
Citation: Ma, N.; Li, H.; Liu, H.

State-Space Compression for Efficient

Policy Learning in Crude Oil

Scheduling. Mathematics 2024, 12, 393.

https://doi.org/10.3390/

math12030393

Academic Editor: Florin Leon, Mircea

Hulea and Marius Gavrilescu

Received: 17 December 2023

Revised: 14 January 2024

Accepted: 19 January 2024

Published: 25 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

State-Space Compression for Efficient Policy Learning in Crude
Oil Scheduling
Nan Ma 1, Hongqi Li 1,* and Hualin Liu 2,3

1 School of Information Science and Engineering, China University of Petroleum, Beijing 102249, China;
2019310420@student.cup.edu.cn

2 Petrochina Planning and Engineering Institute, Beijing 100083, China; liuhualin08@petrochina.com.cn
3 Key Laboratory of Oil & Gas Business Chain Optimization, CNPC, Beijing 100083, China
* Correspondence: hq.li@cup.edu.cn

Abstract: The imperative for swift and intelligent decision making in production scheduling has
intensified in recent years. Deep reinforcement learning, akin to human cognitive processes, has
heralded advancements in complex decision making and has found applicability in the production
scheduling domain. Yet, its deployment in industrial settings is marred by large state spaces,
protracted training times, and challenging convergence, necessitating a more efficacious approach.
Addressing these concerns, this paper introduces an innovative, accelerated deep reinforcement
learning framework—VSCS (Variational Autoencoder for State Compression in Soft Actor–Critic).
The framework adeptly employs a variational autoencoder (VAE) to condense the expansive high-
dimensional state space into a tractable low-dimensional feature space, subsequently leveraging
these features to refine policy learning and augment the policy network’s performance and training
efficacy. Furthermore, a novel methodology to ascertain the optimal dimensionality of these low-
dimensional features is presented, integrating feature reconstruction similarity with visual analysis to
facilitate informed dimensionality selection. This approach, rigorously validated within the realm of
crude oil scheduling, demonstrates significant improvements over traditional methods. Notably, the
convergence rate of the proposed VSCS method shows a remarkable increase of 77.5%, coupled with
an 89.3% enhancement in the reward and punishment values. Furthermore, this method substantiates
the robustness and appropriateness of the chosen feature dimensions.

Keywords: crude oil scheduling; efficient policy learning; state-space compression; reinforcement
learning

MSC: 68T05

1. Introduction

The orchestration of crude oil storage and transportation scheduling is pivotal at the
forefront of refinery operations, underpinning the safety of oil storage and transit, the
stability of production, and the operational efficiency of the refinery [1]. This complex
process encompasses the unloading of tankers, the coordination of terminal and factory
tank storage, and the seamless transfer of resources to the processing apparatus. Effective
scheduling requires intricate decision making across various operational phases, including
the timely and precise movement of crude oil to designated units [2]. Objectives focus on
maintaining uninterrupted processing, minimizing tanker delays, and optimizing resource
allocation across storage and processing units. Operational dispatch must also navigate
a myriad of practical considerations, from the punctuality of tanker arrivals to the pre-
paredness of storage facilities and the interconnectivity of various systems. Addressing
this large-scale, multiconstraint scheduling challenge is pivotal, representing a dynamic
research frontier demanding innovative and efficient solutions.

Mathematics 2024, 12, 393. https://doi.org/10.3390/math12030393 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12030393
https://doi.org/10.3390/math12030393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math12030393
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12030393?type=check_update&version=2

Mathematics 2024, 12, 393 2 of 16

Contemporary research methodologies addressing refinery crude oil scheduling pre-
dominantly draw upon operations research theory [3,4]. These approaches typically entail
the formulation of the problem into a mathematical model amenable to solution [5–7].
The strength of this strategy lies in its capacity for the precise mathematical articulation
of the scheduling process and production objectives, as well as in its ability to identify
provably optimal solutions. However, the timeliness of these solutions poses a significant
challenge. Presently, refinery crude oil scheduling is often represented and tackled as
a large-scale mixed integer programming model, characterized as an NP-hard problem.
Absent simplification, such models defy resolution within a practical timeframe.

Recent advancements in deep reinforcement learning have led to notable successes in
tackling complex planning problems [8], prompting numerous research initiatives and ap-
plications in the realm of production resource scheduling with promising outcomes [9–12].
This methodology models business challenges as Markov decision processes and learns
policies that maximize cumulative rewards through sustained interaction with the envi-
ronment. Its core strengths lie in its neural-network-based approximation capabilities,
rapid sequential decision making, and a degree of adaptability in addressing dynamic pro-
gramming challenges [13]. Yet, when applied to actual industrial problems, these methods
often grapple with expansive state spaces, extended training durations, and convergence
difficulties [14], signaling the need for more efficient methods.

This study introduces a novel approach, termed Variational Autoencoder for State
Compression in Soft Actor–Critic (VSCS), to model and expedite the training of deep
reinforcement learning for refinery scheduling tasks. Initially, this research delineates the
Markov decision process for refinery scheduling to lay the groundwork for subsequent
optimization. The VSCS methodology employs a variational autoencoder to transmute the
extensive, high-dimensional state space into a condensed, low-dimensional representation.
Utilizing these distilled features, the VSCS algorithm learns the optimal policies in the
reduced feature space, substantially enhancing both the learning efficiency and the efficacy
of the derived policies. The paper’s principal contributions are multifaceted, encompassing
the following key dimensions:

• A novel deep reinforcement learning framework, VSCS, is presented, employing a
variational autoencoder to distill the complex, high-dimensional state space of refin-
ery crude oil scheduling into a compact, low-dimensional feature space for optimal
policy identification.

• To address the challenge of selecting the dimensionality for low-dimensional features,
we devised a method that rigorously evaluates the similarity of feature reconstructions.
This approach, integrated with visual analytics, enables the precise determination of
the optimal dimensionality for low-dimensional features.

• The VSCS approach delineated herein underwent comprehensive experiments within
the crude oil scheduling problem, conclusively affirming the framework’s efficacy.
Experimental validation confirmed the appropriateness of the chosen low-dimensional
feature dimensions, establishing a robust empirical foundation for the methodology.

The remainder of this paper is organized as follows. A brief review of related work
is presented in Section 2. Section 3 shows the problem formulation. Section 4 presents
the details of the VSCS method. Section 5 delineates and deliberates upon the principal
experimental outcomes. Finally, some concluding remarks are given in Section 6.

2. Related Work

Crude oil storage and transportation scheduling are critically important to refinery
production. This sequential decision-making process encompasses oil tanker arrival and
unloading at the port, the conveyance of crude oil from terminal storage to in-plant tanks,
and the subsequent delivery of crude materials to processing units. The overarching objec-
tive of scheduling is to minimize the cumulative costs, such as operational expenses, while
adhering to the operational capabilities of each segment and maintaining the continuous,
planned operation of processing units [15].

