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Abstract: In this paper, we present a novel multi-target feature selection algorithm that incorporates
adaptive graph learning and target correlations. Specifically, our proposed approach introduces the
low-rank constraint on the regression matrix, allowing us to model both inter-target and input–output
relationships within a unified framework. To preserve the similarity structure of the samples and
mitigate the influence of noise and outliers, we learn a graph matrix that captures the induced sample
similarity. Furthermore, we introduce a manifold regularizer to maintain the global target correlations,
ensuring the preservation of the overall target relationship during subsequent learning processes.
To solve the final objective function, we also propose an optimization algorithm. Through extensive
experiments on eight real-world datasets, we demonstrate that our proposed method outperforms
state-of-the-art multi-target feature selection techniques.

Keywords: feature selection; multi-target regression; graph learning
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1. Introduction

Multi-target regression (MTR) aims to predict multiple target (response) variables
by a common set of features. Unlike the Multi-Label Classification (MLC), where the
multivariate outputs are all binary variables, the multi-outputs in MTR are all real-valued
variables. Recently, MTR is enjoying increasing popularity in machine-learning community
because of its ability to predict multiple outputs simultaneously and better generalization
performance. Moreover, due to its superior ability, MTR has been widely employed
in solving challenging problems in numerous applications such as data mining [1–4],
computer vision [5], medical diagnosis [6], stock price prediction [7], load forecasting [8].
MTR takes into account the relationship between features and targets and the underlying
correlation among targets, ensuring a better representation and interpretability of real-
world problems. Another advantage of MTR is that it can generate cleaner models with
better computational efficiency.

In order to obtain desirable and reliable predictions for multiple target variables, many
potentially relevant variables are typically involved in the formulation of high-dimensional
data which would represent and explain the target variables. However, high dimensional
input features not only induce a complex correlation structure between features and targets
but also result in the problem of the “curse of dimensionality”. In addition, unrelated
and redundant features adversely affect the effectiveness of the modeling and reduce the
generalization performance. As an efficient dimensionality reduction technique to choose a
subset of features from the primitive high-dimensional data, feature selection contributes to
prevent the “curse of dimensionality” and enables the selection of an optimal subset from
the primitive feature space with specific criterion. As feature selection does not modify the
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primitive semantics of the original variables, it makes the model more interpretable with
reduced training time and space requirements [9].

The Multi-Target Feature Selection (MTFS) methods generally fall into one of three
categories [10]: filter [11,12], wrapper [13,14] and embedded approaches [15,16]. The filter
approaches use specific evaluation metrics such as mutual information [11] and Laplacian
score [12] to measure the importance of features and select the most relevant features to
form a subset. The family of filter methods is independent of the algorithm, which makes
them computationally efficient. They can effectively remove irrelevant features from a
dataset. However, one limitation of filter methods is that they may include redundant fea-
tures in the selected subset since they ignore the correlation between features. On the other
hand, wrapper methods select a subset of features by inputting them into a specific model
for training. This process continues until satisfactory performance is achieved. Wrapper
methods take into account the correlation between features and consider their impact on the
model performance. Wrapper methods can be computationally expensive since the perfor-
mance of the selected subset needs to be verified after each feature selection. To balance the
trade-off between filter and wrapper methods, embedded methods treat feature selection
as an optimization problem. Embedded methods can select the most informative features
with a relatively low computational cost compared to wrapper methods. By embedding
feature selection within the model building process, embedded methods are able to take
into account the correlation between features while also minimizing computational costs.
These methods weigh the importance of each feature and select the most relevant ones by
optimizing the model performance. As a result, embedded methods often lead to better
model performance compared to filter methods, while still being more computationally
efficient than wrapper methods. Therefore, embedded methods are increasingly drawing
attention due to their superior performance.

Closely related to MTR, multi-label learning is generally viewed as a particular case
of MTR in statistics analysis [17]. Inspired by the intimate relationship between multi-
label classification (MLC) and MTR, Various MTR models have been proposed based on
the thought of handling label relevance in the context of MLC, such as the ensemble of
regressor chains (ERC), stacked single-target (SST), Random Linear Target Combinations
(RLC) [18,19]. Spyromitros-Xioufis et al. discrete the output space by product quantization
and thus convert the MTR problem into a MLC problem [11]. It is evident that there are
favorable similarities between MLC and MTR, and various methods of MLC have been
transferred to handle MTR problems with excellent performance. However, there are a few
approaches to solving the feature selection problem in MTR by exploiting various feature
selection strategies in MLC. Indeed, various supervised, semi-supervised and unsupervised
feature selection methods in MLC can also be transferred to feature selection tasks in MTR
scenarios, such as incorporating local and global correlation structures of labels, features or
samples into the learning process to improve the feature selection performance, which is
inspiring for MTFS [20–22].

The significant challenges of MTR arise from jointly addressing input–output and
inter-target correlations [23]. By exploring the correlation information between the targets
accurately and effectively, the MTR model can obtain improved performance compared to
the single-target model. Therefore, most existing MTR models focus on exploring target
correlations. The general technique imposes various sparse regularizer or low-rank con-
straints on the regression matrix [6,23,24]. However, the above methods do not consider the
structure information of features or samples. Both the global and local structures of features
and samples have been previously demonstrated in the literature to provide complemen-
tary information for reinforcing the performance of feature selection [20,22,25]. Specifically,
preserving the geometric structure of samples can strengthen the feature selection perfor-
mance since the effects of noises and outliers could be mitigated [21,22]. Moreover, in MTR
scenarios, the intrinsic inter-target relationships can also provide discriminate information
to feature selection and discover the essential features that are highly correlated to the
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relationships between targets. Incorrect inter-target relationships could also deteriorate the
generalization capability of feature selection model.

