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1. Introduction and Main Statements
1.1. Introduction

Let G be a finite group and K an algebraic closed field of characteristic zero. Suppose
that V is an n-dimensional faithful representation of G and S = K[V] = K[x1, . . . , xn] is the
coordinate ring of V.

The goal of invariant theory is to study the structures of the ring of invariants

SG = { f ∈ S : a · f = f , ∀a ∈ G},

in which the group action is extended from the representation of G (see Section 2.1 for more
details). In particular, Hilbert proved that SG is always a finite generated K-algebra [1] and
Chevalley [2], Shephard and Todd [3] proved that SG is a polynomial algebra if and only
if G is generated by pseudo-reflections (see Section 2.2 for precise definition).

Twisted derivations [4] (also named σ-derivations) play an important role in the study
of deformations of Lie algebras. Motivated by the above Chevalley’s Theorem, we apply
pseudo-reflections to induce a class of twisted derivations on S (see Theorem 3 for more
details). Based on twisted derivations on commutative associative algebras, we obtain a
class of left-Alia (left anti-Lie-admissible) algebras [5], which appears in the study of a
special class of algebras with a skew-symmetric identity of degree three. Furthermore, we
construct Manin triples and bialgebras of left-Alia algebras. Via specific matched pairs of
left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras.

Throughout this paper, unless otherwise specified, all vector spaces are finite-dimensional
over an algebraically closed field K of characteristic zero and all K-algebras are commutative
and associative with the finite Krull dimension, although many results and notions remain
valid in the infinite-dimensional case.

1.2. Left-Alia Algebras Associated with Invariant Theory

The notion of a left-Alia algebra was defined for the first time in the table in the
Introduction of [5].
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Definition 1 ([5]). A left-Alia algebra (also named a 0-Alia algebra) is a vector space A together
with a bilinear map [·, ·] : A ⊗ A → A satisfying the symmetric Jacobi identity:

[[x, y], z] + [[y, z], x] + [[z, x], y] = [[y, x], z] + [[z, y], x] + [[x, z], y], ∀x, y, z ∈ A. (1)

There are some typical examples of left-Alia algebras. Firstly, when the bilinear
map [·, ·] is skew-symmetric, (A, [·, ·]) is a Lie algebra. By contrast, any commutative
algebra is a left-Alia algebra and, in particular, a mock-Lie algebra [6] (also known as a
Jacobi–Jordan algebra in [7]) with a symmetric bilinear map that satisfies the Jacobi identity
is a left-Alia algebra. Secondly, the notion of an anti-pre-Lie algebra [8] was recently
studied as a left-Alia algebra with an additional condition. Anti-pre-Lie algebras are the
underlying algebra structures of nondegenerate commutative 2-cocycles [9] on Lie algebras
and are characterized as Lie-admissible algebras whose negative multiplication operators
compose representations of commutator Lie algebras. Condition (1) of the identities of an
anti-pre-Lie algebra is just to guarantee (A, [·, ·]) is a Lie-admissible algebra. Additionally,
we also studied left-Alia algebras in terms of their relationships with Leibniz algebras [10]
and Lie triple systems [11].

Let (A, ·) be a commutative associative algebra and R : A → A a linear map on A.
For brevity, the operation · will be omitted. A linear map D : A → A is called a twisted
derivation with respect to an R (also named a σ-derivation in [4]) if D satisfies the twisted
Leibniz rule:

D( f g) = D( f )g + R( f )D(g), f , g ∈ A. (2)

Non-trivial examples of twisted derivations can be constructed in invariant theory. In
particular, each pseudo-reflection R on a vector space V induces a twisted derivation DR on
the polynomial ring K[V] (see Section 2.2 for details).

Define
[ f , g]R = D( f )g − R( f )D(g).

We then obtain a class of left-Alia algebras in Theorem A.
Theorem A (Theorems 3 and 4)

(a) For each twisted derivation D on A, (A, [·, ·]R) is a left-Alia algebra.
(b) Each pseudo-reflection R on V induces a left-Alia algebra (K[V], [·, ·]R).

This applies when R = I, [ f , g]R is skew-symmetric and (A, [·, ·]R) is a Lie algebra
of the Witt type [12]. Moreover, Theorem A also provides a class of left-Alia algebras on
polynomial rings from invariant theory. As a corollary of Theorem A, we see that when SG

is a polynomial algebra, each generator g ∈ G corresponds to a left-Alia algebra (S, [·, ·]Rg).
The collection of left-Alia algebras is also an interesting research object for further study.

In addition, if we define that [ f , h] = DR( f )h − f DR(h) on S, (S, [·, ·]), then it is not
a left-Alia algebra in general. However, when [·, ·] is restricted to V∗, we obtain a finite-
dimensional Lie algebra, which induces a linear Poisson structure on V, and figure out the
entrance to the study of twisted relative Poisson structures on graded algebras. See [13] for
reference.

1.3. Manin Triples and Bialgebras of Left-Alia Algebras

A bialgebra structure is a vector space equipped with both an algebra structure
and a coalgebra structure satisfying certain compatible conditions. Some well-known
examples of such structures include Lie bialgebras [14,15], which are closely related to
Poisson–Lie groups and play an important role in the infinitesimalization of quantum
groups, and antisymmetric infinitesimal bialgebras [16–20] as equivalent structures of
double constructions of Frobenius algebras which are widely applied in the 2d topolog-
ical field and string theory [21,22]. Recently, the notion of anti-pre-Lie bialgebras was
studied in [23], which serves as a preliminary to supply a reasonable bialgebra theory for
transposed Poisson algebras [24]. The notions of mock-Lie bialgebras [25] and Leibniz
bialgebras [26,27] were also introduced with different motivations. These bialgebras have a
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common property in that they can be equivalently characterized by Manin triples which
correspond to nondegenerate invariant bilinear forms on the algebra structures. In this
paper, we follow such a procedure to study left-Alia bialgebras.

To develop the bialgebra theory of left-Alia algebras, we first define a representation
of a left-Alia algebra to be a triple (l, r, V), where V is a vector space and l, r : A → End(V)
are linear maps such that the following equation holds:

l([x, y])v − l([y, x])v = r(x)r(y)v − r(y)r(x)v + r(y)l(x)v − r(x)l(y)v, ∀x, y ∈ A, v ∈ V.

A representation (ρ, V) of a Lie algebra (A, [·, ·]) renders representations (ρ,−ρ, V)
and (ρ, 2ρ, V) of (A, [·, ·]) as left-Alia algebras.

