Abreu et al. [5] proposed a mixed-integer linear
programming model and designed a novel efficient cross-domain search method for solving
the makespan objective in open-shop scheduling. The final computations demonstrated the
effectiveness of their metaheuristic approach. Yan et al. [6] designed a solving framework
based on deep reinforcement learning for addressing workshop scheduling problems. The
proposed method’s high performance was validated through numerical results. Kurdi [7],
with the objective of minimizing makespan, introduced a novel metaheuristic algorithm to
enhance the exploration capability of the optimized ant colony. This method was compared
with traditional approaches, and the results indicated that, within a finite timeframe, it
could provide superior solution outcomes. Wang et al. [8] improved a metaheuristic ap-
proach for solving open-shop scheduling problems with the task objective of minimizing
makespan. The feasibility of the method was ultimately validated through experiments.
Abreu et al. [9] proposed an approach that combines constraint programming with an
adaptive large neighborhood search to address the open-shop scheduling problem with
an integer linear programming model. The method was validated with the objective of
minimizing makespan, demonstrating its reliability. Wang et al. [10] employed a disjunc-
tive graph model to extract production times for the open-shop scheduling in the wind
turbine-production process. An enhanced Pythagorean hesitant fuzzy approach was uti-
lized to address multi-objective concerns related to the maximum completion time and
machine workload. Experimental results demonstrated its capability to enhance produc-
tion efficiency by over 15% in both small- and large-scale problem instances. Fu et al. [11]
proposed a heuristic, knowledge-based, enhanced artificial bee colony algorithm and de-
signed rules for initializing the population. The effectiveness of the method was ultimately
validated through comparison and statistical analysis. Gao et al. [12] combined heuristic
methods with Q-learning to solve a mathematical model problem considering battery
capacity and uncertain drawing times with the objective of minimizing the maximum
completion time. The performance of the proposed method was ultimately demonstrated
through experiments on various scales. Abreu et al. [13] designed two novel construc-
tive heuristic algorithms and combined them to solve the open-shop scheduling problem
with the objectives of minimizing makespan and sequence-dependent setup times. The
effectiveness of the method was ultimately validated through experimental testing. Gong
et al. [14] considered the objectives of minimizing makespan and total delay time. They
transformed the problem into the state features and actions of an intelligent agent using
reinforcement learning, they designed heuristic rules for problem-solving, and they experi-
mentally demonstrated the effectiveness of the proposed method. Xu et al. [15] employed
Q-learning to solve a two-stage hybrid workshop scheduling problem with the objectives of
minimizing makespan and total energy consumption. Experimental results demonstrated
an average performance improvement of over 5%, validating the effectiveness of their
approach. Mejia et al. [16] designed an improved variable neighborhood search method
to solve the open-shop scheduling problem and validated the effectiveness of the method
across multiple instances.

With the continuous evolution of global trade and logistics technologies, countries
worldwide are increasingly establishing “smart factories” [17,18]. In recent years, in-depth
research by scholars on the modeling and optimization of scheduling problems has led
to the gradual proliferation of scheduling methods in practical applications within enter-
prises [19]. Automated Guided Vehicles (AGV) are increasingly favored by enterprises as
flexible and efficient transportation tools in automated material-handling systems, man-
ufacturing workshop systems, and container-handling applications [20]. Wu et al. [21]
designed an improved narrow-path search method to optimize AGV paths. This method
incorporates strategies such as parent-node reselection and path pruning, significantly
reducing the number of turning points. Through comparison with other algorithms, the
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efficiency of the method was ultimately demonstrated. Durst et al. [22] designed a novel
deep reinforcement learning method optimized with a proximity strategy for solving AGV
scheduling problems. The effectiveness of the method was validated through comparisons
with cases and traditional heuristic algorithms. Li et al. [23] consider the interdependence
between workshop CNC machines and AGVs, proposing an algorithm that combines AGV
coordination and harmony search. Experimental validation indicates the effectiveness
of this method in reducing the waiting time for CNC machines and enhancing overall
production efficiency. Liu et al. [24] applied an improved reinforcement learning method
to AGV path planning. They designed a new dynamic reward function and action se-
lection method, ultimately demonstrating through experimental cases that the method
can effectively assist AGVs in obtaining better paths. Zhou et al. [25], aiming at the com-
pletion time of job processing, machine workload, and carbon emissions, investigated
AGV allocation strategies using the NSGA-II method, incorporating heuristic strategies.
The effectiveness of the AGV allocation strategy is validated, and the optimal number of
AGVs is determined under specific conditions. Liang et al. [26] designed a three-stage
integrated scheduling algorithm to solve the AGV route-planning problem in a road-grid
model. Through comparisons with genetic algorithms with the task objective of mini-
mizing makespan, they ultimately validated the efficiency of the proposed method. Wu
et al. [27] introduced the Laplace distribution into the update process of the ant colony
algorithm, thereby accelerating the convergence speed of the algorithm and optimizing
the smoothness of paths during AGV scheduling. To address unforeseen events such as
machine failures and emergency dispatching during AGV scheduling, Yang et al. [28]
designed a hierarchical planning-based method for coordinating and scheduling AGV
fleets in workshops. Through simulation experiments, they demonstrated that this method
could more efficiently organize AGV transportation within the workshop, showcasing
the effectiveness of the approach. Zhang et al. [29] established a hybrid linear model and
applied it to an enhanced NSGA-II method to tackle scheduling problems with objectives,
including completion time, machine workload, and energy consumption. Experimental
results demonstrated the reliability and robustness of the proposed method. Xue et al. [30]
employed reinforcement learning methods to solve the AGV scheduling problem with the
objectives of minimizing makespan and minimizing job delays. Experimental results indi-
cated that this method could provide better solutions, demonstrating its good performance.
Peng et al. [31] designed a multi-agent reinforcement learning approach to solve the flexible
job-shop scheduling problem, considering flexibility and variations in transportation time.
In case experiments, they ultimately demonstrated characteristics of their method, such as
high stability and strong generalization capability. Li et al. [32] proposed a discrete invasive
weed-optimization algorithm to study the AGV scheduling problem with time and capacity
constraints. They designed a heuristic method to reduce the computational complexity of
local searches. Ultimately, the effectiveness of the method was verified through instances.