To address the above-mentioned issues, we design a novel MTFS method by integrat-
ing an adaptive graph structure learning and manifold learning of global target correlations
into a general multi-target sparse regression model. The key contributions of this paper are
highlighted below:

• A novel MTFS method with low-rank constraint is designed to generate low redun-
dancy yet informative feature subset for MTR by imposing a low-rank constraint on
the regression matrix, to conduct subspace learning and thus decouple the inter-input
as well as the inter-target relationships, which can reduce the influence of redundant
or irrelevant features.

• Based on the nearest neighbors of the samples, the similarity-induced graph matrix
is learned adaptively, and the local geometric structure of the data can be preserved
during the feature selection process, thus mitigating the effects of noise and outliers.

• A manifold regularizer based on target correlation is designed by considering the statistical
correlation information between multiple targets over the training set, which is beneficial
to discover informative features that are associated with inter-target relationships.

• The alternative optimization algorithm is proposed to solve the proposed objective
function, and the convergence of the algorithm is proved theoretically. Extensive
experiments are conducted on a benchmark data sets to validate the feasibility and
effectiveness of the proposed method.

The rest of this paper is organized as follows. In Section 2, some related works on
multi-objective feature selection and multi-label classification feature selection methods are
briefly reviewed. The proposed multi-objective feature selection method is described in
detail in Section 3, followed by the proposed optimization algorithm in Section 4. Section 5
proves the convergence of the proposed algorithm and analyzes the corresponding time
complexity. In Section 6, experimental results are reported and analyzed to demonstrate the
effectiveness of the proposed method. Finally, a brief conclusion is summarized in Section 7.

2. Related Work

To date, different MTFS methods have been proposed. Hashemi et al. [26] proposed
a feature selection method incorporating the VIKOR algorithm to rank the features in
the MTR problem. Sechidis et al. [11] proposed a feature selection method for both MLC
and MTR. The method considers correlation, redundancy and complementarity between
features by calculating the interaction among targets, thus ensuring that the acquired
subset of features can have less redundancy and higher correlation. Petkovic et al. [27]
proposed a feature-ranking method based on predictive clustering tree integration and
RReliefF method extensions, and the optimal feature ranking is determined by integrating
the feature scores of these two groups of methods. Masmoudi et al. [28] presented a multi-
target feature ranking method based on regression chain ensemble and random forest; the
final feature ranking is obtained by combining the feature importance information from
both methods.

Recently, different embedded approaches have also been proposed. Yuan et al. [29] pro-
posed an embedded Sparse Structural Feature Selection (SSFS) model based on a multi-layer
multi-output framework. This model achieves improved feature selection performance
by simultaneously applying sparsity constraints on the objective function, regression co-
efficients, and structure matrix. Similarly, Zhu et al. [30] utilized low-rank constraint to
identify correlations between output variables and impose ℓ2,1-norm regularization on
regression matrix to achieve feature selection. The above-mentioned methods impose spar-
sity or low rank on the loss function or parameter matrix to achieve the feature selection.
However, these embedded methods either consider the similarity structure of samples or
the statistical correlations between different targets, which may constrain the performance
of feature selection.
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In fact, the feature selection method in MLC tasks can also be deployed in MTR tasks
when the model can handle continuous output variables. Fan et al. [31] proposed a feature
selection method based on both label correlations and feature redundancies; the label
correlations are explored through low-dimensional embedding, which maintains the global
and local structure of the original label space. Xu et al. [32] proposed to perform feature
extraction by maximizing feature variance and feature–label dependence to achieve better
performance in MLC problems. Zhu et al. [21] proposed a robust unsupervised spectral
feature selection method that maintains the local structure of features by exploiting the
self-representation of features and maintains the global structure of samples as features
via imposing low-rank constraints on the weight matrix. Mahsa et al. [33] proposed a low-
redundant unsupervised feature selection method based on data structure learning and
feature orthogonalization. Obviously, the above method introduces other information such
as the local and global structure of the labels, the structure of the data and the relationship
between the features by considering not only the relationship between the features and the
labels in the feature selection process.

Recently, graph-based methods, such as spectral clustering, graph learning and hy-
pergraph learning, have played an important role in machine learning due to their ability
to encode similarity relationships among data. Ma et al. [34] proposed a feature selection
method named discriminative multi-label feature selection with adaptive graph diffusion,
and the graph embedding learning framework is constructed with adaptive graph diffu-
sion to uncover a latent subspace that preserves the higher-order structure information.
Zhang et al. [35] proposed a novel unsupervised feature selection via adaptive graph
learning and constraint. Zhu et al. [36] proposed an unsupervised spectral feature selection
method with dynamic hypergraph Learning. You et al. [37] proposed an unsupervised fea-
ture selection method via Neural Networks (NN) and self-expression with adaptive graph
constraint. Deepak et al. [38] extended the feature selection algorithm presented in via
Gumbel softmax to Graph Neural Networks (GNN). It can be seen that graph learning can
effectively mine the similarity or structural relationship between data, and thus improve
the performance of feature selection.

From the above research, it is evident that maintaining the various structural infor-
mation contained in the original data, such as the geometric or similar structure of the
samples, the structural information among the features and different outputs, can provide
supplementary information for feature selection in different perspectives, thereby improve
the feature selection performance. However, existing MTFS methods rarely consider the
above information simultaneously.

