
Citation: Tang, T.; Qi, H.; Lu, Q.;

Jiang, H. Multithreaded Reproducible

Banded Matrix-Vector Multiplication.

Mathematics 2024, 12, 422. https://

doi.org/10.3390/math12030422

Academic Editors: Theodore E. Simos

and Charampos Tsitouras

Received: 26 November 2023

Revised: 26 December 2023

Accepted: 11 January 2024

Published: 28 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Multithreaded Reproducible Banded Matrix-Vector
Multiplication
Tao Tang, Haijun Qi *, Qingfeng Lu and Hao Jiang

College of Computer Science and Technology, National University of Defense Technology,
Changsha 410073, China; taotang84@nudt.edu.cn (T.T.); 15211061615@163.com (Q.L.);
haojiang@nudt.edu.cn (H.J.)
* Correspondence: 18321661390@163.com; Tel.: +86-183-2166-1390

Abstract: Reproducibility refers to getting bitwise identical floating point results from multiple runs
of the same program, is an important basis for debugging or correctness checking in many codes.
However the round-off error and non-associativity of floating point makes attaining reproducibility
a challenge in large-scale, long-term parallel computing or solving ill conditioned problems. The
dgbmv performs general banded matrix-vector multiplication for double precision, is the most basic
Level-2 operation in BLAS. First, we designed a reproducible algorithm for banded matrix-vector
multiplication repro_dgbmv based on the technique of error-free transformation. Then the error
of the algorithm is analyzed. Second, the algorithm is parallelized into repro_dgbmv_thread on
ARM and x86 platforms. The numerical test results verify that repro_dgbmv_thread is reproducible
and has higher accuracy than ordinary dgbmv. In numerical experiments on ARM platform, as the
number of threads increases from 1 to 8, the run time of this algorithm is reduced by 5.2–7 times, while
the run time of multithreaded dgbmv is only reduced by 2.2–3.8 times. In numerical experiments on
x86 platform, as the number of threads increases from 1 to 15, the run time of this algorithm is reduced
by 7.7–10.6 times, while the run time of multithreaded dgbmv is only reduced by 4.2–6.8 times.

Keywords: reproducibility; multithreading; banded matrix; matrix-vector multiplication

MSC: 65-02

1. Introduction

The development in the field of high-performance computing (HPC) have been re-
markable, with the computational scale of scientific and engineering calculations continu-
ously increasing. The limited word length of computers leads to unavoidable rounding
errors in floating-point operations [1]. The combination of dynamic scheduling of parallel
computing resources, and floating point nonassociativity results in irreproducibility of
floating-point calculation results. For instance, the continued summation or product of
multiple floating-point numbers depends on the order of calculations.

Reproducibility is the ability to obtain a bit-wise identical and accurate result for
multiple executions on the same data in various parallel environments [2]. We use a floating-
point arithmetic that consists in approximating real numbers by a finite, fixed-precision
representation number adhering to the IEEE 754 standard, which requires correctly rounded
results for the basic arithmetic operations. The correct rounding criterion guarantees a
unique, well-defined answer. The main idea is to keep track of both the result and the error
during the course of computations.

In the 1960s and 1970s, Knuth, Kahan, and Dekker [3] proposed the idea of error-free
transformations. In 2005, Japanese scholar Ogita, Oishi, and German scholar Rump [4–6]
systematically summarized compensation algorithms and formally introduced the concept
of error-free transformations(EFTs). One approach uses EFTs to compute both the result and
the rounding error and stores them in a floating-point expansion (FPE), whose components

Mathematics 2024, 12, 422. https://doi.org/10.3390/math12030422 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030422
https://doi.org/10.3390/math12030422
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12030422
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030422?type=check_update&version=1

Mathematics 2024, 12, 422 2 of 12

are ordered in magnitude with minimal overlap to cover the whole range of exponents [7].
Typically, FPE relies upon the use of the traditional EFT for addition. Another approach
projects the finite range of exponents of floating-point numbers into a long (fixed-point)
accumulator and stores every bit there. For instance, Kulisch proposed to use a 4288-bit
long accumulator for the exact dot product of two vectors composed of binary64 numbers
with hardware supports [8].

