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Abstract: The classification of certain agricultural species poses a formidable challenge due to their
inherent resemblance and the absence of dependable visual discriminators. The accurate identifica-
tion of these plants holds substantial importance in industries such as cosmetics, pharmaceuticals,
and herbal medicine, where the optimization of essential compound yields and product quality is
paramount. In response to this challenge, we have devised an automated classification system based
on deep learning principles, designed to achieve precision and efficiency in species classification.
Our approach leverages a diverse dataset encompassing various cultivars and employs the Parallel
Artificial Multiple Intelligence System–Ensemble Deep Learning model (P-AMIS-E). This model
integrates ensemble image segmentation techniques, including U-Net and Mask-R-CNN, alongside
image augmentation and convolutional neural network (CNN) architectures such as SqueezeNet,
ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1. The culmination of these elements results in
the P-AMIS-E model, enhanced by an Artificial Multiple Intelligence System (AMIS) for decision
fusion, ultimately achieving an impressive accuracy rate of 98.41%. This accuracy notably surpasses
the performance of existing methods, such as ResNet-101 and Xception, which attain 93.74% accu-
racy on the testing dataset. Moreover, when applied to an unseen dataset, the P-AMIS-E model
demonstrates a substantial advantage, yielding accuracy rates ranging from 4.45% to 31.16% higher
than those of the compared methods. It is worth highlighting that our heterogeneous ensemble
approach consistently outperforms both single large models and homogeneous ensemble methods,
achieving an average improvement of 13.45%. This paper provides a case study focused on the
Centella Asiatica Urban (CAU) cultivar to exemplify the practical application of our approach. By
integrating image segmentation, augmentation, and decision fusion, we have significantly enhanced
accuracy and efficiency. This research holds theoretical implications for the advancement of deep
learning techniques in image classification tasks while also offering practical benefits for industries
reliant on precise species identification.

Keywords: Centella Asiatica; linn; urban; ensemble deep learning; image segmentation; image
enhancement; medicinal plants; traditional medicine; pharmaceuticals
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1. Introduction

The Centella Asiatica Urban (CAU) cultivar holds paramount significance within
the realms of agriculture and pharmaceutics, owing to its heterogeneous characteristics
and specialized cultivation prerequisites. Particularly in regions like Thailand, a myriad
of CAU cultivars exhibit diverse levels of resilience to pests and diseases, coupled with
variations in the concentration of vital compounds. Such variability necessitates be-spoke
cultivation practices to maximize the yield of these essential compounds and to ensure the
highest standard of product quality. This underscores the critical need for an accurate and
precise classification of CAU cultivars, thereby providing a compelling rationale for our
research [1,2].

Historically, the domain of automated plant classification has been predominantly
centered around disease detection and the identification of general species, employing
methodologies such as Multi-Layer Perceptron (MLP), the k-Nearest Neighbor (k-NN)
algorithm, and stacked autoencoders. While these approaches have proven efficacious in
certain scenarios, they are notably deficient in their capacity to accurately classify specific
cultivars such as CAU. This limitation primarily stems from their inability to discern the
intricate nuances and complex attributes that are unique to various CAU cultivars, resulting
in inefficiencies and inaccuracies in classification processes [3,4].

In an endeavor to surmount these challenges, our research introduces the innovative
Parallel-Artificial Multiple Intelligence System-Ensemble (P-AMIS-E) model, a cutting-edge,
deep learning-based classification system. The P-AMIS-E model adeptly amalgamates an
array of ensemble image segmentation techniques, including U-Net and Mask R-CNN,
with image augmentation and diverse Convolutional Neural Network (CNN) architectures.
This synergy enhances the accuracy and efficiency of classification, enabling a more detailed
and nuanced analysis of the unique characteristics inherent to CAU cultivars [5–7].

In an endeavor to surmount these challenges, our research introduces the innovative
Parallel Artificial Multiple Intelligence System–Ensemble (P-AMIS-E) model, a cutting-edge,
deep-learning-based classification system. The P-AMIS-E model adeptly amalgamates an
array of ensemble image segmentation techniques, including U-Net and Mask R-CNN,
with image augmentation and diverse convolutional neural network (CNN) architectures.
This synergy enhances the accuracy and efficiency of classification, enabling a more detailed
and nuanced analysis of the unique characteristics inherent to CAU cultivars [8].

This study introduces the Parallel-Artificial Multiple Intelligence System-Ensemble
Deep Learning model (P-AMIS-E), marking a significant advancement in the field of agri-
cultural species classification, specifically targeting the complex identification of Centella
Asiatica Urban (CAU) cultivars. The P-AMIS-E model’s novelty lies in its unique blend of
cutting-edge deep learning techniques, which include:

1. We present the Ensemble of Convolutional Neural Network (CNN) Architectures: Inte-
grating various CNN architectures like SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3,
and InceptionV1, our model robustly tackles the intricacies in cultivar classification
while minimizing overfitting.

2. Advanced Image Segmentation Techniques: Employing a combination of U-net and
Mask-R-CNN segmentation methods, the model achieves a precise and detailed
analysis of CAU cultivars, enhancing classification accuracy.

3. Innovative Use of an Artificial Multiple Intelligence System (AMIS): The adaptation of
AMIS for decision fusion in the P-AMIS-E model optimizes the classification accuracy.

4. Practical and Theoretical Implications: The model has significant implications for the
agricultural and pharmaceutical industries, where precise species identification is key.
Additionally, it contributes to the theoretical advancement of deep learning in image
classification, setting new standards for real-world applications.
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These contributions underscore the study’s importance in bridging the gap in auto-
mated plant classification, particularly for complex cultivars like CAU, and advancing deep
learning methodologies in practical and theoretical domains.

The structure of the article is meticulously organized as follows: Section 2 delves into
the related literature, Section 3 elucidates the research methodology employed, Section 4
delineates the computational results obtained, Section 5 engages in a comprehensive
discussion of the research findings, and finally, Section 6 culminates with the conclusion
and offers perspectives on future research directions.

2. Related Literature

In this section, we endeavor to compartmentalize the literature review into three
distinct components: (1) an examination of the rationale behind the classification of the CAU
cultivar, (2) a comprehensive assessment of the deep learning methodologies employed in
the classification of plant science data, and (3) an in-depth analysis of the decision fusion
strategies utilized in ensemble-based deep learning models.

2.1. Cultivar Differentiation in CAU

Accurate cultivar differentiation in Centella Asiatica (Linn.) Urban (CAU) holds critical
significance for several compelling reasons. First, it serves as the foundation for distinguish-
ing various species within the Centella genus, such as Centella cordifolia and Centella erecta,
which exhibit distinct morphological and genetic characteristics [1]. This differentiation
enables a deeper exploration of the chemical composition and pharmacological properties
unique to each species. Variations in the triterpene glycosides, phenolics, and antioxidant
capacity among different Centella species have been documented [2]. Understanding these
differences is pivotal for medicinal development and the formulation of herbal products.

Furthermore, precise cultivar differentiation plays a pivotal role in the authentic
identification of CAU. In Indian systems of medicine, CAU is renowned for its memory-
enhancing and nervine-disorder-treating properties [9,10]. Ensuring the authenticity of
CAU cultivars is crucial for advancing scientific research, medicinal development, and
quality control standards in the herbal product industry.