In the context of traditional open-shop scheduling problems, the transportation time
between machines is often overlooked. Typically, it is assumed that transportation times
are negligible and are not taken into consideration during the scheduling process. However,
this assumption deviates significantly from reality, and the transportation time of AGVs has
an undeniable impact on the actual scheduling solution [33]. The open-shop scheduling
problem, considering AGV transportation time, represents an extension of the traditional
open-shop scheduling problem. This question comprehensively incorporates the time
required for the transportation of jobs between machines, making it more aligned with real
production processes and posing increased computational challenges.

With the development of artificial intelligence, reinforcement learning has garnered
widespread attention from researchers since its inception. Reinforcement learning possesses
the capability to engage in continuous trial-and-error interactions with the environment,
learn through rewards, and select optimal or near-optimal actions to achieve long-term
objectives. This characteristic, as outlined in reference [34], has gradually found widespread
applications in various domains such as robot control, gaming, and automated driving.
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However, currently, reinforcement learning is primarily applied to job-shop scheduling
problems, with a limited application to open-shop scheduling problems that consider AGV
transportation times. Yang et al. [35] integrated deep reinforcement learning and graph
neural networks to construct an agent model that translates the state of job-shop scheduling
problems into scheduling rules using a disjunctive graph representation. They applied this
approach to solve job-shop problems with the objective of minimizing makespan, demon-
strating the feasibility of the method. Fu et al. [36] proposed a stochastic simulation-based
multi-universe optimization method using a Markov model to solve scheduling problems
with the objectives of minimizing energy consumption and maximizing disassembly profit.
Through experiments, they demonstrated that the performance of their solution surpassed
some current methods. Song et al. [37] applied deep reinforcement learning to job-shop
scheduling, transforming the scheduling problem into a Markov decision process, and
solving it. Through experimental examples, they demonstrated that their method outper-
formed traditional approaches. Abbod et al. [38] proposed a new reinforcement learning
model based on the Q-learning model to solve the flexible job-shop scheduling problem
with the objective of minimizing makespan. In the end, they demonstrated its superior
performance. Liu et al. [39] proposed a framework based on graph neural networks and
deep reinforcement learning, transforming graph states into node embeddings for learning.
They validated the method for the workshop-scheduling problem, demonstrating excellent
efficiency and scalability. Zhu et al. [40] designed a dual deep Q-network method to solve
problems considering intra-job and machine scheduling. They demonstrated the effective-
ness of their method through comparisons with benchmark cases. Park et al. [41] combined
reinforcement learning and graph neural networks to solve job-shop scheduling problems.
They trained the algorithm using a proximity-based strategy optimization method and
experimentally demonstrated that the proposed method exhibits high generalization ca-
pability and fast-solving efficiency. Ma et al. [42], in solving scheduling problems with
the objective of minimizing makespan, employed reinforcement learning to obtain high-
quality solution sets through local search. This enhancement indicates improved overall
solution efficiency and performance. Finally, through experiments on various scales, the
effectiveness of the approach was validated. Zhang et al. [43] combined deep reinforcement
learning with graph neural networks to solve job-shop scheduling problems. This approach
effectively captures information about different types of nodes and topologies within the
graph, and its effectiveness was demonstrated on benchmark cases. Liu et al. [44] proposed
a deep reinforcement learning-based approach to solve job-shop scheduling problems. They
used the dual deep Q-network algorithm to describe the relationship between scheduling
objectives and production. Simulation experiments ultimately demonstrated that their
proposed framework significantly improves solution quality. Chang et al. [45] employed a
combination of double-layered Q-learning and deep Q-learning to address multi-objective
flexible problems, demonstrating superior solution quality and generalization capability in
the obtained results. Lin et al. [46] devised two Q-learning-based strategies to enhance the
solving capability of local search, substantiating the effectiveness of their approach through
a case study.

