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Abstract: Neural network methods have shown promise for solving complex quantum many-body
systems. In this study, we develop a novel approach through incorporating the density-matrix
renormalization group (DMRG) method with the neural network quantum state method. The results
demonstrate that, when tensor-network pre-training is introduced into the neural network, a high
efficiency can be achieved for quantum many-body systems with strong correlations.
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1. Introduction

In 1929, Dirac wrote his famous remark: “The fundamental laws necessary for the
mathematical treatment of a large part of physics and the whole of chemistry are thus
completely known, and the difficulty lies only in the fact that application of these laws leads
to equations that are too complex to be solved”. Today Dirac’s vision has turned into one of
the greatest challenges in modern electronic structure calculation. To address this, a variety
of methods have been developed to tackle the many-body Schrödinger equation for realistic
chemical systems. Methods like full configuration interaction (FCI) have been considered,
which encompass the entirety of Hilbert space, growing exponentially and thus limiting
simulation scales. More scalable alternatives exist for approximating the precise ground
state, including perturbation theory and truncated configuration interaction methods (such
as CISD, MCSCF) [1], as well as the coupled-cluster (CC) method [2]. However, these
techniques primarily offer accuracy in analyzing weakly correlated chemical systems [3] or
face challenges in dealing with very large systems.

The density matrix renormalization group (DMRG) method was initially formulated
in 1992 as an innovative approach for evaluating the one-dimensional strongly correlated
quantum lattices [4]. Later, this method was introduced to ab initio quantum chemistry for
solving systems with strong electron correlation effect [5]. The computational complexity
of the DMRG method is characterized by a polynomial order of O(k4m2 + k3m3), which
makes it capable of manipulating a relatively large active space. Here, k is the number of
orbitals, which is decided by the active space, and m is called the bond dimension, which
is manually assigned to make the computational cost acceptable. When m is relatively
small, DMRG can generate a cursory approximation in a very short time. Through certain
transformation methods, this cursory approximation can form a good starting point for
further evaluations. There are several transformation methods used to transfer the DMRG
wave function into a complete active space-configuration interaction (CASCI) type wave
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function, including the sampling-reconstructed complete active space algorithm [6] and
the entanglement-driving genetic algorithm (EDGA) [7].

In the year 2017, Carleo and Troyer introduced the neural network quantum state
(NNQS) algorithm, specifically for systems with multiple spins. This approach models
the wave function through a neural network and employs stochastic optimization of
parameters via the variational Monte Carlo (VMC) method [8]. Specifically, their work
shows that a straightforward neural network model, the restricted Boltzmann machine
(RBM)—essentially a dense layer with a nonlinear activation function—can match the
accuracy of current tensor network methods. So far, the effectiveness of the NNQS approach
has been established across a broad range of problems involving multiple spins [8–13] and
molecular systems [14–20].

However, in the NNQS method, learning a good representation of the wave function
usually requires many iterations, since the neural network models have a large number of
parameters, which are hard learn quickly. To deal with this problem, the neural network
states can be further enhanced with a pre-training method. Here, in this work, we inte-
grate the DMRG method with our NNQS model to incorporate the physics of valid wave
functions into the neural networks, thereby ensuring both high expressiveness and reliable
convergence, while maintaining computational efficiency, and our method achieved good
performance for molecular systems with up to 38 qubits.

2. Related Work

Neural network quantum states (NNQS) represent a groundbreaking intersection
of machine learning and quantum physics, offering novel approaches to modeling and
understanding complex quantum systems. This field has evolved rapidly, marked by
several pivotal studies.

Carleo and Troyer introduced this concept in their groundbreaking work in 2017 [8].
They utilized a neural network known as a restricted Boltzmann machine (RBM) to repre-
sent the wave function of quantum many-body systems and achieved significant success
in solving problems related to many-body localization and quantum spin systems. This
work demonstrated that NNQS can effectively capture the complexity of quantum systems,
while also providing a new perspective for understanding quantum many-body systems.
Nomura, Y. et al. [21] highlighted advancements in using RBMs to solve strongly correlated
quantum systems, a significant challenge in quantum physics. The research of Huang,
L. and Wang, L. utilized RBMs to accelerate quantum Monte Carlo simulations, a critical
aspect of quantum computations [22]. Another study conducted in 2017 [23] by Deng and
colleagues explored how to enhance the accuracy of wave function representations in quan-
tum many-body systems using deep neural networks. They discovered that deep learning
can effectively capture quantum entanglement and interactions, which are crucial for un-
derstanding phenomena such as quantum phase transitions and quantum entanglement.
In 2018, Cai, Z. and Liu, J. provided insights into the potential of NNQS for approximating
wave functions for quantum many-body systems [24]. Choo, K. et al. expanded NNQS
applications to include many-body excitations and symmetry considerations, integral for
understanding quantum phenomena [25].