Emerging attention to reproducibility strives to draw more careful attention to the
problem by the computer arithmetic community. Static data scheduling and deterministic
reduction ensure the numerical reproducibility of the Intel Math Kernel Library [9]. Never-
theless the number of threads has to be set for all runs. Starting from version 11.0, Intel’s
MKL library introduced the Conditioned Numerical Reproducibility (CNR) mode [10].
This mode provides the capability to obtain reproducible floating-point results when calling
library functions from the application, under the condition of a limited number of threads.
Unfortunately this decreases significantly the performance especially on recent architec-
tures, and requires the number of threads to remain the same from run to run to ensure
reproducible results. Reproblas [11,12], developed by the University of California, Berkeley,
utilizes pre-rounding and 1-Reduction techniques, and is designed for CPU and distributed
parallel environments. However, the current version of this library only has the most basic
functions and does not support thread-level parallelism. Exblas [13,14], developed by the
University of Paris-Sud, combines together long accumulator and floating-point expansion
into algorithmic solutions as well as efficiently tunes and implements them on various
architectures, including conventional CPUs, Nvidia and AMD GPUs, and Intel Xeon Phi
co-processors. Ozblas [15,16], developed by Tokyo Woman’s University in Japan, achieves
reproducibility using the Ozaki scheme. This software supports adjustable precision on
both CPUs and GPUs. However, these libraries are mainly developed to demonstrate
the methods proposed in their respective research papers and are not yet widely used in
practical applications [17].

The latest research is a general framework for deriving reproducible and accurate vari-
ants of a Krylov subspace algorithm, which proposed by Iakymchuk [18]. The framework
is illustrated on the preconditioned BiCGStab method for the solution of non-symmetric
linear systems with message-passing. The algorithmic solutions are build around the
ExBLAS project.

Modern supercomputer architectures consist of multiple levels of parallelism. As the
level of parallelism increases, the uncertainty of computations also increases [19–21]. The
purpose of this paper is to analyze the blocking implementation approaches of the dgbmv
function in the BLAS library, We designed and optimized a multi-threaded reproducible
algorithm for banded matrix-vector multiplication.

The paper is organized as follows. Section 2 introduces the relevant knowledge of
reproducible techniques. Section 3 describes how to achieve reproducibility in the banded
matrix-vector multiplication algorithm and analyses the error bound. Then, the multi-level
parallel optimization design we have performed on this algorithm is explained. Section 4
presents numerical experiments on the reproducibility, accuracy, and performance of
the algorithm. The experimental results demonstrate that the algorithm is reproducible,
efficient, and reliable.

2. Background

In scientific computing, the most basic operation is the addition of two floating-point
numbers. The use of error-free transformations can greatly control the accumulation of
rounding errors.

The algorithm FastTwoSum [3] is used to add two floating-point numbers a and b.
The core idea is to transform the floating-point pair (a, b) into the floating-point pair (x, y)
and use compensation to improve the calculation results. The calculation result is corrected
by combining a high-order term x with a low-order term y.

Mathematics 2024, 12, 422 3 of 12

The algorithm ExtractVector is mainly used for operations on a vector of floating-point
numbers, where it transforms the elements vi of the vector v into the sum of a high-order
part qi and a trailing part ri [22]. T is the exact sum of qi, and r is a vector composed of ri.
Our paper uses the reproducible k-fold accurate summation algorithm repro_dsum_k in
to-nearest rounding mode (Algorithm 7, [22]). This algorithm requires 4kn +O(1) FLOPs,
where k is the number of fold, n is the length of vector v.

3. Parallel Reproducible Banded Matrix-Vector Multiplication

In this chapter, we will explain how we implemented the reproducible banded matrix-
vector multiplication algorithm for double-precision in to-nearest rounding mode.