Therefore, this study aims to extend the application of Q-learning, a reinforcement
learning method, to address open-shop scheduling problems considering AGV trans-
portation time. The potential advantages of the proposed method lie in its multifaceted
contributions. Firstly, the application of Q-learning, a reinforcement learning method, to
address open-shop scheduling problems considering AGV transportation time extends the
method’s applicability to a broader domain. Secondly, the method introduces a hybrid
encoding scheme, enabling the intelligent agent to continuously explore the environment
and obtain a set of optimal target solutions. This encoding scheme enhances the algorithm’s
adaptability to complex problems. Thirdly, the research objectives encompass a compre-
hensive consideration of energy consumption metrics for AGV transport time and load
under different scenarios, as well as job completion time. This approach aligns the method
more closely with practical production needs. Fourthly, the evaluation of Q-learning un-
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der diverse weightings examines the algorithm’s performance under various conditions,
enhancing the method’s flexibility and applicability. Finally, thorough validation through
numerous comparative experiments provides substantial support for the effectiveness of
the proposed method in practical applications.

The remaining sections are organized as follows: Section 2 presents an overview of
the problem description and the assumed conditions. Section 3 introduces an optimization
method and establishes the corresponding models. Section 4 provides an experimental
evaluation of the algorithms. In Section 5, conclusions and future research directions
are provided.

2. Problem Description and Basic Assumptions
2.1. Problem Description of Scheduling in Open Shop Considering AGV Transportation Time

The open-shop scheduling problem considering AGV transportation time is charac-
terized by the processing of i jobs on M machines, where each job consists of j operations.
Within a specified timeframe, each machine can process only one job, and each job can be
handled by only one machine. The processing and transportation of jobs between different
machines in the open shop scheduling problem, requiring the assistance of V AGV, present
specific operational scenarios. At the initiation of the processing cycle, both jobs and AGV
are initially positioned in an inspection area with the assumption that they have already
undergone incoming inspection and are ready for processing. Upon completion of all job
processing, AGVs are presumed to be automatically stationed in proximity to the machine
where the last operation was conducted. This problem entails the consideration of various
temporal factors, including the time required for transporting jobs between the inspection
area and machines, the duration for AGV to transfer jobs between different machines, and
the pre-emptive movement of AGV while anticipating the completion of operations for
subsequent transportation. Consequently, the scheduling task necessitates the arrangement
of the processing sequence of jobs on different machines and the assignment of tasks for
the transportation of each job by different AGVs. Finally, the performance evaluation is
based on the completion time and the energy consumption of the AGV.

By incorporating a weighted treatment into the energy consumption during AGV
transportation processes for both empty and loaded states, as well as the completion time,
the final objective function is expressed as Formula (1). In the formula, α represents the
weighting factor, Cmax pertains to the minimization of the maximum completion time, EC
denotes AGV energy consumption, P is assumed to be a constant default value of 1, and
L defaults to 1.3 [47]. The objective functions are provided by Equation (1), and some
constraints are provided in Equations (2)–(4).

F = min(α× Cmax + (1− α)× EC) (1)

EC = ECf + ECk (2)

ECf = P ∗ L ∗ (∑ tf(AGV1)(m1, m2) + ∑ tf(AGV2)(m3, m4)) (3)

ECk = P ∗ L ∗ (∑ tk(AGV1)(m1, m2) + ∑ tk(AGV2)(m3, m4)) (4)

In the open-shop scheduling problem considering AGV transportation time, certain
symbols are represented as shown in Table 1. Symbols referenced in subsequent chapters
will adhere to the consistency maintained with those described in the table.
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Table 1. Related mathematical notations and their definitions.

Symbol Description

oij The j-th processing operation of job i.
M The number of Machines.
V The number of AGV.
mb The machine at which AGV docks upon the completion of the preceding operation.
mb The machine at which AGV docks upon the completion of the preceding.
n Total Number of Processing Operations.

toij The processing time for the j-th operation of job i.
At Action Space.

moij The machine where the j-th operation of job i is processed.
mboij The machine where the preceding operation of the j-th operation of job i is processed.
Tbm The completion time of the machine after finishing the preceding operation.
Toij The completion time of the j-th operation of job i.

TbAGVr The completion time of the AGV after finishing the preceding transportation task.
Cmax Minimizing the Maximum Completion Time.
CM

j The completion time on a specific machine.
EFM

j The effective processing time on a specific machine.
P The AGV power consumption.
L The AGV load factor.
α The weighting factor.

AGVr The AGV Identification Number.
tk(m1,m2) The empty transit time of AGV from machine m1 to machine m2.
tf(m1,m2) The loaded transit time of AGV from machine m1 to machine m2.

EC The total energy loss generated by AGV during the transportation process.
ECf The energy loss incurred by AGV during the loaded transportation process.
ECk The energy loss incurred by AGV during the empty transportation process.

2.2. Basic Assumptions

To simplify the problem, the assumptions (1)–(7) are made for the open-shop schedul-
ing process, considering AGV transportation time.

1. Prior to the commencement of processing, all jobs are assumed to have undergone
incoming inspection, are parked in the inspection area, and are a unit distance away
from the first processing machine.

2. After the initiation of processing, the distance covered by AGV between machines is
considered the unit length.

3. Each AGV can transport only one job at a time, and the transportation speed
is constant.

4. Upon completing the current transportation task, an AGV can dock near the process-
ing machine if there is no subsequent transportation task.

5. At any time, each job can be processed on only one machine and transported by
one AGV.

6. The processing times for each operation of the jobs are provided by the test dataset.
7. Time losses, occurrences of faults, and collisions are temporarily disregarded during

the loading and unloading of jobs by AGV.