The impact of cultivar differentiation in CAU extends to the realm of quality control
in medical product manufacturing. Distinct CAU cultivars have been found to exhibit
variations in macroscopic and histomorpho-diagnostic profiles, as well as the triterpenoid
content and yield. These variations have implications for the pharmacognostic characteri-
zation and regulatory aspects of quality control measures for crude drugs. Additionally,
the choice of cultivar can influence the biotechnological production of centellosides, the
bioactive compounds in CAU. Research has demonstrated that polyploidy induction can en-
hance the medicinal value of CAU, resulting in higher yields and triterpenoid contents [11].
Hence, a comprehensive understanding of cultivar differentiation in CAU is indispensable
for ensuring the consistent and high-quality production of medicinal products derived
from this plant [12,13].

Moreover, CAU cultivars have exhibited phenotypic plasticity, enabling them to thrive
in diverse environmental conditions [14]. Extensive studies have shed light on the plant’s
growth behavior, revealing that certain soil types, such as sandy and humus soil, are
conducive to rapid propagation [15]. Additionally, challenges related to weed growth,
with Cyperus rotundus L. being a prominent weed species in Centella plantations, have been
identified [1]. The remarkable adaptability of CAU to varying environmental conditions
has made it a valuable asset in ethnomedicinal healthcare systems [16]. Furthermore, the
germination of CAU seeds has been linked to the color of the pericarp, indicating different
stages of seed development [17]. In summary, the cultivation and growth of CAU are
influenced by a multitude of factors, encompassing the soil type, weed control, and seed
development stage.

Distinguishing among different CAU cultivars based solely on their appearance
presents a complex and challenging endeavor [18]. Experts face difficulties owing to mor-
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phological similarities, inconsistent phenotypic expressions, natural hybridization events,
regional naming variations, and the absence of standardized identification systems [19].
Addressing these challenges necessitates collaborative efforts among botanists, horticul-
turists, geneticists, and traditional practitioners in developing comprehensive databases
and analytical tools. By doing so, experts can overcome these obstacles and contribute to
the preservation and advancement of CAU cultivation and utilization. The development
of a rapid and accurate CAU cultivar classification system may prove indispensable in
overcoming these challenges, offering significant benefits to the agricultural community,
particularly in the realm of CAU classification.

2.2. Deep Learning Models for Plant Image Classification

Deep learning methodologies have revolutionized the field of plant sciences, partic-
ularly in automated image classification. These advanced techniques have significantly
enhanced plant classification systems, providing precise tools for identifying and catego-
rizing plant diseases. This progress has had a positive impact on crop productivity and
quality. Among the standout models are convolutional neural networks (CNNs), MnasNet,
SqueezeNet, and ShuffleNetv2. These models have shown exceptional performance in
image classification, especially in detecting plant diseases.

Building on these advancements, recent methods, like the one introduced by Chen
et al., 2022 [20], have taken a leap forward. Their study unveils the Dual-Path Mixed-
Domain Residual Threshold Network (DP-MRTN), a novel approach for bearing fault
diagnosis in noisy environments. This model skillfully combines channel and spatial atten-
tion mechanisms, a residual structure, a soft threshold function, and dilated convolution.
This synergy allows the network to effectively select crucial features without the need for
separate denoising algorithms. The DP-MRTN method has been proven to significantly
enhance the accuracy of fault diagnosis in noisy conditions, achieving over 99% accuracy in
various noise scenarios. It surpasses traditional deep learning techniques, offering a more
robust solution for monitoring mechanical equipment in challenging environments.

However, despite these successes, there is still a research gap in applying models
like Augmented MnasNet, SqueezeNet, and ShuffleNetv2 to CAU cultivar classification.
To bridge this gap, ensemble deep learning techniques have come to the forefront as a
promising approach. These techniques improve accuracy, mitigate overfitting, and increase
robustness. Moreover, the integration of metaheuristic algorithms such as differential evo-
lution, particle swarm optimization, and genetic algorithms into decision fusion strategies
is poised to further boost the effectiveness of ensemble models.

Our study focuses on developing an ensemble deep learning classification model by
harmonizing efficient CNN architectures with advanced image segmentation methods
and metaheuristic-based decision fusion strategies. This approach aims to significantly
improve accuracy and reliability in CAU cultivar classification, thus bridging the existing
research gap. The diverse characteristics and cultivation requirements of the Centella
Asiatica (Linn.) Urban (CAU) cultivar make it an ideal case study. In Thailand, the varying
resistance of CAU cultivars to diseases and pests, along with differences in essential
compound concentrations, necessitates tailored cultivation techniques for an optimal yield
and product quality [16,21,22]. Additionally, the divergence in agronomic traits among
CAU cultivars based on their growth region emphasizes the need for rapid and precise
classification to inform cultivation practices [17,23,24].

Deep learning models have exhibited impressive performances across various plant
image classification domains, including disease identification and flower species recogni-
tion [25]. Notably, models like VGG-Net and the Inception module excel in plant disease
identification, while techniques like 3-D CNN and CNN with ConvLSTM layers have
enhanced plant accession classification through the integration of spatial and temporal data
for improved accuracy [26]. DenseNet121 has also proved effective in accurately classifying
flower species [27]. These studies collectively underscore the effectiveness of deep learning
models in plant image classification, often achieving accuracy rates exceeding 94%.
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Among the standout models in plant classification research are MnasNet, SqueezeNet,
and ShuffleNetV2. These models have demonstrated their prowess in various applications.
For instance, SqueezeNet achieved a remarkable 96% accuracy rate in citrus fruit disease
classification, and ShuffleNetV2 demonstrated efficient low-power image classification
for edge computing [28,29]. Furthermore, Patil utilized a support vector machine (SVM)
classifier in combination with various features for plant identification, achieving an overall
accuracy of 78% [30]. Additionally, Heredia explored the application of deep learning
models like ResNet50 in large-scale biodiversity monitoring, noting substantial accuracy
improvements over existing methods [31,32].

MnasNet, SqueezeNet, and ShuffleNetv2 each offer unique advantages in plant
classification. MnasNet, being a lightweight neural network, achieves a high accuracy
with a minimal computational cost [33]. SqueezeNet, another compact model, excels
in rapid image processing on edge devices while maintaining a high accuracy. Shuf-
fleNetv2, known for its multihop lightwave network, leverages optical interconnection to
enhance rapid packet communication, thus reducing fiber cabling congestion and enabling
modular growth [34,35]. These models exemplify the potential of efficient and effective
deep learning models across various applications, including computer vision and natural
language processing.

Ensemble deep learning models play a critical role in improving disease detection and
pest recognition accuracy in plant classification by combining the strengths of multiple
models for enhanced generalization [36–39]. Deep ensemble models, which merge deep
learning with ensemble learning, exhibit remarkable generalization performance, holding
great potential for transforming plant recognition systems. Deep ensemble neural networks
(DENNs) have even surpassed state-of-the-art pre-trained models in plant disease detec-
tion [39]. Additionally, model compression techniques, such as pruning and quantization,
have successfully reduced the computational demands of deep learning models in plant
seedling classification without significant accuracy loss [40]. Despite the advantages and
high accuracy of models like MnasNet, SqueezeNet, and ShuffleNetv2, the application of
ensemble deep learning in these contexts remains an underexplored area of research. Our
study aims to develop a CAU cultivar classification system by harnessing ensemble deep
learning with these models, ultimately advancing plant classification and contributing to
the development of robust plant recognition systems.