The largest CI calculation has been carried out for a molecule with about 24 electrons
(24 orbitals) [26], since C2H4O contains 24 electrons (qubits = 38), it is not possible to
calculate this with the full CI method. For scalability, the scaling of our method is O(NuN4

o),
where Nu refers to the number of unique samples and N4

o accounts for the computation
involved in assessing the local energy. For huge molecules such as proteins, a multiscale
method [27] can be adapted, in which the protein systems are first divided into a molecule
and a molecular environment, whereby the environment can be treated using a force field
method or even DFT method, the central region is divided into many fragments, and
the energy of each fragment is described using the method in this work. We employ
DMRG for pre-training NNQS, which can accelerate the convergence rate of NNQS. For
systems with more than 30 qubits, NNQS can rapidly provide reference energies using this
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method. Compared to previous works, our approach offers significant advantages in terms
of operational speed and system size.

3. Methods
3.1. Quantum Chemistry Hamiltonians

The main task in ab initio quantum chemistry calculation is to solve the static Schrödinger
equation H|Ψ⟩ = E|Ψ⟩ to obtain the ground state |Ψ⟩ and the ground-state energy E of the
many-body interacting Hamiltonian:

Ĥ = −
N

∑
i=1

1
2
∇2

i −
N

∑
i=1

M

∑
A=1

ZA
|ri − RA|

+
N

∑
i=1

N

∑
j>i

1
|ri − rj|

(1)

In this context, N represents the aggregate count of electrons, M stands for the total
number of nuclei present. The term ∇i refers to the kinetic operator for a single particle,
specifically for the i-th electron. The notation ri is used to denote the coordinates of
electrons. RA and ZA are used to signify the respective coordinates and charges of the
A-th nucleus within the molecular structure. As shown in Ref. [20], we transform the
Hamiltonian in Equation (1) into a many-spin Hamiltonian H = ∑Nh

i=1 ciPi, where each Pi
represents a Pauli string, which is essentially the tensor product of the Pauli spin operators
{I, X, Y, Z} over N elements, paired with a real coefficient ci. The total count of such Pauli
strings is denoted by Nh. In quantum chemistry Hamiltonians, the scaling of Nh is typically
proportional to O(N4). This implies that for a given input bitstring x, there could be a
polynomial number of x′ bitstrings, specifically on the order of O(N4), that have a non-zero
interaction Hxx′ with it. Consequently, for larger values of N, the computation of local
energy becomes increasingly resource-intensive, and storing every x′ that significantly
interacts with x demands substantial memory. To address these challenges, we have
developed an effective method for computing local energy. This approach uses a compactly
structured Hamiltonian and a combined process for both assessing non-zero Hamiltonian
entries and performing local energy computation [19].

3.2. NNQS-RNN: The NNQS Method Based on RNN Architecture

Using an RNN neural network as a representation for the ground state, expressed as
|ψ

θ⃗
⟩, where θ⃗ signifies the parameters undergoing optimization, the system’s energy can be

articulated as a function dependent on θ⃗. In the second quantized formalism, with a basis
set (single-electron quantum states or spin-orbitals) introduced, the many-electron wave
function can be written as a linear combination of configurations

|ψ
θ⃗
⟩ = ∑

x
⟨x|ψ

θ⃗
⟩|x⟩ = ∑

x
ψ

θ⃗
(x)|x⟩ (2)

where each configuration is represented by an occupation number vector (‘configuration
string’) |x⟩ = {x1, x2, . . . xN} with xi ∈ {0, 1} denoting whether the i-th spin orbital is
occupied or not, then we have [8]

E(⃗θ) =
⟨ψ

θ⃗
|H|ψ

θ⃗
⟩

⟨ψ
θ⃗
|ψ

θ⃗
⟩ =

∑x,x′⟨ψθ⃗
|x⟩⟨x|H|x′⟩⟨x′|ψ

θ⃗
⟩

∑y⟨ψθ⃗
|y⟩⟨y|ψ

θ⃗
⟩

=
∑x Eloc(x)p

θ⃗
(x)

∑y p
θ⃗
(y)

= Ep[Eloc(x)] (3)

Here, x, x′, and y represent distinct bitstrings. In the second line of Equation (3), the
concept of local energy, denoted as Eloc(x), is established as

Eloc(x) = ∑
x′

Hxx′ψθ⃗
(x′)/ψ

θ⃗
(x) (4)
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In this context, Hxx′ = ⟨x|H|x′⟩ signifies the matrix element, and ψ
θ⃗
(x) = ⟨x|ψ

θ⃗
⟩

represents the probability amplitude for the wave function hypothesis |ψ
θ⃗
⟩ in the |x⟩ basis.