Mathematics 2024, 12, 393 3 of 16

Production scheduling presents a multifaceted challenge extensively explored within
the mathematical programming sphere, with research bifurcating into modeling methodolo-
gies and algorithmic solutions. Shah et al. pioneered a discrete-time Mixed-Integer Linear
Programming (MILP) framework to navigate the intricacies of crude oil scheduling [16]. Ad-
vancing this groundwork, J.M. Pinto et al. crafted mixed-integer optimization models that
capture the dichotomy of continuous and discrete temporal dynamics for refinery schedul-
ing [17]. Jialin Xu’s team leveraged continuous-time models for the simulation optimization
of refinery operations, showcasing efficacy in scheduling and economic performance [1].
Further refining these approaches, Bernardo Zimberg et al. employed continuous-time
models with intricate multioperation sequencing, achieving hourly resolution in their anal-
yses [18]. Lijie Su introduced an innovative continuous–discrete-time hybrid model that
stratifies refinery planning and scheduling into hierarchical levels, focusing on multiperiod
crude oil scheduling with the aim of maximizing net profits, achieving solution times
that range from minutes to hours [19]. Algorithmically, solutions span from MILP-NLP
decomposition to solver-integrated responses [20–22] and rolling horizon strategies for
time-segmented problem-solving [23]. Additionally, intelligent search mechanisms like
genetic algorithms have been adopted to bolster solution throughput [24–27]. Traditional
algorithms have thus concentrated on the meticulous detail of model construction and im-
proving efficiency in confronting the complexities of refinery oil storage and transportation.
Modeling has progressed from linear representations to intricate nonlinear continuous-time
frameworks to mirror operational realities more closely. Nevertheless, the elevated com-
plexity of such models demands the decomposition of problems into tractable subproblems
suitable for solver optimization or the application of heuristics and genetic algorithms for
more rapid approximate solutions. Consequently, advancing the performance of solutions
in this domain remains an ongoing and formidable research challenge. Table 1 shows
the different scales and corresponding performances of the calculation examples in the
traditional method research of the crude oil scheduling problem.

Table 1. The scale and performance of traditional research methods in crude oil scheduling.

Technique Scale Performance

discrete-time MILP framework [16] Four crude types, two CDUs, seven refinery tanks, and eight portside
tanks; the time horizon of operation is one month, and a discretization
interval of one day is used

in a few minutes

continuous and discrete temporal
MILP [17]

Three CDUs, six storage tanks, and three oil pipelines; the time hori-
zon of operation is one day, at every hour

in reasonable time

continuous-time MINLP [1] One single docking berth, four storage tanks, four charging tanks,
and two CDUs; the time horizon of operation is 15 days

25.94 s

Many-objective optimization for
scheduling of crude oil operations
based on NSGA-III [26]

There are three distillers with nine charging tanks and a long-distance
pipeline; every time, it needs to produce a 10-day schedule

about 100 s–150 s

MILP framework with rolling hori-
zon strategy [23]

Eight tanks, where one tank is assumed in maintenance, five crude
qualities; the time horizon is 31 or 61 days (periods)

less than 5 min

Deep reinforcement learning (DRL) has emerged as a potent tool for complex decision-
making challenges, with its application broadening significantly in recent years [28]. The
method distinguishes itself through formidable learning and sequential decision-making
capabilities, facilitating swift, dynamic scheduling decisions in diverse real-world scenarios.
In the realm of manufacturing, Christian D. et al. employed DRL in the scheduling of
chemical production, adeptly managing uncertainties and facilitating on-the-fly processing
decisions, thereby surpassing the performance of MILP models [29]. Yong et al. pioneered
a DRL-based methodology for dynamic flexible job-shop scheduling (DFJSP), focused on
curtailing average delays through policy network training via the DDPG algorithm, thereby
eclipsing rule-based and DQN techniques [30]. Che et al. aimed to curtail total operational

Mathematics 2024, 12, 393 4 of 16

expenditures to minimize energy usage and reduce the frequency of operational mode
transitions, enhancing stability. For this, they utilized the PPO algorithm to train decision
networks, yielding quantifiable improvements in cost-efficiency and mode-switching [31].
Lee et al. harnessed DRL to orchestrate semiconductor production line scheduling to
align with production agendas, selecting DQN as the algorithm of choice and establishing
strategies apt for dynamic manufacturing environments [32]. In the transportation field,
Yan et al. addressed the intricacies of single-track railway scheduling, which encompasses
train timetabling and station track allocation, via a sophisticated deep learning framework,
securing superior results in large-scale scenarios in comparison with the commercial solver
IBM CPLEX [33]. Furthermore, Pan et al. implemented hierarchical reinforcement pric-
ing predicated on DDPG to solve the intricate distribution puzzles presented by shared
bicycle resources, consequently achieving enhancements in service quality and bicycle
distribution [34].

The extant research reveals that prevailing reinforcement learning methodologies face
constraints in their deployment for large-scale industrial applications. These constraints
arise from the considerable scale and intricacy of the scenarios, which give rise to extensive
state–action spaces, thus hindering the efficiency of learning processes [14,35,36]. Within
the domain of refinery crude oil scheduling, analogous challenges are encountered. To
mitigate these challenges, the present study proposes the VSCS framework, which trans-
poses the original, high-dimensional state space into a more compact, lower-dimensional
feature space, thereby improving the learning process for the complexities of crude oil
scheduling tasks.

3. Problem Formulation
3.1. Description of the Refinery Scheduling Problem

The refinery scheduling problem presented in this paper can be depicted as an opera-
tional process, as illustrated in Figure 1. It encompasses the arrival of crude oil tanker Va
at the port for unloading into designated port storage tanks. These tanks include owned
storage vessels Vd and commercial storage vessels Vb. Following the desalting and settling
operations of crude oil, the port storage tanks can transfer the oil to the in-plant tanks Vf
as required via the long-distance pipeline Vp. Terrestrial crude oil Vl enters the in-plant
storage tanks through the pipeline. The in-plant tank area is tasked with blending different
types m ∈ M of crude oil according to the processing schemes of the processing units Vu
and transporting them to the processing units for refining.

commercial tank
Onshore crude oil A

cdu1
long-distance

pipeline
port B

port C

Onshore crude oil B

cdu2

crude oil tank

port A

owned crude oil tank

Figure 1. Schematic diagram of refinery crude oil scheduling scenario.

