Article

Manin Triples and Bialgebras of Left-Alia Algebras Associated with Invariant Theory

Chuangchuang Kang ${ }^{1}$, Guilai Liu ${ }^{2, *}$, Zhuo Wang ${ }^{3}$ and Shizhuo Yu ${ }^{3}$
1 School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China; kangcc@zjnu.edu.cn
2 Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
3 School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300317, China; wangzhuo@mail.nankai.edu.cn (Z.W.); yusz@nankai.edu.cn (S.Y.)
* Correspondence: liugl@mail.nankai.edu.cn

Abstract

A left-Alia algebra is a vector space together with a bilinear map satisfying the symmetric Jacobi identity. Motivated by invariant theory, we first construct a class of left-Alia algebras induced by twisted derivations. Then, we introduce the notions of Manin triples and bialgebras of left-Alia algebras. Via specific matched pairs of left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras of left-Alia algebras.

Keywords: left-Alia algebra; bialgebra; invariant theory; Manin triple; matched pair; representation
MSC: 17A36; 17A40; 17B10; 17B40; 17B60; 17B63; 17D25

1. Introduction and Main Statements

1.1. Introduction

Let G be a finite group and \mathbb{K} an algebraic closed field of characteristic zero. Suppose that V is an n-dimensional faithful representation of G and $S=\mathbb{K}[V]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ is the coordinate ring of V.

The goal of invariant theory is to study the structures of the ring of invariants

$$
S^{G}=\{f \in S: a \cdot f=f, \forall a \in G\}
$$

in which the group action is extended from the representation of G (see Section 2.1 for more details). In particular, Hilbert proved that S^{G} is always a finite generated \mathbb{K}-algebra [1] and Chevalley [2], Shephard and Todd [3] proved that S^{G} is a polynomial algebra if and only if G is generated by pseudo-reflections (see Section 2.2 for precise definition).

Twisted derivations [4] (also named σ-derivations) play an important role in the study of deformations of Lie algebras. Motivated by the above Chevalley's Theorem, we apply pseudo-reflections to induce a class of twisted derivations on S (see Theorem 3 for more details). Based on twisted derivations on commutative associative algebras, we obtain a class of left-Alia (left anti-Lie-admissible) algebras [5], which appears in the study of a special class of algebras with a skew-symmetric identity of degree three. Furthermore, we construct Manin triples and bialgebras of left-Alia algebras. Via specific matched pairs of left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras.

Throughout this paper, unless otherwise specified, all vector spaces are finite-dimensional over an algebraically closed field K of characteristic zero and all K-algebras are commutative and associative with the finite Krull dimension, although many results and notions remain valid in the infinite-dimensional case.

1.2. Left-Alia Algebras Associated with Invariant Theory

The notion of a left-Alia algebra was defined for the first time in the table in the Introduction of [5].

Definition 1 ([5]). A left-Alia algebra (also named a 0-Alia algebra) is a vector space A together with a bilinear map $[\cdot, \cdot]: A \otimes A \rightarrow A$ satisfying the symmetric Jacobi identity:

$$
\begin{equation*}
[[x, y], z]+[[y, z], x]+[[z, x], y]=[[y, x], z]+[[z, y], x]+[[x, z], y], \forall x, y, z \in A \tag{1}
\end{equation*}
$$

There are some typical examples of left-Alia algebras. Firstly, when the bilinear map $[\cdot, \cdot]$ is skew-symmetric, $(A,[\cdot, \cdot])$ is a Lie algebra. By contrast, any commutative algebra is a left-Alia algebra and, in particular, a mock-Lie algebra [6] (also known as a Jacobi-Jordan algebra in [7]) with a symmetric bilinear map that satisfies the Jacobi identity is a left-Alia algebra. Secondly, the notion of an anti-pre-Lie algebra [8] was recently studied as a left-Alia algebra with an additional condition. Anti-pre-Lie algebras are the underlying algebra structures of nondegenerate commutative 2-cocycles [9] on Lie algebras and are characterized as Lie-admissible algebras whose negative multiplication operators compose representations of commutator Lie algebras. Condition (1) of the identities of an anti-pre-Lie algebra is just to guarantee $(A,[\cdot, \cdot])$ is a Lie-admissible algebra. Additionally, we also studied left-Alia algebras in terms of their relationships with Leibniz algebras [10] and Lie triple systems [11].

Let (A, \cdot) be a commutative associative algebra and $R: A \rightarrow A$ a linear map on A. For brevity, the operation • will be omitted. A linear map $D: A \rightarrow A$ is called a twisted derivation with respect to an R (also named a σ-derivation in [4]) if D satisfies the twisted Leibniz rule:

$$
\begin{equation*}
D(f g)=D(f) g+R(f) D(g), f, g \in A \tag{2}
\end{equation*}
$$

Non-trivial examples of twisted derivations can be constructed in invariant theory. In particular, each pseudo-reflection R on a vector space V induces a twisted derivation D_{R} on the polynomial ring $\mathbb{K}[V]$ (see Section 2.2 for details).

Define

$$
[f, g]_{R}=D(f) g-R(f) D(g)
$$

We then obtain a class of left-Alia algebras in Theorem A. Theorem A (Theorems 3 and 4)
(a) For each twisted derivation D on $A,\left(A,[\cdot, \cdot]_{R}\right)$ is a left-Alia algebra.
(b) Each pseudo-reflection R on V induces a left-Alia algebra $\left(\mathbb{K}[V],[\because, \cdot]_{R}\right)$.

This applies when $R=I,[f, g]_{R}$ is skew-symmetric and $\left(A,[\cdot, \cdot]_{R}\right)$ is a Lie algebra of the Witt type [12]. Moreover, Theorem A also provides a class of left-Alia algebras on polynomial rings from invariant theory. As a corollary of Theorem A, we see that when S^{G} is a polynomial algebra, each generator $g \in G$ corresponds to a left-Alia algebra ($S,[\cdot, \cdot]_{R_{g}}$). The collection of left-Alia algebras is also an interesting research object for further study.

In addition, if we define that $[f, h]=D_{R}(f) h-f D_{R}(h)$ on $S,(S,[\cdot, \cdot])$, then it is not a left-Alia algebra in general. However, when $[\cdot, \cdot]$ is restricted to V^{*}, we obtain a finitedimensional Lie algebra, which induces a linear Poisson structure on V, and figure out the entrance to the study of twisted relative Poisson structures on graded algebras. See [13] for reference.

1.3. Manin Triples and Bialgebras of Left-Alia Algebras

A bialgebra structure is a vector space equipped with both an algebra structure and a coalgebra structure satisfying certain compatible conditions. Some well-known examples of such structures include Lie bialgebras [14,15], which are closely related to Poisson-Lie groups and play an important role in the infinitesimalization of quantum groups, and antisymmetric infinitesimal bialgebras [16-20] as equivalent structures of double constructions of Frobenius algebras which are widely applied in the 2d topological field and string theory $[21,22]$. Recently, the notion of anti-pre-Lie bialgebras was studied in [23], which serves as a preliminary to supply a reasonable bialgebra theory for transposed Poisson algebras [24]. The notions of mock-Lie bialgebras [25] and Leibniz bialgebras [26,27] were also introduced with different motivations. These bialgebras have a
common property in that they can be equivalently characterized by Manin triples which correspond to nondegenerate invariant bilinear forms on the algebra structures. In this paper, we follow such a procedure to study left-Alia bialgebras.

To develop the bialgebra theory of left-Alia algebras, we first define a representation of a left-Alia algebra to be a triple (l, r, V), where V is a vector space and $l, r: A \rightarrow \operatorname{End}(V)$ are linear maps such that the following equation holds:

$$
l([x, y]) v-l([y, x]) v=r(x) r(y) v-r(y) r(x) v+r(y) l(x) v-r(x) l(y) v, \forall x, y \in A, v \in V
$$

A representation (ρ, V) of a Lie algebra $(A,[\cdot, \cdot])$ renders representations $(\rho,-\rho, V)$ and $(\rho, 2 \rho, V)$ of $(A,[\cdot, \cdot])$ as left-Alia algebras.

Furthermore, we introduce the notion of a quadratic left-Alia algebra, defined as a left-Alia algebra $(A,[\cdot, \cdot])$ equipped with a nondegenerate symmetric bilinear form \mathcal{B} which is invariant in the sense that

$$
\mathcal{B}([x, y], z)=\mathcal{B}(x,[z, y]-[y, z]), \forall x, y, z \in A
$$

A quadratic left-Alia algebra gives rise to the equivalence between the adjoint representation and the coadjoint representation.

Last, we introduce the notions of a matched pair (Definition 8) of left-Alia algebras, a Manin triple of left-Alia algebras (Definition 11) and a left-Alia bialgebra (Definition 13). Via specific matched pairs of left-Alia algebras, we figure out the equivalence between Manin triples and bialgebras in Theorem B.

Theorem B (Theorems 5 and 6) Let $\left(A,[\cdot, \cdot]_{A}\right)$ be a left-Alia algebra. Suppose that there is a left-Alia algebra structure $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ on the dual space A^{*}, and $\delta: A \rightarrow A \otimes A$ is the linear dual of $[\cdot, \cdot]_{A^{*}}$. Then, the following conditions are equivalent:
(a) There is a Manin triple of left-Alia algebras $\left(\left(A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$, where

$$
\mathcal{B}_{d}\left(x+a^{*}, y+b^{*}\right)=\left\langle x, b^{*}\right\rangle+\left\langle a^{*}, y\right\rangle, \forall x, y \in A, a^{*}, b^{*} \in A^{*} .
$$

(b) $\left(A,[\cdot, \cdot]_{A}, \delta\right)$ is a left-Alia bialgebra.

Theorem B naturally leads to the study of Yang-Baxter equations and relative RotaBaxter operators for left-Alia algebras [28].

2. Pseudo-Reflections and Twisted Deviations in Invariant Theory

2.1. Preliminary on Invariant Theory

Let G be a finite group and \mathbb{K} an algebraic closed field of characteristic zero. Suppose that (ρ, V) is an n-dimensional faithful representation of G and its dual representation is denoted by $\left(\rho, V^{*}\right)$. Let $S=\mathbb{K}[V]=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ be the coordinate ring of V. Define a G-action on S as

$$
\begin{equation*}
g \cdot \sum_{i_{1}, \ldots, i_{n}} k_{i_{1}, \ldots, i_{n}} x_{1}^{i_{1}} \ldots x_{n}^{i_{n}}:=\sum_{i_{1}, \ldots, i_{n}} k_{i_{1}, \ldots, i_{n}}\left(\rho(g) x_{1}\right)^{i_{1}} \ldots\left(\rho(g) x_{n}\right)^{i_{n}}, \forall g \in G . \tag{3}
\end{equation*}
$$

Define the ring of invariants as

$$
S^{G}=\{f \in S: a \cdot f=f, \forall a \in G\} .
$$

Theorem 1 ([1,29]). (a) S^{G} is a finitely generated \mathbb{K}-algebra.
(b) S is a finitely generated S^{G}-module.