Additionally, the expression p
θ⃗
(x) = |ψ

θ⃗
(x)|2 is used to denote the probability.

Accurately calculating Equation (3) is typically unfeasible, due to the vast, expo-
nentially large set of varying bitstrings. Nevertheless, an approximate assessment of
Equation (3) can be achieved by drawing samples from the probability distribution p

θ⃗
(x),

thereby acquiring a collection of Ns samples, labeled as {x1, x2, . . . , xNs}, followed by their
subsequent averaging:

Ẽ(⃗θ) =
1

Ns

Ns

∑
i=1

Eloc(x
i) (5)

In this instance, Ẽ(⃗θ) is employed rather than E(⃗θ), to underscore that it is merely an
estimation of the actual value. Consequently, if one can effectively draw samples from
p

θ⃗
(x) (feasible when ψ

θ⃗
(x) can be efficiently calculated for each x) and identify those

significant Hxx′ values along with corresponding x′, then a more efficient evaluation of
Equation (3) is achievable. Employing a gradient-based optimizer can expedite these
calculations compared to methods that do not use gradients. Using the gathered samples,
it is possible to estimate the gradient of Equation (3) through automatic differentiation, as
suggested in [17]:

∇
θ⃗
Ẽ = 2

(
Ep

[(
Eloc(x)−Ep[Eloc(x)]

)
∇

θ⃗
ln
(

Ψ∗
θ⃗
(x)

)])
(6)

In a comparable manner, ∇
θ⃗
Ẽ serves as an approximation for the precise gradient

∇
θ⃗
E. Subsequently to this, the parameters θ⃗ are updated using ∇

θ⃗
Ẽ in conjunction with the

optimizer, culminating in the completion of a single cycle of the variational Monte Carlo
algorithm(VMC).

3.3. DMRG Method

Training the NNQS model with completely random initial parameters can suffer
from optimization problems, similarly to a variational quantum algorithm. Refs. [28,29]
Specifically, a proper initial state will significantly influence the convergence and accuracy
of NNQS. In the context of chemical applications, it can be assumed that a chemically-
motivated pre-training would be beneficial. In conventional quantum chemistry ap-
proaches, the initial step involves simplifying the electronic wave function to a single
Slater determinant, for ease of computation. Subsequently, to capture electron correlation,
additional determinants are incorporated into the analysis. Commonly used methods
such as configuration interaction (CI) and coupled-clusters (CC) theory can generate a ap-
proximated ground-state wave function; however, its high-order complexity is excessively
expensive for serving as an initial guess.

Recently, the DMRG algorithm, which implements a matrix product state (MPS)
wave function, has been widely applied in quantum chemistry calculations. Refs. [30–34]
expressed the electronic wave function in a CI-expansion form:

|Ψ⟩ = ∑
i1i2 ...iN

ci1i2 ...iN |i1i2 . . . iN⟩, (7)

where N is the number of spin orbitals, |i1i2 . . . iN⟩ is the computational basis, and the
MPS ansatz factorizes this rank-N coefficient tensor {ci1i2 ...iN} into lower-rank tensors {kT},
which can be written as

ci1i2 ...iN = ∑
u0 ...uN

1Ti1
u0u1

2Ti2
u1u2 . . . NTiN

uN−1uN (8)

where {kTik
uk−1uk} represents elements of the rank-3 tensor kT at the k-th site (orbital), with ik

called the physical index and uk called the auxiliary index. The singular value decomposition
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(SVD) procedure could be a good choice to generate these MPSs.In addition, the MPSs can
be truncated according to the singular value, so that the maximum size of the auxiliary
indices, which is defined as the bond dimension of the MPS, denoted as M = max0≤k≤N {uk},
is constrained. This tensor decomposition procedure can also be applied to the operators
to generate the matrix product operator (MPO) and develop a tensor network formula,
as presented in Figure 1. The ground-state energy E0 is the lowest energy of the system,
defined as

Figure 1. Tensor network illustrating the evaluation of ⟨Ψ|Ĥ|Ψ⟩ = E⟨Ψ|Ψ⟩ (shown as (a)) and
Ĥi

eff|ψi⟩ = λ|ψi⟩ (shown as (b)). The green dots represent the MPSs, and the blue blocks represent
the MPOs. The bonds linking certain tensors represent the tensor contraction operations between
linked tensors over the corresponding dimension.