In addition to deep learning models, preprocessing techniques such as image segmen-
tation and augmentation play a crucial role in plant classification systems. Methods like
U-Net and R-Net segmentation have found successful application in various plant science
contexts [41]. For example, 3D U-Net has been used to segment root and soil volumes in
MRI scans, enhancing the signal-to-noise ratio and resolution. Another study leveraged a
U-Net-based CNN for segmenting root images from rhizotrons, yielding strong correlations
with manual annotations. Additionally, an EncU-Net model, based on U-Net architecture,
achieved over 90% success in lesion segmentation in dermoscopic images, demonstrating
the efficacy of these segmentation methods in plant science [16].

2.3. Decision Fusion Strategy in Ensemble Deep Learning

In ensemble deep learning, decision fusion strategies play a pivotal role in enhancing
the generalization performance by combining the decisions of multiple models. These
strategies encompass static fusion and dynamic fusion methods. Static fusion assumes
uniform capabilities among agents or disregards agents with subpar performance, whereas
dynamic fusion adapts to the competence of each base agent on test states. A dynamic
fusion method for deep reinforcement learning, for instance, measures base agent perfor-
mance on validation states and adjusts agent weights based on their performance and
similarity to new states [42]. Decision-level fusion methods have found applications in
diverse domains, including COVID-19 patient health prediction through calibrated en-
semble classifiers employing a soft voting technique [43]. In target recognition tasks, an
ensemble-learning-based information fusion model has improved the recognition abilities



Mathematics 2024, 12, 351 6 of 36

of distributed sensors [44]. Ensemble learning frameworks have also enhanced cooperative
spectrum sensing in cognitive radio systems, utilizing convolutional neural networks and
fusion strategies for global decision making [45].

Metaheuristic techniques like swarm intelligence (SI) and evolutionary computing
(EC) have effectively optimized deep neural networks (DNNs) in various tasks [46]. They
excel in generating optimal hyperparameters and structures for DNNs when dealing with
extensive datasets [47]. Ensemble learning has further been applied to enhance sentiment
analysis [48], text classification [49], and epileptic seizure prediction [50]. For instance,
a stacking ensemble approach boosted accuracy in sentiment analysis by leveraging the
strengths of different deep models.

Artificial multiple intelligences systems (AMISs) were initially proposed by Pitakaso
et al. [8] to streamline the agricultural product flow from Thailand to neighboring countries.
Subsequently, an AMIS was employed to determine optimal weights for ensemble deep
learning models in classifying various medical images [51,52]. Recently, an AMIS was
utilized to optimize ensemble classification models in two stages, combining different
image segmentation methods and CNN architectures. This double ensemble model outper-
formed traditional fusion methods like unweighted averages and majority voting, yielding
outstanding accuracy.

In this research, AMIS will combine two segmentation methods and three CNN
architectures for CAU cultivar classification. However, modifications are required, as the
original AMIS used in [53] cannot be directly applied. New improvement methods are
introduced, and adjustments to the probability function for selecting improvement methods
will be made.

3. Research Methods

The proposed research entails the creation and deployment of an automated classifi-
cation system for CAU species utilizing the parallel AMIS ensemble model (P-AMIS-E).
Initially, diverse CAU species will be collected and photographed to constitute the training
and testing datasets. Subsequently, the P-AMIS-E model will be developed, trained, and
tested on this dataset, aiming to enhance species classification accuracy and efficiency while
minimizing manual intervention. The model’s performance will be assessed and analyzed
in subsequent sections of this paper.

3.1. Dataset Preparation

The Centella Asiatica Urban (CAU) specimens were gathered from diverse production
sources. The study encompassed five distinct CAU cultivars, specifically Rayong, Cha-
choengsao, Nakhon Pathom, Ubon Ratchathani, and Prachin Buri. Each of these cultivars
underwent uniform cultivation conditions and care procedures for a duration of 12 weeks.
Fresh leaf samples from all cultivars were meticulously collected and photographed against
a white background to ensure consistency.

The dataset was subsequently partitioned into two subsets: CALU-1 and CALU-2.
The CALU-1 dataset served as the training and testing set for the model, while the CALU-2
dataset remained unseen and was reserved for validation purposes. The total number of
images present in both datasets is detailed in Table 1.

Table 1. Detail of the datasets in CALU-1 and CALU-2.

CALU-1 CALU-2

CM NP NR NS NT NB PB RB SK UB CM NP NR NS NT NB PB RB SK UB

Training set 1005 1089 1000 1000 1007 1000 1056 1056 1090 1000 - - - - - - - - - -
Testing set 504 504 500 500 505 570 506 594 539 500 500 502 500 541 528 500 575 594 568 500

Total 1509 1593 1500 1500 1512 1570 1562 1650 1629 1500 500 502 500 541 528 500 575 594 568 500

Note: Chiang Mai: (CM), Nakhon Pathom: (NP), Nakhon Ratchasima: (NR), Nakhon Si Thammarat:
(NS), Narathiwat: (NT), Nonthaburi: (NB), Prachin Buri: (PB), Ratchaburi: (RB), Songkhla: (SK), Ubon
Ratchathani; (UB).
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Based on the data presented in Table 1, CALU-1 was split into two subsets, namely,
the train dataset (80%) and the test dataset (20%). The CALU-1 dataset contained a total of
3240 images, whereas CALU-2 consisted of 3591 images and was only utilized to evaluate
the effectiveness of the proposed method. Examples of all five types of Centella asiatica (L.)
Urban from both datasets are shown in Figure 1.
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Figure 1. Example of all types of Centella asiatica (L.) urban from both datasets.

3.2. Develop the P-AMIS-E

The development of the P-AMIS-E comprised four steps: (1) image augmentation,
(2) the ensemble of two types of image segmentation, (3) the ensemble of various types of
CNN architectures, and (4) the application of AMIS as the decision fusion strategy. The
workflow diagram of the P-AMIS-E is shown in Figure 2.
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In accordance with Figure 2, the proposed methodology was initiated by inputting the
training images into the image segmentation methods. Subsequently, the training images
underwent processing within the ‘ensemble image segmentation procedure’. During this
stage, the Adaptive Metaheuristic-based Image Segmentation (AMIS) served as the decision
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fusion strategy for the proposed model. Following this step in the diagram, the images
were input into the ensemble convolutional neural network (CNN) model, culminating in
the final prediction. For the testing dataset, the images were directed straight to the image
segmentation procedure, utilizing the model previously trained on the training dataset to
predict the ultimate class of each image. To elucidate the proposed algorithm, we provide a
stepwise explanation in the following subsections.

3.2.1. Image Augmentation

To enhance the performance of an automated classification model for CAU species, a
variety of image augmentation techniques were employed, including rotation (at angles of
90, 180, and 270 degrees), flipping (both horizontally and vertically), zooming at different
scales, cropping to focus on specific plant parts, adding Gaussian noise for varying pixel
intensity and lighting condition simulation, color jitter for random adjustments in bright-
ness, contrast, saturation, and hue, and shearing to skew the original images and improve
perspective recognition.

Through the application of these augmentation techniques, the diversity of the training
dataset was increased, leading to the improved performance of the classification model.
The augmented dataset was then utilized to train the model, resulting in high accuracy and
robustness in recognizing CAU species [54–56].