Furthermore, we introduce the notion of a quadratic left-Alia algebra, defined as a
left-Alia algebra (A, [·, ·]) equipped with a nondegenerate symmetric bilinear form B which
is invariant in the sense that

B([x, y], z) = B(x, [z, y]− [y, z]), ∀x, y, z ∈ A.

A quadratic left-Alia algebra gives rise to the equivalence between the adjoint repre-
sentation and the coadjoint representation.

Last, we introduce the notions of a matched pair (Definition 8) of left-Alia algebras, a
Manin triple of left-Alia algebras (Definition 11) and a left-Alia bialgebra (Definition 13).
Via specific matched pairs of left-Alia algebras, we figure out the equivalence between
Manin triples and bialgebras in Theorem B.

Theorem B (Theorems 5 and 6) Let (A, [·, ·]A) be a left-Alia algebra. Suppose that there is
a left-Alia algebra structure (A∗, [·, ·]A∗) on the dual space A∗, and δ : A → A ⊗ A is the linear
dual of [·, ·]A∗ . Then, the following conditions are equivalent:

(a) There is a Manin triple of left-Alia algebras
(
(A ⊕ A∗, [·, ·]d,Bd), A, A∗), where

Bd(x + a∗, y + b∗) = ⟨x, b∗⟩+ ⟨a∗, y⟩, ∀x, y ∈ A, a∗, b∗ ∈ A∗.

(b) (A, [·, ·]A, δ) is a left-Alia bialgebra.

Theorem B naturally leads to the study of Yang–Baxter equations and relative Rota–
Baxter operators for left-Alia algebras [28].

2. Pseudo-Reflections and Twisted Deviations in Invariant Theory
2.1. Preliminary on Invariant Theory

Let G be a finite group and K an algebraic closed field of characteristic zero. Suppose
that (ρ, V) is an n-dimensional faithful representation of G and its dual representation is
denoted by (ρ, V∗). Let S = K[V] = K[x1, . . . , xn] be the coordinate ring of V. Define a
G-action on S as

g · ∑
i1,...,in

ki1,...,in xi1
1 . . . xin

n := ∑
i1,...,in

ki1,...,in(ρ(g)x1)
i1 . . . (ρ(g)xn)

in , ∀g ∈ G. (3)

Define the ring of invariants as

SG = { f ∈ S : a · f = f , ∀a ∈ G}.

Theorem 1 ([1,29]). (a) SG is a finitely generated K-algebra.
(b) S is a finitely generated SG-module.

Definition 2 ([29]). A linear automorphism R ∈ Aut(V) is called a pseudo-reflection if Rm = I
for some m ∈ N∗ and Im(I − R) is one-dimensional.

In invariant theory, the following theorem gives the equivalent condition that SG is a
polynomial algebra:



Mathematics 2024, 12, 408 4 of 16

Theorem 2 ([2,3]). SG is a polynomial algebra if and only if G ∼= ρ(G) is generated by
pseudo-reflections.

Then, we figure out the relation between a pseudo-reflection on V and a twisted
deviation on S = K[V].

Lemma 1. Let R be a pseudo-reflection on V. Then, R induces a pseudo-reflection on V∗ (also
denoted by R).

Proof. Let {e1, . . . , en} be a basis of V such that W = Span{e1, . . . , en−1} is fixed by R.

By Rm =


1 a1

1 a2
. . .

...
1 an−1

an



m

= I, we see that R is given by the diagonal matrix

diag(1, . . . , 1, ω), where ω ̸= 1 is an m-th primitive root over K. Denote {x1, . . . , xn}, the
dual basis of V∗, such that xi(ej) = δij. Thus, the induced automorphism on V∗, defined
by R(xi)(ej) := xi(R−1(ej)), satisfies that R(xi) = xi, 1 ≤ i ≤ n − 1 and R(xn) = (1/ω)xn.
Therefore, R is a pseudo-reflection on V∗.

2.2. Pseudo-Reflections Induced by Twisted Deviations

Let (A, ·) be a commutative associative algebra and R : A → A a linear map on A.
Recall from [4] the definition of a twisted derivation (also named a σ-derivation).

Definition 3. A linear map D : A → A is called a twisted derivation with respect to R if D
satisfies the twisted Leibniz rule:

D( f g) = D( f )g + R( f )D(g), f , g ∈ A. (4)

Remark 1. When R = I, D is a derivation on A.

Recall from Section 2.1 that for a fixed non-zero vR ∈ Im(I − R) ⊂ V, there exists a
∆R ∈ V∗ such that

(I − R)v = ∆R(v)vR, ∀v ∈ V. (5)

By Lemma 1, for a fixed non-zero lR ∈ Im(I − R) ⊂ V∗, there also exists a ∆R ∈ V
such that

(I − R)x = ∆R(x)lR, ∀x ∈ V∗. (6)

Also, denote R : S → S as an extension of R ∈ Aut(V) satisfying

R(k1 f + k2h) = k1R( f ) + k2R(h) and R( f h) = R( f )R(h).

Theorem 3. For each f ∈ S, there exists a twisted derivation DR : S → S with respect to R such that

R( f ) = f − DR( f )lR. (7)

Proof. First, we prove that R( f ) can be uniquely written as R( f ) = f − DR( f )lR for some
DR : S → S. It follows from (6) that, for 1 ≤ ai ≤ n,

R(xa1 . . . xak ) = (Rxa1) . . . (Rxak )

= (xa1 − ∆R(xa1)lR) . . . (xak − ∆R(xak )lR)

which can be expressed as

xa1 . . . xak − DR(xa1 . . . xak )lR,
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where DR maps the monomial to a polynomial in S. As a consequence, R( f ) can be written as

R( f ) = f − DR( f )lR, (8)

where DR : S → S is a linear map. Then, we prove that DR is a twisted derivation on S
with respect to R. On the one hand,

R( f h) = f h − DR( f h)lR.

On the other hand,

R( f )R(h) = R( f )(h − DR(h)lR) = ( f − DR( f )lR)h − R( f )DR(h)lR

= f h − (DR( f )h + R( f )DR(h))lR.

Therefore, R( f h) = DR( f )h + R( f )DR(h).

Remark 2. When restricting DR to V∗, DR = ∆R on V∗. When restricting (I − DR) to V∗,
(I − DR) is a pseudo-reflection on V∗.

3. Left-Alia Algebras and Their Representations
3.1. Left-Alia Algebras and Twisted Derivations

Definition 4 ([5]). A left-Alia algebra is a vector space A together with a bilinear
map [·, ·] : A × A → A satisfying the symmetric Jacobi property:

[[x, y], z] + [[y, z], x] + [[z, x], y] = [[y, x], z] + [[z, y], x] + [[x, z], y], ∀x, y, z ∈ A.