3. The Proposed Approaches
3.1. Notations

For a n × m matrix A =
[
ai,j
]
∈ Rn×m, and ai,j denotes the (i, j)-th entry of A. AT

denotes its transpose. tr(A) is A’s trace. The Frobenius norm of A is defined as ∥A∥F =√
∑n

i=1 ∑m
j=1 a2

i,j , and the ℓp,q-norm of matrix A is defined as

∥A∥p,q =

 n

∑
i=1

(
m

∑
j=1

∣∣ai,j
∣∣p) q

p


1
q

(1)

and hence the ℓ2,1-norm of A is defined as

∥A∥2,1 =
n

∑
i=1

√√√√ m

∑
j=1

a2
i,j (2)

For a n-dimensional vector c ∈ Rn, ∥c∥2 =
√

∑n
i=1 c2

i is its ℓ2-norm, I denotes an

identity matrix, and let H = I − 1
n 1n1T

n denote the center matrix, where 1n ∈ Rn and the
value of each element is 1.
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3.2. MTR Based on Low-Rank Constraint

Given a training set consisting of n instances {(xi, yi)}n
i=1, and X = [x1, . . . , xn]

T ∈
Rn×d represents feature or input matrix, where xi =

[
xi,1, . . . , xi,q

]T ∈ Rd, and Y =

[y1, . . . , yn]
T ∈ Rn×q represents target or output matrix, where yi =

[
yi,1, . . . , yi,q

]T ∈ Rq

is the multi-target output corresponding to xi. The traditional ridge regression can be
extended to multi-dimension, and we reach the following objective function:

min
W,b

∥XW + 1nbT − Y∥2
F + α∥W∥2

F (3)

where W ∈ Rd×q is the regression coefficients, b ∈ Rq is the bias, and α > 0 is the
regularization parameter. d and q are dimensions of features and targets. To select the
features, the ℓ2,1-norm regularizer is imposed on regression matrix W, and we have

min
W,b

∥XW + 1nbT − Y∥2
F + α∥W∥2,1 (4)

where the sparse learning of W based on ℓ2,1-norm encourages the row sparsity to unselect
the irrelevant features in the original feature matrix X. Evidently, Equation (4) does not
take into account the correlation among targets, which leads to poor performance in MTFS.
Therefore, we impose a low-rank constraint on W, i.e., W = AB, where A ∈ Rd×r, B ∈ Rr×q,
r ≤ min(d, q). Hence, Equation (4) is modified to

min
A,B,b

∥XAB + 1nbT − Y∥2
F + α∥AB∥2,1 (5)

In Equation (5), the parameter matrix A can be viewed as transforming the original
feature space Rd into an latent variable space Rr geometrically, and then parameter matrix
B transforms XA to the target space Rq. Considering the correlation among q targets,
B can be served to encode inter-target correlations explicitly. Thus, the low-rank constraint
takes into account global target correlations to leverage subspace learning and enables the
simultaneous modeling of input–output correlations as well as inter-target relationships.
In addition, the effects of redundant features and anomalous variables can be mitigated by
low-rank learning, resulting in the output of robust feature selection models [39,40].

3.3. Adaptive Graph-Learning Based on Local Sample Structure

So far, the majority of studies have shown that, in addition to characterizing the significance
of features in the regression model through sparse learning, the local structural information of the
sample can also contribute additional information to feature selection [20–22,25]. By preserving
the nearest neighbour structure of instances, the distribution of samples in the learned low-
dimensional space can maintain consistency with the original sample space [21,22]. Even
for a MTR problem with a complex correlation structure, The output Y can be reasonably
hypothesized to be a continuous and smooth function of the input X. It is natural to expect
close samples xi and xj to have close output values yi and yj; thereby, the corresponding
prediction outputs ŷi and ŷj should also be adjacent to each other [41]. Based on the
hypothesis, the geometric structure information of different instances in the feature space
is leveraged to ensure that the predicted output of the model also maintains a similar
geometric structure.

The existing literature obtains the local distribution structure and information of
samples by learning the graph matrix S between samples, and given the input matrix X
and the corresponding weight coefficients W, according to the literature [42], we have:

min
W

n

∑
i,j=1

∥xT
i W − xT

j W∥2
2si,j (6)

where W ∈ Rd×q and S =
[
si,j
]
∈ Rn×n, and si,j represents the similarity between xi and

xj. Traditional methods are often based on heat kernel functions to calculate the similarity
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between nearest neighbors samples, the similarity between nearest neighbor samples xi
and xj is defined as

si,j = exp

(
−
∥xi − xj∥2

2

2σ2

)
(7)

otherwise si,j = 0. Although Equation (7) has been widely applied, the similarity matrix is
highly sensitive to the existence of noise and outliers in the original data [21,22]. To deal
with this, we learn the similarity matrix of the target space adaptively to mitigate the effect
of noise and outliers. The hypothesis in manifold learning is that if two samples are close
in the dimension reduction space, then their corresponding multivariate prediction outputs
should also be closed in target space, which gives rise to

min
S,A,B

n

∑
i,j=1

(
∥xT

i W − xT
j W∥2

2si,j + γ∥si∥2
2

)
s.t. ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(8)

where γ is a tuning parameter, The second item in (8) deals with avoiding trivial solutions.
N (i) represents the nearest neighbours set of the ith sample, and 1Tsi = 1 has been proved
to reinforce the robustness for noises and outliers in [43], where si is the ith column of
matrix S. Combining the low-rank constraint and Equation (8), which leads to

min
S,A,B

n

∑
i,j=1

(
∥xT

i AB − xT
j AB∥2

2si,j + γ∥si∥2
2

)
s.t. ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(9)

Based on Equation (9), we can ensure that the nearest neighbour relationship in the
predicted output is consistent with the original data, which benefits the subsequent learning
of different output correlation structures. Moreover, preserving the nearest neighbour
relationship between samples is beneficial to lessen the impact of redundant or irrelevant
features to improve the performance of feature selection.