E0 = min
|Ψ⟩

⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ (9)

The Lagrangian multiplier method is applied to evaluate this ground-state energy,
which derives a eigenvalue problem:

⟨Ψ|Ĥ|Ψ⟩ = E⟨Ψ|Ψ⟩ (10)

It is difficult to solve this problem directly, so the DMRG adopts a divide-and-conquer
strategy, which is to adjust the MPS tensor one at a time, forward and backward, until the
energy converges. This is referred to as the one-site DMRG method. In quantum chemistry,
to avoid the local minimum, the two-site DMRG method is used, which entails adjusting
two adjacent MPSs simultaneously. On each pair of sites, the corresponding MPSs are
updated according to the effective operator Ĥi

eff, which is developed by contracting the
current MPOs and the left and right part of the tensor network. Thus, the new MPSs are
derived through this eigenvalue problem:

Ĥi
eff|ψi⟩ = λ|ψi⟩ (11)

This formula is resolved using a method of iterative diagonalization, employing
techniques like the Lanczos, Davidson, or Jacobi–Davidson methods.

The DMRG algorithm performs variational optimization for the MPSs to search for
an approximation of the ground state. An important feature of DMRG is its linear scaling
with respect to the system size (number of sites, or orbitals) if the bond dimension is fixed,
which makes it particularly appealing as a lightweight pre-training algorithm for chemical
significance for NNQS. Although, the MPSs generated from the DMRG procedure can be
used directly as the initial guess to train the NNQS, a more efficient method is to generate
a CASCI-type wavefunction that contains the most important configurations. There are
several methods sued to accomplish this task through Monte-Carlo-based sampling. In this
work, we adopt the entanglement-driving genetic algorithm (EDGA) to perform the wave
function transformation.
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Here, the EDGA method can develop the significant terms of Equation (7) from the
pretrained MPS as a initial guess for the subsequent NNQS optimization. The EDGA
method treats the Slater determinate (SD) as a pair of DNA sequences consisting of the
alpha spin (spin-up) configurations and beta spin (spin-down) configurations, respectively.
Based on the genetic algorithm, these configurations will evolve based on two steps,
“crossover” and “mutation”, as illustrated in Figure 2.

Figure 2. A brief illustration of the crossover (shown as (a)) and mutation (shown as (b)) operation.
(a): the crossover step will combine the alpha spin configuration of a selected SD and the beta spin
configuration of another selected SD to construct a new SD. (b): the mutation step will randomly
choose an occupied spin orbital and excite to a randomly chosen unoccupied orbital.

The EDGA method introduces quantum entanglement into these two steps, to make
the evolution more reasonable and efficient. In the crossover step, two SDs are randomly
selected, and the alpha spin configuration of the first SD and the beta spin configuration of
the second SD are combined, to generate a new SD. The possibility of accepting this new
SD is generated using

ρ =
c̃i

∑N
i c̃i

(12)

where c̃i is determined by a segmentation function of the CI coefficient ci:

c̃i =


sin(|ci|), for the first 15% evolution steps;

|ci|, for the middle 40% evolution steps;

c2
i , for the rest evolution steps;

(13)

In the mutation step, the determinants obtained from the “crossover” step are ran-
domly changed. The occupation status of orbitals i and j are exchanged according to the
probability defined as

ρij =
Iij

∑N
i Iij

(14)

where Iij is the mutual information of the corresponding orbital pair. This EDGA procedure
can be easily conducted using the Kylin quantum chemistry package [35], to develop a
satisfying initial guess.

3.4. Pre-Training NNQS with DMRG Method

As shown in Figure 3, first, we transfer the data generated by DMRG into many {state,
psi} pairs and load these data into our NNQS model. The model extracts the state part
from the DMRG data, serving as a supervised learning dataset for training. Initially, the
model starts with random parameters and computes the psi for each state. Then, it uses
the absolute error between this psi value and the corresponding DMRG state’s psi value
as the loss, undergoing backward and parameter updates to reduce the loss. Through
multiple iterations, the model’s parameters gradually stabilize, and the psi values it trains
for each state closely approximate those of the corresponding DMRG states. At this point,
we consider the model’s wave function fit as having a high similarity with the DMRG-fitted
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wave function, achieving comparable computational results to DMRG. Then, our NNQS
generates numerous checkpoint files, each associated with specific steps and loss values.
The step value records at which step of our NNQS pre-training the checkpoint was created,
while the loss value records the loss at the time of checkpoint generation in comparison to
the DMRG pre-training data.