Remark 3. A left-Alia algebra (A, [·, ·]) is a Lie algebra if and only if the bilinear map [·, ·] is
skew-symmetric. On the other hand, any commutative algebra (A, [·, ·]) in the sense that [·, ·] is
symmetric is a left-Alia algebra.

We can obtain a class of left-Alia algebras from twisted derivations.

Lemma 2. Let D : A → A be a twisted derivation of the commutative associative algebra (A, ·).
Then, D satisfies

xD(y)− D(x)y = R(x)D(y)− D(x)R(y), ∀ x, y ∈ A. (9)

Proof. By the commutative property of (A, ·) and (4), we have

D(xy)− D(yx) = D(x)y + R(x)D(y)− D(y)x − R(y)D(x) = 0.

Therefore, (9) holds.

Theorem 4. Let (A, ·) be a commutative associative algebra and D be a twisted derivation. For all
x, y ∈ A, define the bilinear map [·, ·]R : A × A → A by

[x, y]R := [x, y]D = xD(y)− R(y)D(x). (10)

Then, (A, [·, ·]R) is a left-Alia algebra.

Proof. Let x, y, z ∈ A. By (10), we have

[x, y]R − [y, x]R = xD(y)− R(y)D(x)− yD(x) + R(x)D(y)
(9)
= 2(xD(y)− yD(x)),
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and

D(xD(y)− yD(x))
(4)
= D(x)D(y)− R(y)D2(x)− D(y)D(x) + R(x)D2(y)

= R(x)D2(y)− R(y) D2(x).

Furthermore,

⟲x,y,z [[x, y]R − [y, x]R, z]R
= ⟲x,y,z 2[xD(y)− yD(x), z]R

(10)
= ⟲x,y,z 2

(
xD(y)D(z)− yD(x)D(z)− R(x)D2(y)R(z) + R(y)D2(x)R(z)

)
= 0.

Therefore, the conclusion holds.

Remark 4. Theorem 4 can also be verified in the following way. Let (A, ·) be a commutative
associative algebra with linear maps f , g : A → A. By [5], there is a left-Alia algebra (A, [·, ·])
given by

[x, y] = x · f (y) + g(x · y), ∀x, y ∈ A, (11)

which is called a special left-Alia algebra with respect to (A, ·, f , g). If D is a twisted derivation
of (A, ·) with respect to R, then we see that (A, [·, ·]R) satisfies (11) for

f = 2D, g = −D.

Hence, (A, [·, ·]R) is left-Alia.

3.2. Examples of Left-Alia Algebras

Example 1. Let R be a reflection defined by R(x1) = x2, R(x2) = x1, R(x3) = x3 on
three-dimensional vector space V∗ with a basis {x1, x2, x3}. On the coordinate ring S = K[x1, x2, x3]
of V, R can be also denoted an extension of R satisfying R( f g) = R( f )R(g) and
R(k1 f + k2h) = k1R( f ) + k2R(h). Let D be the twisted derivation on S induced by the reflec-
tion R. It follows from Theorem 3 that R( f ) = f − D( f )(x1 − x2). Take two polynomi-
als, f = ∑

i
ki fi, g = ∑

j
hjgj, ki, hj ∈ K, in S, where fi, gj are monomials, fi = xni,1

1 xni,2
2 xni,3

3 ,

gj = x
mj,1
1 x

mj,2
2 x

mj,3
3 . We have

D(x1) =1, D(x2) = −1, D(x3) = 0.

D(xn1
1 ) =xn1−1

1 + xn1−2
1 x2 + . . . + xn1−1

2 .

D(xn2
2 ) =− xn2−1

1 − xn2−1
1 x2 − . . . − xn2−1

2 .

D(xn3
3 ) =0.

D(∑
i

kix
ni,1
1 xni,2

2 xni,3
3 ) =∑

i
ki(D(xni,1

1 xni,2
2 )xni,3

3 + R(xni,1
1 xni,2

2 )D(xni,3
3 ))

=∑
i

ki(xni,1
1 D(xni,2

2 ) + R(xni,2
2 )D(xni,1

1 ))xni,3
3

=∑
i

ki(xni,1+ni,2−1
1 + xni,1+ni,2−2

1 x2 + . . . + xni,2
1 xni,1−1

2

− xni,1+ni,2−1
1 − . . . − xn1

1 xn2−1
2 )xni,3

3 .
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Let [·, ·]R : S × S → S be the bilinear map defined in Theorem 4. Then,

[ f , g]R =∑
i,j

kihj[ fi, gj]R

=∑
i,j

kihj( fiD(gj)− R(gj)D( fi))

=∑
i,j

kihj(x
ni,1+mj,1+mj,2−1
1 xni,2

2 + . . . + x
ni,1+mj,2
1 x

ni,2+mj,1−1
2

− x
ni,1+mj,1+mj,2−1
1 xni,2

2 − . . . − x
mj,1+ni,1
1 x

ni,2+mj,2−1
2

− x
mj,2+ni,1+ni,2−1
1 x

mj,1
2 − . . . − x

ni,2+mj,2
1 x

ni,1+mj,1−1
2

+ x
mj,2+ni,1+ni,2−1
1 x

mj,1
2 + . . . + x

ni,1+mj,2
1 x

ni,2+mj,1−1
2 )x

mj,3+ni,3
3 .

Since (S, ·) is a commutative associative algebra, by Theorem 4 (S, [·, ·]R) is a left-Alia algebra.

Proposition 1. Let (A, [·, ·]) be an n-dimensional (n ≥ 2) left-Alia algebra and {e1, · · · , en} be a
basis of A. For all positive integers 1 ≤ i, j, t ≤ n and structural constants Ct

ij ∈ C, set

[ei, ej] =
n

∑
t=1

Ct
ijet. (12)

Then, (A, [·, ·]) is a left-Alia algebra if and only if the structural constants Ct
ij satisfy the

following equation:

n

∑
k,m=1

(
(Ck

ij − Ck
ji)C

m
kl + (Ck

jl − Ck
lj)C

m
ki + (Ck

li − Ck
il)C

m
kj

)
= 0, ∀1 ≤ i, j, l ≤ n. (13)

Proof. By (1), for all ei, ej, el ∈ {e1, · · · , en},

[[ei, ej]− [ej, ei], el ] + [[ej, el ]− [el , ej], ei] + [[el , ei]− [ei, el ], ej] = 0. (14)

Set

[ei, ej] =
n

∑
k=1

Ck
ijek, [ej, el ] =

n

∑
k=1

Ck
jlel , [el · ei] =

n

∑
k=1

Ck
liek, Ck

ij, Ck
jl , Ck

li ∈ C.