3.4. Manifold Regularization of Global Target Correlations

Since different target correlation structures can also affect the performance of MTFS,
we propose a manifold regularization term for global target correlations, which automati-
cally exacts the correlations from the target matrix. By incorporating the target manifold
regularization via exploiting the correlation of the target variables to filter out the noises of
target variables indirectly. First, we use the commonly used cosine similarity to measure
the similarity between target variables, which is calculated as follows,

s̃i,j =
⟨y:,i, y:,i⟩
∥y:,i∥∥y:,j∥

, i, j = 1, . . . , q (10)

where y:,i and y:,i are the ith and jth column of Y, respectively. We assume that for the
coefficient matrix B ∈ Rr×q , if the target output vectors y:,i and y:,j are similar to each
other, their corresponding weight vectors bi and bj should also be close. Based on the
assumptions, we have:

min
B

q

∑
i,j=1

∥bi − bj∥2
2 s̃i,j (11)

where bi and bj are the ith and jth column of B. Equation (11) encourages the similarity of
the weight vectors corresponding to similar target outputs. The advantage of Equation (11)
is that it can use the similarity information among different target outputs, thus improving
the feature selection performance in MTR problems.
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3.5. Objective Function

By incorporating the model (9) and (11) into the generalized low-rank MTR model (5),
we can obtain the final feature selection model based on adaptive graph learning and global
target correlations for MTR, which is described as follows:

min
A,B,S,b

∥XAB + 1nbT−Y∥2
F + α∥AB∥2,1

+ β
n

∑
i,j=1

(
∥xT

i AB − xT
j AB∥2

2si,j + γ
n

∑
i=1

∥si∥2
2

)

+ λ
q

∑
i,j=1

∥bi − bj∥2
2 s̃i,j

s.t.
{

∀i, 1Tsi = 1, si,i = 0,
si,j ≥ 0 if j ∈ N (i), otherwise 0.

(12)

where α, β, γ and λ are tuning parameter. The proposed objective function (12) has the
following important characteristics. On the one hand, the low-rank constraint on the regres-
sion matrix can decouple the input–target and inter-target correlations and enables robust
learning of the correlation. On the other hand, by integrating the adaptive graph learning
based on local sample structure and manifold regularization of global target correlations,
we can consider both local sample structure and global target correlations. Moreover, the
graph structure and regression parameter matrices learning could be iteratively updated
by each other, and the global target correlations can be extracted from data automatically.

Consequently, given the optimal parameter matrix A and B, we evaluate the impor-
tance of each feature based on the ℓ2-norm of (AB)i, and rank them in descending order,
then the top-ranked subset of features can be obtained.

4. Optimization Algorithm

This section presents an alternating optimization algorithm to solve the problem (12),
i.e., iteratively optimizing each variable while fixing the others until convergence.

First, by setting the derivative of Equation (12) w.r.t. b to zero, we have

bT =
1
n

(
1T

n Y − 1T
n XAB

)
(13)

Substituting the result of Equation (13) into (12), and the objective function can be rewrit-
ten as

min
A,B,S

∥H(XAB−Y)∥2
F + α∥AB∥2,1

+ β
n

∑
i,j=1

(
∥xT

i AB − xT
j AB∥2

2si,j + γ
n

∑
i=1

∥si∥2
2

)

+ λ
q

∑
i,j=1

∥bi − bj∥2
2 s̃i,j

s.t.
{

∀i, 1Tsi = 1, si,i = 0,
si,j ≥ 0 if j ∈ N (i), otherwise 0.

(14)

where H is a symmetric center matrix. Since Equation (14) is convex for each parameter
matrix while fixing others. Hence, the alternating optimization algorithm is introduced.

4.1. Fix S Update A and B

With S is fixed, problem (14) can be rewritten as follows:

min
A,B

∥H(XAB−Y)∥2
F + α∥AB∥2,1

+ β
n

∑
i,j=1

∥xT
i AB − xT

j AB∥2
2si,j + λ

q

∑
i,j=1

∥bi − bj∥2
2 s̃i,j

(15)
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To prevent the non-differentiable problem in (15), we transform problem (15) as follows,

min
A,B

∥H(XAB − Y)∥2
F + αtr

(
BTATDAB

)
+ βtr

(
BTATXTLXAB

)
+ λtr(BL̃BT)

(16)

where L and L̃ are the Laplacian matrices corresponding to si,j and s̃i,j, respectively. D ∈
Rd×d is the diagonal matrix and

Di,i =
1

2∥(AB)i∥2
2

, i = 1, 2, . . . , d (17)

where (AB)i is the ith row of matrix AB. Similarly, by fixing B, we set the derivative of
Equation (16) with respect to A to zero and further to obtain

A∗ = P−1XTHYBT
(

BBT
)−1

(18)

where P = XTHX+ αD+ βXTLX. In the same way, by fixing A we can obtain the following
expression,

min
B

tr
(

BTATPAB − 2BTATXTHY
)
+ λtr

(
BL̃BT

)
(19)

We set the derivative of Equation (19) w.r.t. B to zero and obtain

ATPAB + λBL̃ = ATXTHY (20)

Obviously, Equation (20) is a standard Sylvester equation AΘ + ΘB = C, where Θ
is the unknown corresponding to B, A = ATPA, B = λL̃, and C = ATXTHY. Therefore,
Equation (20) has a closed-form solution and can be solved analytically. The optimization
of A and B is shown in Algorithm 1.

Algorithm 1 The procedure of optimizing A and B

Input: X ∈ Rn×d, Y ∈ Rn×q, L ∈ Rn×n, L̃ ∈ Rq×q, α, β, λ, k and r;
Output: A ∈ Rd×r, B ∈ Rr×q;
1. Initialize D = I ∈ Rd×d;
2. Update the matrix P;
3. repeat:

3.1. Calculate B by Equation (18);
3.2. Update A by Equation (20);
3.3. Update D and P by Equation (17);

until converge;

4.2. Fix A and B Update S

With fixed A and B we have:

min
S

n

∑
i,j=1

(
∥xT

i AB − xT
j AB∥2

2si,j + γ∥si∥2
2

)
s.t. ∀i, 1Tsi = 1, si,i = 0,

si,j ≥ 0 if j ∈ N (i), otherwise 0.

(21)

Initially, we set the value of si,j = 0 if j /∈ N (i), where N (i) is the k nearest neighbors
of sample i. Otherwise, the si,j value can be calculated by the following Equation (22). Since
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different si (i = 1, ..., n) are independent of each other, the solutions of si can be solved
separately by parallel optimization. Therefore, rewrite Equation (21) as

min
1Tsi=1,si,i=0,si,j≥0

n

∑
j=1

(
∥xT

i AB − xT
j AB∥2

2si,j + γs2
i,j

)
(22)

By denoting G = [g1, . . . , gn] ∈ Rn×n where gi,j = ∥xiAB − xjAB∥2
2, and rewrite

Equation (23) as follows:

min
1Tsi=1,si,i=0,si,j≥0

1
2
∥si +

1
2γ

gi∥2
2 (23)

Then we further derive the Lagrangian function of Equation (23) as

L(si, ζ, η) =
1
2
∥si +

gi
2γ

∥2
2 − ζ

(
1Tsi − 1

)
− ηTsi.