3.2.2. Image Segmentation

This study employed two image segmentation methods, U-Net and Mask R-CNN, to
segment the important features of the CAU’s leaf. U-Net was chosen for leaf segmentation
due to its suitability for images with limited training data, particularly in medical image
analysis [57,58]. The U-Net architecture consists of an encoder network and a decoder
network connected by a bottleneck layer. The encoder network captures contextual in-
formation, while the decoder network generates the segmentation mask. U-Net has been
successful in various image segmentation tasks, including the segmentation of organs, tu-
mors, and blood vessels in medical imaging, and other segmentation tasks such as satellite
and microscopy image segmentation. The success of U-Net is attributed to several factors,
including the use of skip connections that recover spatial information, its relative light
weight and efficiency, and its adaptability to different segmentation tasks and datasets.

Mask R-CNN is a state-of-the-art deep learning algorithm that performs object de-
tection and instance segmentation simultaneously. It extends Faster R-CNN by adding a
parallel branch for predicting segmentation masks. Mask R-CNN outputs a set of bounding
boxes, class labels, and segmentation masks to precisely segment objects at the pixel level.
A small convolutional neural network produces the mask for each region proposal gen-
erated by the object detection branch [59,60]. Mask R-CNN’s versatility and effectiveness
make it useful in various computer vision applications, such as autonomous vehicles,
medical image analysis, and robotics, as it performs both object detection and instance
segmentation simultaneously.

The segmentation of images of the CAU’s leaf will be conducted through the utiliza-
tion of two distinct methodologies: U-Net and Mask-R-CNN. Subsequently, the outcomes
derived from these two approaches will be amalgamated to yield a unified solution, em-
ploying an Artificial Multiple Intelligence System (AMIS). The framework depicting the
ensemble segmentation is visually depicted in Figure 3.

The proposed approach involves the integration of two diverse image segmentation
methods, namely, U-Net and Mask-R-CNN, to form a unified solution. This fusion will
be achieved through the optimization of weights assigned to the outcomes obtained from
U-Net and Mask-R-CNN networks.

Z = ∑I
i=1 WiYi (1)
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The segmentation solution is formulated through the utilization of Equation (1), where
Yi represents the outcome derived from segmentation method I, Wi denotes the weight
assigned to each method obtained from the AMIS, and Z represents the ultimate predictive
value of the AMIS-ensemble segmentation. The AMIS algorithm will be explained in
Section 3.2.4.

3.2.3. Ensemble the CNN Models

To establish an Automated Classification model for CAU species based on a convolu-
tional neural network (CNN) architecture, it is imperative to choose a suitable model that
encompasses precision and efficiency. In this investigation, we explore a series of compact
yet impactful CNN architectures as candidates for this purpose.

We elaborate on our innovative ensemble Convolutional Neural Network (CNN)
model, specifically engineered for the classification of the Centella Asiatica Urban (CAU)
cultivar. A key aspect of this model is its adherence to a strict size constraint, remaining
under 80 MB to facilitate deployment in fast-response environments. This is achieved
through the integration of a series of lightweight yet proficient CNN architectures within
an ensemble framework.

The ensemble configuration encompasses an ensemble of nine distinct neural network
architectures, comprising four instances of SqueezeNet models, each approximately 5 MB in
size, three ShuffleNetv2 1.0x models, with an individual model size of approximately 6 MB,
one Inception v1 model, occupying an approximate space of 20 MB, and three MobileNetV3
models, each weighing approximately 6 MB. In aggregate, the ensemble model consumes a
total storage space of 77 MB. The selection of these models was grounded in their efficiency
and capacity to conduct a nuanced analysis of the input data, which, in the context of our
research, encompasses diverse imagery of CAU cultivars. For more comprehensive details
regarding these architectural choices, refer to references [61–64].

Central to our ensemble model is the application of an Artificial Multiple Intelligence
System (AMIS) in the decision fusion layer. This innovative strategy leverages the strengths
of each model in the ensemble, utilizing AMIS to intelligently integrate their individual
predictions. The AMIS approach in the decision fusion layer assesses the outputs from
the SqueezeNet, ShuffleNetv2, Inception v1, and MobileNetV3 models, considering each
model’s confidence and accuracy to formulate a final classification decision.

The diagram (Figure 4) depicts this ensemble architecture, illustrating the individual
data processing paths of the CNN models and their convergence at the AMIS-based
decision fusion layer. This layer is the linchpin of our ensemble model, where the combined
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intelligence and analytical power of the individual models are synthesized to achieve an
optimal balance between accuracy and computational efficiency.
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Through the AMIS in the decision fusion layer, our ensemble model not only ensures
a comprehensive and nuanced analysis of CAU cultivars but also maintains the agility and
responsiveness essential for real-time classification applications. This unique integration of
multiple CNN architectures with the AMIS-driven decision fusion represents a significant
advancement in agricultural species classification, particularly in environments where the
speed and model size are critical constraints.

This refined approach to decision fusion within our ensemble model exemplifies
the practical application of advanced AI techniques in agricultural settings. It marks a
significant step forward in addressing the challenges of accurate CAU cultivar classification
while adhering to the constraints of fast-response applications and model efficiency.

To test the effectiveness of the proposed model, we will compare the method with the
homogenous SqueezeNet, the ShuffleNetv2 1.0x model, and MobileNetV3 and the state-of-
the-art single model which has a size of 80–120 MB, ResNet-101 (102 MB) [65], Xception
(88 MB) [66], NASNet-A Mobile (84 MB) [67], and MobileNetV3-Large (113 MB) [64] to be
fairly compared to the proposed model. Details of the proposed and compared methods
are shown in Table 2.

According to the data presented in Table 2, our proposed model will undergo a
comparative analysis with diverse methodologies, encompassing both individual large
models and homogeneous ensemble models, with model sizes ranging from 80 to 113 MB.
To facilitate a fair comparison, all methods will be re-implemented based on the conceptual
frameworks provided in the references. Subsequently, comprehensive testing of these
methods will be conducted on the established dataset.
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Table 2. List of the proposed method’s details.

Methods Number of CNNs Homogenous (Ho)/Heterogenous (He)/
Single Model (Single) Total Size

ResNet-101 [65] 1 Single 102
Xception [66] 1 Single 88
NASNet-A Mobile [67] 1 Single 84
MobileNetV3-Large [64] 1 Single 113
SqueezeNet [61] 16 Homogenous 80
ShuffleNetv2 1.0x [62] 14 Homogenous 84
MobileNetV3 [64] 14 Homogenous 84
InceptionV1 [63] 4 Homogenous 80

Proposed Methods 11 Heterogenous 77

3.2.4. Parallel-AMIS-Ensemble Model (P-AMIS-E)

AMIS decision fusion strategies will be used in two parts of the proposed model
parallelly. Figure 5 demonstrates the parallel-AMIS-ensemble model used in this study.
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Figure 5 demonstrates the synergistic application of U-Net and Mask R-CNN for the
segmentation of Centella Asiatica Urban (CAU) leaf imagery. U-Net’s encoder–decoder
architecture is particularly adept at processing images with sparse data, a scenario preva-
lent in medical image analysis. Characterized by skip connections, U-Net’s design adeptly
recovers spatial information, thereby augmenting its efficiency and versatility across a
spectrum of segmentation tasks. Complementing U-Net, Mask R-CNN, an advanced
iteration of Faster R-CNN, incorporates a parallel branch dedicated to predicting segmen-
tation masks alongside object detection. This results in meticulously detailed pixel-level
segmentation, encompassing bounding boxes, class labels, and masks, all produced by a
succinct convolutional network. Mask R-CNN’s bifunctional capability renders it a highly
adaptable tool in a variety of contexts, including autonomous vehicles, medical imaging,
and robotics.