The initial conditions for the scheduling decision process include the anticipated
arrival time of oil tankers and the storage tanks projected for unloading, the type of crude
oil and the liquid level heights (Lm,t0

vi) stored in each tank at the outset, the upper and lower
limits of tank liquid levels (CUb, CLb), the upper limit of the long-distance pipeline Cp,

Mathematics 2024, 12, 393 5 of 16

and the topology of the scheduling network. The operational constraints considered are
as follows:

• Within a single cycle, each tank must contain only one type of oil product.
• Communal storage tanks and dock tanks can only commence oil transfer operations

after completing static desalting.
• The liquid levels in all storage tanks must be maintained within the specified upper

and lower capacity limits.
• The transfer rates must remain within the safe transfer speed range.
• Crude oil transported via overland pipelines enters the factory tanks at a predeter-

mined rate.
• The processing units must operate continuously in accordance with the specified

processing schemes and plans.

3.2. Markov Modeling

The scheduling objective of this study is to devise a decision-making scheme that
minimizes scheduling costs within a short cycle of seven days (with each time step being
four hours) while considering the operational constraints of refinery scheduling and the
continuity of processing units. The decision scheme includes the oil transfer rates and
target tanks for each storage unit. The refinery crude oil scheduling issue can be viewed as
a sequential decision-making problem, where the operational process can be described by
the fact that the state of each node in the refinery’s crude oil storage and transportation
operation in the next period is based on the decisions made in the current period, hence the
scheduling issue can be modeled as a Markov decision process.

In the refinery scheduling Markov decision process, the type and level of materials
in each storage tank are closely related to the scheduling objectives following operational
execution. Moreover, the refinery’s processing units require continuous feeding according
to the processing plan; thus, the remaining processing volumes of various materials in the
units must also be considered. Based on these considerations, the state is defined as follows,
as illustrated in Equation (1).

S =
{

St
va, St

vb, St
vd, St

vp, St
v f , St

vu

}
(1)

where St
va includes Lm,t

va , which is the remaining unloading time of the tanker and other
attribute information (such as node name). St

vb, St
vd, St

v f , respectively, represent the corre-

sponding tank-level information Lm,t
vb , Lm,t

vd , Lm,t
v f , other attribute information (such as node

name), etc. St
vp represents the oil head information connecting the terminal pipe area and

the commercial storage pipe area, pipeline transportation volume Lt
p, etc.; St

vu includes the
processing plan and the remaining processing volume of the device.

For the refinery’s crude oil storage and transportation scheduling problem, the decision-
making network is required to determine the appropriate scheduling actions in response
to the varying states at each time period t. The action space is defined by the operational
requirements of each node, with the specific action definitions provided in Equation (2).

A =
{

At
Va

, At
Vb

, At
Vd

, At
Vp

, At
Vu

}
(2)

where At
Va

represents the joint decision-making action of the Va node, including the oil
unloading speed. At

Vb
, At

Vd
are the joint decision-making actions of Vb and Vd, respectively,

including the oil payment speed of commercial storage tanks and terminal tank node and
the oil payment target node. At

Vp
is the pipeline transportation speed, and At

Vu
includes

processing speed.
In the proposed refinery crude oil scheduling model, each action executed during a

scheduling step is assessed by the system through corresponding rewards, which serve to
evaluate the efficacy of the action strategy. The objective of this model is to concurrently

Mathematics 2024, 12, 393 6 of 16

minimize operational events and maximize adherence to production constraints, according
to the stipulated full-cycle processing plan. To facilitate the agent’s strategy enhancement
in alignment with this objective during training, the reward function is crafted to precisely
guide action decisions. This function is expressed through Equations (3)–(6). Given that the
algorithm aims to optimize the long-term average reward, the reward function is structured
with negative values that are proportional to associated costs.

R = −ω0R0 −ω1R1 −ω2R2 (3)

R0 = ∑
t∈T

∑
i∈{b,d, f }

(
Od ×

((
CUbvi

− Lm,t
vi

)
+
(

Lm,t
vi − CLbVi

)))
+ ∑

t∈T
Od ×

(
Lt

p − Cp

)
+ ∑

t>Ta

Oa × Lm,t
va (4)

R1 = Op ×
(

NPa + NPb + NPd + NPf

)
+ Ob ×

(
Nbd + Nb f + ∑

i∈Vu

Nbi

)
(5)

R2 = ∑
t∈T

OcLm,t
vi (6)

As shown in the above equation, R consists of three parts, where ω is the weight factor
of each part; R0 is the reward and punishment for exceeding the operation constraint, which
is composed of each storage tank and the pipeline exceeding the operation constraint and
the oil tanker overdue constraint; and R1 is the speed fluctuation reward and punishment,
that is, operation switching. The rewards and punishments are, respectively, composed of
the oil tanker speed unloading switching, the oil payment switching of each storage tank,
the processing device processing speed switching, and the reward and punishment for the
oil type switching. R2 is the reward and punishment for the inventory cost.

In our model, Oa denotes the cost coefficient associated with the delay in oil tanker
unloading, with Ta representing the corresponding delay time. Op is defined as the cost
coefficient for speed fluctuations, while NPv indicates the number of such fluctuations
at each node. The term Ob refers to the cost incurred due to switching between different
types of oil, with Nbv quantifying the frequency of these oil species switches at each
node. Lastly, Od represents the cost coefficient for instances when the liquid level exceeds
predetermined upper and lower limits, and Oc signifies the cost coefficient related to
inventory management.

4. The Proposed VSCS Algorithm
4.1. The Framework of VSCS

The VSCS framework introduced in this study comprises two primary modules: the
low-dimensional feature generation module and the policy learning module. The former
autonomously extracts a condensed, low-dimensional feature representation, while the latter
module leverages these features to facilitate efficient policy learning. Figure 2 delineates the
structural organization and operational sequence of the VSCS framework within the context
of refinery crude oil resource scheduling.

As depicted in Figure 2, the policy learning module, rooted in deep reinforcement
learning, principally employs the Soft Actor–Critic (SAC) framework. This framework
encompasses a policy network, a state value network, and an action value network. The ob-
jective is to deduce the appropriate reward feedback following state transitions within the
refinery’s crude oil storage and transportation scheduling environment. This is achieved
by reconstructing the state into a lower-dimensional representation for efficient network
training and subsequent action strategy formulation. The state low-dimensional feature
generation module functions as a pretraining mechanism, utilizing an encoder network
trained via the VAE architecture to transform the state space into a reduced feature space.

Mathematics 2024, 12, 393 7 of 16

This transformation is instrumental in facilitating the strategic training of the main frame-
work. Each module is expounded upon in the subsequent sections.