Definition 2 ([29]). A linear automorphism $R \in A u t(V)$ is called a pseudo-reflection if $R^{m}=I$ for some $m \in \mathbb{N}^{*}$ and $\operatorname{Im}(I-R)$ is one-dimensional.

In invariant theory, the following theorem gives the equivalent condition that S^{G} is a polynomial algebra:

Theorem 2 ([2,3]). S^{G} is a polynomial algebra if and only if $G \cong \rho(G)$ is generated by pseudo-reflections.

Then, we figure out the relation between a pseudo-reflection on V and a twisted deviation on $S=\mathbb{K}[V]$.

Lemma 1. Let R be a pseudo-reflection on V. Then, R induces a pseudo-reflection on V^{*} (also denoted by R).

Proof. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V such that $W=\operatorname{Span}\left\{e_{1}, \ldots, e_{n-1}\right\}$ is fixed by R. By $R^{m}=\left(\begin{array}{ccccc}1 & & & & a_{1} \\ & 1 & & & a_{2} \\ & & \ddots & & \vdots \\ & & & 1 & a_{n-1} \\ & & & & a_{n}\end{array}\right)^{m}=I$, we see that R is given by the diagonal matrix $\operatorname{diag}(1, \ldots, 1, \omega)$, where $\omega \neq 1$ is an m-th primitive root over \mathbb{K}. Denote $\left\{x_{1}, \ldots, x_{n}\right\}$, the dual basis of V^{*}, such that $x_{i}\left(e_{j}\right)=\delta_{i j}$. Thus, the induced automorphism on V^{*}, defined by $R\left(x_{i}\right)\left(e_{j}\right):=x_{i}\left(R^{-1}\left(e_{j}\right)\right)$, satisfies that $R\left(x_{i}\right)=x_{i}, 1 \leq i \leq n-1$ and $R\left(x_{n}\right)=(1 / \omega) x_{n}$. Therefore, R is a pseudo-reflection on V^{*}.

2.2. Pseudo-Reflections Induced by Twisted Deviations

Let (A, \cdot) be a commutative associative algebra and $R: A \rightarrow A$ a linear map on A. Recall from [4] the definition of a twisted derivation (also named a σ-derivation).

Definition 3. A linear map $D: A \rightarrow A$ is called a twisted derivation with respect to R if D satisfies the twisted Leibniz rule:

$$
\begin{equation*}
D(f g)=D(f) g+R(f) D(g), f, g \in A \tag{4}
\end{equation*}
$$

Remark 1. When $R=I, D$ is a derivation on A.

Recall from Section 2.1 that for a fixed non-zero $v_{R} \in \operatorname{Im}(I-R) \subset V$, there exists a $\Delta_{R} \in V^{*}$ such that

$$
\begin{equation*}
(I-R) v=\Delta_{R}(v) v_{R}, \quad \forall v \in V \tag{5}
\end{equation*}
$$

By Lemma 1, for a fixed non-zero $l_{R} \in \operatorname{Im}(I-R) \subset V^{*}$, there also exists a $\Delta_{R} \in V$ such that

$$
\begin{equation*}
(I-R) x=\Delta_{R}(x) l_{R}, \quad \forall x \in V^{*} \tag{6}
\end{equation*}
$$

Also, denote $R: S \rightarrow S$ as an extension of $R \in \operatorname{Aut}(V)$ satisfying

$$
R\left(k_{1} f+k_{2} h\right)=k_{1} R(f)+k_{2} R(h) \text { and } R(f h)=R(f) R(h) .
$$

Theorem 3. For each $f \in S$, there exists a twisted derivation $D_{R}: S \rightarrow S$ with respect to R such that

$$
\begin{equation*}
R(f)=f-D_{R}(f) l_{R} . \tag{7}
\end{equation*}
$$

Proof. First, we prove that $R(f)$ can be uniquely written as $R(f)=f-D_{R}(f) l_{R}$ for some $D_{R}: S \rightarrow S$. It follows from (6) that, for $1 \leq a_{i} \leq n$,

$$
\begin{aligned}
R\left(x_{a_{1}} \ldots x_{a_{k}}\right) & =\left(R x_{a_{1}}\right) \ldots\left(R x_{a_{k}}\right) \\
& =\left(x_{a_{1}}-\Delta_{R}\left(x_{a_{1}}\right) l_{R}\right) \ldots\left(x_{a_{k}}-\Delta_{R}\left(x_{a_{k}}\right) l_{R}\right)
\end{aligned}
$$

which can be expressed as

$$
x_{a_{1}} \ldots x_{a_{k}}-D_{R}\left(x_{a_{1}} \ldots x_{a_{k}}\right) l_{R}
$$

where D_{R} maps the monomial to a polynomial in S. As a consequence, $R(f)$ can be written as

$$
\begin{equation*}
R(f)=f-D_{R}(f) l_{R} \tag{8}
\end{equation*}
$$

where $D_{R}: S \rightarrow S$ is a linear map. Then, we prove that D_{R} is a twisted derivation on S with respect to R. On the one hand,

$$
R(f h)=f h-D_{R}(f h) l_{R} .
$$

On the other hand,

$$
\begin{aligned}
R(f) R(h)=R(f)\left(h-D_{R}(h) l_{R}\right) & =\left(f-D_{R}(f) l_{R}\right) h-R(f) D_{R}(h) l_{R} \\
& =f h-\left(D_{R}(f) h+R(f) D_{R}(h)\right) l_{R} .
\end{aligned}
$$

Therefore, $R(f h)=D_{R}(f) h+R(f) D_{R}(h)$.
Remark 2. When restricting D_{R} to $V^{*}, D_{R}=\Delta_{R}$ on V^{*}. When restricting $\left(I-D_{R}\right)$ to V^{*}, $\left(I-D_{R}\right)$ is a pseudo-reflection on V^{*}.

3. Left-Alia Algebras and Their Representations

3.1. Left-Alia Algebras and Twisted Derivations

Definition 4 ([5]). A left-Alia algebra is a vector space A together with a bilinear map $[\because, \cdot]: A \times A \rightarrow A$ satisfying the symmetric Jacobi property:

$$
[[x, y], z]+[[y, z], x]+[[z, x], y]=[[y, x], z]+[[z, y], x]+[[x, z], y], \forall x, y, z \in A .
$$

Remark 3. A left-Alia algebra $(A,[\cdot, \cdot])$ is a Lie algebra if and only if the bilinear map $[\cdot, \cdot]$ is skew-symmetric. On the other hand, any commutative algebra $(A,[\cdot, \cdot])$ in the sense that $[\cdot, \cdot]$ is symmetric is a left-Alia algebra.

We can obtain a class of left-Alia algebras from twisted derivations.
Lemma 2. Let $D: A \rightarrow A$ be a twisted derivation of the commutative associative algebra (A, \cdot). Then, D satisfies

$$
\begin{equation*}
x D(y)-D(x) y=R(x) D(y)-D(x) R(y), \quad \forall x, y \in A \tag{9}
\end{equation*}
$$

Proof. By the commutative property of (A, \cdot) and (4), we have

$$
D(x y)-D(y x)=D(x) y+R(x) D(y)-D(y) x-R(y) D(x)=0
$$

Therefore, (9) holds.
Theorem 4. Let (A, \cdot) be a commutative associative algebra and D be a twisted derivation. For all $x, y \in A$, define the bilinear map $[\cdot, \cdot]_{R}: A \times A \rightarrow A$ by

$$
\begin{equation*}
[x, y]_{R}:=[x, y]_{D}=x D(y)-R(y) D(x) . \tag{10}
\end{equation*}
$$

Then, $\left(A,[\cdot, \cdot]_{R}\right)$ is a left-Alia algebra.
Proof. Let $x, y, z \in A$. By (10), we have

$$
\begin{aligned}
{[x, y]_{R}-[y, x]_{R} } & =x D(y)-R(y) D(x)-y D(x)+R(x) D(y) \\
& \stackrel{(9)}{=} 2(x D(y)-y D(x)),
\end{aligned}
$$

and

$$
\begin{aligned}
D(x D(y)-y D(x)) & \stackrel{(4)}{=} D(x) D(y)-R(y) D^{2}(x)-D(y) D(x)+R(x) D^{2}(y) \\
& =R(x) D^{2}(y)-R(y) D^{2}(x)
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& \circlearrowleft_{x, y, z}\left[[x, y]_{R}-[y, x]_{R}, z\right]_{R} \\
= & \circlearrowleft_{x, y, z} 2[x D(y)-y D(x), z]_{R} \\
\stackrel{10)}{=} & \circlearrowleft_{x, y, z} 2\left(x D(y) D(z)-y D(x) D(z)-R(x) D^{2}(y) R(z)+R(y) D^{2}(x) R(z)\right) \\
= & 0 .
\end{aligned}
$$

Therefore, the conclusion holds.
Remark 4. Theorem 4 can also be verified in the following way. Let (A, \cdot) be a commutative associative algebra with linear maps $f, g: A \rightarrow A$. By [5], there is a left-Alia algebra $(A,[\cdot, \cdot])$ given by

$$
\begin{equation*}
[x, y]=x \cdot f(y)+g(x \cdot y), \forall x, y \in A \tag{11}
\end{equation*}
$$

which is called a special left-Alia algebra with respect to (A, \cdot, f, g). If D is a twisted derivation of (A, \cdot) with respect to R, then we see that $\left(A,[\cdot, \cdot]_{R}\right)$ satisfies (11) for

$$
f=2 D, g=-D
$$

Hence, $\left(A,[\cdot, \cdot]_{R}\right)$ is left-Alia.