Therefore, Equation (13) holds.

As a direct consequence, we obtain the following:

Proposition 2. Let A be a two-dimensional vector space over the complex field C with a basis
{e1, e2}. Then, for any bilinear map [·, ·] on A, (A, [·, ·]) is a left-Alia algebra.

Next, we give some example of three-dimensional left-Alia algebras.

Example 2. Let A be a three-dimensional vector space over the complex field C with a basis
{e1, e2, e3}. Define a bilinear map [·, ·] : A × A → A by

[e1, e2] = e1, [e1, e3] = e1, [e2, e1] = e2, [e3, e1] = e3,

[e1, e1] = [e2, e2] = [e3, e3] = [e2, e3] = [e3, e2] = e1 + e2 + e3.

Then, (A, [·, ·]) is a three-dimensional left-Alia algebra.
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Remark 5. A right-Leibniz algebra [10] is a vector space A together with a bilinear operation
[·, ·] : A ⊗ A → A satisfying

[[x, y], z] = [[x, z], y] + [x, [y, z]], ∀ x, y, z ∈ A.

Then, we have

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = [[x, y]− [y, x], z] + [[y, z]− [z, y], x] + [[z, x]− [x, z], y].

Therefore, if a right-Leibniz algebra satisfies

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

then (A, [·, ·]) is a left-Alia algebra.

3.3. From Left-Alia Algebras to Anti-Pre-Lie Algebras

Definition 5 ([8]). Let A be a vector space with a bilinear map · : A × A → A. (A, ·) is called an
anti-pre-Lie algebra if the following equations are satisfied:

x · (y · z)− y · (x · z) = [y, x] · z, (15)

[x, y] · z + [y, z] · x + [z, x] · y = 0, (16)

where
[x, y] = x · y − y · x, (17)

for all x, y, z ∈ A.

Remark 6. Let (A, [·, ·]) be a left-Alia algebra. If [·, ·] : A × A → A satisfies

[x, [y, z]]− [y, [x, z]] = [[y, x], z]− [[x, y], z], ∀x, y, z ∈ A, (18)

then (A, [·, ·]) is an anti-pre-Lie algebra.

3.4. From Left-Alia Algebras to Lie Triple Systems

Lie triple systems originated from Cartan’s studies on the Riemannian geometry of
totally geodesic submanifolds [11], which can be constructed using twisted derivations and
left-Alia algebras.

Definition 6 ([30]). A Lie triple system is a vector space A together with a trilinear operation
[·, ·, ·] : A× A× A → A such that the following three equations are satisfied, for all x, y, z, a, b in A:

[x, x, y] = 0, (19)

[x, y, z] + [y, z, x] + [z, x, y] = 0 (20)

and
[a, b, [x, y, z]] = [[a, b, x], y, z] + [x, [a, b, y], z] + [x, y, [a, b, z]]. (21)

Proposition 3. Let (A, ·) be a commutative associative algebra and D be a twisted derivation.
Define the bilinear map [·, ·]R : A × A → A by (10). And define the trilinear
map [·, ·, ·]R : A × A × A → A by

[x, y, z]R :=
1
2
[[x, y]R − [y, x]R, z]R, ∀x, y, z ∈ A.

If [·, ·, ·]R satisfies (21), then (A, [·, ·, ·]R) is a Lie triple system.
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Proof. For all x, y ∈ A, it is obvious that [x, x, y]R = 0. By the proof of Theorem 4,
Equation (20) holds. If, in addition, [·, ·, ·]R satisfies (21), then (A, [·, ·, ·]R) is a Lie triple sys-
tem.

Remark 7. Let (A, [·, ·]) be a left-Alia algebra. For all x, y, z ∈ A, set a trilinear
map [·, ·, ·] : A × A × A → A by [x, y, z] = [[x, y] − [y, x], z]. If [·, ·, ·] satisfies (21), then
(A, [·, ·, ·]) is a Lie triple system.

3.5. Representations and Matched Pairs of Left-Alia Algebras

Definition 7. A representation of a left-Alia algebra (A, [·, ·]) is a triple (l, r, V), where V is a
vector space and l, r : A → End(V) are linear maps such that the following equation holds:

l([x, y])− l([y, x]) = r(x)r(y)v − r(y)r(x) + r(y)l(x)v − r(x)l(y), ∀x, y ∈ A, v ∈ V. (22)

Two representations, (l, r, V) and (l′, r′, V′), of a left-Alia algebra (A, [·, ·]) are called equiv-
alent if there is a linear isomorphism ϕ : V → V′ such that

ϕ
(
l(x)v

)
= l′(x)ϕ(v), ϕ

(
r(x)v

)
= r′(x)ϕ(v), ∀x ∈ A, v ∈ V. (23)

Example 3. Let (ρ, V) be a representation of a Lie algebra (g, [·, ·]), that is, ρ : g → End(V) is a
linear map such that

ρ([x, y])v = ρ(x)ρ(y)v − ρ(y)ρ(x)v, ∀x, y ∈ g, v ∈ V.

Then, both (ρ,−ρ, V) and (ρ, 2ρ, V) satisfy (22) and, hence, are representations of (g, [·, ·])
as a left-Alia algebra.

Proposition 4. Let (A, [·, ·]) be a left-Alia algebra, V be a vector space and l, r : A → End(V) be
linear maps. Then, (l, r, V) is a representation of (A, [·, ·]) if and only if there is a left-Alia algebra
on the direct sum d = A ⊕ V of vector spaces (the semi-direct product) given by

[x + u, y + v]d = [x, y] + l(x)v + r(y)u, ∀x, y ∈ A, u, v ∈ V. (24)

In this case, we denote (A ⊕ V, [·, ·]d) = A ⋉l,r V.

Proof. This is the special case of matched pairs of left-Alia algebras where B = V is
equipped with the zero multiplication in Proposition 6.

For a vector space A with a bilinear map [·, ·] : A × A → A, we set linear maps
L[·,·],R[·,·] : A → End(A) using

L[·,·](x)y = [x, y] = R[·,·](y)x, ∀x, y ∈ A.

Example 4. Let (A, [·, ·]) be a left-Alia algebra. Then, (L[·,·],R[·,·], A) is a representation of
(A, [·, ·]), which is called an adjoint representation. In particular, for a Lie algebra (g, [·, ·]) with
the adjoint representation ad : g → End(g) given by ad(x)y = [x, y], ∀x, y ∈ g,

(L[·,·],R[·,·], g) = (ad,−ad, g)

is a representation of (g, [·, ·]) as a left-Alia algebra.