3.1. Basic Architecture

dgbmv is a special matrix function in BLAS Level 2. Both the memory access and
computational complexity reach O(n2). After special memory access processing, dgbmv
converts to dot or axpy operations. Therefore, the performance heavily relies on the
implementation of the level 1 algorithms.

The function dgbmv is defined as: y = αAx + βy, where A is an n-row by m-column
banded matrix, with ai,j being the element at the i-th row and j-th column of A. α and β
are scalars, x is a vector of size m, with xi being the i-th element in x. y is a vector of size
n, with yi being the i-th element in y. Let ku and kl be the number of superdiagonals and
subdiagonals, respectively.

Taking m = n, kl = ku = 1 as an example, A can be represented as follows:

a1,1 a1,2
a2,1 a2,2 a2,3

a3,2 a3,3 a3,4
.

an−1,m−2 an−1,m−1 an−1,m
an,m−1 an,m


Compressed banded matrix exhibits special matrix properties. During storage, com-

pressed banded matrices only store the effective computational elements (referring to the
elements on the subdiagonal, main diagonal, and superdiagonal). During computation,
dgbmv requires a one-to-one correspondence between matrix elements and vector elements
in terms of computation order. The actual memory required for storage is smaller than the
size of the uncompressed original matrix.

This paper mainly considers the row-major storage format. In memory, the banded
matrix ignores the ineffective computational elements (referring to the subdiagonal and
superdiagonal elements that do not participate in the computation) and rearranges them
according to certain rules.

Each row has an offset added to the starting address. The offset for the first row is
ku, and for each subsequent row, the offset is reduced by 1 until the offset becomes 0,
after which each row is not offset.

Additionally, the effective computational elements of each row need to be recorded
to ensure accurate and complete storage. From this, we can conclude that the memory
access requires knowledge of the offset and the number of effective elements in each row.
Therefore, the storage of matrix A is as follows:

a1,1 a1,2
a2,1 a2,2 a2,3
a3,2 a3,3 a3,4

...
...

...
an−1,m−2 an−1,m−1 an−1,m

an,m−1 an,m



Mathematics 2024, 12, 422 4 of 12

In actual calculation, the compressed banded matrix takes out each row based on
the offset and the number of effective elements, and also takes out the corresponding
vector portion that participates in the computation. It then uses dot to perform the entire
matrix-vector multiplication. The pseudo-code of the specific algorithm implementation is
shown in Algorithm 1.

Algorithm 1 Reproducible Compressed Banded Matrix-Vector Multiplication:
y = repro_dgbmv(α, CA, x, β, y)

Require: Given that matrix A is a banded matrix of size n × m, with ku subdiagonals and
kl superdiagonals, stored in the compressed matrix CA of size n × (ku + kl + 1). x is a
vector of length m, α and β are coefficients, and y is a vector of length n.

1: o f f set_u = ku + 1
2: o f f set_l = ku + m
3: for i = 1 to min(n, m + ku) do
4: jstart = max(o f f set_u, 1)
5: jend = min(o f f set_l, ku + kl + 1)
6: length = jend − jstart + 1
7: for j = jstart to jend do
8: tmp(j) = α ∗ A(i, j) ∗ x(j − o f f set_u)
9: end for

10: tmp(length + 1) = β ∗ y(i)
11: y(i) = repro_dsum_k(tmp)
12: o f f set_u = o f f set_u − 1
13: o f f set_l = o f f set_l − 1
14: end for
Ensure: y = αAx + βy .

Since the multiplication of two floating-point numbers is reproducible, we calculate
the product at each corresponding position and store it in an array tmp(1 : length). We also
store the initial value of y multiplied by β in tmp(length + 1). Then, we use the algorithm
repro_dsum_k to perform the reproducible summation for the array tmp, with the number
of folds k set to 2.

3.2. Error Analysis

Let ε be the machine precision, which is the distance between 1 and the closest floating-
point number. ε = 2−p, where p is the number of significant digits of a floating-point
number. In double precision, p = 53.