=
1
2

n

∑
j=1

(
si,j +

gi,j

2γ

)2
−ζ

(
n

∑
j=1

si,j − 1

)
−

n

∑
j=1

ηjsi,j

(24)

where ζ and η be the Lagrangian multipliers. By using the Karush–Kuhn–Tucker (KKT)
conditions, we further achieve

∀j, si,j +
gi,j
2γ − ζ − ηj = 0

∀j, si,j ≥ 0
∀j, si,jηj = 0
∀j, ηj ≥ 0

(25)

According to the KKT conditions, we can summarize the following three scenarios
based on Equation (25):

scenario 1: si,j > 0, ηj = 0 ⇔ si,j = − gi,j
2γ + ζ > 0

scenario 2: si,j = 0, ηj > 0 ⇔ −ηj = − gi,j
2γ + ζ < 0

scenario 3: si,j = ηj = 0 ⇔ − gi,j
2γ + ζ = 0

(26)

Finally we have si,j =
(
− gi,j

2γ + ζ
)
+

. To ensure the sparsity of the similarity matrix

and thus improve the model robustness, we only consider the k-nearest neighbours of each
training sample. Without loss of generality, we suppose that gi,1 ≤ gi,2 ≤ . . . ≤ gi,n, ∀i.
For the vector si we have {

si,k > 0 ⇒ − gi,k
2γ + ζ > 0

si,k+1 ≤ 0 ⇒ − gi,k+1
2γ + ζ ≤ 0

(27)

according to the constraint 1Tsi = 1, we have

k

∑
j=1

(
−

gi,j

2γ
+ ζ

)
= 1 ⇒ ζ =

1
k
+

1
2kγ

k

∑
j=1

gi,j (28)

based on Equation (27) and (28), we can induce that

kgi,k −
k
∑

j=1
gi,j

2
< γ ≤

kgi,k+1 −
k
∑

j=1
gi,j

2
(29)
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let γ =
kgi,k+1−∑k

j gi,j
2 , the closed-form solution of si,j can be yielded as

si,j =


gi,k+1−gi,j

kgi,k+1−∑k
j=1 gi,j

, j ≤ k,

0, j > k.
(30)

In summary, the overall pseudo-code of the proposed algorithm to solve the prob-
lem (14) is concluded in Algorithm 2.

Algorithm 2 MTFS Method based on Alternating Optimization Algorithm

Input: X ∈ Rn×d, Y ∈ Rn×q, α, β and λ, k and r;
Output: A ∈ Rd×r, B ∈ Rr×q, S ∈ Rn×n

1. Calculate k nearest neighbors of all training samples;
2. Initialize S by Equation (8) where W is an identity matrix;
3. Update the Laplacian matrix L̃;
4. repeat:

4.1. Update A and B via Algorithm 1;
4.2. Calculate S via Equation (27);
4.3. Calculate the Laplacian matrix L corresponding to S;

until converge;

5. Convergence and Complexity Analysis

To demonstrate the convergence of the proposed algorithm, a Lemma is first listed as
follows [44]:

Lemma 1. For any two non-zero vectors u, v ∈ Rm, the following equation is always holds.

∥u∥2 −
∥u∥2

2
2∥v∥2

≤ ∥v∥2 −
∥v∥2

2
2∥v∥2

(31)

5.1. Convergence Analysis of Algorithm 2

The convergence of Algorithm 2 is guaranteed by the following Theorem.

Theorem 1. The value of objective function (15) is monotonically decreases until Algorithm 2
converges.

Proof. Denote J
(

A(t), B(t)

)
as the objective function of (15) in tth iteration. W(t) =

A(t)B(t), where A(t) and B(t) are the A and B in the tth iteration, respectively. After fixing
S, according to Algorithm 1, we can obtain〈

A(t), B(t)

〉
=arg min

A,B
∥H
(

XW(t) − Y
)
∥2

F + αtr
(

WTDW
)

+ βtr
(

WT
(t)X

TLXW(t)

)
+ λtr

(
B(t)L̃BT

(t)

) (32)

Since ∥W∥2,1 = ∑d
i=1 ∥wi∥2, hence

∥H
(

XW(t+1) − Y
)
∥2

F + βtr
(

WT
(t+1)X

TLXW(t+1)

)
+ λtr

(
B(t+1)L̃BT

(t+1)

)
+ α∥W(t+1)∥2,1 + α

d

∑
i=1

(
∥wi(t+1)∥2

2

2∥wi(t)∥2
− ∥wi(t+1)∥2

2

)
≤ ∥H

(
XW(t) − Y

)
∥2

F + βtr
(

WT
(t)X

TLXW(t)

)
+ λtr

(
B(t)L̃BT

(t)

)
+ α∥W(t)∥2,1 + α

d

∑
i=1

(
∥wi(t)∥2

2

2∥wi(t)∥2
− ∥wi(t)∥2

2

)
(33)
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where wi(t) and wi(t+1) denote the ith row of W(t) and W(t+1), respectively. According to
Lemma 1, we have

∥wi(t+1)∥2 −
∥wi(t+1)∥2

2

2∥wi(t)∥2
≤ ∥wi(t)∥2 −

∥wi(t)∥2
2

2∥wi(t)∥2
(34)

By plugging Equation (34) into Equation (33), we have
∥H
(

XW(t+1) − Y
)
∥2

F + βtr
(

WT
(t+1)X

TLXW(t+1)

)
+ α

d

∑
i=1

∥wi(t+1)∥2
2 + λtr

(
B(t+1)L̃BT

(t+1)

)
≤ ∥H

(
XW(t) − Y

)
∥2

F + βtr
(

WT
(t)X

TLXW(t)

)
+ α

d

∑
i=1

∥wi(t)∥2
2 + βtr

(
B(t)L̃BT

(t)

)
(35)

and further we have

∥H
(

XW(t+1) − Y
)
∥2

F + βtr
(

WT
(t+1)X

TLXW(t+1)

)
+ α∥Wi(t+1)∥2,1 + λtr

(
B(t+1)L̃BT

(t+1)

)
≤ ∥H

(
XW(t) − Y

)
∥2

F + βtr
(

WT
(t)X

TLXW(t)

)
+ α∥Wi(t)∥2,1 + λtr

(
B(t)L̃BT

(t)

)
(36)

Hence, we have the following inequality:

J
(

A(t+1), B(t+1)

)
≤ J

(
A(t), B(t)

)
.