The constraint conditions are represented by Equations (5)–(9).

8. When n equals 1, Equation (5) represents the constraint condition for the first operation
of processing the initial job:

C(Toij) ≥ t f (0, moij) + toij (5)

9. When n is not equal to 1, Equations (6)–(9) represent the scheduling constraints
involving AGVs. These include constraints related to the transportation of jobs by
AGVs and constraints concerning the availability of machines for processing jobs
before the start of operations.
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Tb AGVr + tk(mb, mboij) ≤ mboij (6)

Tb AGVr ≥ mboij + t f (mboij, moij) (7)

Tb AGVr + tk(mb, mboij) > mboij (8)

Tbm ≥ Tb AGVr + tk(mb, mboij) + t f (mboij, moij) (9)

3. Algorithm and Model Design

The central concern in the discussion of reinforcement learning is the maximization of
rewards by an agent operating in a complex and uncertain environment. In reinforcement
learning, the agent and the environment engage in continuous interaction. Upon receiving
the current state of the environment, the agent takes corresponding actions and feeds
back these actions to the environment. Subsequently, the environment, upon receiving the
agent’s action, transitions to the next state and conveys this new state to the agent. The
specific interactive process is illustrated in Figure 1.
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Q-learning is a reinforcement learning method based on value functions. It can learn
from data generated by scheduling systems according to different strategies and apply
this knowledge to train its model during the solving process, thereby improving the
training results of the scheduling system. The Q-value update computation is depicted by
Equation (10). Table 2 shows the interpretation of the symbols in the Equation (10).

Q(s, a )′ ← Q(s, a) + α[r + γmax
a

Q(s′, a)−Q(s, a)] (10)

Table 2. The interpretation of symbols in the formula.

Symbol Interpretations

α
The learning rate determines the speed of model convergence during the solving
process. If it is too small, it may affect training efficiency, while if it is too large, it

can lead to the model’s inability to converge.
γ The discount rate represents the impact of future outcomes on current behavior.
r The environment provides rewards to the agent based on its actions.

Q (s, a) In state s, the action a corresponding to a certain Q-value of the agent.
Q (s′, a′) In the new state s′, the action a′ corresponding to a certain Q-value of the agent.

In the process of solving the open-shop scheduling problem considering AGV trans-
portation time using Q-learning, the focus of Q-learning is to construct a Q-table during
the training process to store the computed Q-values. The Q-table plays a crucial role
in Q-learning as it is used to store Q-values for different actions corresponding to each
state. In solving the open-shop scheduling problem with the objective of minimizing
completion time, the experimental cases involve T7, T10, T15, and T20. The expansion
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from the small-scale T7 to the large-scale T20 is illustrated. In the small-scale T7 case, the
Q-table is 20,000× 6, where 20,000 represents the number of states obtained when the agent
interacts with the environment during exploration, and 6 indicates the number of actions
the agent can take for each exploration (six actions in total). The values in the Q-table for
states are derived from the decoding mapping of changes in the two-dimensional encoding
composed of process codes and AGV codes when the agent completes a random action
based on the greedy policy in the current state. Due to the relatively small scale of T7, the
values of states change relatively little, and the agent can effectively explore the entire state
space with epochs ranging from 100 to 300, supplementing and completing the Q-table.
In the large-scale T20 case, the Q-table is designed at 300,000 × 6. Due to the significant
increase in the problem scale, the uncertainty in state values obtained by the agent in space
undergoes considerable variation after random actions based on the greedy policy. There-
fore, the design of the Q-table is much larger than that of the small-scale case, leading to a
rapid increase in the content of the Q-table, occupying a considerable amount of computer
memory and increasing computational costs. Our approach to addressing this issue in
experiments is to utilize the GPU acceleration feature provided by PyTorch, migrating the
Q-table calculation process to the GPU for parallel computation to enhance computational
efficiency. By leveraging the parallel processing capability of the GPU, we can accelerate
the update and computation processes of the Q-table, thereby reducing memory usage
and lowering computational costs. This method effectively addresses the challenge of
the Q-table rapidly increasing in large-scale problems, improving the performance and
scalability of the reinforcement learning algorithm.

Random noise and greedy strategies are introduced to disrupt the agent’s judgments
and provide ample opportunities for environmental exploration. Finally, the Q-table is
completed to offer a comprehensive and authentic data source for the selection of agent
actions. The calculation method for Q-values is provided in Algorithm 1.

Algorithm 1 Q-value updating process

1: Input:
2: Toij, α, γ, n, Q (s, a)
3: Output:
4: Q (s, a)’
5: Procedure
6: for (i = 1; i ≤ n2; i++) do
7: at← At[noisy-greedy]
8: St+1 ← at
9: At+1, r← max(Q), St+1
10: Q (s, a)′ ← Q (s, a) + α [r + γmaxQ (s′, a) − Q (s, a)]
11: end for
12: Return Q (s, a)’

The specific iteration process of the Q-learning strategy is as follows: Firstly, initialize
the number of read workpieces and processing machines. Set the gamma to 0.75, learning
rate to 0.0001, epoch to 300, and step size to 500. Then, enter the training and solving
processes of the model. Subsequently, the intelligent agent randomly selects an action
based on the greedy policy and enters a new state after completing the action. In the new
state, after taking an action, the agent examines all actions in the new state, selects the
action with the maximum Q value, and then chooses that action. Using Equation (10), the
Q value of the current action is updated after completing all calculations. After the update,
the intelligent agent continues to explore the new state, repeating the above process. It
then moves to the maximum number of steps set for termination. The output prints the
scheduling strategy and results implied by the maximum Q value in the Q-table.