Theorem 1. In to-nearest rounding mode, for a vector v of length h and using the k-fold reproducible
summation algorithm T = repro_dsum_k(v), when h · ε ≪ 1, the absolute error bound Esum.k
between the numerical result and the exact result is:

Esum.k ≤
[
k + (1 + kε)2εk−1θkhk

]
hε max

1≤j≤h

(∣∣vj
∣∣), (1)

where θ ∈ [2, 4].

Proof of Theorem 1. Let vj be the j-th element of v, and S0 be the exact sum of all elements
in v. In the i-th step of the error-free vector transformation, where 1 ≤ i ≤ k, we introduce
the following notations: Mi is the corresponding boundary; qi,j is the high-order part
extracted in the i-th error-free vector transformation for each element; Ti is the numerical
result of the summation of qi,j, which can be computed exactly; ri,j is the low-order part
remaining after the i-th extraction; Si is the exact sum of ri,j, which is used for proof
purposes. On one hand, for EFTs,

Mathematics 2024, 12, 422 5 of 12

T1 +
h

∑
j=1

r1,j −
h

∑
j=1

vj =
h

∑
j=1

(
vj −

(
q1,j + r1,j

))
= 0,

Ti +
h

∑
j=1

ri,j −
h

∑
j=1

ri−1,j =
h

∑
j=1

(
ri−1,j −

(
qi,j + ri,j

))
= 0,

where 2 ≤ i < k. Combining the above two cases, we can get:

k

∑
i=1

(Ti + Si − Si−1) = 0.

On the other hand,

|Si−1 − Ti| = |Si| ≤ 2 · ε · h · Mi,

Therefore, ∣∣∣∣∣ k

∑
i=1

Ti − S0

∣∣∣∣∣ =
∣∣∣∣∣ k

∑
i=1

(Ti + Si − Si−1)

∣∣∣∣∣+ |Tk − Sk−1|

≤ 2 · ε · h · Mk.

By applying Lemma 5 from reference [22],

Mi = c · θi · hi · εi−1 · max
1≤j≤h

(∣∣vj
∣∣),

we can deduce that ∣∣∣∣∣ k

∑
i=1

Ti − S0

∣∣∣∣∣ ≤ 2 · εk · hk+1 · θk · max
j

(∣∣vj
∣∣)

=: ϕ(k, max
j

(∣∣vj
∣∣)), (2)

where ϕ will be used in proof of Theorem 2. Therefore,

Esum.k =

∣∣∣∣∣T −
h

∑
j=1

vj

∣∣∣∣∣ ≤
∣∣∣∣∣T −

k

∑
i=1

Ti

∣∣∣∣∣+
∣∣∣∣∣ k

∑
i=1

Ti − S0

∣∣∣∣∣ (3)

≤ k · ε ·
∣∣∣∣∣ k

∑
i=1

Ti

∣∣∣∣∣+
∣∣∣∣∣ k

∑
i=1

Ti − S0

∣∣∣∣∣
≤ k · ε ·

(
|S0|+

∣∣∣∣∣ k

∑
i=1

Ti − S0

∣∣∣∣∣
)
+

∣∣∣∣∣ k

∑
i=1

Ti − S0

∣∣∣∣∣
≤ k · ε · |S0|+ (1 + k · ε) · 2 · εk · hk+1 · θk · max

j

(∣∣vj
∣∣).

Furthermore, since

|S0| ≤ h · max
j

(∣∣vj
∣∣),

we can get (1) through simple derivation.

Based on Theorem 1, we can derive Theorem 2. For convenience, we set h = ku+ kl + 1
is the number of elements in a row. In the banded matrix A, the ith row is denoted as Ai.