Therefore, J
(

A(t), B(t)

)
is monotonically decreasing until convergence, and Theo-

rem 1 proved.

5.2. Convergence Analysis of Algorithm 1

Likewise, we also prove the convergence of Algorithm 1 according to the following
Theorem 2.

Theorem 2. The objective function (21) monotonically decreases with each optimization step until
Algorithm 1 converges.

Proof. According to Theorem 1, after the tth iteration, the optimal A(t), B(t) and S(t)
have obtained, we need to calculate S(t+1) by fixing A(t) and B(t) in the (t + 1)th itera-
tion. Furthermore, the S(t+1) can converge to the globally optimal solution according to

Equation (30) since s(t+1)
i,j has the closed-form solution. Therefore, we have
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∥H
(

XW(t) − Y
)
∥2

F + α∥W(t)∥2,1

+ β

(
n

∑
i,j=1

∥xT
i W(t) − xT

j W(t)∥2
2s(t+1)

i,j + γ
n

∑
i=1

∥s(t+1)
i ∥2

2

)

+ λ
d

∑
i,j=1

∥b(t)
i − b(t)

j ∥2
2 s̃i,j

≤ ∥H
(

XW(t) − Y
)
∥2

F + α∥W(t)∥2,1

+ β

(
n

∑
i,j=1

∥xT
i W(t) − xT

j W(t)∥2
2s(t)i,j + γ

n

∑
i=1

∥s(t)i ∥2
2

)

+ λ
d

∑
i,j=1

∥b(t)
i − b(t)

j ∥2
2 s̃i,j

(37)

where s(t)i and s(t+1)
i are the ith row of S(t) and S(t+1), respectively. When fixing S(t+1) to

update A(t+1) and B(t+1), we have the following inequality,

∥H
(

XW(t+1) − Y
)
∥2

F + α∥W(t+1)∥2,1 + λ
d

∑
i,j=1

∥b(t+1)
i − b(t+1)

j ∥2
2 s̃i,j

+ β

(
n

∑
i,j=1

∥xT
i W(t+1) − xT

j W(t+1)∥2
2s(t+1)

i,j + γ
n

∑
i=1

∥s(t+1)
i ∥2

2

)

≤ ∥H
(

XW(t) − Y
)
∥2

F + α∥W(t)∥2,1 + λ
d

∑
i,j=1

∥b(t)
i − b(t)

j ∥2
2 s̃i,j

+ β

(
n

∑
i,j=1

∥xT
i W(t) − xT

j W(t)∥2
2s(t+1)

i,j + γ
n

∑
i=1

∥s(t+1)
i ∥2

2

)
(38)

By combining Equation (37) and (38), we obtain

∥H
(

XW(t+1) − Y
)
∥2

F + α∥W(t+1)∥2,1

+ β

(
n

∑
i,j=1

∥xT
i W(t+1) − xT

j W(t+1)∥2
2s(t+1)

i,j + γ
n

∑
i=1

∥s(t+1)
i ∥2

2

)

+ λ
d

∑
i,j=1

∥b(t+1)
i − b(t+1)

j ∥2
2 s̃i,j

≤ ∥H
(

XW(t) − Y
)
∥2

F + α∥W(t)∥2,1

+ β

(
n

∑
i,j=1

∥xT
i W(t) − xT

j W(t)∥2
2s(t)i,j + γ

n

∑
i=1

∥s(t)i ∥2
2

)

+ λ
d

∑
i,j=1

∥b(t)
i − b(t)

j ∥2
2 s̃i,j

(39)

According to Equation (38), the value of objective function monotonically decreases
after each iteration of Algorithm 1, Theorem 2 is proved.

5.3. Complexity Analysis

We further analyze the computational complexity of the proposed algorithm. In each

iteration, the computation cost of Algorithm 1 focuses on calculating P−1XTHYBT
(

BBT
)−1

and solving the Sylvester function, the corresponding complexity are
max

{
O
(
r3),O(d3),O(ndq),O(dqr)

}
and O

(
q3), respectively. The complexity of Algo-
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rithm 2 stems from calculating the matrix G, the computation cost is max
{
O
(
n2d
)
,O
(
n2q
)}

.
Since r ≤ min(d, q), n, d ≫ r, q, and it is experimentally observed that Algorithm 1 can
converge within 30 iterations on different data sets. Hence, the computational complexity
of the proposed method is approximate O

(
td3 + tnd2), where t (n, d ≫ t) is the iteration

of the whole alternating optimization.

6. Experiments
6.1. Datasets

We test the proposed approach on eight high-dimensional datasets (http://mulan.
sourceforge.net/datasets-mtr.html, accessed on 18 January 2024), which are all from the
public website Mulan [45]. All selected datasets are commonly used benchmark datasets
for measuring MTR modeling performance. The detailed statistics of these datasets are
shown in Table 1. We follow the strategies in [18] to impute the datasets with missing
values, i.e., RF1 and RF2, which are replaced with sample means in the datasets.

Table 1. Characters of the datasets.