The fusion of U-Net and Mask R-CNN, as depicted in Figure 5, capitalizes on the
distinct strengths of each method, culminating in a comprehensive solution adept at
navigating the intricacies of CAU leaf segmentation. The integration process utilizes an
Artificial Multiple Intelligence System (AMIS) to merge the results from both segmentation
techniques, thereby significantly enhancing the precision of cultivar classification.

In the P-AMIS-E model, the journey begins with the initial image, intended to discern
various CAU cultivars. This image is subjected to dual segmentation techniques—U-Net
and Mask-R-CNN—whose outputs are subsequently unified within the AMIS ensemble
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framework. Following segmentation, geometric image augmentation is applied, prepar-
ing the segmented images for analysis by four distinct CNN architectures: SqueezeNet,
ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1.

Each CNN architecture contributes a unique perspective, yielding four separate pre-
dictions in every iteration. The P-AMIS-E model synthesizes these individual insights into
a singular, cohesive prediction using the AMIS framework. Thus, the Parallel-Artificial
Multiple-Intelligence System-Ensemble (P-AMIS-E) model emerges as the culmination of
this intricate and multifaceted approach, standing as a testament to the power of integrated
artificial intelligence in the realm of plant cultivar classification.

The AMIS framework consists of four key stages, namely, (1) the generation of initial
work packages (WP), (2) the selection of the intelligences box (IB) by the WP, (3) the
performance of the improvement procedure utilizing the selected IB, (4) updating heuristics
information, and (5) the iterative repetition of steps (2) to (4) until the termination conditions
are satisfied.

In our investigation, we have adopted a customized adaptation of the Artificial Multi-
ple Intelligence Systems (AMIS) as the favored technique for decision fusion, effectively
employed in both image segmentation and the integration of Convolutional Neural Net-
work (CNN) architectures. The conceptual foundation of AMIS was originally put forth by
Pitakaso et al. [8]. This study builds upon the AMIS model proposed by the aforementioned
author, which was designed to optimize the transborder agricultural production logistic
network in the north-eastern region of Thailand.

The AMIS framework consists of a coherent sequence of five steps, encompassing (1)
the generation of the initial set of work packages (WPs), (2) the selection of the preferred
intelligent box (IB) by the WPs, (3) the implementation of the improvement method by the
WPs using the selected IB, (4) the updating of heuristics information, and (5) the iterative
execution of steps (2) through (4) until the predefined termination conditions are met.

The utilization of AMIS shall be applied to ascertain the most favorable weighting
scheme for amalgamating dissimilar solution types acquired from a variety of segmentation
methods and architectures. This specific approach will be juxtaposed with alternative
decision fusion strategies—notably, the unweighted average model (UWM), along with
the adapted differential evolution algorithm (DE) proposed by Kabanikhin [68], and the
modified Genetic algorithm (GA) proposed by S. Yang & Collings [69]. By employing
this comparative analysis, we aim to discern the efficacy and superiority of AMIS in
enhancing the fusion of diverse solutions, thereby contributing to advancements in the
field of segmentation methodologies and architectural integration.

The unweighted average model (UWA) is characterized by its equitable distribution of
weight across each prediction value

(
Yij

)
, where ‘i’ denotes the CNN label and ‘j’ indicates

the prediction class, a representation applicable to segmented image classes, denoted by 0
or 1. The fusion process of the UWA is governed by Equation (2), while AMIS, DE, and GA
employ Equation (3) to compute the final weight. Here, Yij signifies the predicted value of
CNN ‘i’ for class ‘j’ prior to the application of both equations.

Subsequently, upon merging multiple CNN results, Vj is utilized to categorize class
‘j’, with each CNN ‘i’ assigned a weight (Wi) based on the total number of CNNs or
segmentation methods (I) and the number of classes (J). This methodology ensures a
comprehensive and systematic approach to determining the final weights and achieving an
effective fusion of diverse CNN outputs, thereby contributing to the enhanced classification
performance and segmentation results in our study.

Vj =
∑I

i=1 Yij

I
(2)

Vj = ∑I
i=1 WiYij (3)

In this investigation, AMIS, DE, and GA were employed to ascertain the optimal
value of Wi in the given scenario. The unweighted average decision fusion strategy (UWA)
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presents a straightforward and computationally efficient approach for integrating ensemble
deep learning models. UWA distributes equal weights to each CNN, which facilitates the
ease of implementation and interpretation. However, UWA’s limitation lies in its lack of
optimization capabilities, impeding its ability to finely tune the ensemble performance.

On the other hand, Differential Evolution (DE) exhibits robust global search capa-
bilities, rendering it suitable for addressing intricate optimization problems, particularly
those characterized by noisy landscapes. DE adapts adeptly to multimodal search spaces;
nevertheless, it may converge at a slower pace and necessitate greater memory resources
due to its population-based approach.

In contrast, the Genetic Algorithm (GA) strikes a harmonious balance between ex-
ploration and exploitation, enabling faster convergence. Nonetheless, GA’s performance
may be sensitive to parameter settings, and it may encounter challenges in highly complex
landscapes. Each of these methods, with their unique strengths and limitations, contributes
to the diversification of decision fusion approaches, offering valuable insights into opti-
mizing ensemble performance for deep learning models. AMIS can be explained stepwise
as follows.

Generate the Initial Work Package

In this section, we undertake the generation of WPs at random, where each WP
is characterized by dimensions of 1 × D, with ‘D’ representing the number of image
segmentation methods or the CNN architectures under consideration. To initiate this
process, we employ a real number for the first track, uniformly and randomly generated
within the interval of 0 and 1, as governed by Equation (4).

Xki1 = U(0, 1) (4)

Within this context, the notation Xki1 pertains to the specific value within WP ‘k’ at ele-
ment ‘i’ during the first iteration. Here, ‘i’ denotes the count of available CNN/segmented
methods, while ‘k’ signifies the predetermined number of WPs. Moreover, alongside
the primary set of WPs, two supplementary sets, denoted as the best work package
(BWP) and random work package (RWP), were also stochastically generated during the
initial iteration.

BWPki1 = U(0, 1) (5)

RWPki1 = U(0, 1) (6)

Within the provided context, BWPkit denotes the set comprising the best solutions
acquired from the initial iteration up to iteration ‘t’, whereas RWPkit is a randomly selected
set determined by a specific formula. During the inaugural iteration, both BWPkit and
RWPkit were generated randomly utilizing Equations (5) and (6), respectively. Subsequently,
Equation (7) was employed to update Xkit, whereby the value of Xkit in iteration ‘t + 1’
is derived from the value of Xkit in iteration ‘t’, employing a selected Improvement Box
(IB) operator. For instance, an illustrative track with D = 5 is as follows: {0.11, 0.28, 0.19,
0.94, 0.75}. This WP’s value will undergo recalculation to obtain the value of Wi, entailing
further steps in the iterative process.

Pki =
Xki

∑i
i=1 Xki

(7)

Equation (8) has been adapted to address the variability arising from the presence of
‘k’ number of WPs. To this end, Ckj is employed for classifying class ‘j’ based on WP ‘k’,
while Pki represents the weight associated with the CNN/segmentation method ‘i’ utilizing
values from WP ‘k’.