3.2. Examples of Left-Alia Algebras

Example 1. Let R be a reflection defined by $R\left(x_{1}\right)=x_{2}, R\left(x_{2}\right)=x_{1}, R\left(x_{3}\right)=x_{3}$ on three-dimensional vector space V^{*} with a basis $\left\{x_{1}, x_{2}, x_{3}\right\}$. On the coordinate ring $S=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$ of V, R can be also denoted an extension of R satisfying $R(f g)=R(f) R(g)$ and $R\left(k_{1} f+k_{2} h\right)=k_{1} R(f)+k_{2} R(h)$. Let D be the twisted derivation on S induced by the reflection R. It follows from Theorem 3 that $R(f)=f-D(f)\left(x_{1}-x_{2}\right)$. Take two polynomials, $f=\sum_{i} k_{i} f_{i}, g=\sum_{j} h_{j} g_{j}, k_{i}, h_{j} \in \mathbb{K}$, in S, where f_{i}, g_{j} are monomials, $f_{i}=x_{1}^{n_{i, 1}} x_{2}^{n_{i, 2}} x_{3}^{n_{i, 3}}$, $g_{j}=x_{1}^{m_{j, 1}} x_{2}^{m_{j, 2}} x_{3}^{m_{j, 3}}$. We have

$$
\begin{aligned}
D\left(x_{1}\right)= & 1, D\left(x_{2}\right)=-1, D\left(x_{3}\right)=0 . \\
D\left(x_{1}^{n_{1}}\right)= & x_{1}^{n_{1}-1}+x_{1}^{n_{1}-2} x_{2}+\ldots+x_{2}^{n_{1}-1} . \\
D\left(x_{2}^{n_{2}}\right)= & -x_{1}^{n_{2}-1}-x_{1}^{n_{2}-1} x_{2}-\ldots-x_{2}^{n_{2}-1} . \\
D\left(x_{3}^{n_{3}}\right)= & 0 . \\
D\left(\sum_{i} k_{i} x_{1}^{n_{i, 1}} x_{2}^{n_{i, 2}} x_{3}^{n_{i, 3}}\right)= & \sum_{i} k_{i}\left(D\left(x_{1}^{n_{i, 1}} x_{2}^{n_{i, 2}}\right) x_{3}^{n_{i, 3}}+R\left(x_{1}^{n_{i, 1}} x_{2}^{n_{i, 2}}\right) D\left(x_{3}^{n_{i, 3}}\right)\right) \\
= & \sum_{i} k_{i}\left(x_{1}^{n_{i, 1}} D\left(x_{2}^{n_{i, 2}}\right)+R\left(x_{2}^{n_{i, 2}}\right) D\left(x_{1}^{n_{i, 1}}\right)\right) x_{3}^{n_{i, 3}} \\
= & \sum_{i} k_{i}\left(x_{1}^{n_{i, 1}+n_{i, 2}-1}+x_{1}^{n_{i, 1}+n_{i, 2}-2} x_{2}+\ldots+x_{1}^{n_{i, 2}} x_{2}^{n_{i, 1}-1}\right. \\
& \left.-x_{1}^{n_{i, 1}+n_{i, 2}-1}-\ldots-x_{1}^{n_{1}} x_{2}^{n_{2}-1}\right) x_{3}^{n_{i, 3}} .
\end{aligned}
$$

Let $[\cdot, \cdot]_{R}: S \times S \rightarrow S$ be the bilinear map defined in Theorem 4. Then,

$$
\begin{aligned}
{[f, g]_{R}=} & \sum_{i, j} k_{i} h_{j}\left[f_{i}, g_{j}\right]_{R} \\
= & \sum_{i, j} k_{i} h_{j}\left(f_{i} D\left(g_{j}\right)-R\left(g_{j}\right) D\left(f_{i}\right)\right) \\
= & \sum_{i, j} k_{i} h_{j}\left(x_{1}^{n_{i, 1}+m_{j, 1}+m_{j, 2}-1} x_{2}^{n_{i, 2}}+\ldots+x_{1}^{n_{i, 1}+m_{j, 2}} x_{2}^{n_{i, 2}+m_{j, 1}-1}\right. \\
& -x_{1}^{n_{i, 1}+m_{j, 1}+m_{j, 2}-1} x_{2}^{n_{i, 2}}-\ldots-x_{1}^{m_{j, 1}+n_{i, 1}} x_{2}^{n_{i, 2}+m_{j, 2}-1} \\
& -x_{1}^{m_{j, 2}+n_{i, 1}+n_{i, 2}-1} x_{2}^{m_{j, 1}}-\ldots-x_{1}^{n_{i, 2}+m_{j, 2}} x_{2}^{n_{i, 1}+m_{j, 1}-1} \\
& \left.+x_{1}^{m_{j, 2}+n_{i, 1}+n_{i, 2}-1} x_{2}^{m_{j, 1}}+\ldots+x_{1}^{n_{i, 1}+m_{j, 2}} x_{2}^{n_{i, 2}+m_{j, 1}-1}\right) x_{3}^{m_{j, 3}+n_{i, 3}} .
\end{aligned}
$$

Since (S, \cdot) is a commutative associative algebra, by Theorem $4\left(S,[\cdot, \cdot]_{R}\right)$ is a left-Alia algebra.
Proposition 1. Let $(A,[\cdot, \cdot])$ be an n-dimensional $(n \geq 2)$ left-Alia algebra and $\left\{e_{1}, \cdots, e_{n}\right\}$ be a basis of A. For all positive integers $1 \leq i, j, t \leq n$ and structural constants $C_{i j}^{t} \in \mathbb{C}$, set

$$
\begin{equation*}
\left[e_{i}, e_{j}\right]=\sum_{t=1}^{n} C_{i j}^{t} e_{t} \tag{12}
\end{equation*}
$$

Then, $(A,[\cdot, \cdot])$ is a left-Alia algebra if and only if the structural constants $C_{i j}^{t}$ satisfy the following equation:

$$
\begin{equation*}
\sum_{k, m=1}^{n}\left(\left(C_{i j}^{k}-C_{j i}^{k}\right) C_{k l}^{m}+\left(C_{j l}^{k}-C_{l j}^{k}\right) C_{k i}^{m}+\left(C_{l i}^{k}-C_{i l}^{k}\right) C_{k j}^{m}\right)=0, \forall 1 \leq i, j, l \leq n \tag{13}
\end{equation*}
$$

Proof. By (1), for all $e_{i}, e_{j}, e_{l} \in\left\{e_{1}, \cdots, e_{n}\right\}$,

$$
\begin{equation*}
\left[\left[e_{i}, e_{j}\right]-\left[e_{j}, e_{i}\right], e_{l}\right]+\left[\left[e_{j}, e_{l}\right]-\left[e_{l}, e_{j}\right], e_{i}\right]+\left[\left[e_{l}, e_{i}\right]-\left[e_{i}, e_{l}\right], e_{j}\right]=0 \tag{14}
\end{equation*}
$$

Set

$$
\left[e_{i}, e_{j}\right]=\sum_{k=1}^{n} C_{i j}^{k} e_{k},\left[e_{j}, e_{l}\right]=\sum_{k=1}^{n} C_{j l}^{k} e_{l},\left[e_{l} \cdot e_{i}\right]=\sum_{k=1}^{n} C_{l i}^{k} e_{k}, \quad C_{i j}^{k}, C_{j l}^{k}, C_{l i}^{k} \in \mathbb{C} .
$$

Therefore, Equation (13) holds.
As a direct consequence, we obtain the following:
Proposition 2. Let A be a two-dimensional vector space over the complex field \mathbb{C} with a basis $\left\{e_{1}, e_{2}\right\}$. Then, for any bilinear map $[\cdot, \cdot]$ on $A,(A,[\cdot, \cdot])$ is a left-Alia algebra.

Next, we give some example of three-dimensional left-Alia algebras.
Example 2. Let A be a three-dimensional vector space over the complex field \mathbb{C} with a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Define a bilinear map $[\cdot, \cdot]: A \times A \rightarrow A$ by

$$
\begin{aligned}
& {\left[e_{1}, e_{2}\right]=e_{1}, \quad\left[e_{1}, e_{3}\right]=e_{1}, \quad\left[e_{2}, e_{1}\right]=e_{2}, \quad\left[e_{3}, e_{1}\right]=e_{3},} \\
& {\left[e_{1}, e_{1}\right]=\left[e_{2}, e_{2}\right]=\left[e_{3}, e_{3}\right]=\left[e_{2}, e_{3}\right]=\left[e_{3}, e_{2}\right]=e_{1}+e_{2}+e_{3}}
\end{aligned}
$$

Then, $(A,[\cdot, \cdot])$ is a three-dimensional left-Alia algebra.

Remark 5. A right-Leibniz algebra [10] is a vector space A together with a bilinear operation $[\because \cdot]: A \otimes A \rightarrow A$ satisfying

$$
[[x, y], z]=[[x, z], y]+[x,[y, z]], \forall x, y, z \in A .
$$

Then, we have

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=[[x, y]-[y, x], z]+[[y, z]-[z, y], x]+[[z, x]-[x, z], y] .
$$

Therefore, if a right-Leibniz algebra satisfies

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0,
$$

then $(A,[\cdot, \cdot])$ is a left-Alia algebra.
3.3. From Left-Alia Algebras to Anti-Pre-Lie Algebras

Definition 5 ([8]). Let A be a vector space with a bilinear map $\cdot: A \times A \rightarrow A .(A, \cdot)$ is called an anti-pre-Lie algebra if the following equations are satisfied:

$$
\begin{align*}
& x \cdot(y \cdot z)-y \cdot(x \cdot z)=[y, x] \cdot z \tag{15}\\
& {[x, y] \cdot z+[y, z] \cdot x+[z, x] \cdot y=0} \tag{16}
\end{align*}
$$

where

$$
\begin{equation*}
[x, y]=x \cdot y-y \cdot x \tag{17}
\end{equation*}
$$

for all $x, y, z \in A$.
Remark 6. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra. If $[\cdot, \cdot]: A \times A \rightarrow A$ satisfies

$$
\begin{equation*}
[x,[y, z]]-[y,[x, z]]=[[y, x], z]-[[x, y], z], \forall x, y, z \in A, \tag{18}
\end{equation*}
$$

then $(A,[\cdot, \cdot])$ is an anti-pre-Lie algebra.

3.4. From Left-Alia Algebras to Lie Triple Systems

Lie triple systems originated from Cartan's studies on the Riemannian geometry of totally geodesic submanifolds [11], which can be constructed using twisted derivations and left-Alia algebras.