Mathematics 2024, 12, 422 6 of 12

Theorem 2. In simplified algorithm repro_dgbmv to compute Ax = y, A ∈ Rm×n, x ∈ Rn,y ∈
Rm. ku and kl are the number of superdiagonals and subdiagonals, respectively. The error bound
Erep for each element yi in the numerical solution y is:

Erep_dgbmv ≤
[
(1 + 2k)ε + (1 + (1 + k)ε + kε2)

maxi Ei
1 − maxi Ei

]
· h · M,

where

Ei = 2 · θk · εk · hk+1 · Mi,

and M is the vector of Mi, i = 1, · · · , m, and mi is the maximum value of{
ai,j start · xjstart , · · · , ai,jend · xjend , β · yi, }.

Proof of Theorem 2. To perform a dot product operation between each row of A and x, it is
necessary to first calculate the product result of each aij and xi, store it in a vector, and then
perform a reproducible sum. We call this process as repro_dot. By using Ei = ϕ(k, Mi) in
(2) and the same method in (3), the detailed calculation process for Ai and x is as follows:

repro_dot(Ai, x) ≤ (1 + k · ε) · (1 + δ)·
[

ai1xi(1 + Ei/h)h + ai2x2(1 + Ei/h)h−1

+ · · ·+ ainxn(1 + Ei/h)
]
+ k · ε · h · Mi, (4)

where δ < ε. From (1 + Ei/h)h < eps(Ei) , We can derive that

(1 + Ei/h)h − 1 < Ei +
E2

i
2!

+
E3

i
3!

+ · · ·

< Ei

[
1 +

Ei
2
+

(
Ei
2

)2
+ · · ·

]

= Ei

[
1/
(

1 − Ei
2

)]

<
Ei

1 − Ei
. (5)

By combining equality (4) and inequality (5), we can get

repro_dot(Ai, x) <(1 + k · ε) · (1 + ε) ·
[
1 +

Ei
1 − Ei

]
· h · Mi + k · ε · h · Mi.

Then the error bound is

Erep_dgbmv ≤ (1 + k)ε · h · M + (1 + (1 + k)ε + kε2)
maxi Ei

1 − maxi Ei
· h · M + k · ε · h · M

where

Ei = 2 · θk · εk · hk+1 · Mi,

which is easy to deduce the result.

Note that the error bound of dgbmv [1] is

Edgbmv ≤ hε

1 − hε
· h · M.

Mathematics 2024, 12, 422 7 of 12

Therefore if
hk · εk−1 << 1,

repro_dgbmv has a smaller error bound than dgbmv. As for αAx + βy = y, it’s easy to
derive in a similar way.

3.3. Blocking and Parallel Optimization

We separated the compressed banded matrix A into blocks, and used multi-level
parallel reproducible summation algorithms. The number of blocks is determined by the
number of threads, nthreads. We used blas_quickdivide to allocate tasks to each block.
The segmentation process is as follows: first, we calculated the number of rows that each
block needs to allocate based on the number of threads and the number of matrix rows.
Then, we used exec_blas to transfer the calculated control information to each thread.
For example, when the number of threads is 4, the blocking is as shown below:

a1,1 a1,2
a2,1 a2,2 a2,3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

an−1,m−2 an−1,m−1 an−1,m
an,m−1 an,m


Finally, according to the received control information in different threads, we accessd

A, x, and y, and used the repro_dgbmv algorithm to calculate. The calculated results are
assigned to the corresponding positions of y.

We refered to this optimized multi-threaded compressed banded matrix-vector multi-
plication as repro_dgbmv_thread.

4. Numerical Experiments

In this chapter, we conducted numerical experiments to verify the reproducibility,
accuracy, and performance of the repro_dgbmv_thread algorithm. In the reproducible
summation used, we set the number of folds k to 2.

In experiments to verify reproducibility and accuracy, we generated a set of data using
sine function to make the data more ill-conditioned, and store data in a banded matrix A of
size 5000 × 5000. The number of subdiagonals and superdiagonals is set to 500. We also
generate floating-point vectors x and y of size 5000 using the sine function.

The experiments were conducted on two different testing platforms: an ARM processor
(National University of Defense Technology, Changsha, Hunan) and a x86 processor Intel(R)
Xeon(R) Platinum 8180M (Xeon Platinum CPU) , with the parameters shown in the Table 1.