Datasets Instances Features Targets #-Fold Domains

ATP1d 337 411 6 10 Price prediction
ATP7d 296 411 6 10 Price prediction
OES10 403 298 16 10 Artificial
OES97 334 263 16 10 Artificial

RF1 9125 64 8 2 Environment
RF2 9125 576 8 2 Environment

SCM1d 9803 280 16 2 Environment
SCM20d 8966 61 16 2 Environment

6.2. Compared Methods

In this paper, different MTFS methods are selected to compare the performance with
the proposed approach.

• MTFS [44]: The row sparsity constraint is imposed on the weight matrix by ℓ2,1-norm
regularization,

min
W

∥XW − Y∥2
F + λ∥W∥2,1 (40)

where λ is the tuning parameter, we set the parameters to range as
{

10−3, 10−2, . . . , 103}
empirically.

• RFS [46]: By jointly imposing ℓ2,1-norm regularization on the loss function and the
weight matrix, the objective function of RFS is:

min
W

∥XW − Y∥2,1 + λ∥W∥2,1 (41)

where the parameter λ range as
{

10−3, 10−2, . . . , 103}.
• SSFS [29]: The multi-layer regression structure is constructed by low-dimensional

embedding, and the loss function, weight matrix and structure matrix are joint ℓ2,1-
norm regularized, and the objective function is:

min
W,U

∥ZU − Y∥2,1 + λ∥W∥2,1 + β∥U∥2,1 (42)

where Z = XW, λ and β are tuning parameters. All tuning parameters’ range as
10[−3:1:3].

http://mulan.sourceforge.net/datasets-mtr.html
http://mulan.sourceforge.net/datasets-mtr.html
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• HLMR-FS [47]: The method introduces a hyper-graph Laplacian regularization to
maintain the correlation structure between samples and find the hidden correlation
structure among different target variables via the low-rank constraint.

min
A,B

∥Y − XAB∥2
F + α∥AB∥2,p + βtr

(
BTATXTLHXAB

)
s.t. ATA = I

(43)

where LH is the graph Laplacian matrix between the predicted output vectors of
different training samples. α and β searched in the grid 10[−3:1:3], and p searched in
the grid {0.1, . . . , 1.9}.

• LFR-FS [30]: The method captures the correlation between different objectives through
low-rank constraint, and by designing ℓ2,p-norm regularization on the loss function
and the regression matrix, the learning of the orthogonal subspace enables multiple
outputs to share the same low-rank data structure to obtain the corresponding feature
selection results.

min
A,B

∥Y − XAB∥2,p + α∥A∥2,p

s.t. ATA = I
(44)

where α searched in the grid 10[−3:1:3], and p varied in {0.1, . . . , 1.9}.
• VMFS [26]: VMFS ranks each feature in MTR via the famous Multi-Criteria Decision-

Making (MCDM) method called VIKOR.
• RSSFS [48]: RSSFS uses the mixed convex and non-convex ℓ2,p-norm minimization

on both regularization and loss function for joint sparse feature selection, and the
objective function is:

min
W,H,Q

∥∥∥XTW − Y
∥∥∥p

2,p
+ α∥W∥p

2,p + β∥W − QH∥2
F

s.t.QTQ = I
(45)

In the experiments, the regularization parameter α and β were set in 10[−3:1:3], and
p varied in {0.1, . . . , 0.9}.

In addition to choosing the above-compared methods, we also perform regressions
by using the original data without feature selection as a Baseline to test and validate the
effectiveness of the proposed method. We adopt the Multi-output Kernel Ridge Regression
(mKRR) [49] to obtain the regression result corresponding to feature subsets obtained by
different MTFS methods. In mKKR, Radial Basis Function (RBF) is utilized as the kernel
function, and the kernel parameter and the regularization parameter range as 10[−3:1:3] on
the training data [29]. For different data sets, 70% of the samples are selected as the training
set and the rest as the test set. As is shown in Table 1, we use two-fold cross-validation for
RF1/RF2 and SCM1d/SCM20d and five-fold cross-validation on the training data for the
rest of the datasets to conduct model selection.

6.3. Evaluation Metrics

Two evaluation metrics are employed in experiment, including average Correlation
Coefficient (aCC) and average Relative Root Mean Squared Error (aRRMSE) [47]. The
definition of aCC is as follows,

aCC =
1
q

q

∑
i=1

∑Ntest
j=1

(
y(j)

i − ȳi

)(
ŷ(j)

i − ỹi

)
√

∑Ntest
j=1

(
y(j)

i − ȳi

)2
∑Ntest

j=1

(
ŷ(j)

i − ỹi

)2
(46)

where y(j)
i and ŷ(j)

i are the real and predicted values of the jth sample on the target i, ȳi
and ỹi are the mean of true value and the predicted value on target i over the test set,
respectively. Likewise, the formula for aRRMSE is given:
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aRRMSE =
1
q

q

∑
i=1

√√√√√√∑Ntest
j=1

(
y(j)

i − ŷ(j)
i

)2

∑Ntest
j=1

(
y(j)

i − yi

)2 (47)

where yi is the average value of the training samples on the ith target.

6.4. Results on the Data Sets

Figures 1 and 2 show the aRRMSE and aCC values for different MTFS methods on
different data sets, respectively. For ATP1d and ATP7d, we choose 60, 70, 80, 90, 100,
110 features. For OES10, RF2 and SCM1d, we choose 60, 70, 80, 90, 100 and 110 features.
For OES97, we choose 40, 60, 80, 100, 120 and 140 features. For RF1, we choose 10, 15, 20,
25, 30 and 35 features. For SCM20d, we choose 20, 25, 30, 35, 40 and 45 features.

Meanwhile, the best aCC and aRRMSE values of compared MTFS methods on var-
ious datasets are ranked, and the average rank of different methods on all datasets is
calculated. The Friedman test [50] with the significant level α = 0.05 is employed, and we
utilize Bonferroni-Dunn test [50] as the post hoc test to further analysis of the comparison.
The critical difference (CD) is calculated to measure the difference between the proposed
method and other algorithms. The calculation of CD is as follows:

CD = qα

√
n(n + 1)

6T
. (48)

where n is the number of algorithms compared, and T is the number of datasets. At signifi-
cance level α = 0.05, the corresponding qα = 3.73, thus we have CD = 2.41 (n = 9, T = 8).
Figures 3 and 4 show the average ranks of different feature selection methods based on
aRRMSE and aCC metrics.