For the characteristics of the open-shop scheduling problem considering AGV trans-
portation time, a two-dimensional hybrid encoding is employed, combining process encod-
ing and AGV sequence encoding. The first dimension represents process encoding, and the
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second dimension represents AGV encoding. The process encoding consists of randomly
ordered non-repeating integers from 1 to i× j, where 1, 2. . ., j represent different processing
operations of Job 1; j + 1, j + 2. . ., j + j represent different processing operations of Job 2, and
so on. The AGV sequence encoding consists of 3 × 3 instances of 1 or 2 (assuming V is 2).

Table 3 and Figure 2 illustrate a coding instance for the open-shop scheduling problem
considering AGV transportation time. The symbol “8” represents the second operation
of processing Job 3, which is transported by AGV2, indicated by the first digit “2” in the
AGV encoding, to the corresponding machine for completion. In addition, “5” represents
the second operation of processing Job 2, which is transported by AGV2, as indicated by
the second digit “2” in the AGV encoding. Also, “3” represents the third operation of
processing Job 1, which is transported by AGV1, indicated by the third digit “1” in the
AGV encoding, to the respective machine for completion. The remaining digits follow a
similar pattern.

Table 3. Processing time of a job on a machine.

Machine 1 Machine 2 Machine 3

Job 1 1 (1) 3 (2) 2 (3)
Job 2 2 (4) 1 (5) 3 (6)
Job 3 3 (7) 2 (8) 1 (9)
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States are commonly employed to depict the context or features of a system or environ-
ment at a specific moment, enabling intelligent systems to make corresponding decisions.
States can be comprehended as descriptions encompassing a set of action-related infor-
mation. This enables intelligent systems to perceive and understand their surrounding
environment, facilitating appropriate decision-making. In solving the open-shop schedul-
ing problem considering AGV transportation time, to enhance the efficiency and diversity
of interaction between the intelligent agent and the environment, the state is set as a two-
dimensional entity. The first dimension represents the current process encoding of the
intelligent agent, and the second dimension denotes the current AGV encoding of the
intelligent agent. Through decoding, the two-layer encoding provides the state observation
corresponding to the actions in the Q-table. Figure 3 illustrates a schematic representation
of the state features in the Q-table.

An action refers to the output received by the environment based on the current state
of the intelligent agent. When using Q-learning to solve the open-shop scheduling problem
considering AGV transportation time, the encoding method involves a combination of
process encoding and AGV sequence encoding, resulting in different crossover points
as the action space. The size of the action space directly influences the efficiency and
convergence speed of the algorithm. A smaller action space may lead to faster convergence
in the learning process but could be prone to local optima. Conversely, a larger action
space may require more attempts to find the optimal strategy in a complex environment,
leading to increased learning time. Therefore, considering the practical situations in open-
shop scheduling, the task complexity of finishing time and energy-consumption objectives
under different weights, and the optimal strategy of the Q-learning algorithm’s random
exploration, three different actions were designed by randomly swapping process or AGV
encoding positions at 1, 2, and 3 locations as the action space. For instance, if the intelligent
agent acts 1, firstly, a random target is selected from the process or AGV encoding as the
action target. Then, a random swap of 1 position is performed on the action target, while
the unselected action target remains unchanged. The combination of the two forms of the
action variation, as illustrated in Figure 4, depicts two action variation diagrams.
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Rewards play a crucial role in the interaction between the intelligent agent and the
environment, serving as feedback information that the intelligent agent receives from the
environment. This feedback accurately indicates the amount of reward obtained when the
intelligent agent adopts a specific strategy in a particular environment. By continuously
receiving and interpreting this feedback information, the intelligent agent can adjust its
behavioral strategy, aiming to achieve more rewards. Therefore, to better balance the
relationship between production efficiency and logistics efficiency in the learning and
action of the intelligent agent, the design incorporates the machine utilization rate and AGV
effective payload rate as weighted factors for the rewards obtained after the interaction
between the intelligent agent and the environment.

The effective utilization rate of machine equipment in the production process refers to
the ratio of the time a single machine takes to process a job to the total completion time of
a single machine. A higher ratio indicates a higher efficiency and capacity utilization of
the machine equipment during job processing, directly impacting production efficiency
and production costs. The AGV effective payload rate is typically described as the ratio of
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the time a single AGV carries a job in operation to the overall operating time of that AGV.
Higher logistics efficiency can indirectly reduce the processing time of jobs. The reward
calculation method is provided in Algorithm 2.