Mathematics 2024, 12, 422 8 of 12

Table 1. Hardware parameters of two platforms.

processor ARM x86

CPU clock speed 2.2 GHz 2.50 GHz

number of core 16 8

cache

L1I 48 KB 256 KB

L1D 32 KB 256 KB

L2 32 MB 8 MB

L3 – 77 MB

memory size 16 × 8 GB 8 × 8 GB

4.1. Reproducibility Verification

We performed the ordinary banded matrix-vector multiplication algorithm dgbmv
and the repro_dgbmv_thread algorithm on two different platforms with a single thread to
verify the reproducibility.

We defined the irreproducibility rate as: the proportion of elements in the numerical
results that have the same index but values differ between two results, when using the
same program and the same set of input data.

To compare the numerical results, we calculated the absolute errors between different
numerical results, as shown in Figure 1. In the figure, the result calculated on the ARM
platform is denoted as y1, and the result calculated on the x86 platform is denoted as y2.
The absolute error is calculated as:

absolute_error = y1 − y2.

Figure 1. The absolute error between the two results executed on ARM and x86 of dgbmv and
repro_dgbmv_thread.

Mathematics 2024, 12, 422 9 of 12

To verify the reproducibility of the algorithm, we also calculated the maximum abso-
lute error between the two results y1 and y2,

max(|y1 − y2|)

as well as the irreproducibility rate, which is the ratio of the number of irreproducible
elements to the total number of elements

= nonReproNum /5000.

We showed the rate in Table 2.

Table 2. Comparison of results executed by same algorithm on ARM and x86.

Maximum Absolute Error Irreproducibility Rate

dgbmv 3.996802 × 10−15 83.38%

repro_dgbmv_thread 0 0%

From Figure 1 and Table 2, we can see that the dgbmv algorithm produces different
results on the two platforms, with a maximum absolute error greater than 0. In the entire
result vector, 83.38% of the elements are different. In contrast, the repro_dgbmv_thread
algorithm produces results with a maximum absolute error of 0 on both platforms, and the
irreproducibility rate is 0, which means all corresponding elements of the result vectors are
exactly the same. This indicates that dgbmv is irreproducible, while repro_dgbmv_thread
is reproducible.

4.2. Accuracy Verification

On the ARM platform, we denoted these two results of dgbmv and repro_dgbmv_thread
as y and ry, and then calculate the accurate result ey using MPFR [23]. We compare y and ry
with ey, and the error results are shown in Figure 2. The maximum absolute error between
exact solution and numerical results is computed by max(|y − ey|) = 3.996802× 10−15,
max(|ry − ey|) = 4.440892× 10−16.

Figure 2. The absolute error between exact solution and numerical results of dgbmv and
repro_dgbmv_thread.

It can be seen that the repro_dgbmv_thread has higher accuracy than the dgbmv.

Mathematics 2024, 12, 422 10 of 12

4.3. Performance Verification

We tested multiple sets of subdiagonals and superdiagonals for the matrix A of size
5000 × 5000.

First, on the ARM platform, we used dgbmv and repro_dgbmv_thread to perform
different sizes of matrices with single thread and 8 threads. We recorded the running time,
as shown in Figure 3, and calculated speedup, as shown in Figure 4.

Figure 3. The running time of dgbmv and repro_dgbmv_thread of single thread and 8 thread on
ARM platform respectively.

Figure 4. The speedup of dgbmv and repro_dgbmv_thread between single thread and 8 thread on
ARM platform.

Furthermore, it could be calculated that with single thread, the running time of
repro_dgbmv_thread is 4 to 4.2 times that of the dgbmv. With 8 threads, the running
time of repro_dgbmv_thread is 1.7 to 2.8 times that of the dgbmv. Compared to dgbmv,
repro_dgbmv_thread has higher parallel efficiency.

Second, on the x86 platform, we used single thread, 15 threads, and 30 threads to
execute repro_dgbmv_thread. The running time are shown in Figure 5, and the speedup
between single thread and 15 threads is shown in Figure 6.