 
NNQSLoad State

state psi
state psi
state psi
...... ......

state psi

DMRG 
Pretrained Data

 state psi
state psi
state psi
...... ......

state psi

NNQS Data

Generate psi

psi
psi
psi
......
psi

psi
psi
psi
......
psi

Loss Function

Loss

Optimizer

Update

Step Loss Checkpoint File
Step Loss Checkpoint File
Step Loss Checkpoint File
...... ...... ......
Step Loss Checkpoint File

Output

Figure 3. The NNQS initially loads the state information from the DMRG pre-trained data. Then, it
infers the psi values through model inference and computes the loss by comparing with the psi of
DMRG. Parameter updates are conducted via the model’s optimizer. This process iterates, yielding
step information at the time of checkpoint creation, loss value information at checkpoint generation,
and the checkpoint files.

During the gradient update process, we use weight decay to prevent overfitting of the
model. This is essentially a regularization method that applies additional constraints to the
weight parameters in the network. Weight decay is usually implemented by adding a term
proportional to the weight magnitude to the loss function. When using weight decay, the
loss function includes not only the original loss (like cross-entropy loss or mean squared
error loss) but also an additional term proportional to the square of the weights, usually
a coefficient multiplied by the sum of the squares of all weights. This coefficient is often
referred to as the weight decay coefficient or regularization parameter. In the construction
of the loss function, weight decay serves as a factor applied to the regularization term.
This term typically reflects the complexity of the model; thus, the weight decay functions
to modulate how much the model’s complexity influences the overall loss function. We
use the gradient descent optimizer AdamW [36], which is an optimization algorithm used
in deep learning and that is a variant of the Adam [37] optimization algorithm. AdamW
introduces direct control over weight decay, rather than indirectly implementing it through
L2 regularization, as in the traditional Adam algorithm. This modification makes AdamW
more effective than the standard Adam in dealing with certain types of problems, especially
those requiring a substantial weight decay. During model training, the learning rate
schedule we use is lr = d−0.5

model × min(i−0.5, i × S−1.5
warmup), where lr is the learning rate of the

i-th training epoch, and we set the warm up steps as Swarmup = 4000 [38].
To ascertain whether pre-training with DMRG can expedite the convergence speed

of the energy inference system of our NNQS, we initiated a test without pre-training,
operating within the same system. We identified a set of NNQS model parameters that
showcased superior convergence results. These parameters included n_hidden, nip, and
layer based on the RNN model. Leveraging this combination of parameters, we conducted
DMRG pre-training experiments. Our tests on small molecular systems (qubits < 30) such
as H2O (14 qubits) and strongly correlated systems like H10 STO-6G (20 qubits) indicated
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that DMRG pre-training accelerated the convergence speed of the our NNQS model. Upon
evaluating larger molecular systems (qubits > 30), we found that the convergence speed of
the NNQS fluctuated based on the different loss values of the pre-training checkpoints. The
experimental outcomes revealed that utilizing checkpoints with reduced loss values for
continued computations led to a swifter convergence. Moreover, after DMRG pre-training,
our NNQS was capable of achieving a lower energy for certain larger molecular systems
(qubits > 30), like C2H4O (38 quibts), a feat unattainable when relying solely on direct
NNQS inference without any pre-training.

4. Results
4.1. The Influence of Different Hyper-Parameters on NNQS

After a neural network model is built, it is typically fine-tuned through hyper-parameter
tuning to enhance its expressive capability. In our study, we introduce the NNQS model,
which possesses the following hyper-parameters: n_hidden, indicating the number of
neurons in each hidden layer of the NNQS network; nip, representing the number of
features in the input data; and in the context of NNQS, this denotes the representation
of each qubit using a nip-dimensional vector; layer, signifying the number of layers in
the NNQS network. The network-type parameter is employed to select between the gated
recurrent unit (GRU) [39] and long short-term memory (LSTM) [40] is used for training.
LSTM, a specialized form of recurrent neural network(RNN), is designed to address the
long-term dependency issues encountered by a standard RNN in processing long sequences.
Conversely, GRU, a variant of LSTM, combines the forget and input gates of LSTM into a
single “update gate”, and it also merges the cell state with the hidden state, alongside other
modifications. Due to its relatively simpler structure, GRU offers a higher computational
efficiency. When testing the NNQS, we found that for molecular systems with more than
30 orbitals (qubits), the NNQS converged slowly and had difficulty converging to chemical
precision (CP = 0.0016). Our goal was to choose a set of parameters that enabled better
convergence for most systems. On an Nvidia A100 GPU with 40G of GPU memory, we
meticulously tuned hyper-parameters such as n_hidden, nip, layer, and network-type. In
addition, we used Pytorch 1.13.1 + cu116, Julia 1.8.0 to build our NNQS model.