Let A and V be vector spaces. For a linear map l : A → End(V), we set a linear map
l∗ : A → End(V∗) using

⟨l∗(x)u∗, v⟩ = −⟨u∗, l(x)v⟩, ∀x ∈ A, u∗ ∈ V∗, v ∈ V.
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Proposition 5. Let (l, r, V) be a representation of a left-Alia algebra (A, [·, ·]). Then,
(l∗, l∗ − r∗, V∗) is also a representation of (A, [·, ·]). In particular, (L∗

[·,·],L
∗
[·,·] −R∗

[·,·], A∗) is a
representation of (A, [·, ·]), which is called the coadjoint representation.

Proof. Let x, y ∈ A, u∗ ∈ V∗, v ∈ V. Then, we have

⟨
(
l∗[x, y]− l∗[y, x] + (l∗ − r∗)(x)l∗(y)− (l∗ − r∗)(x)(l∗ − r∗)(y)

+(l∗ − r∗)(y)(l∗ − r∗)(x)− (l∗ − r∗)(y)l∗(x)
)
u∗, v⟩

= ⟨(l∗[x, y]− l∗[y, x] + (l∗ − r∗)(x)r∗(y)− (l∗ − r∗)(y)r∗(x)
)
u∗, v⟩

= ⟨u∗,
(
l[y, x]− l[x, y] + r(y)(l − r)(x)− r(x)(l − r)(y)

)
v⟩

(22)
= 0.

Hence, the conclusion follows.

Example 5. Let (g, [·, ·]) be a Lie algebra. Then, the coadjoint representation of (g, [·, ·]) as a
left-Alia algebra is

(ad∗, ad∗ − (−ad∗), g∗) = (ad∗, 2ad∗, g∗).

Hence, there is a left-Alia algebra structure g⋉ad∗,2ad∗ g∗ on the direct sum g⊕ g∗ of vector spaces.

Remark 8. In [5], there is also the notion of a right-Alia algebra, defined as a vector space A
together with a bilinear map [·, ·]′ : A × A → A satisfying

[x, [y, z]′]′ + [y, [z, x]′]′ + [z, [x, y]′]′ = [x, [z, y]′]′ + [y, [x, z]′]′ + [z, [y, x]′]′, ∀x, y, z ∈ A. (25)

It is clear that (A, [·, ·]′) is a right-Alia algebra if and only if the opposite algebra (A, [·, ·]) of
(A, [·, ·]′), given by [x, y] = [y, x]′, is a left-Alia algebra. Thus, our study on left-Alia algebras can
straightforwardly generalize a parallel study on right-Alia algebras. Consequently, if (l, r, V) is a
representation of a right-Alia algebra (A, [·, ·]′), then (r∗ − l∗, r∗, V∗) is also a representation of
(A, [·, ·]′). Recall [23] that if (l, r, V) is a representation of an anti-pre-Lie algebra (A, [·, ·]anti),
then (r∗ − l∗, r∗, V∗) is also a representation of (A, [·, ·]anti). Moreover, admissible Novikov
algebras [8] are a subclass of anti-pre-Lie algebras. If (l, r, V) is a representation of an admissible
Novikov algebra (A, [·, ·]admissible Novikov), then (r∗ − l∗, r∗, V∗) is also a representation of the
admissible Novikov algebra (A, [·, ·]admissible Novikov). Therefore, we have the following algebras
which preserve the form (r∗ − l∗, r∗, V∗) of representations on the dual spaces:

{right-Alia algebras} ⊃ {anti-pre-Lie algebras} ⊃ {admissible Novikov algebras}.

Now, we introduce the notion of matched pairs of left-Alia algebras.

Definition 8. Let (A, [·, ·]A) and (B, [·, ·]B) be left-Alia algebras and lA, rA : A → End(B) and
lB, rB : B → End(A) be linear maps. If there is a left-Alia algebra structure [·, ·]A⊕B on the direct
sum A ⊕ B of vector spaces given by

[x + a, y + b]A⊕B = [x, y]A + lB(a)y + rB(b)x + [a, b]B + lA(x)b + rA(y)a, ∀x, y ∈ A, a, b ∈ B,

then we say
(
(A, [·, ·]A), (B, [·, ·]B), lA, rA, lB, rB

)
is a matched pair of left-Alia algebras.

Proposition 6. Let (A, [·, ·]A) and (B, [·, ·]B) be left-Alia algebras and lA, rA : A → End(B) and
lB, rB : B → End(A) be linear maps. Then,

(
(A, [·, ·]A), (B, [·, ·]B), lA, rA, lB, rB

)
is a matched
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pair of left-Alia algebras if and only if the triple (lA, rA, B) is a representation of (A, [·, ·]A), the
triple (lB, rB, A) is a representation of (B, [·, ·]B) and the following equations hold:

rB(a)([x, y]A − [y, x]A) = (lB − rB)(a)[y, x]A + (rB − lB)(a)[x, y]A
+ lB

(
(rA − lA)(y)a

)
x + lB

(
(lA − rA)(x)a

)
y, (26)

rA(x)([a, b]B − [b, a]B) = (lA − rA)(x)[b, a]B + (rA − lA)(x)[a, b]B
+ lA

(
(rB − lB)(b)x

)
a + lA

(
(lB − rB)(a)x

)
b, (27)

for all x, y ∈ A, a, b ∈ B.

Proof. The proof follows from a straightforward computation.

3.6. Quadratic Left-Alia Algebras

Definition 9. A quadratic left-Alia algebra is a triple (A, [·, ·],B), where (A, [·, ·]) is a left-Alia
algebra and B is a nondegenerate symmetric bilinear form on A which is invariant in the sense that

B([x, y], z) = B(x, [z, y]− [y, z]), ∀x, y, z ∈ A. (28)

Remark 9. Since B is symmetric, it follows from Definition 9 that

B([x, y], z) + B(y, [x, z]) = 0, ∀x, y, z ∈ A. (29)

Lemma 3. Let (A, [·, ·],B) be a quadratic left-Alia algebra. Then, (L[·,·],R[·,·], A) and
(L∗

[·,·],L
∗
[·,·] −R∗

[·,·], A∗) are equivalent as representations of (A, [·, ·]).

Proof. We set a linear isomorphism B♮ : A → A∗ using

⟨B♮(x), y⟩ = B(x, y). (30)

Then, by (29) we have

⟨B♮
(
L[·,·](x)y

)
, z⟩ = B([x, y], z) = −B(y, [x, z]) = −⟨B♮(y), [x, z]⟩ = ⟨L∗

[·,·](x)B♮(y), z⟩,

that is, B♮
(
L[·,·](x)y

)
= L∗

[·,·](x)B♮(y). Similarly, by (28), we have B♮
(
R[·,·](x)y

)
=

(L∗
[·,·] −R∗

[·,·])(x)B♮(y). Hence, the conclusion follows.