…

…

…
…

…

… …
…
…
…

…

… …

…
…
…

…

… …
…
…
…

…

… …

…
…
…

…

police network πф

action-value network

experience buffer D

… …

…
…
…

…the action vector feeds
back into the
environment

the reconstructed
state vector network update

μ

σ

Z
X entropy

1Q θ

2Q θ

1
Q
θ

2
Q
θ

Low dimensional feature
 generation module

action-value network

target network

target network

Figure 2. Framework diagram of the proposed VSCS algorithm.

4.2. Low-Dimensional Feature Generation Module

The objective of the low-dimensional feature generation module is to transmute the
original, high-dimensional state space into a more tractable, low-dimensional state space
while preserving the integrity of the state information to the greatest extent possible. This
study employs a VAE to produce low-dimensional state features through unsupervised
learning [37]. The VAE operates as a probabilistic model grounded in variational inference,
comprising two primary components. The first is the encoder, which is tasked with
condensing the high-dimensional state X into a compact, low-dimensional representation
Z, which obeys Gaussian distribution and is composed of µ and σ generated by the encoder.
The complementary component of the VAE is the decoder, which functions to regenerate
the original features by reconstructing the latent variable Z back into the state transition
vector X′, as illustrated in Figure 3. More computation details are shown in Algorithm 1.

…
… …

…
…
…

…
police network

experience
buffer

state vector

policy network update training

…

state samples

LOSS

…

…
…

Encoder network

… …

…

…

Decoder network

μ

σ
Z

X X’

Low dimensional state feature pre-training network

the action vector
feeds back into
the environment

Figure 3. Framework diagram of the low-dimensional feature generation module.

In accordance with Bayesian principles, the joint probability distribution of the
observed state vector X and the latent variable Z can be represented as depicted in
Equation (7).

p(Z | X) = p(X | Z)p(Z)/p(X) (7)

Mathematics 2024, 12, 393 8 of 16

However, due to the intractability of p(X), this study introduces an alternative distri-
bution to approximate p(Z | X). This approximative distribution, denoted as qβ(Z | X),
serves as an estimation of the posterior model (encoder), whereby Z is derived from X. The
distribution denoted as pη(X | Z)pη(Z) corresponds to the generative model (decoder).
The encoder and decoder training process involves the concurrent learning of parameters β
and η.

A central aspect of this work is the simultaneous training of the approximate posterior
model and the generative model by maximizing the variational lower bound, which is
articulated in Equation (8).

ζ = −DKL
(
qβ(Z | X)∥pβ(Z)

)
+ Eqβ(Z|X(i))

[
log pη

(
X(i) | Z

)]
(8)

The framework presumes that pη(Z) adheres to a Gaussian distribution, delineated in
Equation (9), with Z derived through Gaussian sampling as per Equation (10). Herein, µ
represents the mean, σ denotes the variance, and i is the index of the sample.

pη(Z) ∼ N(0, 1) (9)

qβ

(
Z | X(i)

)
∼ N

(
µ(i), σ2(i)

)
(10)

The loss function of this model comprises two components: the Kullback–Leibler
(KL) divergence and the reconstruction loss, with the inferable outcomes delineated in
Equation (11). Here, xi signifies the encoder network’s input, and x′i denotes the output of
the decoder network.

ζ =
1

2n

n

∑
j=1

{
n

∑
j=1

µ2
j + σ2

j − 1− log σ2
j

}
+

1
2n

n

∑
i=1

∥∥Xi − X′i
∥∥2 (11)

From the foregoing equation, the term DKL
(
qβ(Z | X)∥pη(Z)

)
represents the approxi-

mation capability of the approximate posterior model, while Eqβ(Z|X(i))

[
log pη

(
X(i) | Z

)]
signifies the reconstructive ability of the generative model to regenerate X′ from Z. Con-
sequently, this methodology can be employed to derive low-dimensional features from
the initial state of crude oil storage and transportation dispatch, thereby attaining a recon-
structed state that mirrors the description of the original state information to the greatest
extent feasible.

Algorithm 1 Steps of computation in low-dimensional feature generation module

1: Initialize: D, qβ(Z | X), pη(X | Z), β, η
2: while (β, η) not convergence do
3: M∼ D
4: Z ← Random sample from Gaussian distributionN (µ, σ2)
5: Compute ζ and its gradients
6: Update (β, η)
7: end while
8: return β, η

4.3. Policy Learning Module

Leveraging the low-dimensional feature generation module, it is possible to produce a
low-dimensional feature vector of the environment’s original state, which facilitates the
ensuing policy learning process. To guarantee the efficiency of policy training, the policy
generation module in this study adopts the SAC framework as the principal structure for
policy learning. This framework, predicated on the theory of entropy maximization, ensures
that network updates equilibrate the maximization of expected returns with entropy,

Mathematics 2024, 12, 393 9 of 16

thereby enhancing the network’s exploration capabilities and expediting the learning
process. The objective function is articulated in Equation (12).

π∗ = arg max
π

Est ,at∼π

[
∞

∑
t=0

γtr(st, at) + αH(π(· | st))

]
(12)

H(π(· | st)) = E[− log π(· | st)] (13)

In Equation (12), r denotes the reward function, and γ is the discount factor, while α
signifies the entropy regularization coefficient, employed to modulate the significance of
entropy in the learning process. In Equation (13), H represents the entropy value. A greater
entropy value corresponds to a heightened level of exploration by the agent, promoting a
more thorough investigation of the action space.

The training network within this framework comprises a policy network πϕ, an action
value network Qθ1,θ2(at, st), and a target network, which are parameterized by Φ, θ1, and
θ2, respectively. The action value network Qθ1,θ2(at, st) incorporates a dual Q-network
structure. The soft Q-value is determined by taking the minimum value from two Q-
value functions parameterized by θ1 and θ2. This approach is designed to mitigate the
overestimation of inappropriate Q-values and to enhance the speed of training. The soft
Q-value function is refined by minimizing the Bellman error, as detailed in Equation (15).

JQ(θ) = E(st ,at)∼D

[
1
2

(
Qθi=1,2(st, at)−

(
r(st, at) + γVφ̄(st+1)

))2
]

(14)

Vφ̄(st+1) = Qθ̄(st+1, at+1)− α log
(
πϕ(at+1 | st+1)

)
(15)

where Vφ̄(st+1) represents the state value of the agent at time t + 1, and Qθ̄(st+1, at+1) can
be estimated using the target network.

Policy network πϕ is updated by minimizing the KL divergence, as shown in Equation (16).

Jπ(ϕ) = Eat∼π,st∼D

[
log πϕ(st, at)−min

i=1,2
Qθi (st, at)

]
(16)

The proposed VSCS method is outlined in Algorithm 2.