Algorithm 2 Reward updating process

1: Input:
2: V, CM

j, EFM
j, tf, m, tk, M, a1, a2

3: Output:
4: r
5: Procedure
6: for (i = 1; i ≤ epoch; i++) do

7: c1 ← (
M
∑
m

EFMj

CMj
/M)

8: c2 ←

V
∑

AGV1

tf

V
∑
V1

tf+
V
∑
V2

tk

9: if c1 < a1 || c2 < a2 then
10: r = c1 × 12 + (1− c1)× 8 + c2 × 7 + (1− c2)× 3
11: else then
12: r = c1 × 37 + (1− c1)× 3 + c2 × 25 + (1− c2)× 5
13: end if
14: end for
15: Return r

Using the considered open-workshop scheduling code in Table 3 as an example, with
the parameter set to 0.4, the result is obtained by solving the objective function formula
(1), yielding a value of 24.48. In this context, the load time for AGV1 is [3, 2, 1, 2, 2],
with corresponding idle times of [0, 0, 1, 0, 2]; AGV2 has load times [2, 2, 1, 1] and idle
times [2, 1, 0]; the completion times for the jobs are [12,16,21]; the completion times for
the machines are [12,13,21]; and the completion times for AGV1 and AGV2 are 18 and 12,
respectively. The Gantt chart is illustrated in Figure 5.
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4. Experiments and Analyses

The experiment was conducted using Python 3.9 on a 64-bit PC with an Intel (R)
CoreTM i7-12700 processor running at 2.10 GHz, equipped with 16 GB of RAM. The
parameter data for the case originates from the 1993 Taillard benchmark test problems.
A comparative analysis was performed against the cases presented in references [47,48].
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To maintain consistency with the comparative literature, all experimental processes were
conducted through training and testing on the same problem instances.

4.1. Solving the Open-Shop Scheduling Problem with Completion Time as the Objective

To validate the effectiveness of the reinforcement learning algorithm in addressing
the open-shop scheduling problem with completion time as the objective, a comparative
analysis was initially conducted with Q-learning and publicly disclosed open-shop cases.
Experiments were deliberately chosen to match the scale of those reported in the referenced
literature. For each experiment, a set of five trials was executed, and each trial was run
10 times. The resulting completion time data were recorded. The algorithm proposed
in this paper is denoted as QL, while the neighborhood search mixed with the genetic
algorithm from the literature [48] is labeled as NSMGA. Additionally, GA, SA, and PSO
control algorithms were employed for comparative analysis. The experimental results are
presented in Table 4, and the conclusions are discussed in Figures 6 and 7. D represents
the constraints provided in the Taillard benchmark test problems. The RAS definition in
Table 4 is provided by Equation (11).

From Table 4, it can be observed that in the Taillard benchmark test cases, Q-learning
based on reinforcement learning performs well overall in the process of solving the open-
shop scheduling problem. In the provided 20 sets of instances, the Q-learning method
shows an improvement ranging from 77.5% to 95.44% compared to the neighborhood search
mixed with genetic algorithm designed in the literature [48], with an average improvement
of 88.81%.

Table 4. Objective values of resultant schedules.

CASE D NSMGA QL GA SA PSO RAS

T71 435 494 440 626 580 584 91.53%
T72 443 526 453 649 601 594 87.95%
T73 468 576 483 713 634 648 86.11%
T74 416 501 428 665 612 620 85.88%
T75 451 531 469 599 559 587 77.50%
T101 637 847 664 846 986 1004 87.14%
T102 588 732 601 785 926 920 90.97%
T103 598 792 619 795 922 975 89.18%
T104 577 726 588 715 902 906 92.62%
T105 640 798 663 861 993 993 85.44%
T151 937 1159 953 1116 1621 1631 92.79%
T152 918 1283 960 1046 1700 1716 88.49%
T153 871 1217 902 1114 1584 1618 91.04%
T154 934 1276 948 1004 1645 1700 95.91%
T155 946 1309 983 1138 1697 1682 89.81%
T201 1155 1819 1239 1296 2295 2345 87.35%
T202 1241 1954 1351 1390 2461 2505 84.57%
T203 1257 2154 1309 1406 2402 2499 94.20%
T204 1248 1924 1323 1400 2420 2494 88.91%
T205 1256 1895 1328 1416 2481 2490 88.73%

RAS = ((NSMGA− D)− (QL− D))/((NSMGA− D)). (11)
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From the changes in Figures 6 and 7, it can be observed that the NSMGA results
can maintain relatively consistent approximation curves in the T7 case. However, with
the increase in problem size, there is a significant deviation between the solution results
and the standard cases. On the other hand, Q-learning (QL) demonstrates relatively good
approximation fitting in the T7, T10, and T15 standard cases, showing good stability. In
the T20 case, there is an increase in instances where the solution deviates, but overall, the
solution remains good, meeting the overall expected performance. The overall performance
of the PSO method is influenced by design factors such as inertia weight in the two
attributes of speed and position. Moreover, PSO methods are generally suitable for solving
small-scale, continuous problems. The SA method is sensitive to parameter settings and can
be influenced by initial temperature, cooling temperature, and annealing strategy settings.
In the comparison of results in this case, the PSO and SA methods finally yield solutions
that are inferior to NSMGA and QL.

The GA algorithm possesses strong global search capabilities and the ability to paral-
lelly evaluate multiple solutions, but it may get stuck in local optima. In the Q-learning
method, random perturbations and a greedy strategy are introduced, and over time, the
random value of the greedy strategy is gradually reduced. This allows the method to em-
phasize exploration at the beginning and utilization of learned knowledge later, resulting in
Q-learning outperforming GA to varying degrees in the 20 cases. This indicates that when
dealing with the open-shop scheduling problem with completion time as the sole objective,



Mathematics 2024, 12, 452 14 of 20

Q-learning provides more trial-and-error opportunities for exploring the solution space
and demonstrates better processing results in problem-solving. Therefore, extending the
application of Q-learning to open-shop scheduling problems considering AGV transport
time is warranted.