Proposition 7. Let (A, ·) be a commutative associative algebra and f : A → A be a linear map.
Let B be a nondegenerate symmetric invariant bilinear form on (A, ·) and f̂ : A → A be the adjoint
map of f with respect to B, given by

B
(

f̂ (x), y
)
= B

(
x, f (y)

)
, ∀x, y ∈ A.

Then, there is a quadratic left-Alia algebra (A, [·, ·],B), where (A, [·, ·]) is the special left-Alia
algebra with respect to (A, ·, f ,− f̂ ), that is,

[x, y] = x · f (y)− f̂ (x · y). (31)

Proof. For all x, y, z ∈ A, we have

B([x, y], z) = B
(

x · f (y)− f̂ (x · y), z
)

= B
(

x, z · f (y)− y · f (z)
)

= B
(

x, z · f (y)− f̂ (z · y)−
(
y · f (z)− f̂ (y · z)

))
= B(x, [z, y]− [y, z]).

Hence, the conclusion follows.
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Example 6. Let (A, [·, ·]) be a left-Alia algebra and (L[·,·],R[·,·], A) be the adjoint representation of
(A, [·, ·]). By Propositions 4 and 5, there is a left-Alia algebra A⋉L∗

[·,·] ,L
∗
[·,·]−R∗

[·,·]
A∗ on d = A⊕ A∗,

given by (24). There is a natural nondegenerate symmetric bilinear form Bd on A ⊕ A∗, given by

Bd(x + a∗, y + b∗) = ⟨x, b∗⟩+ ⟨a∗, y⟩, ∀x, y ∈ A, a∗, b∗ ∈ A∗. (32)

For all x, y, z ∈ A, a∗, b∗, c∗ ∈ A∗, we have

Bd([x + a∗, y + b∗]d, z + c∗) = Bd
(
[x, y] + L∗

[·,·](x)b∗ + (L∗
[·,·] −R∗

[·,·])(y)a∗, z + c∗
)

= ⟨[x, y], c∗⟩+ ⟨L∗
[·,·](x)b∗ + (L∗

[·,·] −R∗
[·,·])(y)a∗, z⟩

= ⟨[x, y], c∗⟩ − ⟨[x, z], b∗⟩+ ⟨a∗, [z, y]− [y, z]⟩,
Bd

(
x + a∗, [z + c∗, x + b∗]d

)
= ⟨[z, y], a∗⟩ − ⟨[z, x], b∗⟩+ ⟨c∗, [y, x]− [x, y]⟩,

Bd
(

x + a∗, [y + b∗, z + c∗]d
)

= ⟨[y, z], a∗⟩ − ⟨[y, x], c∗⟩+ ⟨b∗, [z, x]− [x, z]⟩.

Hence, we have

Bd
(
[x + a∗, y + b∗]d, z + c∗

)
= Bd

(
x + a∗, [z + c∗, y + b∗]d − [y + b∗, z + c∗]d

)
,

and, thus, (A ⋉L∗
[·,·] ,L

∗
[·,·]−R∗

[·,·]
A∗,Bd) is a quadratic left-Alia algebra.

Remark 10. By Example 6, an arbitrary Lie algebra (g, [·, ·]) renders a quadratic left-Alia algebra
(g⋉ad∗ ,2ad∗ g∗,Bd), where ad : g → End(g) is the adjoint representation of (g, [·, ·]).

We study the tensor forms of nondegenerate symmetric invariant bilinear forms on
left-Alia algebras.

Definition 10. Let (A, [·, ·]) be a left-Alia algebra and h : A → End(A ⊗ A) be a linear map
given by

h(x) = (R[·,·] −L[·,·])(x)⊗ id − id ⊗R[·,·](x), ∀x ∈ A. (33)

An element r ∈ A ⊗ A is called invariant on (A, [·, ·]) if h(x)r = 0 for all x ∈ A.

Proposition 8. Let (A, [·, ·]) be a left-Alia algebra. Suppose that B is a nondegenerate bilinear
form on A and B♮ : A → A∗ is the corresponding map given by (30). Set B̃ ∈ A ⊗ A using

⟨B̃, a∗ ⊗ b∗⟩ = ⟨B♮−1
(a∗), b∗⟩, ∀a∗, b∗ ∈ A∗. (34)

Then, (A, [·, ·],B) is a quadratic left-Alia algebra if and only if B̃ is symmetric and invariant
on (A, [·, ·]).

Proof. It is clear that B is symmetric if and only if B̃ is symmetric. Let x, y, z ∈ A and
a∗ = B♮(x), c∗ = B♮(z). Under the symmetric assumption, we have

B([x, y], z) = ⟨[x, y],B♮(z)⟩ = ⟨[B♮−1
(a∗), y], c∗⟩

= −⟨B♮−1
(a∗),R∗

[·,·](y)c
∗⟩ = −⟨B̃, a∗ ⊗R∗

[·,·](y)c
∗⟩ = ⟨

(
id ⊗R[·,·](y)

)
B̃, a∗ ⊗ c∗⟩,

B(x, [z, y]− [y, z]) = ⟨B♮(x), [z, y]− [y, z]⟩ = ⟨a∗, [B♮−1
(c∗), y]− [y,B♮−1

(c∗)]⟩

= ⟨(L∗
[·,·] −R∗

[·,·])(y)a∗,B♮−1
(c∗)⟩ = ⟨B̃, c∗ ⊗ (L∗

[·,·] −R∗
[·,·])(y)a∗⟩

= ⟨
(
(R[·,·] −L[·,·])(y)⊗ id

)
B̃, a∗ ⊗ c∗⟩,

that is, (28) holds if and only if h(y)B̃ = 0 for all y ∈ A. Hence, the conclusion follows.
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4. Manin Triples of Left-Alia Algebras and Left-Alia Bialgebras

In this section, we introduce the notions of Manin triples of left-Alia algebras and
left-Alia bialgebras. We show that they are equivalent structures via specific matched pairs
of left-Alia algebras.

4.1. Manin Triples of Left-Alia Algebras

Definition 11. Let (A, [·, ·]A) and (A∗, [·, ·]A∗) be left-Alia algebras. Assume that there is a left-
Alia algebra structure (d = A⊕ A∗, [·, ·]d) on A⊕ A∗ which contains (A, [·, ·]A) and (A∗, [·, ·]A∗)
as left-Alia subalgebras. Suppose that the natural nondegenerate symmetric bilinear form Bd, given
by (32), is invariant on (A⊕ A∗, [·, ·]d), that is, (A⊕ A∗, [·, ·]d,Bd) is a quadratic left-Alia algebra.
Then, we say that

(
(A ⊕ A∗, [·, ·]d,Bd), A, A∗) is a Manin triple of left-Alia algebras.