Definition 6 ([30]). A Lie triple system is a vector space A together with a trilinear operation $[\cdot, \cdot, \cdot]: A \times A \times A \rightarrow A$ such that the following three equations are satisfied, for all x, y, z, a, b in A :

$$
\begin{align*}
{[x, x, y] } & =0 \tag{19}\\
{[x, y, z]+[y, z, x]+[z, x, y] } & =0 \tag{20}
\end{align*}
$$

and

$$
\begin{equation*}
[a, b,[x, y, z]]=[[a, b, x], y, z]+[x,[a, b, y], z]+[x, y,[a, b, z]] . \tag{21}
\end{equation*}
$$

Proposition 3. Let (A, \cdot) be a commutative associative algebra and D be a twisted derivation. Define the bilinear map $[\cdot, \cdot]_{R}: A \times A \rightarrow A$ by (10). And define the trilinear map $[\cdot, \cdot, \cdot]_{R}: A \times A \times A \rightarrow A$ by

$$
[x, y, z]_{R}:=\frac{1}{2}\left[[x, y]_{R}-[y, x]_{R}, z\right]_{R}, \forall x, y, z \in A .
$$

If $[\cdot, \cdot, \cdot]_{R}$ satisfies (21), then $\left(A,[\cdot, \cdot, \cdot]_{R}\right)$ is a Lie triple system.

Proof. For all $x, y \in A$, it is obvious that $[x, x, y]_{R}=0$. By the proof of Theorem 4, Equation (20) holds. If, in addition, $[\cdot, \cdot, \cdot]_{R}$ satisfies (21), then $\left(A,[\cdot, \cdot, \cdot]_{R}\right)$ is a Lie triple system.

Remark 7. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra. For all $x, y, z \in A$, set a trilinear map $[\cdot, \cdot, \cdot]: A \times A \times A \rightarrow A$ by $[x, y, z]=[[x, y]-[y, x], z]$. If $[\cdot, \cdot, \cdot]$ satisfies (21), then $(A,[\cdot, \cdot, \cdot])$ is a Lie triple system.

3.5. Representations and Matched Pairs of Left-Alia Algebras

Definition 7. A representation of a left-Alia algebra $(A,[\cdot, \cdot])$ is a triple (l, r, V), where V is a vector space and $l, r: A \rightarrow \operatorname{End}(V)$ are linear maps such that the following equation holds:

$$
\begin{equation*}
l([x, y])-l([y, x])=r(x) r(y) v-r(y) r(x)+r(y) l(x) v-r(x) l(y), \forall x, y \in A, v \in V \tag{22}
\end{equation*}
$$

Two representations, (l, r, V) and $\left(l^{\prime}, r^{\prime}, V^{\prime}\right)$, of a left-Alia algebra $(A,[\cdot, \cdot])$ are called equivalent if there is a linear isomorphism $\phi: V \rightarrow V^{\prime}$ such that

$$
\begin{equation*}
\phi(l(x) v)=l^{\prime}(x) \phi(v), \phi(r(x) v)=r^{\prime}(x) \phi(v), \forall x \in A, v \in V \tag{23}
\end{equation*}
$$

Example 3. Let (ρ, V) be a representation of a Lie algebra $(\mathfrak{g},[\cdot, \cdot])$, that is, $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ is a linear map such that

$$
\rho([x, y]) v=\rho(x) \rho(y) v-\rho(y) \rho(x) v, \forall x, y \in \mathfrak{g}, v \in V
$$

Then, both $(\rho,-\rho, V)$ and $(\rho, 2 \rho, V)$ satisfy (22) and, hence, are representations of $(\mathfrak{g},[\cdot, \cdot])$ as a left-Alia algebra.

Proposition 4. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra, V be a vector space and $l, r: A \rightarrow \operatorname{End}(V)$ be linear maps. Then, (l, r, V) is a representation of $(A,[\cdot, \cdot])$ if and only if there is a left-Alia algebra on the direct sum $d=A \oplus V$ of vector spaces (the semi-direct product) given by

$$
\begin{equation*}
[x+u, y+v]_{d}=[x, y]+l(x) v+r(y) u, \forall x, y \in A, u, v \in V \tag{24}
\end{equation*}
$$

In this case, we denote $\left(A \oplus V,[\cdot, \cdot]_{d}\right)=A \ltimes_{l, r} V$.
Proof. This is the special case of matched pairs of left-Alia algebras where $B=V$ is equipped with the zero multiplication in Proposition 6.

For a vector space A with a bilinear map $[\cdot, \cdot]: A \times A \rightarrow A$, we set linear maps $\mathcal{L}_{[, \cdot,]}, \mathcal{R}_{[\cdot, \cdot]}: A \rightarrow \operatorname{End}(A)$ using

$$
\mathcal{L}_{[,,]}(x) y=[x, y]=\mathcal{R}_{[, \cdot]}(y) x, \forall x, y \in A
$$

Example 4. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra. Then, $\left(\mathcal{L}_{[\cdot, \cdot]}, \mathcal{R}_{[,, \cdot]}, A\right)$ is a representation of $(A,[\cdot, \cdot])$, which is called an adjoint representation. In particular, for a Lie algebra $(\mathfrak{g},[\cdot, \cdot])$ with the adjoint representation ad $: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ given by $\operatorname{ad}(x) y=[x, y], \forall x, y \in \mathfrak{g}$,

$$
\left(\mathcal{L}_{[,, \cdot]}, \mathcal{R}_{[\cdot, \cdot]}, \mathfrak{g}\right)=(\mathrm{ad},-\mathrm{ad}, \mathfrak{g})
$$

is a representation of $(\mathfrak{g},[\cdot, \cdot])$ as a left-Alia algebra.
Let A and V be vector spaces. For a linear map $l: A \rightarrow \operatorname{End}(V)$, we set a linear map $l^{*}: A \rightarrow \operatorname{End}\left(V^{*}\right)$ using

$$
\left\langle l^{*}(x) u^{*}, v\right\rangle=-\left\langle u^{*}, l(x) v\right\rangle, \forall x \in A, u^{*} \in V^{*}, v \in V
$$

Proposition 5. Let (l, r, V) be a representation of a left-Alia algebra $(A,[\cdot, \cdot])$. Then, $\left(l^{*}, l^{*}-r^{*}, V^{*}\right)$ is also a representation of $(A,[\cdot, \cdot])$. In particular, $\left(\mathcal{L}_{[,, \cdot]}^{*}, \mathcal{L}_{[,,]}^{*}-\mathcal{R}_{[,,]}^{*}, A^{*}\right)$ is a representation of $(A,[\cdot, \cdot])$, which is called the coadjoint representation.

Proof. Let $x, y \in A, u^{*} \in V^{*}, v \in V$. Then, we have

$$
\begin{aligned}
& \left\langle\left(l^{*}[x, y]-l^{*}[y, x]+\left(l^{*}-r^{*}\right)(x) l^{*}(y)-\left(l^{*}-r^{*}\right)(x)\left(l^{*}-r^{*}\right)(y)\right.\right. \\
& \left.\left.+\left(l^{*}-r^{*}\right)(y)\left(l^{*}-r^{*}\right)(x)-\left(l^{*}-r^{*}\right)(y) l^{*}(x)\right) u^{*}, v\right\rangle \\
& =\left\langle\left(l^{*}[x, y]-l^{*}[y, x]+\left(l^{*}-r^{*}\right)(x) r^{*}(y)-\left(l^{*}-r^{*}\right)(y) r^{*}(x)\right) u^{*}, v\right\rangle \\
& =\left\langle u^{*},(l[y, x]-l[x, y]+r(y)(l-r)(x)-r(x)(l-r)(y)) v\right\rangle \\
& \stackrel{(22)}{=} 0 .
\end{aligned}
$$

Hence, the conclusion follows.
Example 5. Let $(\mathfrak{g},[\cdot, \cdot])$ be a Lie algebra. Then, the coadjoint representation of $(\mathfrak{g},[\cdot, \cdot])$ as a left-Alia algebra is

$$
\left(\mathrm{ad}^{*}, \mathrm{ad}^{*}-\left(-\mathrm{ad}^{*}\right), \mathfrak{g}^{*}\right)=\left(\mathrm{ad}^{*}, 2 \mathrm{ad}^{*}, \mathfrak{g}^{*}\right)
$$

Hence, there is a left-Alia algebra structure $\mathfrak{g} \ltimes_{\text {ad }^{*}, 2 a^{*}} \mathfrak{g}^{*}$ on the direct sum $\mathfrak{g} \oplus \mathfrak{g}^{*}$ of vector spaces.
Remark 8. In [5], there is also the notion of a right-Alia algebra, defined as a vector space A together with a bilinear map $[\because, \cdot]^{\prime}: A \times A \rightarrow A$ satisfying

$$
\begin{equation*}
\left[x,[y, z]^{\prime}\right]^{\prime}+\left[y,[z, x]^{\prime}\right]^{\prime}+\left[z,[x, y]^{\prime}\right]^{\prime}=\left[x,[z, y]^{\prime}\right]^{\prime}+\left[y,[x, z]^{\prime}\right]^{\prime}+\left[z,[y, x]^{\prime}\right]^{\prime}, \forall x, y, z \in A \tag{25}
\end{equation*}
$$

It is clear that $\left(A,[\cdot, \cdot]^{\prime}\right)$ is a right-Alia algebra if and only if the opposite algebra $(A,[\cdot, \cdot])$ of $\left(A,[\cdot, \cdot]^{\prime}\right)$, given by $[x, y]=[y, x]^{\prime}$, is a left-Alia algebra. Thus, our study on left-Alia algebras can straightforwardly generalize a parallel study on right-Alia algebras. Consequently, if (l, r, V) is a representation of a right-Alia algebra $\left(A,[\cdot, \cdot]^{\prime}\right)$, then $\left(r^{*}-l^{*}, r^{*}, V^{*}\right)$ is also a representation of $\left(A,[\cdot, \cdot]^{\prime}\right)$. Recall [23] that if (l, r, V) is a representation of an anti-pre-Lie algebra $\left(A,[\cdot, \cdot]_{\text {anti }}\right)$, then $\left(r^{*}-l^{*}, r^{*}, V^{*}\right)$ is also a representation of $\left(A,[\cdot, \cdot]_{\text {anti }}\right)$. Moreover, admissible Novikov algebras [8] are a subclass of anti-pre-Lie algebras. If (l, r, V) is a representation of an admissible Novikov algebra $\left(A,[\cdot, \cdot]_{\text {admissible Novikov }}\right)$, then $\left(r^{*}-l^{*}, r^{*}, V^{*}\right)$ is also a representation of the admissible Novikov algebra $\left(A,[\cdot, \cdot]_{\text {admissible Novikov }}\right)$. Therefore, we have the following algebras which preserve the form $\left(r^{*}-l^{*}, r^{*}, V^{*}\right)$ of representations on the dual spaces:

$$
\{\text { right-Alia algebras }\} \supset\{\text { anti-pre-Lie algebras }\} \supset\{\text { admissible Novikov algebras }\} .
$$