It could be calculated that the running time of repro_dgbmv_thread with single thread
is 7.7 to 10.6 times that of 15 threads, and the running time with 15 threads is 1.1 to 1.5 times
that of 30 threads. However, the running time of dgbmv with single thread is 4.2 to 6.8 times
that of 15 threads, and the running time with 15 threads is 0.8 to 1.2 times that of 30 threads.

Increasing the number of threads further does not improve the parallel efficiency or
reduce the running time, because the data size processed by each individual thread is not
large enough, leading to increased the proportion of communication time and decreased
parallel efficiency.

Mathematics 2024, 12, 422 11 of 12

Figure 5. The rum times of repro_dgbmv_thread with single-thread and multithread respectively on
x86 platform.

Figure 6. The rum times of repro_dgbmv_thread with single-thread and multithread respectively on
x86 platform.

5. Conclusions

In this paper, we optimized the banded matrix-vector multiplication algorithm based
on the error-free vector transformation. We implemented the reproducible extension and
high-precision improvement of the algorithm. In addition, We conducted error analysis
for the algorithm. The program implementation of multi-threaded parallel reproducible
banded matrix-vector multiplication algorithm was on the ARM and x86 platforms. The nu-
merical experimental results verified the reproducibility and accuracy improvement of
the repro_dgbmv_thread, as well as the performance improvement and better parallel
efficiency compared to dgbmv.

Author Contributions: Conceptualization, T.T.; Methodology, H.J.; Validation, H.Q.; Writing—original
draft, Q.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Key Research and Development Program of China
under Grant No. 2020YFA0709803.

Mathematics 2024, 12, 422 12 of 12

Data Availability Statement: Available online: https://github.com/taotang84/repro_dgemv_thread
(accessed on 10 January 2024).

Conflicts of Interest: The authors declare no conflict of interest. The funders had decisive role in the
decision to publish the results.

References
1. Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd ed.; SIAM: Philadelphia, PA, USA, 2002.
2. Benmouhoub, F.; Garoche, P.L.; Martel, M. An Efficient Summation Algorithm for the Accuracy, Convergence and Reproducibility

of Parallel Numerical Methods. In Software Verification; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022;
Volume 13124, pp. 165–181. [CrossRef]

3. Ogita, T.; Rump, S.; Oishi, S. Accurate sum and dot product. SIAM J. Sci. Comput. 2005, 26, 1955–1988.
4. Ozaki, K.; Ogita, T.; Oishi, S.I.; Rump, S.M. Error-free transformations of matrix multiplication by using fast routines of matrix

multiplication and its applications. Numer. Algorithms 2012, 59, 95–118. [CrossRef]
5. Rump, S.M.; Ogita, T.; Oishi, S. Accurate floating-point summation part I: Faithful rounding. SIAM J. Sci. Comput. 2008, 31,

189–224.
6. Rump, S.; Ogita, T.; Oishi, S. Accurate Floating-Point Summation Part II: Sign, K-Fold Faithful and Rounding to Nearest. SIAM J.

Sci. Comput. 2008, 31, 1269–1302.
7. Mukunoki, D.; Ogita, T.; Ozaki, K. Reproducible BLAS Routines with Tunable Accuracy Using Ozaki Scheme for Many-Core

Architectures. In Parallel Processing and Applied Mathematics, Proceedings of the 13th International Conference on Parallel Processing and
Applied Mathematics (PPAM 2019), Bialystok, Poland, 8–11 September 2019; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2020; Volume 12043, pp. 516–527. [CrossRef]

8. Kulisch, U.; Snyder, V. The exact dot product as basic tool for long interval arithmetic. Computing 2011, 91, 307–313.
9. Todd, R. Run-to-Run Numerical Reproducibility with the Intel Math Kernel Library and Intel Composer XE 2013; Technical Report; Intel

Corporation: Santa Clara, CA, USA, 2013.
10. Rosenquist, T.; Fedorov, G. Introduction to Conditional Numerical Reproducibility (CNR). Available online: https://software.intel.

com/content/www/us/en/develop/articles/introduction-to-the-conditional-numerical-reproducibility-cnr.html (accessed on
30 November 2023).