Algorithm 2 The proposed VSCS Algorithm

1: Initialize: Nencoder in VAE, θ1, θ2, ϕ in Q network and policy network .
2: θ1 = θ1, θ2 = θ2. Initialize experience buffer D
3: for each iteration do
4: for each environment step do
5: at = πϕ(at|st)
6: st+1 = p(st+1|st, at)
7: s′t = Nenc(st)
8: s′t+1 = Nenc(st+1)
9: D = D ∪ {s′t, at, rt, s′t+1}

10: end for
11: for each gradient step do
12: Sample from D;
13: Calculate the loss and update the action value network according to

Equations (14) and (15)
14: Calculate the loss and update the policy network according to Equation (16)
15: Update the entropy regularization coefficient α
16: Update the parameters of the target Q-network
17: end for
18: end for

Mathematics 2024, 12, 393 10 of 16

5. Experiment

To validate the efficacy of the proposed approach, this study conducts comprehensive
experiments on the crude oil scheduling problem. The experiments include the following:

• Comparing the VSCS method introduced in this study with baseline algorithms
using a dataset of refinery crude oil storage and transportation scheduling from an
actual scenario.

• Analyzing the performance of the algorithm at various compression scales to deter-
mine the optimal low-dimensional feature dimensionality.

• Conducting a similarity analysis between low-dimensional reconstructed state features
and original state samples and proposing a state reconstruction threshold for refinery
crude oil scheduling problems based on reconstruction similarity.

• Evaluating the performance of the proposed algorithm by visualizing the
low-dimensional features.

The goal of these experiments is to thoroughly assess the advantages and practical
applicability of the proposed VSCS method in real-world crude oil scheduling tasks.

5.1. Data for Simulator

This investigation employs a dataset from a bona fide operational context within an
oil company, encompassing various node types and their attributes, such as oil tankers,
terminal tanks, commercial storage tanks, in-plant tanks, and processing devices, as de-
lineated in Section 3. The dataset details encompass tanker oil load by type and volume,
the initial liquid levels in storage tanks, the types of oil they house, storage capacities,
transfer capabilities, and their processing apparatus’ schemes and capacities. Integral to
this study’s reinforcement learning framework, the simulator accurately emulates the intri-
cate and dynamic processes of crude oil storage and transportation within a refinery. The
experimental setup utilizes a single oil tanker, 14 terminal storage tanks, 9 in-plant storage
tanks, and 2 processing devices. This simulator facilitates an interactive learning milieu for
the proposed algorithm, enabling adaptive training against the evolving dynamics of the
refinery environment, providing continual feedback throughout the training phase, and
assessing the algorithm’s efficacy. The data input for the low-dimensional feature gener-
ation module is derived from sampling the experience pool within the aforementioned
simulation environment, with a sampling scale consisting of 2048 random state samples,
each with 61 dimensions.

In this study, the benchmark comparison is conducted against the SAC algorithm, a
model premised on entropy maximization theory [38,39]. This approach ensures that updates
to the training network balance the maximization of expected returns with entropy, thereby
enhancing the algorithm’s capacity for exploration and expediting the learning process.

5.2. Comparison with Baseline Algorithm

This section evaluates the enhanced performance of the proposed VSCS algorithm
with respect to training convergence speed and the value of the final reward obtained post
learning. To assess the stability of the algorithm following state reconstruction via VAE, the
SAC algorithm is employed for baseline comparison. The experimental procedure involved
multiple tests using diverse random seeds to determine the average learning efficacy of
both the proposed algorithm and the baseline algorithm across ten different sets of random
seeds. The learning performance is depicted through an average learning curve for clarity.
Furthermore, in the experimental results, the rewards are logarithmically transformed for
more coherent representation, as depicted in Figure 4. The principal parameters for the
proposed VSCS algorithm is summarized in Table 2.

Mathematics 2024, 12, 393 11 of 16

2

Figure 4. Learning curves of comparison methods. The solid lines show the means of 10 trials, and
lighter shading shows standard errors.

Table 2. Main experimental parameters.

Model
Number of
Neurons

Number of
Hidden Layers Optimizer Discount

Factor
Learning
Rate

Soft Update
Coefficient

Batch
Size

Entropy
Threshold

Experience
Buffer Size

Policy learning module 512 5 Adam [40] 0.99 0.03 0.005 128 0.9 100,000
Low−dimensional feature
generation module 40 1 Adam [40]

Table 2 demonstrates that the VSCS algorithm proposed in this study markedly out-
performs the baseline algorithm regarding the final reward value attained, showcasing
an 89.3% enhancement in the final average reward value. In terms of training efficiency,
the VSCS algorithm achieves the maximum reward in just 47 iterations. This represents a
77.5% increase in the rate at which training attains a stable state compared with the baseline
algorithm. Additionally, the VSCS algorithm exhibits superior training stability relative to
the baseline.

The reconstruction and compression of the state dimension prior to training the SAC
network results in a significant reduction in the required sample size during the training
process. This efficiency gain in sample size directly translates to enhanced network training
efficiency, as the model can achieve comparable or superior learning outcomes with fewer
data points.

5.3. Impact of Reconstruction with Different Compression Sizes

To assess the impact of the proposed VSCS algorithm on convergence speed and sta-
bility across varying compression scales, we conducted tests with dimensionalities set at 10,
15, 20, 25, 30, 35, 40, 45, 50, and 55. For each dimensionality, three sets of randomized trials
were performed, with the average learning curves serving as the evaluative metric. The
results of the learning curves are presented in Figure 5, and the algorithmic improvement
rates are detailed in Table 3.

3

Figure 5. Comparison of low-dimensional feature reconstruction performance in different dimensions.
The solid lines show the means of 3 trials, and lighter shading shows standard errors.

Mathematics 2024, 12, 393 12 of 16

Table 3. Results of Comparison Methods.

Iterations for Maximum Reward Final Reward Training Time to Steady State

SAC 209 −27,540,217 305
VSCS 47 −2,942,594 78
Improvement Rate (%) 77.5 89.3 74.4

Figure 5 reveals that the training process experiences increased instability when the al-
gorithm is compressed to scales of 10 and 20, which is attributable to excessive compression
that results in the loss of substantial state information. Conversely, compression scales of
30, 40, and 50 demonstrate relative stability, with the scale of 30 yielding the most effective
learning strategy.

Table 4 illustrates improvements in algorithm training efficiency for the VSCS al-
gorithm at various compression scales, with the exception of scale 15, over the baseline
algorithm. Notably, at scale 40, the VSCS algorithm required only 47 rounds to achieve the
cumulative maximum reward for the first time—a 77.51% increase in the rate of reaching a
steady training state compared with the baseline. Furthermore, the learning performance
of the VSCS algorithm was enhanced across all scales, showing an improvement rate ex-
ceeding 82%. The scales of 30 and 45 demonstrated the most significant enhancements,
with an improvement rate of 92.95% in leaning performance compared with the baseline.