Now, we introduce the notion of matched pairs of left-Alia algebras.
Definition 8. Let $\left(A,[\cdot, \cdot]_{A}\right)$ and $\left(B,[\cdot, \cdot]_{B}\right)$ be left-Alia algebras and $l_{A}, r_{A}: A \rightarrow \operatorname{End}(B)$ and $l_{B}, r_{B}: B \rightarrow \operatorname{End}(A)$ be linear maps. If there is a left-Alia algebra structure $[\cdot, \cdot]_{A \oplus B}$ on the direct sum $A \oplus B$ of vector spaces given by

$$
[x+a, y+b]_{A \oplus B}=[x, y]_{A}+l_{B}(a) y+r_{B}(b) x+[a, b]_{B}+l_{A}(x) b+r_{A}(y) a, \forall x, y \in A, a, b \in B
$$

then we say $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(B,[\cdot, \cdot]_{B}\right), l_{A}, r_{A}, l_{B}, r_{B}\right)$ is a matched pair of left-Alia algebras.
Proposition 6. Let $\left(A,[\cdot, \cdot]_{A}\right)$ and $\left(B,[\cdot, \cdot]_{B}\right)$ be left-Alia algebras and $l_{A}, r_{A}: A \rightarrow \operatorname{End}(B)$ and $l_{B}, r_{B}: B \rightarrow \operatorname{End}(A)$ be linear maps. Then, $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(B,[\cdot, \cdot]_{B}\right), l_{A}, r_{A}, l_{B}, r_{B}\right)$ is a matched
pair of left-Alia algebras if and only if the triple $\left(l_{A}, r_{A}, B\right)$ is a representation of $\left(A,[\cdot, \cdot]_{A}\right)$, the triple $\left(l_{B}, r_{B}, A\right)$ is a representation of $\left(B,[\cdot, \cdot]_{B}\right)$ and the following equations hold:

$$
\begin{align*}
r_{B}(a)\left([x, y]_{A}-[y, x]_{A}\right) & =\left(l_{B}-r_{B}\right)(a)[y, x]_{A}+\left(r_{B}-l_{B}\right)(a)[x, y]_{A} \\
& +l_{B}\left(\left(r_{A}-l_{A}\right)(y) a\right) x+l_{B}\left(\left(l_{A}-r_{A}\right)(x) a\right) y \tag{26}\\
r_{A}(x)\left([a, b]_{B}-[b, a]_{B}\right) & =\left(l_{A}-r_{A}\right)(x)[b, a]_{B}+\left(r_{A}-l_{A}\right)(x)[a, b]_{B} \\
& +l_{A}\left(\left(r_{B}-l_{B}\right)(b) x\right) a+l_{A}\left(\left(l_{B}-r_{B}\right)(a) x\right) b, \tag{27}
\end{align*}
$$

for all $x, y \in A, a, b \in B$.
Proof. The proof follows from a straightforward computation.
3.6. Quadratic Left-Alia Algebras

Definition 9. A quadratic left-Alia algebra is a triple $(A,[\cdot, \cdot], \mathcal{B})$, where $(A,[\cdot, \cdot])$ is a left-Alia algebra and \mathcal{B} is a nondegenerate symmetric bilinear form on A which is invariant in the sense that

$$
\begin{equation*}
\mathcal{B}([x, y], z)=\mathcal{B}(x,[z, y]-[y, z]), \forall x, y, z \in A . \tag{28}
\end{equation*}
$$

Remark 9. Since \mathcal{B} is symmetric, it follows from Definition 9 that

$$
\begin{equation*}
\mathcal{B}([x, y], z)+\mathcal{B}(y,[x, z])=0, \forall x, y, z \in A . \tag{29}
\end{equation*}
$$

Lemma 3. Let $(A,[\cdot, \cdot], \mathcal{B})$ be a quadratic left-Alia algebra. Then, $\left(\mathcal{L}_{[, \cdot]}, \mathcal{R}_{[\cdot, \cdot]}, A\right)$ and $\left(\mathcal{L}_{[,,]}^{*}, \mathcal{L}_{[.,]}^{*}-\mathcal{R}_{[\cdot, \cdot]}^{*}, A^{*}\right)$ are equivalent as representations of $(A,[\cdot, \cdot])$.

Proof. We set a linear isomorphism $\mathcal{B}^{\natural}: A \rightarrow A^{*}$ using

$$
\begin{equation*}
\left\langle\mathcal{B}^{\natural}(x), y\right\rangle=\mathcal{B}(x, y) . \tag{30}
\end{equation*}
$$

Then, by (29) we have

$$
\left\langle\mathcal{B}^{\natural}\left(\mathcal{L}_{[\cdot,]}(x) y\right), z\right\rangle=\mathcal{B}([x, y], z)=-\mathcal{B}(y,[x, z])=-\left\langle\mathcal{B}^{\natural}(y),[x, z]\right\rangle=\left\langle\mathcal{L}_{[\cdot, \cdot]}^{*}(x) \mathcal{B}^{\natural}(y), z\right\rangle,
$$

that is, $\mathcal{B}^{\natural}\left(\mathcal{L}_{[\cdot,]}(x) y\right)=\mathcal{L}_{[, \cdot]}^{*}(x) \mathcal{B}^{\natural}(y)$. Similarly, by (28), we have $\mathcal{B}^{\natural}\left(\mathcal{R}_{[,, \cdot]}(x) y\right)=$ $\left(\mathcal{L}_{[,,]}^{*}-\mathcal{R}_{[,, \cdot]}^{*}\right)(x) \mathcal{B}^{\natural}(y)$. Hence, the conclusion follows.

Proposition 7. Let (A, \cdot) be a commutative associative algebra and $f: A \rightarrow A$ be a linear map. Let \mathcal{B} be a nondegenerate symmetric invariant bilinear form on (A, \cdot) and $\hat{f}: A \rightarrow A$ be the adjoint map of f with respect to \mathcal{B}, given by

$$
\mathcal{B}(\hat{f}(x), y)=\mathcal{B}(x, f(y)), \forall x, y \in A .
$$

Then, there is a quadratic left-Alia algebra $(A,[\cdot, \cdot], \mathcal{B})$, where $(A,[\cdot, \cdot])$ is the special left-Alia algebra with respect to $(A, \cdot, f,-\hat{f})$, that is,

$$
\begin{equation*}
[x, y]=x \cdot f(y)-\hat{f}(x \cdot y) \tag{31}
\end{equation*}
$$

Proof. For all $x, y, z \in A$, we have

$$
\begin{aligned}
\mathcal{B}([x, y], z) & =\mathcal{B}(x \cdot f(y)-\hat{f}(x \cdot y), z) \\
& =\mathcal{B}(x, z \cdot f(y)-y \cdot f(z)) \\
& =\mathcal{B}(x, z \cdot f(y)-\hat{f}(z \cdot y)-(y \cdot f(z)-\hat{f}(y \cdot z))) \\
& =\mathcal{B}(x,[z, y]-[y, z]) .
\end{aligned}
$$

Hence, the conclusion follows.

Example 6. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra and $\left(\mathcal{L}_{[, \cdot,]}, \mathcal{R}_{[\cdot,]}, A\right)$ be the adjoint representation of $(A,[\cdot, \cdot])$. By Propositions 4 and 5 , there is a left-Alia algebra $A \ltimes \mathcal{L}_{[,, j, j}^{*} \mathcal{L}_{[,,]]}^{*} \mathcal{R}_{[,,]]}^{*} A^{*}$ ond $=A \oplus A^{*}$, given by (24). There is a natural nondegenerate symmetric bilinear form \mathcal{B}_{d} on $A \oplus A^{*}$, given by

$$
\begin{equation*}
\mathcal{B}_{d}\left(x+a^{*}, y+b^{*}\right)=\left\langle x, b^{*}\right\rangle+\left\langle a^{*}, y\right\rangle, \forall x, y \in A, a^{*}, b^{*} \in A^{*} \tag{32}
\end{equation*}
$$

For all $x, y, z \in A, a^{*}, b^{*}, c^{*} \in A^{*}$, we have

$$
\begin{aligned}
\mathcal{B}_{d}\left(\left[x+a^{*}, y+b^{*}\right]_{d}, z+c^{*}\right) & =\mathcal{B}_{d}\left([x, y]+\mathcal{L}_{[.,]}^{*}(x) b^{*}+\left(\mathcal{L}_{[\cdot,]}^{*}-\mathcal{R}_{[., \cdot]}^{*}\right)(y) a^{*}, z+c^{*}\right) \\
& =\left\langle[x, y], c^{*}\right\rangle+\left\langle\mathcal{L}_{[.,]}^{*}(x) b^{*}+\left(\mathcal{L}_{[\cdot,]}^{*}-\mathcal{R}_{[\cdot, \cdot]}^{*}\right)(y) a^{*}, z\right\rangle \\
& =\left\langle[x, y], c^{*}\right\rangle-\left\langle[x, z], b^{*}\right\rangle+\left\langle a^{*},[z, y]-[y, z]\right\rangle, \\
\mathcal{B}_{d}\left(x+a^{*},\left[z+c^{*}, x+b^{*}\right]_{d}\right) & =\left\langle[z, y], a^{*}\right\rangle-\left\langle[z, x], b^{*}\right\rangle+\left\langle c^{*},[y, x]-[x, y]\right\rangle, \\
\mathcal{B}_{d}\left(x+a^{*},\left[y+b^{*}, z+c^{*}\right]_{d}\right) & =\left\langle[y, z], a^{*}\right\rangle-\left\langle[y, x], c^{*}\right\rangle+\left\langle b^{*},[z, x]-[x, z]\right\rangle .
\end{aligned}
$$

Hence, we have

$$
\mathcal{B}_{d}\left(\left[x+a^{*}, y+b^{*}\right]_{d}, z+c^{*}\right)=\mathcal{B}_{d}\left(x+a^{*},\left[z+c^{*}, y+b^{*}\right]_{d}-\left[y+b^{*}, z+c^{*}\right]_{d}\right)
$$

and, thus, $\left(A \ltimes_{\mathcal{L}_{[,,]}^{*}, \mathcal{L}_{[,,]}^{*}-\mathcal{R}_{[,,]}^{*}} A^{*}, \mathcal{B}_{d}\right)$ is a quadratic left-Alia algebra.
Remark 10. By Example 6, an arbitrary Lie algebra $(\mathfrak{g},[\cdot, \cdot])$ renders a quadratic left-Alia algebra $\left(\mathfrak{g} \ltimes_{\mathrm{ad}^{*}, 2 \mathrm{ad}^{*}} \mathfrak{g}^{*}, \mathcal{B}_{d}\right)$, where ad $: \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ is the adjoint representation of $(\mathfrak{g},[\cdot, \cdot])$.