4.2. Solving the Open-Shop Scheduling Problem Considering AGV Transport Time

To validate the effectiveness of the Q-learning method in solving the open-shop schedul-
ing problem considering AGV transport time, the objective function is formulated as Equa-
tion (1), aiming to minimize the completion time and AGV energy consumption under
different weights. The number of AGVs is set to two, and AGV energy consumption is
defined as the sum of idle and loaded energy consumption, as provided in Equation (2). The
weight factor α is set to 0.4, 0.5, 0.6, and 1. For each group, the cases mentioned in the litera-
ture [47] are independently run 10 times, and the results are saved. The results obtained by
the literature [47] using the hybrid genetic algorithm based on critical arcs are denoted as
HGA, and the proposed Q-learning method for solving the open-shop scheduling problem
considering AGV transport time is denoted as QL. The RAS definition in Tables 5–8 is
provided by Equation (12). It is worth noting that, in solving the open-shop scheduling
problem considering AGV transportation time, changing the alpha value in the objective
function Equation (1) is done to compare and explore its impact on the objective function
F with results obtained using different alpha values in the literature. Under the same
alpha value, solving different instances does not require repetitive training in Q-learning.
However, when the alpha value changes, it is necessary to retrain the Q-learning.

When α is 0.4, as shown in Table 5 and Figure 8, the Q-learning method, compared to
the literature’s HGA method, achieves 12 current optimal solutions. The overall average
improvement was 4.43%, with the highest improvement reaching 10.93%. The algorithm
demonstrated good overall performance. Due to the stochastic nature of the exploration in
Q-learning, three sets of results were slightly lower than the HGA results, with improve-
ments of −0.62%, −0.37%, and −5.52%, respectively. These minor deviations fall within
the expected range, satisfying the overall design expectations.

Table 5. Experimental data when α is 0.4.

CASE HGA QL GA SA PSO RAS

T41 109.32 104.48 126.18 119.70 121.86 4.43%
T42 130.94 122.72 143.76 135.96 138.52 6.28%
T43 138.50 135.52 155.10 151.06 148.00 2.15%
T44 130.08 130.88 158.96 138.72 145.46 −0.62%
T45 150.12 148.04 180.48 160.84 165.02 1.39%
T51 201.36 179.36 251.64 223.66 221.82 10.93%
T52 171.14 165.74 240.60 204.72 204.78 3.16%
T53 201.88 198.62 286.90 242.24 243.52 1.61%
T54 202.10 196.68 273.34 232.82 236.50 2.68%
T55 202.72 203.48 276.28 244.12 242.42 −0.37%
T71 371.72 360.56 482.18 463.40 466.02 3.00%
T72 383.12 364.88 585.34 472.88 464.70 4.76%
T73 394.68 390.30 542.32 505.18 497.52 1.11%
T74 367.96 388.26 510.90 486.72 490.08 −5.52%
T75 385.38 349.02 489.54 470.22 472.02 9.43%

RAS = (HGA−QL)/HGA. (12)
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Table 6. Experimental data when α is 0.5.

CASE HGA QL GA SA PSO RAS

T41 126.80 119.25 141.70 138.60 136.20 5.95%
T42 158.40 142.60 170.85 157.35 155.00 9.97%
T43 163.40 159.40 180.75 168.90 168.40 2.45%
T44 156.30 152.35 184.55 172.25 168.40 2.53%
T45 180.90 174.40 211.45 189.25 186.30 3.59%
T51 220.45 202.35 303.85 239.65 256.15 8.21%
T52 198.25 188.60 228.60 228.45 229.70 4.87%
T53 224.05 224.45 333.00 278.65 272.50 −0.18%
T54 231.95 218.95 338.15 274.55 275.20 5.60%
T55 237.55 221.70 276.28 279.60 279.65 6.67%
T71 413.60 402.10 545.95 530.20 532.60 2.78%
T72 413.40 406.20 572.30 537.15 501.95 1.74%
T73 443.40 426.75 590.80 566.05 560.50 3.76%
T74 392.25 430.90 571.95 536.60 551.85 −9.85%
T75 423.15 396.30 533.80 527.40 496.05 6.35%

Table 7. Experimental data when α is 0.6.

CASE HGA QL GA SA PSO RAS

T41 138.88 138.40 165.08 155.16 155.60 0.35%
T42 181.28 162.48 192.08 175.64 179.44 10.37%
T43 187.36 182.72 197.88 190.32 197.40 2.48%
T44 176.04 174.28 198.92 188.04 192.40 1.00%
T45 207.92 196.76 231.64 226.08 218.92 5.37%
T51 242.64 232.40 345.64 278.24 287.56 4.22%
T52 214.04 211.56 314.08 263.20 257.04 1.16%
T53 262.36 252.68 346.88 317.52 308.44 3.69%
T54 236.80 243.88 359.12 301.72 296.20 −2.99%
T55 259.48 258.28 339.16 289.64 316.92 0.46%
T71 438.20 430.68 587.76 569.60 554.64 1.72%
T72 440.28 437.12 613.20 571.20 575.80 0.72%
T73 486.24 480.00 641.40 628.72 606.64 1.28%
T74 423.84 458.40 620.76 589.16 603.52 −8.15%
T75 482.08 421.52 581.40 569.88 568.28 12.56%

Table 8. Experimental data when α is 1.