Ckj = ∑I
i=1 PkiYij (8)

Perform WP Improvement Procedures
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The work packages (WPs) undergo iterative execution, wherein the enhancement of
solutions is achieved through the application of intelligence boxes (IBs). In this study, we
adopt a selection of IBs, specifically differential evolution (DE)-inspired variants, namely,
DEI-I, DEI-II, and DEI-III, along with additional methods, such as random crossover (RC),
single-bit mutation inspired (SMI), SWAP, restart (RT), and scaling factors (SF). Each of
these methods is incorporated using formulaic expressions, as provided in Equations (9)
through (16), respectively. These IBs collectively contribute to the systematic improvement
of solutions, thereby enhancing the efficacy of our approach in the research domain.

Xkit = Xr1it−1 + F1(Xr2it−1 − Xr3it−1) (9)

Xkit = Xr1it−1 + F1(Xr2it−1 − Xr3it−1) + F2(Xr4it−1 − Xr5it−1) (10)

Xkit = Xr1it−1 + F1
(

Bgbest
i − Xrit−1

)
+ F2(Xr2it−1 − Xr3it−1) (11)

Xkit =

{
Xkit−1 i f Rki ≤ CR
Rkit−1 otherwise

(12)

Xkit =

{
Xkit−1 i f Rki ≤ CR
Xr1it−1 otherwise

(13)

Xkit = Bgbest
i + F1(Xr1it−1 − Xrit−1) + F2(Xr2it−1 − Xr3it−1) (14)

Xkit = Rki (15)

Xkit =

{
Xkit−1 i f Rki ≤ CR
RkiXkit−1 otherwise

(16)

The set of randomly selected work packages, denoted as r1, r2, r3, r4, and r5, ex-
cludes work package ‘k’. Furthermore, Rkit represents a randomly generated number
corresponding to work package ‘k’ at position ‘i’ during iteration ‘k’, and Rki denotes a
random number corresponding to work package ‘k’ at position ‘i’. The crossover rate (CR)
is set to 0.7, determining the frequency of crossover operations during the simulation.

The notation Bgbest
i designates the best work package found thus far in the simulation.

These defined parameters and notations play pivotal roles in facilitating the comprehensive
exploration and optimization of work packages during the simulation process.

In the process of IB selection, each WP has the liberty to choose an IB in the current
iteration, without being bound by the IB chosen in the last or prior iterations. However, the
likelihood of selecting each IB may vary, being either reduced or increased based on the
quality of solutions generated using that particular IB. The probability function governing
the selection of IB ‘b’ in iteration ‘t’ is described by Equation (17). Within this equation,
when the parameter ‘F’ is assigned a value of 0.4, ‘Abt’ denotes the average solution quality
derived from all tracks that have hitherto chosen IB ‘b’, iteration ‘t’. Abest

t−1 signifies the
average solution quality of tracks that have previously selected the ‘best’ information bit,
which is determined by its highest average accuracy. ρ denotes the constant number which
is set to “20”. Additionally, ‘Nbt−1’ represents the count of tracks that have selected IB ‘p’
up to the current iteration. The parameter ′Ibt−1’ increases by 1 if IB ‘b’ contains the best
work package, ‘Bgbest

i ’, otherwise it remains unchanged. The constant parameter ‘K’ has
been set to 30, and Q is defined as the constant number which is set to 100. It is noteworthy
that all predefined parameters have been meticulously established through the preliminary
tests conducted during the course of this research, ensuring their appropriateness for the
optimization process.

Pbt =
FNbt−1 + (1 − F)Abt−1 + KIbt−1 + ρ Q

|Abt−1−Abest
t−1 |

∑B
b=1 FNbt−1 + (1 − F)Abt−1 + KIbt−1 + ρ Q

|Abt−1−Abest
t−1 |

∣∣∣∣ (17)
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Equation (17) serves as a probability function that guides the selection of ‘IB’, denoted
as ‘b’, during iteration ‘t’. This equation derives from four distinct components, each
drawing from historical data related to the performance of various ‘IBs’. These components
collectively inform the likelihood of selecting ‘IB’ ‘b’ based on its past performance.

The first component quantifies how frequently ‘IB’ ‘b’ has been chosen in previous
iterations. This metric reflects the popularity of ‘IB’ ‘b’ among the selection process and
implies that more frequently selected ‘IBs’ might have the potential to yield superior
solutions. The second component in Equation (17) calculates the average value of the
‘objective function’ associated with ‘IB’ ‘b’. This component provides insights into the
typical performance level of ‘IB’ ‘b’.

The third component counts the instances where ‘IB’ ‘b’ has consistently outperformed
all other ‘IBs’ in the same iteration. This highlights ‘IB’ ‘b’s ability to consistently find
the best solutions. The final component considers the difference between the average
solution value of ‘IB’ ‘b’ and the ‘best IB’. It introduces an additional dimension to the
evaluation process.

Once these components are combined in Equation (17) to compute the probability of
selecting ‘IB’ ‘b’, a roulette wheel selection method will be employed for the subsequent
step. This roulette wheel selection ensures that ‘WP’ (Worker Package) selects ‘IB’ based
on their respective probabilities. Higher probabilities will correspond to a greater chance
of selection, favoring ‘IBs’ that have consistently demonstrated superior performance in
comparison to others. In summary, Equation (17) and the roulette wheel selection method
work in tandem to choose the most promising ‘IB’ based on their historical performance,
fostering a dynamic and adaptive selection process.

In each iteration, it is imperative to update the values of several parameters in response
to the prevailing conditions. These essential factors encompass Rki, Rkit, Nbt, Abt, Bgbest

i , and
Ibt−1. Subsequently, the selection of IB, the performance on the selected IB, and the updating
of the probability of the IB are executed iteratively until a specified termination condition
is satisfied, such as a predetermined computational time limit or a prescribed number of
iterations. This iterative process ensures the progressive refinement and convergence of the
algorithm, ultimately leading to the attainment of reliable and optimized results within the
specified constraints.

3.3. Performance Measurement Matric and the Comparison Methods

Performance metrics play a pivotal role in assessing the efficacy of deep learning
models, providing valuable insights into their performance on specific tasks and guiding
informed decisions for researchers and practitioners. Notably, accuracy stands as a fun-
damental metric, measuring the proportion of correctly classified instances relative to the
total dataset size and offering an overarching measure of correctness. In Section 3.2.4, we
will undertake a comprehensive performance evaluation, comparing the efficacy of all
individual models and homogeneous ensemble models. Additionally, we will implement
the Vision Transformer (ViT) approach, as presented by [70], to provide a benchmark for
assessing the performance of our proposed model.

In parallel, precision endeavors to minimize false positives by gauging the ratio of
true positive predictions to the total predicted positive instances. Conversely, the recall,
synonymous with sensitivity or the true positive rate, proves indispensable when reducing
false negatives, capturing the ratio of true positive predictions to the total actual positive
instances. The contribution to model evaluation includes the F1-score, which effectively
balances precision and recall, especially when handling imbalanced class distributions.
The calculations for the accuracy, precision, recall, and F1 score can be calculated using
Equations (18)–(21).

Accuracy =
nTP + nTN

nTP + nPN + nFP + nFN
(18)

Precision =
nTP

nTP + nFP
(19)
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Recall =
nTP

nTP + nFN
(20)

F1 − score =
2nTP

2nTP + nFP + nFN
(21)

where nTP is the number of true positives, nTN is the number of true negatives, nFP is the
number of false positives, and nFN is the number of false negatives.