We study the tensor forms of nondegenerate symmetric invariant bilinear forms on left-Alia algebras.

Definition 10. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra and $h: A \rightarrow \operatorname{End}(A \otimes A)$ be a linear map given by

$$
\begin{equation*}
h(x)=\left(\mathcal{R}_{[,, \cdot]}-\mathcal{L}_{[, \cdot,]}\right)(x) \otimes \operatorname{id}-\operatorname{id} \otimes \mathcal{R}_{[\because, \cdot]}(x), \forall x \in A . \tag{33}
\end{equation*}
$$

An element $r \in A \otimes A$ is called invariant on $(A,[\cdot, \cdot])$ if $h(x) r=0$ for all $x \in A$.
Proposition 8. Let $(A,[\cdot, \cdot])$ be a left-Alia algebra. Suppose that \mathcal{B} is a nondegenerate bilinear form on A and $\mathcal{B}^{\natural}: A \rightarrow A^{*}$ is the corresponding map given by (30). Set $\widetilde{\mathcal{B}} \in A \otimes A$ using

$$
\begin{equation*}
\left\langle\widetilde{\mathcal{B}}, a^{*} \otimes b^{*}\right\rangle=\left\langle\mathcal{B}^{\mathfrak{u}^{-1}}\left(a^{*}\right), b^{*}\right\rangle, \forall a^{*}, b^{*} \in A^{*} \tag{34}
\end{equation*}
$$

Then, $(A,[\cdot, \cdot], \mathcal{B})$ is a quadratic left-Alia algebra if and only if $\widetilde{\mathcal{B}}$ is symmetric and invariant on $(A,[\cdot, \cdot])$.

Proof. It is clear that \mathcal{B} is symmetric if and only if $\widetilde{\mathcal{B}}$ is symmetric. Let $x, y, z \in A$ and $a^{*}=\mathcal{B}^{\natural}(x), c^{*}=\mathcal{B}^{\natural}(z)$. Under the symmetric assumption, we have

$$
\begin{aligned}
& \mathcal{B}([x, y], z)=\left\langle[x, y], \mathcal{B}^{\natural}(z)\right\rangle=\left\langle\left[\mathcal{B}^{\natural^{-1}}\left(a^{*}\right), y\right], c^{*}\right\rangle \\
& =-\left\langle\mathcal{B}^{\natural^{-1}}\left(a^{*}\right), \mathcal{R}_{[,,]}^{*}(y) c^{*}\right\rangle=-\left\langle\widetilde{\mathcal{B}}, a^{*} \otimes \mathcal{R}_{[,,]}^{*}(y) c^{*}\right\rangle=\left\langle\left(\operatorname{id} \otimes \mathcal{R}_{[,, j]}(y)\right) \widetilde{\mathcal{B}}, a^{*} \otimes c^{*}\right\rangle, \\
& \mathcal{B}(x,[z, y]-[y, z])=\left\langle\mathcal{B}^{\natural}(x),[z, y]-[y, z]\right\rangle=\left\langle a^{*},\left[\mathcal{B}^{\natural^{-1}}\left(c^{*}\right), y\right]-\left[y, \mathcal{B}^{\natural^{-1}}\left(c^{*}\right)\right]\right\rangle \\
& =\left\langle\left(\mathcal{L}_{[,,]}^{*}-\mathcal{R}_{[,,]}^{*}\right)(y) a^{*}, \mathcal{B}^{\natural h^{-1}}\left(c^{*}\right)\right\rangle=\left\langle\widetilde{\mathcal{B}}, c^{*} \otimes\left(\mathcal{L}_{[,,]}^{*}-\mathcal{R}_{[,,]}^{*}\right)(y) a^{*}\right\rangle \\
& =\left\langle\left(\left(\mathcal{R}_{[,,]}-\mathcal{L}_{[,,]}\right)(y) \otimes \mathrm{id}\right) \widetilde{\mathcal{B}}, a^{*} \otimes c^{*}\right\rangle,
\end{aligned}
$$

that is, (28) holds if and only if $h(y) \widetilde{\mathcal{B}}=0$ for all $y \in A$. Hence, the conclusion follows.

4. Manin Triples of Left-Alia Algebras and Left-Alia Bialgebras

In this section, we introduce the notions of Manin triples of left-Alia algebras and left-Alia bialgebras. We show that they are equivalent structures via specific matched pairs of left-Alia algebras.

4.1. Manin Triples of Left-Alia Algebras

Definition 11. Let $\left(A,[\cdot, \cdot]_{A}\right)$ and $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ be left-Alia algebras. Assume that there is a leftAlia algebra structure $\left(d=A \oplus A^{*},[\cdot, \cdot]_{d}\right)$ on $A \oplus A^{*}$ which contains $\left(A,[\cdot, \cdot]_{A}\right)$ and $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ as left-Alia subalgebras. Suppose that the natural nondegenerate symmetric bilinear form \mathcal{B}_{d}, given by (32), is invariant on $\left(A \oplus A^{*},[\cdot, \cdot]_{d}\right)$, that is, $\left(A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right)$ is a quadratic left-Alia algebra. Then, we say that $\left(\left(A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$ is a Manin triple of left-Alia algebras.

Recall [19] that a double construction of commutative Frobenius algebras $\left(\left(A \oplus A^{*}, \cdot d, \mathcal{B}_{d}\right), A, A^{*}\right)$ is a commutative associative algebra $\left(A \oplus A^{*}, \cdot d\right)$ containing $\left(A,{ }_{A}\right)$ and $\left(A^{*}, A^{*}\right)$ as commutative associative subalgebras, such that the natural nondegenerate symmetric bilinear form \mathcal{B}_{d} given by (32) is invariant on $\left(A \oplus A^{*}, \cdot d\right)$. Now, we show that double constructions of commutative Frobenius algebras with linear maps naturally give rise to Manin triples of left-Alia algebras.

Corollary 1. Let $\left(\left(A \oplus A^{*}, \cdot{ }_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$ be a double construction of commutative Frobenius algebras. Suppose that $P: A \rightarrow A$ and $Q^{*}: A^{*} \rightarrow A^{*}$ are linear maps. Then, there is a Manin triple of left-Alia algebras $\left(\left(A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$ given by

$$
\begin{aligned}
& {\left[x+a^{*}, y+b^{*}\right]_{d}=\left(x+a^{*}\right) \cdot d\left(P(y)+Q^{*}\left(b^{*}\right)\right)-\left(Q+P^{*}\right)\left(\left(x+a^{*}\right) \cdot d\left(y+b^{*}\right)\right),} \\
& {[x, y]_{A}=x \cdot{ }_{A} P(y)-Q\left(x \cdot{ }_{A} y\right),\left[a^{*}, b^{*}\right]_{A^{*}}=a^{*} \cdot A^{*} Q^{*}\left(b^{*}\right)-P^{*}\left(a^{*} \cdot A^{*} b^{*}\right),}
\end{aligned}
$$

for all $x, y \in A, a^{*}, b^{*} \in A^{*}$.
Proof. The adjoint map of $P+Q^{*}$ with respect to \mathcal{B}_{d} is $Q+P^{*}$. Hence, the conclusion follows from Proposition 7 by taking $f=P+Q^{*}$.

Theorem 5. Let $\left(A,[\cdot, \cdot]_{A}\right)$ and $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ be left-Alia algebras. Then, there is a Manin triple of left-Alia algebras $\left(\left(A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$ if and only if

$$
\left(\left(A,[\cdot, \cdot]_{A}\right),\left(A^{*},[\cdot, \cdot]_{A^{*}}\right), \mathcal{L}_{[,, \cdot]_{A^{\prime}}}^{*} \mathcal{L}_{[\cdot, \cdot]_{A}}^{*}-\mathcal{R}_{[,, \cdot]_{A^{\prime}}}^{*} \mathcal{L}_{[,,]_{A^{*}}}^{*} \mathcal{L}_{[,, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[,, \cdot]_{A^{*}}}^{*}\right)
$$

is a matched pair of left-Alia algebras.
Proof. Let $\left(\left(A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$ be a Manin triple of left-Alia algebras. For all $x, y \in A, a^{*}, b^{*} \in A^{*}$, we have

$$
\begin{aligned}
\mathcal{B}_{d}\left(\left[x, b^{*}\right]_{d}, y\right) & \stackrel{(28)}{=}-\mathcal{B}\left(b^{*},[x, y]_{A}\right)=-\left\langle b^{*},[x, y]_{A}\right\rangle=\left\langle\mathcal{L}_{[,, \cdot]_{A}}^{*}(x) b^{*}, y\right\rangle=\mathcal{B}_{d}\left(\mathcal{L}_{[\cdot, \cdot]_{A}}^{*}(x) b^{*}, y\right), \\
\mathcal{B}_{d}\left(\left[x, b^{*}\right]_{d}, a^{*}\right) & \stackrel{(28)}{=} \mathcal{B}_{d}\left(x,\left[a^{*}, b^{*}\right]_{A^{*}}-\left[b^{*}, a^{*}\right]_{A^{*}}\right)=\left\langle x,\left[a^{*}, b^{*}\right]_{A^{*}}-\left[b^{*}, a^{*}\right]_{A^{*}}\right\rangle \\
& =\left\langle\left(\mathcal{L}_{[,,]_{A^{*}}}^{*}-\mathcal{R}_{[\because, \cdot]_{A^{*}}}^{*}\right)\left(b^{*}\right) x, a^{*}\right\rangle=\mathcal{B}_{d}\left(\left(\mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[, \cdot]_{A^{*}}}^{*}\right)\left(b^{*}\right) x, a^{*}\right) .
\end{aligned}
$$

Thus,

$$
\mathcal{B}_{d}\left(\left[x, b^{*}\right]_{d}, y+a^{*}\right)=\mathcal{B}_{d}\left(\left(\mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[\cdot, \cdot]_{A^{*}}}^{*}\right)\left(b^{*}\right) x+\mathcal{L}_{[\cdot,]_{A}}^{*}(x) b^{*}, y+a^{*}\right)
$$

and, by the nondegeneracy of \mathcal{B}_{d}, we have

$$
\left[x, b^{*}\right]_{d}=\left(\mathcal{L}_{[,,]_{A^{*}}}^{*}-\mathcal{R}_{[,,]_{A^{*}}}^{*}\right)\left(b^{*}\right) x+\mathcal{L}_{[, \cdot]_{A}}^{*}(x) b^{*}
$$