Recall [19] that a double construction of commutative Frobenius algebras(
(A ⊕ A∗, ·d, Bd), A, A∗) is a commutative associative algebra (A ⊕ A∗, ·d) containing

(A, ·A) and (A∗, ·A∗) as commutative associative subalgebras, such that the natural non-
degenerate symmetric bilinear form Bd given by (32) is invariant on (A ⊕ A∗, ·d). Now,
we show that double constructions of commutative Frobenius algebras with linear maps
naturally give rise to Manin triples of left-Alia algebras.

Corollary 1. Let
(
(A ⊕ A∗, ·d,Bd), A, A∗) be a double construction of commutative Frobenius

algebras. Suppose that P : A → A and Q∗ : A∗ → A∗ are linear maps. Then, there is a Manin
triple of left-Alia algebras

(
(A ⊕ A∗, [·, ·]d,Bd), A, A∗) given by

[x + a∗, y + b∗]d = (x + a∗) ·d
(

P(y) + Q∗(b∗)
)
− (Q + P∗)

(
(x + a∗) ·d (y + b∗)

)
,

[x, y]A = x ·A P(y)− Q(x ·A y), [a∗, b∗]A∗ = a∗ ·A∗ Q∗(b∗)− P∗(a∗ ·A∗ b∗),

for all x, y ∈ A, a∗, b∗ ∈ A∗.

Proof. The adjoint map of P + Q∗ with respect to Bd is Q + P∗. Hence, the conclusion
follows from Proposition 7 by taking f = P + Q∗.

Theorem 5. Let (A, [·, ·]A) and (A∗, [·, ·]A∗) be left-Alia algebras. Then, there is a Manin triple of
left-Alia algebras

(
(A ⊕ A∗, [·, ·]d,Bd), A, A∗) if and only if(

(A, [·, ·]A), (A∗, [·, ·]A∗),L∗
[·,·]A ,L∗

[·,·]A −R∗
[·,·]A ,L∗

[·,·]A∗ ,L∗
[·,·]A∗ −R∗

[·,·]A∗

)
is a matched pair of left-Alia algebras.

Proof. Let
(
(A ⊕ A∗, [·, ·]d,Bd), A, A∗) be a Manin triple of left-Alia algebras. For all

x, y ∈ A, a∗, b∗ ∈ A∗, we have

Bd([x, b∗]d, y)
(28)
= −B(b∗, [x, y]A) = −⟨b∗, [x, y]A⟩ = ⟨L∗

[·,·]A(x)b∗, y⟩ = Bd
(
L∗
[·,·]A(x)b∗, y

)
,

Bd([x, b∗]d, a∗)
(28)
= Bd(x, [a∗, b∗]A∗ − [b∗, a∗]A∗) = ⟨x, [a∗, b∗]A∗ − [b∗, a∗]A∗⟩
= ⟨(L∗

[·,·]A∗ −R∗
[·,·]A∗ )(b

∗)x, a∗⟩ = Bd
(
(L∗

[·,·]A∗ −R∗
[·,·]A∗ )(b

∗)x, a∗
)
.

Thus,

Bd([x, b∗]d, y + a∗) = Bd
(
(L∗

[·,·]A∗ −R∗
[·,·]A∗ )(b

∗)x + L∗
[·,·]A(x)b∗, y + a∗

)
and, by the nondegeneracy of Bd, we have

[x, b∗]d = (L∗
[·,·]A∗ −R∗

[·,·]A∗ )(b
∗)x + L∗

[·,·]A(x)b∗.
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Similarly,
[y, a∗]d = (L∗

[·,·]A −R∗
[·,·]A)(y)a∗ + L∗

[·,·]A∗ (a∗)y.

Therefore, we have

[x + a∗, y + b∗]d = [x, y]A + L∗
[·,·]A∗ (a∗)y + (L∗

[·,·]A∗ −R∗
[·,·]A∗ )(b

∗)x

+ [a∗, b∗]A∗ + L∗
[·,·]A(x)b∗ + (L∗

[·,·]A −R∗
[·,·]A)(y)a∗. (35)

Hence,
(
(A, [·, ·]A), (A∗, [·, ·]A∗),L∗

[·,·]A
,L∗

[·,·]A
− R∗

[·,·]A
,L∗

[·,·]A∗ ,L∗
[·,·]A∗ − R∗

[·,·]A∗

)
is a

matched pair of left-Alia algebras.
Conversely, if

(
(A, [·, ·]A), (A∗, [·, ·]A∗),L∗

[·,·]A
,L∗

[·,·]A
−R∗

[·,·]A
,L∗

[·,·]A∗ ,L∗
[·,·]A∗ −R∗

[·,·]A∗

)
is a matched pair of left-Alia algebras, then it is straightforward to check that Bd is invariant
on the left-Alia algebra (A ⊕ A∗, [·, ·]d) given by (35).

4.2. Left-Alia Bialgebras

Definition 12. A left-Alia coalgebra is a pair, (A, δ), such that A is a vector space and
δ : A → A ⊗ A is a co-multiplication satisfying

(id⊗3 + ξ + ξ2)(τ ⊗ id − id⊗3)(δ ⊗ id)δ = 0, (36)

where τ(x ⊗ y) = y ⊗ x and ξ(x ⊗ y ⊗ z) = y ⊗ z ⊗ x for all x, y, z ∈ A.

Proposition 9. Let A be a vector space and δ : A → A ⊗ A be a co-multiplication. Let [·, ·]A∗ :
A∗ ⊗ A∗ → A∗ be the linear dual of δ, that is,

⟨[a∗, b∗]A∗ , x⟩ = ⟨δ∗(a∗ ⊗ b∗), x⟩ = ⟨a∗ ⊗ b∗, δ(x)⟩, ∀a∗, b∗ ∈ A∗, x ∈ A. (37)

Then, (A, δ) is a left-Alia coalgebra if and only if (A∗, [·, ·]A∗) is a left-Alia algebra.