In addition to accuracy, the area under the receiver operating characteristic (ROC)
curve (AUC) is a crucial performance metric, especially for binary classification tasks.
The ROC curve illustrates the trade-off between the true positive rate and false positive
rate, with the AUC representing the area under this curve. Higher AUC values indi-
cate a superior model performance, making it a valuable tool for comparing different
models. These metrics together provide a comprehensive understanding of the strengths
and weaknesses of the deep learning model, which is essential for model selection and
optimization. The function used to calculate ‘AUC’ in our experiment can be found
at ‘https://scikit-learn.org/stable/modules/geneated/sklearn.merics.roc_auc_score.html’
Accepted date (15 January 2024).

This study sets forth to explore the efficacy of two decision fusion strategies: the
“unweighted average” (UWA) approach, which uniformly amalgamates individual clas-
sifier outputs [52], and a tailored artificial multiple intelligence system (AMIS) [8]. AMIS
incorporates the differential evolution algorithm (DE) [51], and genetic algorithm (GA) [53]
to optimize the weights assigned to each classifier, seeking to enhance the performance of
the ensemble classifier.

In summary, the proposed method can be condensed into algorithmic form, as depicted
in Algorithm 1.

Algorithm 1: Construction of the Parallel-Artificial Multiple Intelligence System-Ensemble Deep
Learning model (P-AMIS-E)

Input: Image training set, list the number of each type of CNN architecture.
Step (1) Generate new images with data augmentation on the training set, including the
method: rotation, flipping, zooming, cropping,
Gaussian noise, shearing lighting simulation, brightness, contrast, saturation, and hue.
Step (2) Construct the AMIS-ensemble segmentation.

- Training U-Net and Mask-R-CNN networks.
- Optimize U-net and Mask-R-CNN weights using AMIS in Algorithm 1, whose

objective is to minimize segmentation loss.

Step (3) Segment images in Step (1) using AMIS-ensemble segmentation in Step (2).
Step (4) Construct and train each CNN in the list, and number each type of CNN
architecture with a segmented image set in Step (3).
Step (5) Construct the AMIS-ensemble CNN.

- Predict the CNN output
(

Ykj

)
, with the CNN index k and class j, of all CNNs in

Step (4) from the input segmented image set in Step (3).
- Optimize CNN weights using AMIS, whose objective is to maximize the accuracy

rate on the prediction output Ykj of all CNNs.

Output: AMIS-ensemble CNN with an optimal weight.

The analysis will utilize Gradient-weighted Class Activation Mapping (Grad-CAM)
to elucidate the decision-making process of the AI across different classes within the
classification model. Grad-CAM, a technique enhancing the transparency of convolutional
neural network-based models, achieves this by visualizing essential input regions for
predicting specific classes. The method employs gradients originating from the target
concept, like a classification class, within the final convolutional layer to create a coarse
localization map that highlights significant image areas for concept prediction. Regarding
the computation of neuron importance weights αc

k, we define fk(x, y) as the activation of

https://scikit-learn.org/stable/modules/geneated/sklearn.merics.roc_auc_score.html
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unit ‘k’ in the last convolutional layer at spatial location (x, y). We calculate the gradient of
the score for class ‘c’ (prior to softmax), denoted as yc, with respect to these features fk. The
gradient undergoes global-average pooling over width and height dimensions (indexed by
x and y) to obtain αc

k, as determined by Equation (22).

αc
k =

1
Z ∑x ∑y

∂yc

∂ fk(x, y)
(22)

Let Z denote the number of pixels in the feature map and ∂yc

∂ fk(x,y) represent the gradient.
Concerning the Grad-CAM heatmap Lc

Grad−CAM, it is derived as a weighted summation of
feature maps, subsequently subjected to a ReLU activation, as outlined in Equation (23).
The incorporation of ReLU activation ensures the visualization of features that positively
impact the class of interest while disregarding negative contributions.

Lc
Grad−CAM = ReLU

(
∑k αc

k fk

)
(23)

Visualization involves normalizing the heatmap Lc
Grad−CAM, which is subsequently

superimposed onto the input image. This visualization approach reveals the crucial regions
within the input image that are instrumental in predicting class ‘c’. The utilization of
Grad-CAM enables the acquisition of a visual elucidation for the convolutional neural
network’s decision-making process, emphasizing the distinctive image areas employed by
the model in class identification.

4. Computational Result

In this investigation, two distinct computing resources were harnessed to facilitate
the development and testing of our algorithm. During the training phase, we availed the
computational capabilities of Google Collaboratory, which granted access to an NVIDIA
Tesla V100 boasting 16 GB of RAM and commensurate specifications. This arrangement
proved instrumental in training our model on a robust computing resource, well equipped
to manage the taxing computational requirements inherent to our algorithm.

For the evaluation of the proposed model’s performance, we conducted simulations on
a separate computing system, equipped with two Intel Xeon-2.30GHz CPUs, 52 GB of RAM,
and a Tesla K80 GPU with 16 GB of GPU RAM. The meticulous selection of this computing
system was based on its ability to proficiently handle the computational demands entailed
by our simulation process, thus affording us the opportunity to meticulously assess the
model’s performance. By leveraging these two distinct and high-performance computing
platforms, we attained the precision and dependability required to achieve accurate and reli-
able outcomes throughout our study. The algorithmic and model parameter configurations
are presented within Table 3 for reference.

Table 3. Model parameter configurations.

CNN Hyperparameters Metaheuristics (GA, DE, and AMIS) Hyperparameters

Number of CNN epochs of a single model 100 Number of populations (NWP ) 100
Number of CNN epochs in an ensemble 30 Number of iterations (G ) 100
CNN optimizer Adam Crossover rate of DE and AMIS (CR ) 0.3
Learning rate 0.0001 Mutation rate of DE 0.07
Batch size 32 First Scaling Factor of DE (F ) and AMIS (F1 ) 1.67
Image size 331 × 331 Second Scaling Factor of AMIS (F2 ) 1.2
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The experimentation phase was partitioned into three distinct groups, with the experi-
mental framework visually depicted in Figure 6. In the initial group, various combinations
of the proposed methods were rigorously tested to ascertain the optimal performing com-
bination. Subsequently, the second group undertook a comprehensive evaluation of our
proposed method, in contrast to state-of-the-art approaches, utilizing the best combination
of methods identified in the initial group while focusing on the CALU-1 dataset.
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Figure 6. Experimental design framework.

To gauge the efficacy and generalizability of the proposed method, the third group
assessed its performance on an unseen dataset, CALU-2. This methodological division
allowed for a systematic and meticulous evaluation of the proposed approach while also
facilitating a rigorous comparison with existing state-of-the-art methods.

The illustrative framework depicted in Figure 6 served as a clear roadmap for guiding
the experiment’s progression, enabling the achievement of reliable and reproducible results.
By adopting this well-structured experimental design, we could confidently examine the
efficacy of our proposed method and draw meaningful comparisons with the existing
state-of-the-art techniques.

4.1. Unveiling the Optimal Combination of Diverse Model Configurations

As delineated in our research methodology, we leveraged two distinct image seg-
mentation methods—specifically, the Mask R-CNN and U-Net methods, along with an
ensemble of these two methods, achieved through four decision fusion strategies: the
unweighted average (UWA), differential evolution algorithm (DE), genetic algorithm (GA),
and modified artificial multiple intelligence system (AMIS). Additionally, we incorporated
one type of image augmentation method into the experimentation. Consequently, the
entire experimentation encompassed a total of 32 distinct experimental configurations,
meticulously summarized in Table 4.
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Table 4. The design of an experiment to reveal the best combination of the model’s elements.