Similarly,

$$
\left[y, a^{*}\right]_{d}=\left(\mathcal{L}_{[,,]_{A}}^{*}-\mathcal{R}_{[,,]_{A}}^{*}\right)(y) a^{*}+\mathcal{L}_{[,,]_{A^{*}}}^{*}\left(a^{*}\right) y .
$$

Therefore, we have

$$
\begin{align*}
{\left[x+a^{*}, y+b^{*}\right]_{d} } & =[x, y]_{A}+\mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}\left(a^{*}\right) y+\left(\mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[, \cdot]_{A^{*}}}^{*}\right)\left(b^{*}\right) x \\
& +\left[a^{*}, b^{*}\right]_{A^{*}}+\mathcal{L}_{[, \cdot,]_{A}}^{*}(x) b^{*}+\left(\mathcal{L}_{[, \cdot,]_{A}}^{*}-\mathcal{R}_{[\cdot, \cdot]_{A}}^{*}\right)(y) a^{*} . \tag{35}
\end{align*}
$$

Hence, $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(A^{*},[\cdot, \cdot]_{A^{*}}\right), \mathcal{L}_{[\cdot, \cdot]_{A}}^{*}, \mathcal{L}_{[, \cdot,]_{A}}^{*}-\mathcal{R}_{[\cdot, \cdot]_{A}}^{*}, \mathcal{L}_{[, \cdot]_{A^{*}}}^{*}, \mathcal{L}_{[,, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[, \cdot,]_{A^{*}}}^{*}\right)$ is a matched pair of left-Alia algebras.

Conversely, if $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(A^{*},[\cdot, \cdot]_{A^{*}}\right), \mathcal{L}_{[,,]_{A^{\prime}}}^{*}, \mathcal{L}_{[\cdot, \cdot]_{A}}^{*}-\mathcal{R}_{[\cdot, \cdot]_{A^{\prime}}}^{*} \mathcal{L}_{[, \cdot,]_{A^{*}}}^{*}, \mathcal{L}_{[,,]_{A^{*}}}^{*}-\mathcal{R}_{[,,]_{A^{*}}}^{*}\right)$ is a matched pair of left-Alia algebras, then it is straightforward to check that \mathcal{B}_{d} is invariant on the left-Alia algebra $\left(A \oplus A^{*},[\cdot, \cdot]_{d}\right)$ given by (35).

4.2. Left-Alia Bialgebras

Definition 12. A left-Alia coalgebra is a pair, (A, δ), such that A is a vector space and $\delta: A \rightarrow A \otimes A$ is a co-multiplication satisfying

$$
\begin{equation*}
\left(\mathrm{id}^{\otimes 3}+\xi+\xi^{2}\right)\left(\tau \otimes \mathrm{id}-\mathrm{id}^{\otimes 3}\right)(\delta \otimes \mathrm{id}) \delta=0 \tag{36}
\end{equation*}
$$

where $\tau(x \otimes y)=y \otimes x$ and $\xi(x \otimes y \otimes z)=y \otimes z \otimes x$ for all $x, y, z \in A$.
Proposition 9. Let A be a vector space and $\delta: A \rightarrow A \otimes A$ be a co-multiplication. Let $[\cdot, \cdot]_{A^{*}}$: $A^{*} \otimes A^{*} \rightarrow A^{*}$ be the linear dual of δ, that is,

$$
\begin{equation*}
\left\langle\left[a^{*}, b^{*}\right]_{A^{*}}, x\right\rangle=\left\langle\delta^{*}\left(a^{*} \otimes b^{*}\right), x\right\rangle=\left\langle a^{*} \otimes b^{*}, \delta(x)\right\rangle, \forall a^{*}, b^{*} \in A^{*}, x \in A . \tag{37}
\end{equation*}
$$

Then, (A, δ) is a left-Alia coalgebra if and only if $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ is a left-Alia algebra.
Proof. For all $x \in A, a^{*}, b^{*}, c^{*} \in A^{*}$, we have

$$
\begin{aligned}
\left\langle\left[\left[a^{*}, b^{*}\right]_{A^{*}}, c^{*}\right]_{A^{*}}-\left[\left[b^{*}, a^{*}\right]_{A^{*}}, c^{*}\right]_{A^{*}}, x\right\rangle & =\left\langle\delta^{*}\left(\delta^{*} \otimes \mathrm{id}\right)\left(\mathrm{id}^{\otimes 3}-\tau \otimes \mathrm{id}\right) a^{*} \otimes b^{*} \otimes c^{*}, x\right\rangle \\
& =\left\langle a^{*} \otimes b^{*} \otimes c^{*},\left(\mathrm{id}^{\otimes 3}-\tau \otimes \mathrm{id}\right)(\delta \otimes \mathrm{id}) \delta(x)\right\rangle, \\
\left\langle\left[\left[b^{*}, c^{*}\right]_{A^{*},}, a^{*}\right]_{A^{*}}-\left[\left[c^{*}, b^{*}\right]_{A^{*}}, a^{*}\right]_{A^{*}}, x\right\rangle & =\left\langle b^{*} \otimes c^{*} \otimes a^{*},\left(\mathrm{id}^{\otimes 3}-\tau \otimes \mathrm{id}\right)(\delta \otimes \mathrm{id}) \delta(x)\right\rangle \\
& =\left\langle a^{*} \otimes b^{*} \otimes c^{*}, \zeta^{2}\left(\mathrm{id}^{\otimes 3}-\tau \otimes \mathrm{id}\right)(\delta \otimes \mathrm{id}) \delta(x)\right\rangle, \\
\left\langle\left[\left[c^{*}, a^{*}\right]_{A^{*}}, b^{*}\right]_{A^{*}}-\left[\left[a^{*}, c^{*}\right]_{A^{*}}, b^{*}\right]_{A^{*}}, x\right\rangle & =\left\langle c^{*} \otimes a^{*} \otimes b^{*},\left(\mathrm{id}^{\otimes 3}-\tau \otimes \mathrm{id}\right)(\delta \otimes \mathrm{id}) \delta(x)\right\rangle \\
& =\left\langle a^{*} \otimes b^{*} \otimes c^{*}, \xi\left(\mathrm{id}^{\otimes 3}-\tau \otimes \mathrm{id}\right)(\delta \otimes \mathrm{id}) \delta(x)\right\rangle .
\end{aligned}
$$

Hence, (1) holds for $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ if and only if (36) holds.
Definition 13. A left-Alia bialgebra is a triple $(A,[\cdot, \cdot], \delta)$, such that $(A,[\cdot, \cdot])$ is a left-Alia algebra, (A, δ) is a left-Alia coalgebra and the following equation holds:

$$
\begin{equation*}
\left(\tau-\mathrm{id}^{2}\right)\left(\delta([x, y]-[y, x])+\left(\mathcal{R}_{[\because,]}(x) \otimes \mathrm{id}\right) \delta(y)-\left(\mathcal{R}_{[r,]}(y) \otimes \mathrm{id}\right) \delta(x)\right)=0, \forall x, y \in A \tag{38}
\end{equation*}
$$

Theorem 6. Let $\left(A,[\cdot, \cdot]_{A}\right)$ be a left-Alia algebra. Suppose that there is a left-Alia algebra structure $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ on the dual space A^{*}, and $\delta: A \rightarrow A \otimes A$ is the linear dual of $[\cdot, \cdot]_{A^{*}}$. Then, $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(A^{*},[\cdot, \cdot]_{A^{*}}\right), \mathcal{L}_{[,,]_{A}}^{*}, \mathcal{L}_{[,,]_{A}}^{*}-\mathcal{R}_{[,, \cdot]_{A}}^{*} \mathcal{L}_{[,,]_{A^{*}}}^{*}, \mathcal{L}_{[,, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[,,]_{A^{*}}}^{*}\right)$ is a matched pair of left-Alia algebras if and only if $\left(A,[\cdot, \cdot]_{A}, \delta\right)$ is a left-Alia bialgebra.

Proof. For all $x, y \in A, a^{*}, b^{*} \in A^{*}$, we have

$$
\begin{aligned}
& \left\langle\left(\mathcal{L}_{[,, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[,, \cdot]_{A^{*}}}^{*}\right)\left(a^{*}\right)\left([x, y]_{A}-[y, x]_{A}\right), b^{*}\right\rangle=\left\langle[x, y]_{A}-[y, x]_{A},\left[b^{*}, a^{*}\right]_{A^{*}}-\left[a^{*}, b^{*}\right]_{A^{*}}\right\rangle \\
& =\left\langle\left(\tau-\mathrm{id}^{\otimes 2}\right) \delta\left([x, y]_{A}-[y, x]_{A}\right), a^{*} \otimes b^{*}\right\rangle, \\
& \left\langle\left[\mathcal{R}_{[, \cdot,]_{A^{*}}}^{*}\left(a^{*}\right) y, x\right]_{A}, b^{*}\right\rangle=-\left\langle\mathcal{R}_{[, \cdot]_{A^{*}}}^{*}\left(a^{*}\right) y, \mathcal{R}_{[,, \cdot]_{A}}^{*}(x) b^{*}\right\rangle \\
& =\left\langle y,\left[\mathcal{R}_{[,,]_{A}}^{*}(x) b^{*}, a^{*}\right]_{A^{*}}\right\rangle \\
& =-\left\langle\left(\mathcal{R}_{[,,]_{A}}(x) \otimes \mathrm{id}\right) \delta(y), b^{*} \otimes a^{*}\right\rangle \\
& =-\left\langle\tau\left(\mathcal{R}_{[\cdot,]_{A}}(x) \otimes \mathrm{id}\right) \delta(y), a^{*} \otimes b^{*}\right\rangle, \\
& -\left\langle\left[\mathcal{R}_{[, \cdot]_{A^{*}}}^{*}\left(a^{*}\right) y, x\right]_{A}, b^{*}\right\rangle=\left\langle\tau\left(\mathcal{R}_{[\because, \cdot]_{A}}(y) \otimes \mathrm{id}\right) \delta(x), a^{*} \otimes b^{*}\right\rangle, \\
& -\left\langle\mathcal{L}_{[, \cdot]_{A^{*}}}^{*}\left(\mathcal{R}_{[, \cdot,]_{A}}^{*}(y) a^{*}\right) x, b^{*}\right\rangle=\left\langle x,\left[\mathcal{R}_{[, \cdot,]_{A}}^{*}(y) a^{*}, b^{*}\right]_{A^{*}}\right\rangle \\
& =-\left\langle\left(\mathcal{R}_{[,,]_{A}}(y) \otimes \mathrm{id}\right) \delta(x), a^{*} \otimes b^{*}\right\rangle, \\
& \left.\left\langle\mathcal{L}_{[, \cdot]_{A^{*}}}^{*}\left(\mathcal{R}_{[\cdot, \cdot]_{A}}^{*}(x) a^{*}\right) y\right), b^{*}\right\rangle=\left\langle\left(\mathcal{R}_{[, \cdot]_{A}}(x) \otimes \mathrm{id}\right) \delta(y), a^{*} \otimes b^{*}\right\rangle .
\end{aligned}
$$