11. Demmel, J.; Nguyen, H.D. Parallel Reproducible Summation. IEEE Trans. Comput. 2015, 64, 2060–2070.
12. ReproBLAS: Reproducible BLAS. 2018. Available online: http://bebop.cs.berkeley.edu/reproblas/ (accessed on 30 Novem-

ber 2023).
13. Iakymchuk, R.; Collange, S.; Defour, D.; Graillat, S. ExBLAS: Reproducible and Accurate BLAS Library. In Proceedings of the

NRE2015 at SC15, Austin, TX, USA, 20 November 2015.
14. Iakymchuk, R.; Defour, D.; Collange, C.; Graillat, S. Reproducible triangular solvers for high-performance computing. In

Proceedings of the International Conference on Information Technology—New Generations (ITNG), Las Vegas, NV, USA, 13–15
April 2015; pp. 353–358.

15. Mukunoki, D.; Ogita, T.; Ozaki, K. Accurate and Reproducible BLAS Routines with Ozaki Scheme for Many-core Architectures.
In Proceedings of the Russian Supercomputing Days 2019, Moscow, Russia, 23–24 September 2019; pp. 202–203.

16. ANSI/IEEE Standard 754-1985; IEEE Standard for Binary Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers:
New York, NY, USA, 1985.

17. Knuth, D.E. The Art of Computer Programming Seminumerical Algorithms, 3rd ed.; Addison-Wesly: Reading, MA, USA, 1998;
Volume 2.

18. Iakymchuk, R.; Graillat, S.; Aliaga, J.I. General framework for re-assuring numerical reliability in parallel Krylov solvers: A case
of bi-conjugate gradient stabilized methods. Int. J. High Perform. Comput. Appl. 2023, 16–29. [CrossRef]

19. Collange, C.; Defour, D.; Graillat, S.; Iakymchuk, R. Numerical Reproducibility for the Parallel Reduction on Multi-and Many-Core
Architectures. Parallel Comput. 2015, 49, 83–97.

20. Li, K.; He, K.; Graillat, S.; Jiang, H.; Gu, T.; Liu, J. Multi-level parallel multi-layer block reproducible summation algorithm.
Parallel Comput. 2023, 115, 102996.

21. Chen, L.; Tang, T.; Qi, H.; Jiang, H.; He, K. Design and Implementation of Multithreaded Reproducible DGEMV on Phytium
Processor. Comput. Sci. 2022, 49, 27–35. (In Chinese)

22. Demmel, J.; Nguyen, H.D. Fast reproducible floating-point summation. In Proceedings of the 21st IEEE Symposium on Computer
Arithmetic, Austin, TX, USA, 7–10 April 2013; pp. 163–172.

23. Zimmermann, P. Reliable Computing with GNU MPFR. In Mathematical Software—ICMS 2010; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2010; Volume 6327, pp. 42–45.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/taotang84/repro_dgemv_thread
http://doi.org/10.1007/978-3-030-95561-8_10
http://dx.doi.org/10.1007/s11075-011-9478-1
http://dx.doi.org/10.1007/978-3-030-43229-4_44
https://software.intel.com/content/www/us/en/develop/articles/ introduction-to-the-conditional-numerical-reproducibility-cnr.html
https://software.intel.com/content/www/us/en/develop/articles/ introduction-to-the-conditional-numerical-reproducibility-cnr.html
http://bebop.cs.berkeley.edu/reproblas/
http://dx.doi.org/10.1177/10943420231207642

	Introduction
	Background
	Parallel Reproducible Banded Matrix-Vector Multiplication
	Basic Architecture
	Error Analysis
	Blocking and Parallel Optimization

	Numerical Experiments
	Reproducibility Verification
	Accuracy Verification
	Performance Verification

	Conclusions
	References