Table 4. The VSCS algorithm improvement rate analysis.

Feature Dimension Iterations for Steady
State

Convergence Speed
Improvement Rate Final Reward Reward Improvement

Rate

VSCS (10) 148 29.19% −4,040,694 85.33%
VSCS (15) 215 −2.87% −1,980,772 92.81%
VSCS (20) 158 24.40% −2,143,448 92.22%
VSCS (25) 134 35.89% −3,493,724 87.31%
VSCS (30) 147 29.67% −1,940,762 92.95%
VSCS (35) 170 18.66% −2,942,594 89.32%
VSCS (40) 47 77.51% −2,991,348 89.14%
VSCS (45) 87 58.37% −1,941,364 92.95%
VSCS (50) 105 49.76% −4,876,383 82.29%

5.4. Reconstructed State Vector Similarity Analysis

In this analysis, we investigate the fidelity of state reconstruction by examining the
similarity between the compressed and original states. We use the reconstruction distance
to elucidate the reasons behind the enhanced training performance observed with recon-
structed state vectors and introduce a threshold for reconstruction error tailored to the
challenges of refinery crude oil storage and transportation scheduling. The experiment
evaluates the encoder network of the VAE at compression scales of 10, 15, 20, 25, 30, 35,
40, 45, 50, and 55. We assess the congruence between 2048 original state samples and their
reconstructed counterparts, which are produced by the decoder network, using Euclidean
distance. The results, reflecting the similarity of output samples, are detailed in Table 5.

Table 5. Reconstruction distance analysis.

Dimensionality 55 50 45 40 35 30 25 20 15 10

Arithmetic Mean 12.66 12.72 12.66 12.61 12.67 12.47 12.52 12.55 12.53 12.54
Maximum 146.93 149.13 141.87 145.71 149.14 146.29 141.77 136.13 134.52 139.56
Minimum 0.23 0.27 0.33 0.44 0.38 0.56 0.61 1.17 1.36 0.59
Variance 608.91 620.99 617.28 608.06 619.23 606.81 611.70 614.83 614.93 611.88

Standard Deviation 24.67 24.92 24.85 24.66 24.88 24.63 24.73 24.80 24.80 24.74
Median 4.19 4.17 4.04 4.06 3.99 3.88 3.90 3.79 3.73 3.86

Mathematics 2024, 12, 393 13 of 16

The encoder network with a compression scale of 30 demonstrates notable perfor-
mance, yielding the highest mean similarity for reconstructed states. As detailed in Table 5,
the arithmetic mean of similarity scores stands at 12.47, with a variance of 606.8.

After rigorous experimental analysis, it was determined that the reconstruction error
threshold for refinery crude oil storage and transportation scheduling problems should be
set at 12.47. This threshold implies that when the similarity distance falls below 12.47, the
network is deemed to have achieved the standard of reconstruction.

5.5. Visual Analysis of Low-Dimensional Features

In this section, we delve into the characteristics of reconstructed states via low-
dimensional visualization to elucidate the optimal effect achieved by compressing to
30 dimensions. The experiment involved reducing the dimensionality of 500 reconstructed
state samples, across 10, 20, 30, 40, and 50 dimensions, down to a 2-dimensional plane using
the UMAP technique [41]. We then observed the distribution of samples within this plane,
employing cumulative average intracluster distance and intracluster density as metrics for
quantitative analysis of the low-dimensional spatial formation. For the UMAP method,
the approximate nearest-neighbor number parameter was set to 5, with the minimum
interpoint distance parameter fixed at 0.3. The outcomes, displayed in Figure 6, reveal
that in the two-dimensional space, the reconstructed states form clusters. Notably, the
clusters at 30, 40, and 50 dimensions are more densely packed, whereas those at 10 and
20 dimensions exhibit greater dispersion.

4

(a) (b) (c)

(d) (e)

Figure 6. Results of sample dimensionality reduction visualization: (a) 10-dimensional sample dimen-
sionality reduction visualization, (b) 20-dimensional sample dimensionality reduction visualization,
(c) 30-dimensional sample dimensionality reduction visualization, (d) 40-dimensional sample dimen-
sionality reduction visualization, (e) 50-dimensional sample dimensionality reduction visualization.

The quantitative analysis, utilizing the cumulative average intracluster distance (out-
lined in Equation (17)) and the intracluster density (specified in Equation (18)), is detailed
in Table 6. Throughout the analysis, five distinct parameter configurations were employed
for the assessment of means. As evidenced by Table 6, within the 30-dimensional re-
construction, the cumulative average intracluster distance is recorded at 64.10, with an
average intracluster density of 0.0968—both metrics represent the most favorable values

Mathematics 2024, 12, 393 14 of 16

among the five parameter sets examined. These findings indicate that the 30-dimensional
reconstruction yields the most cohesive cluster structure within the sample distribution.

davgdist = ∑
i∈D

∑
j∈D

dist
(
xi, xj

)
/nD (17)

davgcent = ∑
i∈D

dist(xi, xcenter)/nD (18)

Table 6. Quantitative analysis of visualization.

50 40 30 20 10

Intracluster Cumulative Distance (5, 0.3) 75.07 73.04 71.88 79.53 90.4
Intracluster Cumulative Distance (5, 0.15) 66.32 69.14 65.7 72.67 83.5
Intracluster Cumulative Distance (10, 0.15) 57.81 57.77 57.55 61.17 70.1
Intracluster Cumulative Distance (10, 0.10) 56.38 55.4 55.14 59.02 67.3
Intracluster Cumulative Distance (10, 0.50) 71.25 71.13 70.22 75.74 86.35
Average Intracluster Cumulative Distance 65.37 65.30 64.10 69.63 79.53
Intracluster Density (10, 0.50) 0.104 0.104 0.102 0.109 0.124
Intracluster Density (10, 0.15) 0.083 0.082 0.082 0.086 0.101
Intracluster Density (5, 0.3) 0.108 0.104 0.104 0.113 0.131
Intracluster Density (5, 0.15) 0.094 0.099 0.093 0.105 0.124
Average Intracluster Density 0.0984 0.0984 0.0968 0.1042 0.1208

6. Conclusions

This study introduces the VSCS algorithm to expedite the training process of deep
reinforcement learning models. The VSCS framework incorporates two key components:
a low-dimensional feature generation module and a policy learning module. The former
serves as a pretraining phase, leveraging a VAE to faithfully encapsulate the original state
information within a reduced feature space. Upon completion of the training, the low-
dimensional feature generation module integrates into the primary framework, furnishing
the policy learning module with compact feature representations for policy network train-
ing. This synergistic approach facilitates end-to-end learning across both modules. A novel
methodology was also developed to ascertain the optimal dimensionality for these low-
dimensional features, accounting for reconstruction fidelity and visual analysis outcomes.
A comprehensive experiment with the proposed method on the crude oil scheduling prob-
lem not only confirmed the efficacy of the framework but also empirically validated the
optimal selection of low-dimensional feature dimensions.