Thus, (38) holds if and only if (26) holds for $l_{A}=\mathcal{L}_{[,,]_{A}{ }^{\prime}}^{*} r_{A}=\mathcal{L}_{[\cdot, \cdot]_{A}}^{*}-\mathcal{R}_{[,, \cdot]_{A}}^{*}$ $l_{B}=\mathcal{L}_{[\cdot,]_{A^{*}}}^{*}, r_{B}=\mathcal{L}_{[\cdot,]_{A^{*}}}^{*}-\mathcal{R}_{[\cdot, \cdot]_{A^{*}}}^{*}$. Similarly, (38) holds if and only if (27) holds for $l_{A}=\mathcal{L}_{[, \cdot]_{A}}^{*}, r_{A}=\mathcal{L}_{[, \cdot,]_{A}}^{*}-\mathcal{R}_{[, \cdot,]_{A}}^{*}, l_{B}=\mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}, r_{B}=\mathcal{L}_{[,,]_{A^{*}}}^{*}-\mathcal{R}_{[, \cdot]_{A^{*}}}^{*}$. Hence, the conclusion follows.

Summarizing Theorems 5 and 6, we have the following corollary:
Corollary 2. Let $\left(A,[\cdot, \cdot]_{A}\right)$ be a left-Alia algebra. Suppose that there is a left-Alia algebra structure $\left(A^{*},[\cdot, \cdot]_{A^{*}}\right)$ on the dual space A^{*}, and $\delta: A \rightarrow A \otimes A$ is the linear dual of $[\cdot, \cdot]_{A^{*}}$. Then, the following conditions are equivalent:
(a) There is a Manin triple of left-Alia algebras $\left(\left(d=A \oplus A^{*},[\cdot, \cdot]_{d}, \mathcal{B}_{d}\right), A, A^{*}\right)$.
(b) $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(A^{*},[\cdot, \cdot]_{A^{*}}\right), \mathcal{L}_{[., \cdot]_{A}}^{*}, \mathcal{L}_{[,, \cdot]_{A}}^{*}-\mathcal{R}_{[, \cdot,]_{A^{\prime}}}^{*}, \mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}, \mathcal{L}_{[\cdot, \cdot]_{A^{*}}}^{*}-\mathcal{R}_{[, \cdot]_{A^{*}}}^{*}\right)$ is a matched pair of left-Alia algebras.
(c) $\left(A,[\cdot, \cdot]_{A}, \delta\right)$ is a left-Alia bialgebra.

Example 7. Let $\left(A,[\cdot, \cdot]_{A}\right)$ be the three-dimensional left-Alia algebra given in Example 2.
Then, there is a left-Alia bialgebra $\left(A,[\cdot, \cdot]_{A}, \delta\right)$ with a non-zero co-multiplication δ on A, given by

$$
\begin{equation*}
\delta\left(e_{1}\right)=e_{1} \otimes e_{1} . \tag{39}
\end{equation*}
$$

Then, by Corollary 2 , there is a Manin triple $\left(\left(A \oplus A^{*},[\cdot, \cdot], \mathcal{B}_{d}\right), A, A^{*}\right)$. Here, the multiplication $[\cdot, \cdot]_{A^{*}}$ on A^{*} is given through δ by (39), that is,

$$
\left[e_{1}^{*}, e_{1}^{*}\right]_{A^{*}}=e_{1}^{*},
$$

and the multiplication $[\cdot, \cdot]$ on $A \oplus A^{*}$ is given by (35). Moreover, $\left(\left(A,[\cdot, \cdot]_{A}\right),\left(A^{*},[\cdot, \cdot]_{A^{*}}\right), \mathcal{L}_{[\cdot, \cdot]_{A}}^{*}\right.$, $\left.\mathcal{L}_{[,,]_{A}}^{*}-\mathcal{R}_{[,,]_{A}}^{*}, \mathcal{L}_{[\because,]_{A^{*}}}^{*}, \mathcal{L}_{[,,]_{A^{*}}}^{*}-\mathcal{R}_{[,,]_{A^{*}}}^{*}\right)$ is a matched pair of left-Alia algebras.

Author Contributions: Conceptualization, G.L. and S.Y.; formal analysis, C.K. and Z.W.; writingoriginal draft preparation, C.K. and G.L.; writing-review and editing, Z.W. and S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by NSF China grant number 12101328 and NSF China grant number 12371039.

Data Availability Statement: Data will be made available on request.
Acknowledgments: The fourth author would like to thank Siu-Por Lam, Yu Li and Chuijia Wang for helpful discussions on invariant theory. We also thank the referees for helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hilbert, D. Ueber die Theorie der algebraischen Formen. Math. Ann. 1890, 36, 473-534. [CrossRef]
2. Chevalley, C. Invariants of finite groups generated by reflections. Am. J. Math. 1955, 77, 778-782. [CrossRef]
3. Shephard, G.; Todd, J. Finite unitary reflection groups. Can. J. Math. 1954, 6, 274-304. [CrossRef]
4. Hartwig, J.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2016, 292, 314-361. [CrossRef]
5. Dzhumadil'daev, A. Algebras with skew-symmetric identity of degree 3. J. Math. Sci. 2009, 161, 11-30. [CrossRef]
6. Zusmanovich, P. Special and exceptional mock-Lie algebras. Linear Algebra Appl. 2017, 518, 79-96. [CrossRef]
7. Burde, D.; Fialowski, A. Jacobi-Jordan algebras. Linear Algebra Appl. 2014, 459, 586-594. [CrossRef]
8. Liu, G.; Bai, C. Anti-pre-Lie algebras, Novikov algebras and commutative 2-cocycles on Lie algebras. J. Algebra 2022, 609, 337-379. [CrossRef]
9. Dzhumadil'daev, A.; Zusmanovich, P. Commutative 2-cocycles on Lie algebras. J. Algebra 2010, 324, 732-748. [CrossRef]
10. Loday, J.-L.; Pirashvili, T. Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 1993, 296, 139-158. [CrossRef]
11. Helgason, S. Differential geometry, Lie groups, and symmetric spaces. In Pure and Applied Mathematics, 80; Academic Press: Cambridge, MA, USA, 1978.
12. Su, Y.; Xu, W.; Zhang, H. Derivation-simple algebras and the structures of Lie algebras of Witt type. J. Algebra 2000, 233, 642-662. [CrossRef]
13. Kang, C.; Yu, S.; Zhang, H. Twisted relative Poisson structures on graded algebras assocaited to invariant theory. in preparation.
14. Chari, V.; Pressley, A. A Guide to Quantum Groups; Cambridge University Press: Cambridge, UK, 1994.
15. Drinfeld, V. Halmiltonian structure on the Lie groups, Lie bialgebras and the geometric sense of the classical Yang-Baxter equations. Sov. Math. Dokl. 1983, 27, 68-71.
16. Aguiar, M. Infinitesimal Hopf algebras. In New Trends in Hopf Algebra Theory, La Falda, 1999; Contemporary Mathematics; American Mathematical Society: Providence, RI, USA, 2000; Volume 267, pp. 1-29.
17. Aguiar, M. On the associative analog of Lie bialgebras. J. Algebra 2001, 244, 492-532. [CrossRef]
18. Aguiar, M. Infinitesimal bialgebras, pre-Lie and dendriform algebras. In Hopf Algebras; Lecture Notes in Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 2004; Volume 237, pp. 1-33.
19. Bai, C. Double constructions of Frobenius algebras, Connes cocycles and their duality. J. Noncommut. Geom. 2010, 4, 475-530. [CrossRef]
20. Sheng, Y.; Wang, Y. Quasi-triangular and factorizable antisymmetric infinitesimal bialgebras. J. Algebra 2023, 628, 415-433. [CrossRef]
21. Kock, J. Frobenius Algebras and 2d Topological Quantum Field Theories; Cambridge University Press: Cambridge, UK, 2004.
22. Lauda, A.; Pfeiffer, H. Open-closed strings: Two-dimensional extended TQFTs and Frobenius algebras. Topol. Appl. 2005, 155, 623-666. [CrossRef]
23. Liu, G.; Bai, C. A bialgebra theory for transposed Poisson algebras via anti-pre-Lie bialgebras and anti-pre-Lie Poisson bialgebras. Comтии. Contemp. Math. 2023. [CrossRef]
24. Bai, C.; Bai, R.; Guo, L.; Wu, Y. Transposed Poisson algebras, Novikov-Poisson algebras and 3-Lie algebras. J. Algebra 2023, 632, 535-566. [CrossRef]
25. Benali, K.; Chtioui, T.; Hajjaji, A.; Mabrouk, S. Bialgebras, the Yang-Baxter equation and Manin triples for mock-Lie algebras. Acta Comment. Univ. Tartu. Math. 2023, 27, 211-233.
26. Rezaei-Aghdam, A.; Sedghi-Ghadim, L.; Haghighatdoost, G. Leibniz bialgebras, classical Yang-Baxter equations and dynamical systems. Adv. Appl. Clifford Algebr. 2021, 31, 77. [CrossRef]
27. Tang, R.; Sheng, Y. Leibniz bialgebras, relative Rota-Baxter operators and the classical Leibniz Yang-Baxter equation. J. Noncommut. Geom. 2022, 16, 1179-1211. [CrossRef] [PubMed]
28. Kang, C.; Liu, G. Yang-Baxter equations and relative Rota-Baxter operators for left-Alia algebras. in prepration.
29. Beson, D. Polynomial Invariants of Finite Groups; Cambridge University Press: Cambridge, UK, 1993.
30. Hodge, T.L. Lie Triple Systems, Restricted Lie Triple Systems, and Algebraic Groups. J. Algebra 2001, 244, 533-580. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