CASE HGA QL GA SA PSO RAS

T41 202 198 229 230 220 1.98%
T42 272 242 278 264 262 11.03%
T43 279 276 313 289 300 1.08%
T44 257 256 316 282 271 0.39%
T45 314 301 359 321 328 4.14%
T51 345 323 401 397 388 6.38%
T52 301 282 467 344 334 6.31%
T53 375 356 445 437 461 5.07%
T54 352 336 451 421 437 4.55%
T55 385 364 457 459 466 5.45%
T71 553 539 664 770 761 2.53%
T72 580 562 716 784 774 3.10%
T73 628 604 806 826 851 3.82%
T74 561 596 851 823 786 −6.24%
T75 568 524 778 748 746 7.75%
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When α is 0.5, as depicted in Table 6 and Figure 9, the Q-learning method, compared
to the literature’s HGA method, achieves 13 current optimal solutions. The overall average
improvement was 5.44%, with the highest improvement reaching 9.97%. The algorithm
demonstrated good overall performance. In the first half of the instances, the Q-learning
method consistently outperformed the HGA, GA, SA, and PSO methods. In the latter part
of the instances, there were occasional abrupt increases in the numerical values, possibly
due to the increased difficulty in exploring the action space with the expansion of the
workshop scale or getting stuck in suboptimal solutions, impacting the exploration for
global optimal solutions.
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When α is 0.6, based on the objective function and combined with Table 7 and Figure 10,
it is evident that, in solving the open-shop scheduling problem considering AGV transport
time, the Q-learning method achieved 13 current optimal solutions. The completion time
accounted for 60% of the experimental results, while the energy consumption accounted
for 40%. The overall average performance improvement was 3.42%. When the problem
scale was relatively small, the results obtained by HGA and QL were similar. As the
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problem scale gradually increased, Q-learning chose to sacrifice some completion time to
explore a larger solution space more extensively, resulting in better processing outcomes.
Therefore, the Q-learning method, based on reinforcement learning, is suitable for both
small- and large-scale problems and can effectively reduce the objective function value
within a particular timeframe.
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When α is 1, using the same decoding method to solve the objective function of the
open-shop scheduling problem considering AGV transport time, with completion time
accounting for 100%, the Q-learning method obtained 14 current optimal solutions. This
result surpasses the solving records of the comparative algorithms, showcasing the stable
superiority of the Q-learning method (Figure 11).
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The benchmark method’s paper did not provide specific runtime information, making
it impossible to compare the runtime. Therefore, for each scale, the five cases were repeated
five times (300 epochs), and the average calculation was performed. The summarized
results are presented in Tables 9 and 10.
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Table 9. The runtime results for job completion time calculation.

CASE Time/s

T7 219.4
T10 463.5
T15 1120.3
T20 2299.7

Table 10. The runtime results for the objective functions are weighted by job completion time and
energy consumption.

CASE
Time/s

α = 0.4 α = 0.5 α = 0.6 α = 1

T4 217.8 219.5 222.6 214.6
T5 386.2 378.1 385.9 374.3
T7 957.8 968.8 972.7 931.4

From Tables 9 and 10, it can be observed that with the gradual increase in problem
size, the computation time for solving the problems significantly increases. In the actual
solving process, we leveraged the parallel processing capability of the GPU to accelerate
the update and computation processes of the Q-table, thereby reducing the utilization of
computer memory and lowering the computational time cost.

5. Conclusions and Future Work

In dealing with the open-shop scheduling problem model considering AGV transport
time, the minimization of both the maximum completion time and energy consumption
is employed as influential factors within the objective function. To afford the intelligent
agent greater opportunities for exploration within the solution space and the accumulation
of substantial reward values, a hybrid encoding scheme is devised, comprising process
encoding and AGV encoding. Experimental comparisons are conducted utilizing Taillard
benchmark test cases and the literature [48], incorporating the design of GA, SA, and PSO as
control groups. The results showed an average improvement of 88.81% compared to the NS-
MGA algorithm. Furthermore, the Q-learning method was applied to address the objective
problem of minimizing completion time and energy consumption with weighted goals, and
its performance was evaluated against the literature [47]. The data results demonstrated
that the Q-learning method outperforms HGA, GA, SA, and PSO, exhibiting superior
performance and scalability in handling open-shop scheduling problems considering AGV
transport time.

Future research can consider improvements in the following aspects:

(1) Scheduling strategies can be employed to constrain the processing of the waiting job
layer, while different strategies can be applied to handle the processed job. Distinct
methods and rewards can be employed for improvement in each scheduling layer,
enhancing the overall efficiency of system optimization.

(2) Additional factors influencing objectives could be considered, such as the impact
of external disturbances, the effects of urgent job insertions, and the influence of
preventive maintenance.

(3) More effective methods can be explored to address open shop scheduling problems,
considering AGV transport time.
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