Initially, we chose a small molecule system, LiH (qubit = 12), with less than 20 qubits
for the hyper-parameter testing of our NNQS model. We selected LiH as the subject for
our hyper-parameter testing due to its rapid computational efficiency, limited number
of configurations, and suitability for streamlined parameter optimization and debugging
processes. In Figure 4, the x-axis represents the iteration count of the NNQS model, while
the y-axis shows the absolute error in energy at each step for LiH compared to FCI. When
the absolute error diverged from the chemical precision (CP = 0.0016, denoted by the red
dashed line in Figure 4), we considered the model to have converged.

Figure 4a demonstrates that the convergence performance for n_hidden = 64 was similar
to that for n_hidden = 32, but the computational time per step was longer than n_hidden = 32.
When n_hidden = 16, the model exhibited inferior convergence performance (indicated by
the blue solid line in Figure 4a). In the second set of tests, it is shown that for nip = 16,
32, 64, the convergence curves are similar, but nip = 16 required a shorter computation
time per step. Figure 4c reveals that at layer = 6, the model achieved chemical precision
earlier (below the red dashed line), indicating a better convergence performance. Figure 4d
illustrates that for the NNQS model, employing GRU resulted in a superior fit compared to
LSTM. In summary, considering both the convergence performance and operational speed,
we used n_hidden = 32, nip = 16, layer = 6, and GRU for subsequent testing

We compare our test results with the NAQS [17], RBM, and FCI in Table 1. The results
show that our tested approach achieved a better convergence in certain systems and the
data with a dark underline indicate the best values.
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Figure 4. LiH hyper-parameter testing. The red dashed line represents chemical precision(CP), which
is 0.0016. (a) the impact of different n_hidden on NNQS convergence. (b) the impact of different nips.
(c) layer indicates the number of layers in the NNQS model. (d) the impact of different network types
on convergence performance.

Table 1. Comparison of the energy (in Hartree) between this work, NAQS, RBM, and FCI.

Molecular Systems This Work NAQS RBM FCI

LiH −7.7845 −7.7845 −7.7777 −7.7845
H2O −75.0155 −75.0155 −74.9493 −75.0155
N2 −107.6599 −107.6595 −107.5440 −107.6602

CH4 −39.8062 −39.8062 −39.7571 −39.8063
C2 −74.6904 −74.6899 −74.5147 −74.6908
LiF −105.1661 −105.1662 −105.1414 −105.1662
PH3 −338.6979 −338.6984 −338.6472 −338.6984
Li2O −87.8916 −87.8909 −87.3660 −87.8927

4.2. The Influence of DMRG Pre-Training on NNQS

In this section, we demonstrate the use of DMRG configuration coefficients as pre-
training data for the NNQS. This approach enables supervised learning for the NNQS
model, aiming to closely approximate the wave function predicted by DMRG before
proceeding to inference. The checkpoints generated at different steps during the pre-
training process have varying impacts on the model. A lower number of pre-training steps
might result in suboptimal model fitting, leading to slower convergence and a higher initial
inference energy during inference. Conversely, an excessive number of pre-training steps
may lead to overfitting, where the model accurately fits the DMRG pre-training data’s
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wave function but may struggle to generate new samples or may exhibit stagnant energy
levels during the subsequent inference. In such cases, we describe the NNQS as converging
to a local minimum. We use the configuration coefficients generated using DMRG data
to pre-train the NNQS. At first, we verify the convergence effect of this method with two
smaller systems H2O (14 qubits) and H10 STO-6G(20 qubits), as shown in Figure 5.
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Figure 5. (a,c) The absolute error between the NNQS network inference of H2O and H10 STO-6G
and FCI, with the red dashed line indicating the chemical precision (CP = 0.0016), (b,d) show the
energy of NNQS network inference of H2O and H10 STO-6G, with the red solid line indicating the
corresponding FCI values.