The methodology presented herein primarily addresses the enhancement of performance
in deep reinforcement learning when confronted with large-scale state representations. While
it has yielded promising results, the prospect of its application within the industrial sector
necessitates additional thorough investigation. Future research directives could include
conducting generalizability studies on scheduling decisions across various refineries to solidify
the method’s applicability and robustness in diverse industrial contexts.

Author Contributions: N.M., conceptualization, methodology, software, formal analysis, visual-
ization, writing—original draft, and writing—review and editing; H.L. (Hongqi Li), supervision,
writing—original draft, and writing—review and editing; H.L. (Hualin Liu), formal analysis, writing—
original draft, and writing—review and editing. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data are not publicly available due to restrictions, their containing
information that could compromise the privacy and interest of company.

Conflicts of Interest: The authors declare no conflicts of interest.

Mathematics 2024, 12, 393 15 of 16

References
1. Xu, J.; Zhang, S.; Zhang, J.; Wang, S.; Xu, Q. Simultaneous scheduling of front-end crude transfer and refinery processing. Comput.

Chem. Eng. 2017, 96, 212–236. [CrossRef]
2. Jia, Z.; Ierapetritou, M.; Kelly, J.D. Refinery short-term scheduling using continuous time formulation: Crude-oil operations. Ind.

Eng. Chem. Res. 2003, 42, 3085–3097. [CrossRef]
3. Zheng, W.; Gao, X.; Zhu, G.; Zuo, X. Research progress on crude oil operation optimization. CIESC J. 2021, 72, 5481.
4. Hamisu, A.A.; Kabantiok, S.; Wang, M. An Improved MILP model for scheduling crude oil unloading, storage and processing. In

Computer Aided Chemical Engineering; Elsevier: Lappeenranta, Finland, 2013; Volume 32, pp. 631–636.
5. Zhang, H.; Liang, Y.; Liao, Q.; Gao, J.; Yan, X.; Zhang, W. Mixed-time mixed-integer linear programming for optimal detailed

scheduling of a crude oil port depot. Chem. Eng. Res. Des. 2018, 137, 434–451. [CrossRef]
6. Furman, K.C.; Jia, Z.; Ierapetritou, M.G. A robust event-based continuous time formulation for tank transfer scheduling. Ind. Eng.

Chem. Res. 2007, 46, 9126–9136. [CrossRef]
7. Li, F.; Qian, F.; Du, W.; Yang, M.; Long, J.; Mahalec, V. Refinery production planning optimization under crude oil quality

uncertainty. Comput. Chem. Eng. 2021, 151, 107361. [CrossRef]
8. Vinyals, O.; Babuschkin, I.; Czarnecki, W.M.; Mathieu, M.; Dudzik, A.; Chung, J.; Choi, D.H.; Powell, R.; Ewalds, T.; Georgiev, P.;

et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019, 575, 350–354. [CrossRef] [PubMed]
9. Esteso, A.; Peidro, D.; Mula, J.; Díaz-Madroñero, M. Reinforcement learning applied to production planning and control. Int. J.

Prod. Res. 2023, 61, 5772–5789. [CrossRef]
10. Dong, Y.; Zhang, H.; Wang, C.; Zhou, X. Soft actor-critic DRL algorithm for interval optimal dispatch of integrated energy systems

with uncertainty in demand response and renewable energy. Eng. Appl. Artif. Intell. 2024, 127, 107230. [CrossRef]
11. Kuhnle, A.; Kaiser, J.P.; Theiß, F.; Stricker, N.; Lanza, G. Designing an adaptive production control system using reinforcement

learning. J. Intell. Manuf. 2021, 32, 855–876. [CrossRef]
12. Park, J.; Chun, J.; Kim, S.H.; Kim, Y.; Park, J. Learning to schedule job-shop problems: representation and policy learning using

graph neural network and reinforcement learning. Int. J. Prod. Res. 2021, 59, 3360–3377. [CrossRef]
13. Yang, X.; Wang, Z.; Zhang, H.; Ma, N.; Yang, N.; Liu, H.; Zhang, H.; Yang, L. A review: Machine learning for combinatorial

optimization problems in energy areas. Algorithms 2022, 15, 205. [CrossRef]
14. Ogunfowora, O.; Najjaran, H. Reinforcement and deep reinforcement learning-based solutions for machine maintenance planning,

scheduling policies, and optimization. J. Manuf. Syst. 2023, 70, 244–263. [CrossRef]
15. Hamisu, A.A.; Kabantiok, S.; Wang, M. Refinery scheduling of crude oil unloading with tank inventory management. Comput.

Chem. Eng. 2013, 55, 134–147. [CrossRef]
16. Shah, N. Mathematical programming techniques for crude oil scheduling. Comput. Chem. Eng. 1996, 20, S1227–S1232. [CrossRef]
17. Pinto, J.M.; Joly, M.; Moro, L.F.L. Planning and scheduling models for refinery operations. Comput. Chem. Eng. 2000, 24, 2259–2276.

[CrossRef]
18. Zimberg, B.; Ferreira, E.; Camponogara, E. A continuous-time formulation for scheduling crude oil operations in a terminal with

a refinery pipeline. Comput. Chem. Eng. 2023, 178, 108354. [CrossRef]
19. Su, L.; Bernal, D.E.; Grossmann, I.E.; Tang, L. Modeling for integrated refinery planning with crude-oil scheduling. Chem. Eng.

Res. Des. 2023, 192, 141–157. [CrossRef]
20. Castro, P.M.; Grossmann, I.E. Global optimal scheduling of crude oil blending operations with RTN continuous-time and

multiparametric disaggregation. Ind. Eng. Chem. Res. 2014, 53, 15127–15145. [CrossRef]
21. Assis, L.S.; Camponogara, E.; Menezes, B.C.; Grossmann, I.E. An MINLP formulation for integrating the operational management

of crude oil supply. Comput. Chem. Eng. 2019, 123, 110–125. [CrossRef]
22. Assis, L.S.; Camponogara, E.; Grossmann, I.E. A MILP-based clustering strategy for integrating the operational management of

crude oil supply. Comput. Chem. Eng. 2021, 145, 107161. [CrossRef]
23. Zimberg, B.; Camponogara, E.; Ferreira, E. Reception, mixture, and transfer in a crude oil terminal. Comput. Chem. Eng. 2015,

82, 293–302. [CrossRef]
24. Ramteke, M.; Srinivasan, R. Large-scale refinery crude oil scheduling by integrating graph representation and genetic algorithm.