Proof. For all x ∈ A, a∗, b∗, c∗ ∈ A∗, we have

⟨[[a∗, b∗]A∗ , c∗]A∗ − [[b∗, a∗]A∗ , c∗]A∗ , x⟩ = ⟨δ∗(δ∗ ⊗ id)(id⊗3 − τ ⊗ id)a∗ ⊗ b∗ ⊗ c∗, x⟩
= ⟨a∗ ⊗ b∗ ⊗ c∗, (id⊗3 − τ ⊗ id)(δ ⊗ id)δ(x)⟩,

⟨[[b∗, c∗]A∗ , a∗]A∗ − [[c∗, b∗]A∗ , a∗]A∗ , x⟩ = ⟨b∗ ⊗ c∗ ⊗ a∗, (id⊗3 − τ ⊗ id)(δ ⊗ id)δ(x)⟩
= ⟨a∗ ⊗ b∗ ⊗ c∗, ξ2(id⊗3 − τ ⊗ id)(δ ⊗ id)δ(x)⟩,

⟨[[c∗, a∗]A∗ , b∗]A∗ − [[a∗, c∗]A∗ , b∗]A∗ , x⟩ = ⟨c∗ ⊗ a∗ ⊗ b∗, (id⊗3 − τ ⊗ id)(δ ⊗ id)δ(x)⟩
= ⟨a∗ ⊗ b∗ ⊗ c∗, ξ(id⊗3 − τ ⊗ id)(δ ⊗ id)δ(x)⟩.

Hence, (1) holds for (A∗, [·, ·]A∗) if and only if (36) holds.

Definition 13. A left-Alia bialgebra is a triple (A, [·, ·], δ), such that (A, [·, ·]) is a left-Alia
algebra, (A, δ) is a left-Alia coalgebra and the following equation holds:

(τ − id2)
(
δ([x, y]− [y, x]) + (R[·,·](x)⊗ id)δ(y)− (R[·,·](y)⊗ id)δ(x)

)
= 0, ∀x, y ∈ A. (38)

Theorem 6. Let (A, [·, ·]A) be a left-Alia algebra. Suppose that there is a left-Alia algebra structure
(A∗, [·, ·]A∗) on the dual space A∗, and δ : A → A ⊗ A is the linear dual of [·, ·]A∗ . Then,(
(A, [·, ·]A), (A∗, [·, ·]A∗),L∗

[·,·]A
,L∗

[·,·]A
−R∗

[·,·]A
,L∗

[·,·]A∗ ,L∗
[·,·]A∗ −R∗

[·,·]A∗

)
is a matched pair of

left-Alia algebras if and only if (A, [·, ·]A, δ) is a left-Alia bialgebra.
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Proof. For all x, y ∈ A, a∗, b∗ ∈ A∗, we have

⟨(L∗
[·,·]A∗ −R∗

[·,·]A∗ )(a∗)([x, y]A − [y, x]A), b∗⟩ = ⟨[x, y]A − [y, x]A, [b∗, a∗]A∗ − [a∗, b∗]A∗⟩

= ⟨(τ − id⊗2)δ([x, y]A − [y, x]A), a∗ ⊗ b∗⟩,
⟨[R∗

[·,·]A∗ (a∗)y, x]A, b∗⟩ = −⟨R∗
[·,·]A∗ (a∗)y,R∗

[·,·]A(x)b∗⟩
= ⟨y, [R∗

[·,·]A(x)b∗, a∗]A∗⟩

= −⟨
(
R[·,·]A(x)⊗ id

)
δ(y), b∗ ⊗ a∗⟩

= −⟨τ
(
R[·,·]A(x)⊗ id

)
δ(y), a∗ ⊗ b∗⟩,

−⟨[R∗
[·,·]A∗ (a∗)y, x]A, b∗⟩ = ⟨τ

(
R[·,·]A(y)⊗ id

)
δ(x), a∗ ⊗ b∗⟩,

−⟨L∗
[·,·]A∗

(
R∗

[·,·]A(y)a∗
)
x, b∗⟩ = ⟨x, [R∗

[·,·]A(y)a∗, b∗]A∗⟩

= −⟨
(
R[·,·]A(y)⊗ id

)
δ(x), a∗ ⊗ b∗⟩,

⟨L∗
[·,·]A∗

(
R∗

[·,·]A(x)a∗)y
)
, b∗⟩ = ⟨

(
R[·,·]A(x)⊗ id

)
δ(y), a∗ ⊗ b∗⟩.

Thus, (38) holds if and only if (26) holds for lA = L∗
[·,·]A

, rA = L∗
[·,·]A

− R∗
[·,·]A

,
lB = L∗

[·,·]A∗ , rB = L∗
[·,·]A∗ − R∗

[·,·]A∗ . Similarly, (38) holds if and only if (27) holds for
lA = L∗

[·,·]A
, rA = L∗

[·,·]A
−R∗

[·,·]A
, lB = L∗

[·,·]A∗ , rB = L∗
[·,·]A∗ −R∗

[·,·]A∗ . Hence, the conclu-
sion follows.

Summarizing Theorems 5 and 6, we have the following corollary:

Corollary 2. Let (A, [·, ·]A) be a left-Alia algebra. Suppose that there is a left-Alia algebra structure
(A∗, [·, ·]A∗) on the dual space A∗, and δ : A → A ⊗ A is the linear dual of [·, ·]A∗ . Then, the
following conditions are equivalent:

(a) There is a Manin triple of left-Alia algebras
(
(d = A ⊕ A∗, [·, ·]d,Bd), A, A∗).

(b)
(
(A, [·, ·]A), (A∗, [·, ·]A∗),L∗

[·,·]A
,L∗

[·,·]A
− R∗

[·,·]A
,L∗

[·,·]A∗ ,L∗
[·,·]A∗ − R∗

[·,·]A∗

)
is a matched

pair of left-Alia algebras.
(c) (A, [·, ·]A, δ) is a left-Alia bialgebra.

Example 7. Let (A, [·, ·]A) be the three-dimensional left-Alia algebra given in Example 2.
Then, there is a left-Alia bialgebra (A, [·, ·]A, δ) with a non-zero co-multiplication δ on A,

given by
δ(e1) = e1 ⊗ e1. (39)

Then, by Corollary 2, there is a Manin triple
(
(A ⊕ A∗, [·, ·],Bd), A, A∗). Here, the multipli-

cation [·, ·]A∗ on A∗ is given through δ by (39), that is,

[e∗1 , e∗1 ]A∗ = e∗1 ,

and the multiplication [·, ·] on A⊕ A∗ is given by (35). Moreover,
(
(A, [·, ·]A), (A∗, [·, ·]A∗),L∗

[·,·]A
,

L∗
[·,·]A

−R∗
[·,·]A

,L∗
[·,·]A∗ ,L∗

[·,·]A∗ −R∗
[·,·]A∗

)
is a matched pair of left-Alia algebras.
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