We selected the H2O and H10 STO-6G systems to test the effectiveness of pre-training.
Figure 5a,b represent the convergence of the H10 STO-6G system, while (c,d) depict the
convergence of H2O. The y-axis in Figure 5a,c shows the absolute error between the energy
values inferred by the NNQS and those of the FCI, with the red dashed line representing the
chemical precision. When the curve converged below this red dashed line, we considered
the model to have inferred the energy of the molecular system with an accuracy acceptable
by FCI standards. The y-axis in Figure 5b,d displays the actual energy values inferred by
our NNQS model. We compare the energy values at the 1000-th (purple solid line), 2000-th
(yellow solid line), and 3000-th (green solid line) pre-training steps checkpoints with those
obtained from inference without pre-training (blue solid line). The experiment showed that
for H10 STO-6G, the energy in the first step of pre-training was lower than that of starting
from scratch, as shown in Table 2. However, for the strongly correlated H10 STO-6G system,
the opposite was observed; the first step energy from scratch was erroneous, and the energy
became accurate only after pre-training. For the 1000-th step checkpoints, the H10 STO-6G
system exhibited an abnormal convergence curve (purple solid line in Figure 5a,b), where
the energy after pre-training was higher than that without pre-training (blue solid line),
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indicating overfitting of the model. Both H10 STO-6G and H2O converged more quickly to
chemical precision (below the red dashed line) after pre-training, demonstrating that using
DMRG as a pre-training method for NNQS can accelerate its convergence.

Table 2. Comparison of the first step energy between H10 STO-6G and H2O with different pre-
training steps.

Molecular Systems H10 STO-6G H2O

no ckpt 5.104793 −69.437209
1000-th step ckpt −2.485850 −73.123730
2000-th step ckpt −2.384864 −73.343999
3000-th step ckpt −2.202542 −73.386116

As shown in Tables 3 and 4, we compiled the number of iterations required for
H10 STO-6G and H2O to converge to chemical precision. For the unpretrained tests, we
calculated the total runtime from scratch inference to convergence to chemical precision as
the convergence time. For the pretrained tests, we recorded the time from the beginning of
pretraining to the generation of the corresponding step’s checkpoint, and the time from
loading the checkpoint to convergence to chemical precision as the convergence time. The
results indicate that the convergence time and the number of iterations for the NNQS after
pretraining were generally less than those for the unpretrained versions.

Table 3. Comparison of the elapse time between H10 STO-6G and H2O with different pre-
training steps.

Molecular Systems H10 STO-6G H2O

no ckpt 103.7935 1524.3876
1000-th step ckpt 65.6547 1580.0200
2000-th step ckpt 76.3441 944.5145
3000-th step ckpt 113.5518 1032.1916

Table 4. Comparison of the convergence step between H10 STO-6G and H2O with different pre-
training Steps.

Molecular Systems H10 STO-6G H2O

no ckpt 2732 7376
1000-th step ckpt 890 6925
2000-th step ckpt 347 2871
3000-th step ckpt 507 2358

As depicted in Figure 6, DMRG data were employed for the pre-training of the NNQS.
This pre-training notably enhanced the convergence trajectory for C2H4O, as evidenced
by a marked decline. The convergence curve without pre-training is illustrated by the
blue solid line in Figure 6. Evaluations were conducted utilizing DMRG checkpoints
at the 20,000-th, 40,000-th, and 80,000-th steps. As delineated in Figure 6b , the unpre-
trained curve exhibits a discrepancy exceeding 0.02 relative to DMRG at the 29,000-th
step (as indicated by the blue solid line). Furthermore, the energy extrapolated from the
20,000-th step checkpoint surpasses that derived from the 40,000-th and 80,000-th iteration
checkpoints. The convergence curves of energy for the 40,000-th and 80,000-th iterations
demonstrate similarity, suggesting a negligible variation in model parameters between
these iterations in the pre-training phase. Figure 6a reveals that the initial energy inferred
without pre-training (−134.756129) significantly exceeded the initial energies with pre-
training (20,000-th checkpoint: −149.3210498, 40,000-th checkpoint: −149.337339, 80,000-th
checkpoint: −149.344904).
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Figure 6. Comparison of the convergence speed with and without pre-training for C2H4O. (a) The
red dashed line represents chemical precision (CP = 0.0016) and the y-axis represents the absolute
error between the inferred energy value and DMRG. (b) The red solid line represents the value of
DMRG; the x-axis represents the number of training steps, and the y-axis represents the energy value.

4.3. The Influence of the Optimizer on NNQS

Numerous experiments have been conducted to investigate the effects of different
optimizers on the calculation of wave functions using neural networks. Traditional first-
order optimization algorithms, commonly used in these calculations, such as Adam [37],
and AdamW [36], depend on the loss function’s first-order derivatives to minimize the
loss. In contrast, second-order optimization algorithms, including Newton’s method and
the LBFGS [41] optimizer, incorporate a Hessian matrix of the loss function. However, the
computational challenges associated with computing and storing the Hessian matrix have
impeded their widespread use.