Ind. Eng. Chem. Res. 2012, 51, 5256–5272. [CrossRef]
25. Hou, Y.; Wu, N.; Zhou, M.; Li, Z. Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm.

IEEE Trans. Syst. Man Cybern. Syst. 2015, 47, 517–530. [CrossRef]
26. Hou, Y.; Wu, N.; Li, Z.; Zhang, Y.; Qu, T.; Zhu, Q. Many-objective optimization for scheduling of crude oil operations based on

NSGA-III with consideration of energy efficiency. Swarm Evol. Comput. 2020, 57, 100714. [CrossRef]
27. Ramteke, M.; Srinivasan, R. Integrating graph-based representation and genetic algorithm for large-scale optimization: Refinery

crude oil scheduling. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2011; Volume 29,
pp. 567–571.

28. Badia, A.P.; Piot, B.; Kapturowski, S.; Sprechmann, P.; Vitvitskyi, A.; Guo, Z.D.; Blundell, C. Agent57: Outperforming the atari
human benchmark. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020;
pp. 507–517.

29. Hubbs, C.D.; Li, C.; Sahinidis, N.V.; Grossmann, I.E.; Wassick, J.M. A deep reinforcement learning approach for chemical
production scheduling. Comput. Chem. Eng. 2020, 141, 106982. [CrossRef]

http://doi.org/10.1016/j.compchemeng.2016.09.019
http://dx.doi.org/10.1021/ie020124f
http://dx.doi.org/10.1016/j.cherd.2018.07.013
http://dx.doi.org/10.1021/ie061516f
http://dx.doi.org/10.1016/j.compchemeng.2021.107361
http://dx.doi.org/10.1038/s41586-019-1724-z
http://www.ncbi.nlm.nih.gov/pubmed/31666705
http://dx.doi.org/10.1080/00207543.2022.2104180
http://dx.doi.org/10.1016/j.engappai.2023.107230
http://dx.doi.org/10.1007/s10845-020-01612-y
http://dx.doi.org/10.1080/00207543.2020.1870013
http://dx.doi.org/10.3390/a15060205
http://dx.doi.org/10.1016/j.jmsy.2023.07.014
http://dx.doi.org/10.1016/j.compchemeng.2013.04.003
http://dx.doi.org/10.1016/0098-1354(96)00212-8
http://dx.doi.org/10.1016/S0098-1354(00)00571-8
http://dx.doi.org/10.1016/j.compchemeng.2023.108354
http://dx.doi.org/10.1016/j.cherd.2023.02.008
http://dx.doi.org/10.1021/ie503002k
http://dx.doi.org/10.1016/j.compchemeng.2018.12.014
http://dx.doi.org/10.1016/j.compchemeng.2020.107161
http://dx.doi.org/10.1016/j.compchemeng.2015.07.012
http://dx.doi.org/10.1021/ie201283z
http://dx.doi.org/10.1109/TSMC.2015.2507161
http://dx.doi.org/10.1016/j.swevo.2020.100714
http://dx.doi.org/10.1016/j.compchemeng.2020.106982

Mathematics 2024, 12, 393 16 of 16

30. Gui, Y.; Tang, D.; Zhu, H.; Zhang, Y.; Zhang, Z. Dynamic scheduling for flexible job shop using a deep reinforcement learning
approach. Comput. Ind. Eng. 2023, 180, 109255. [CrossRef]

31. Che, G.; Zhang, Y.; Tang, L.; Zhao, S. A deep reinforcement learning based multi-objective optimization for the scheduling of
oxygen production system in integrated iron and steel plants. Appl. Energy 2023, 345, 121332. [CrossRef]

32. Lee, Y.H.; Lee, S. Deep reinforcement learning based scheduling within production plan in semiconductor fabrication. Expert
Syst. Appl. 2022, 191, 116222. [CrossRef]

33. Yang, F.; Yang, Y.; Ni, S.; Liu, S.; Xu, C.; Chen, D.; Zhang, Q. Single-track railway scheduling with a novel gridworld model and
scalable deep reinforcement learning. Transp. Res. Part Emerg. Technol. 2023, 154, 104237. [CrossRef]

34. Pan, L.; Cai, Q.; Fang, Z.; Tang, P.; Huang, L. A deep reinforcement learning framework for rebalancing dockless bike sharing
systems. In Proceedings of the AAAI Conference on Artificial Intelligence, Hilton, HI, USA, 27 January–1 February 2019;
Volume 33, pp. 1393–1400.

35. Yan, Q.; Wang, H.; Wu, F. Digital twin-enabled dynamic scheduling with preventive maintenance using a double-layer Q-learning
algorithm. Comput. Oper. Res. 2022, 144, 105823. [CrossRef]

36. Chen, Y.; Liu, Y.; Xiahou, T. A deep reinforcement learning approach to dynamic loading strategy of repairable multistate systems.
IEEE Trans. Reliab. 2021, 71, 484–499. [CrossRef]

37. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114.
38. Zang, W.; Song, D. Energy-saving profile optimization for underwater glider sampling: The soft actor critic method. Measurement

2023, 217, 113008. [CrossRef]
39. Hussain, A.; Bui, V.H.; Musilek, P. Local demand management of charging stations using vehicle-to-vehicle service: A welfare

maximization-based soft actor-critic model. eTransportation 2023, 18, 100280. [CrossRef]
40. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
41. McInnes, L.; Healy, J.; Melville, J. Umap: Uniform manifold approximation and projection for dimension reduction. arXiv 2018,

arXiv:1802.03426.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cie.2023.109255
http://dx.doi.org/10.1016/j.apenergy.2023.121332
http://dx.doi.org/10.1016/j.eswa.2021.116222
http://dx.doi.org/10.1016/j.trc.2023.104237
http://dx.doi.org/10.1016/j.cor.2022.105823
http://dx.doi.org/10.1109/TR.2020.3044596
http://dx.doi.org/10.1016/j.measurement.2023.113008
http://dx.doi.org/10.1016/j.etran.2023.100280

	Introduction
	Related Work
	Problem Formulation
	Description of the Refinery Scheduling Problem
	Markov Modeling

	The Proposed VSCS Algorithm
	The Framework of VSCS
	Low-Dimensional Feature Generation Module
	Policy Learning Module

	Experiment
	Data for Simulator
	Comparison with Baseline Algorithm
	Impact of Reconstruction with Different Compression Sizes
	Reconstructed State Vector Similarity Analysis
	Visual Analysis of Low-Dimensional Features

	Conclusions
	References