Obviously, from Figures 1 and 2, we can observe that for different data sets, selecting
the correct number of feature subsets can achieve better results than the baseline, which
indicates that for MTR problems, a practical feature selection method can not only improve
the computational efficiency of the model but also improve the comprehensive performance
of the model on different targets. Furthermore, the regression performance does not
necessarily improve as the size of the selected features increases. On the contrary, in most
cases, such as OES97, RF1, SCM20d, etc., the performance decreases as the number of
selected features increases, indicating the presence of redundant or irrelevant features in
the original feature set may significantly reduce the performance of regression.

For most cases, SSFS, HLMR-FS and the proposed method can obtain a lower aRRMSE
and higher aCC than MTFS, RFS and VMFS. It shows that the performance of MTFS can
be improved via a low-rank constraint. The proposed method not only considers the
structural information of different samples in feature space but also uses the intrinsic
correlation information between targets to improve the performance of MTFS. Furthermore,
the proposed method can outperform the baseline in most cases, regardless of the number
of features. It indicates that the proposed method can effectively alleviate the influence of
redundant features, thereby maintaining outstanding performance on the selected subset
even if some redundant features are included.
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Figure 1. aRRMSE results compared with compared methods under different number of
selected features.
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Figure 2. aCC results compared with state-of-the-art methods under different number of
selected features.
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Figure 3. Average rank of different feature selection methods based on aRRMSE under Bonferroni–
Dunn test.

Figure 4. Average rank of feature selection methods based on aCC under Bonferroni–Dunn test.

6.5. Effect of Low-Rank Constraint

We also investigate the influence of different ranks over different data sets, set
r = 1, 2, . . . , q. The performance when r = q is taken as the performance of the algorithm at
full rank, on account of the condition r ≤ min{d, q}. The number of input features d in the
adopted data set is much larger than q, so the corresponding rank value of the regression
matrix at full rank is q. We set r = {1, 2, . . . , 6} in the ATP1d; r = {1, 2, . . . , 16} in the
OES10; r = {1, 2, . . . , 8} in the RF1; r = {1, 2, . . . , 16} in the SCM1d. By setting different
values of r to impose low-rank constraints on A and B. The fluctuations of aRRMSE and
aCC values of the algorithm with α fixed are shown in Figure 5.

From Figure 5, it is evident that performance of the proposed method can be effectively
improved by choosing the appropriate rank value for different data sets. In addition, most
of the rank values in different data sets are better than the performance at full rank,
which indicates that the regression matrix can decouple the inter-features and inter-target
correlation via embedding the latent space of different dimensions, and it is beneficial to
improve the regression performance and robustness of the model.
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Figure 5. Performance of feature selection methods under different low-rank constraints.

6.6. Parameter Sensitivity

In this section, we further perform sensitivity analysis on different parameters in the
proposed feature selection method. Since there is a closed-form solution for γ, we focus
on sensitivity analysis for the regularization parameters α, λ and β. First of all, we tuned
the parameter α within the range of

{
10−3, 10−2, . . . , 103} with λ = 0.01 and β = 0.01.

Likewise, we tuned parameters λ and β in
{

10−3, 10−2, . . . , 103} with α = 0.1, and the
results are shown in Figures 6 and 7.
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Figure 6. Sensitivity analysis of the parameter α with λ and β fixed.

Figure 7. Sensitivity analysis of the parameter λ and β with α fixed.
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In Figure 6, we can see that the variation of the parameter α will bring a certain
degree of fluctuation in the model performance with λ and β fixed, which indicates that
the proposed method is sensitive to α. Hence, parameter α is vital to determine the
performance of the proposed method. From Figure 7, it can be seen that the changes in
model performance after changes in parameters λ and β in ranges are not as significant as
that of parameter α. However, properly tuning parameters λ and β can still improve the
performance.

6.7. Convergence Study

We also plot the convergence curves of the objective function value of Equation (12)
when the algorithm is updated iteratively on different data sets. As shown in Figure 8, it can
be observed that ATP1d, ATP7d and RF1 can converge to the optimum within 20 iterations.
The rest of the datasets can converge within 30 iterations, and the objective function
converges quickly in the first few iterations. It indicates that the proposed alternating
optimization algorithm can efficiently converge to the global optimum. Moreover, the
monotone decrease of the objection function value demonstrates that the proposed problem
can converge well. It confirms the effectiveness of the alternating optimization algorithm
in addressing the proposed problem.
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Figure 8. Convergence curves of the proposed method under different data sets.
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7. Conclusions

This paper has proposed a novel MTFS method based on adaptive graph learning and
global target correlations to perform feature selection in MTR problem. Considering the
existence of feature redundancy and noise in the original data, adaptive graph learning
based on the sample local structure is introduced. Meanwhile, a manifold regularizer
based on the target correlations is constructed to explore the inter-target correlation, which
enables the regression matrix to consider the correlation between targets in the sparse and
low-rank learning process. Finally, an alternating optimization algorithm is proposed to
solve the objective function of the MTFS problem, and the convergence of the algorithm
is demonstrated both theoretically and empirically. Through extensive experiments, it is
demonstrated that the proposed method has superior performance compared with other
mainstream embedding MTFS algorithms. The proposed method can effectively select
features for MTR data, and then improve the efficiency and accuracy of MTR modelling.

In the future, we will extend the proposed method to cope with the semi-supervised
and unsupervised feature selection tasks in MTR scenarios, we will try to introduce more
manifold constraints and low-rank structures to the feature selection problem of MTR and
test its performance and we will also explore whether it can solve the feature selection
problem in multi-task learning and MLC.
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