At present, the Kronecker-factored approximate curvature (KFAC) optimizer has
proven its efficiency in accelerating neural network convergence by leveraging approxima-
tions of the Hessian matrix, without imposing substantial computational overheads [42].
This method has been well tested and has shown great results in quantum chemistry
computations [43,44]. However, when interfacing with certain complex network layers in
PyTorch, the KFAC implementation requires specific layer formatting, which can pose chal-
lenges in its applicability. This has driven us to explore simpler second-order optimization
algorithms that better fit with these network designs and can improve training speed.

We chose AdamW as the optimizer for NNQS for the following reasons: (1) it employs
a more intuitive weight decay strategy compared to the standard Adam optimizer, making
it easier to fine-tune the weight decay hyper-parameters. This aids in mitigating the risk
of overfitting during model training and enhances generalization performance; (2) it also
typically exhibits a more stable convergence performance during training, particularly in
deep neural networks. This contributes to reducing the training instability and overall
training time; (3) the Adam optimizer may introduce biases in parameter updates during
the initial stages of training, leading to training instability. AdamW, through its improved
weight decay method, mitigates such biases, thereby accelerating model convergence.

Weight decay is a regularization technique employed in deep learning models to
mitigate the risk of overfitting. Its function entails the addition of an extra penalty term to
the loss function, penalizing the model’s weight parameters, thereby encouraging them to
tend towards smaller values. This aids in preventing the model from overfitting the training
data during the training process, ultimately enhancing its generalization performance. In
our study, we selected four quantum systems with qubits less than or equal to 30 and
investigated the impact of different weight decay values on the performance of the AdamW
optimizer within the NNQS-model. As shown in Figure 7, when the weight decay was set to
0.003, all four molecular systems exhibited favorable convergence curves.
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Figure 7. Comparison of convergence rates for weight decay across the four systems (a–d). The x-axis
represents the number of training steps, and the y-axis represents the absolute energy comparison
with FCI. The red dashed line indicates chemical precision (CP = 0.0016).

4.4. Application: Ferrocene

For the application, we studied the transition barrier energy between two structures
of ferrocene (Fe(C5H5)2), as shown in Figure 8. Ferrocene is an important organometallic
compound, and it has stimulated an explosion of interest in compounds of d-block metals
with hydrocarbons. The 1973 Chemistry Nobel Prize was bestowed upon Ernst Otto
Fischer and Geoffrey Wilkinson “for their pioneering work, performed independently, on
the chemistry of the organometallic, so called sandwich compounds”. The “sandwich”
structure of ferrocene consists of two cyclopentadienyl (Cp) rings bound to a central iron
atom. There are two kinds of structures with a small energy difference, called eclipsed
ferrocene with D5h symmetry and staggered conformer with D5d symmetry, and the
staggered structure has a lower energy than the eclipsed structure [45]. The ground state
of ferrocene is dominated by a single configurations, including the coupling of Fe and C
orbitals [46]. We used cc-pVTZ-DK basis set and used the automated valence active space
(AVAS) [47] method to generate the desired active orbitals by projecting the canonical
molecule into the Fe d and C pz atomic orbitals (30 spin-orbitals). Using our method, we
obtained the energy barrier between the two structures as 9.16 × 10−3 Hartree, while the
best estimates from the CASCI method predicted 9.30 × 10−3 Hartree. We can see that
chemical accuracy (1 kcal/mol = 0.0016 Hatree) was achieved with our method. These
results gave us confidence in our method’s ability to deal with complex system with
transition metals, and even strongly correlated materials.

We compiled the NNQS in hybrid single-precision and double-precision on a new
generation Sunway supercomputer, Julia 1.6.5 and Pytorch 1.13 was used, which had been
integrated with the underlying runtime and computing libraries; for example, the MPI
communication library (3.2b2) customized for the interconnection network topology of the
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new-generation Sunway supercomputer, deeply optimized BLAS and LAPACK libraries
(3.8), etc. We also used an AMD EPYC 7742 CPU and NVIDIA A100 PCIe 80GB for the
CPU and GPU computation environments, respectively.

Figure 8. The eclipsed and staggered Ferrocene.

5. Conclusions

This study represents a significant advancement in the field of quantum many-body
physics, addressing the critical challenge of the complexity of equations in physics and
chemistry. By integrating the density-matrix renormalization group (DMRG) method
with transformer-based neural networks, we introduced a novel approach that efficiently
tackles the computational difficulties in solving complex quantum systems, especially
those with strong correlations. Future work will focus on further refining these methods,
extending their applicability to even more complex systems, and exploring the integration
of emerging machine learning and quantum computing techniques, to continue advancing
our understanding of the quantum world.
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