No.

Segmentation Augmentation Decision Fusion Strategies

No
Segmentation

Mask
R-CNN U-Net Ensemble

Segmentation
No

Augmentation
With

Augmentation AMIS DE GA UWA

1 ✓ - - - ✓ - ✓ - - -
2 ✓ - - - ✓ - - ✓ - -
3 ✓ - - - ✓ - - - ✓
4 ✓ - - - ✓ - - - - ✓
5 ✓ - - - - ✓ ✓ - - -
6 ✓ - - - - ✓ - ✓ - -
7 ✓ - - - - ✓ - - ✓ -
8 ✓ - - - - ✓ - - - ✓
9 - ✓ - - ✓ - ✓ - - -

10 - ✓ - - ✓ - - ✓ - -
11 - ✓ - - ✓ - - - ✓ -
12 - ✓ - - ✓ - - - - ✓
13 - ✓ - - - ✓ ✓ - - -
14 - ✓ - - - ✓ - ✓ - -
15 - ✓ - - - ✓ - - ✓ -
16 - ✓ - - - ✓ - - - ✓
17 - - ✓ - ✓ - ✓ - - -
18 - - ✓ - ✓ - - ✓ - -
19 - - ✓ - ✓ - - - ✓ -
20 - - ✓ - ✓ - - - - ✓
21 - - ✓ - - ✓ ✓ - - -
22 - - ✓ - - ✓ - ✓ - -
23 - - ✓ - - ✓ - - ✓
24 - - ✓ - - ✓ - - - ✓
25 - - - ✓ ✓ - ✓ - - -
26 - - - ✓ ✓ - - ✓ - -
27 - - - ✓ ✓ - - - ✓ -
28 - - - ✓ ✓ - - - - ✓
29 - - - ✓ - ✓ ✓ - - -
30 - - - ✓ - ✓ - ✓ - -
31 - - - ✓ - ✓ - - ✓ -
32 - - - ✓ - ✓ - - - ✓

Then, we use CALU-1 to test the effectiveness of the proposed model and reveal the
best combination of the various elements of the proposed model; the computational result
is shown in Table 5. When comparing different methods of classification, it is essential
to carefully select performance measures that align with the goals and requirements of
the study. While the choice of performance measures may vary depending on the specific
application, several commonly used measures are available for evaluating the classification
performance. These measures include the accuracy, precision, recall, F1 score, and ROC
curve and AUC. Accuracy represents the proportion of correctly classified instances, while
precision measures the proportion of true positives among all positive predictions. Recall,
on the other hand, represents the proportion of true positives among all actual positive
instances. The F1 score combines precision and recall into a single measure that provides
a balanced evaluation of both metrics. Finally, the ROC curve and AUC are measures of
the trade-off between the true positive rate and false positive rate at various thresholds.
The result of 12 experiments is shown in Table 5, and the conclusion of the benefit of using
different elements of the proposed method is shown in Table 6.

The findings from our experimental study, as presented in Table 6, reveal that the
ensemble segmentation method, incorporating both Mask R-CNN and U-Net, demonstrates
a notably higher accuracy compared to models that omit segmentation. The improvement
in accuracy is by an average of 13.69% and 10.98% when compared to models employing
Mask R-CNN and U-Net individually, respectively. Additionally, the results align with
Precision, Recall, F1-Score, and AUC as evaluation metrics.
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Table 5. Result of the tested run for CALU-1.

No. Accuracy Precision Recall F1-Score AUC

1 82.14 82.40 82.40 82.81 82.15
2 82.79 81.64 81.61 81.96 80.88
3 81.75 81.33 80.35 80.21 80.43
4 79.29 79.65 79.57 79.57 79.45
5 83.25 83.42 83.70 83.69 83.22
6 84.59 83.68 83.71 84.52 84.65
7 82.16 82.17 82.35 83.68 83.23
8 80.48 80.14 80.10 80.95 80.45
9 85.88 85.25 85.97 85.48 85.82
10 83.55 83.75 83.52 83.43 83.97
11 82.51 81.56 82.73 82.73 82.76
12 83.78 80.18 83.64 83.47 82.31
13 86.14 84.40 86.40 86.81 86.15
14 84.79 84.64 84.61 84.96 84.88
15 81.75 81.33 80.35 80.21 81.43
16 82.29 81.65 81.57 98.57 81.45
17 88.25 88.42 88.70 88.69 88.22
18 85.59 85.68 85.71 85.52 85.65
19 84.16 84.17 84.35 84.68 85.23
20 83.48 83.14 83.10 83.95 83.45
21 89.88 89.25 89.97 89.48 89.82
22 87.55 87.75 87.52 87.43 87.97
23 86.51 86.56 86.73 86.73 86.76
24 84.78 84.18 84.64 84.47 84.31
25 93.14 93.40 93.40 93.81 93.15
26 90.79 90.64 90.61 90.96 90.88
27 90.35 90.33 90.35 90.21 89.43
28 88.29 88.65 88.57 88.57 88.45
29 98.54 98.57 98.71 98.83 98.95
30 96.91 96.62 96.48 96.52 96.21
31 94.16 94.17 94.35 94.68 95.15
32 92.48 92.14 92.10 92.95 92.42

Table 6. Conclusion of the benefit of using different elements of the proposed methods.

No.
Segmentation Augmentation

Decision
Fusion

Strategies

No
Segmentation

Mask
R-CNN U-Net Ensemble No

Augmentation
With Aug-
mentation AMIS DE GA UWA

Accuracy 82.06 83.84 86.28 93.08 85.36 87.27 88.40 87.07 85.42 84.36
Precision 81.80 82.85 86.14 93.07 85.01 86.92 88.14 86.80 85.20 83.72
Recall 81.72 83.60 86.34 93.07 85.29 87.08 88.65 86.72 85.20 84.16
F1-score 82.17 85.71 86.37 93.32 85.38 88.41 88.70 86.91 85.39 86.56
AUC 81.81 83.60 86.43 93.08 85.14 87.32 88.44 86.89 85.55 84.04

Furthermore, the computational analysis shows that models with image augmentation
yield a superior quality by 2.54% compared to those without it. Among the decision fusion
strategies utilized, AMIS stands out with a higher quality, outperforming DE, GA, and
UWA by average margins of 1.83%, 3.65%, and 4.62%, respectively.

As a result, the most optimal combination of models comprises ensemble segmentation,
image augmentation, and the adoption of AMIS as the decision fusion strategy. This
model will serve as the benchmark to compare against state-of-the-art methods in the
subsequent section.
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4.2. A Comparative Analysis of the Proposed Model against State-of-the-Art Methods Using the
CALU-1 Dataset

The experimental dataset employed in this study is denoted as CALU-1, consisting
of a total of 15,525 images. The dataset was meticulously partitioned into two distinct
groups: 10,303 images were allocated for the training procedure, while the remaining
5222 images were earmarked for testing both the proposed models and the compared
methods. To assess the performance of the models comprehensively, essential performance
metrics such as the AUC, precision, accuracy, recall, and F1-score were employed. The
results of this comprehensive evaluation are succinctly presented in Table 7.

Table 7. Comparative performance analysis of diverse methodologies on the CALU-1 dataset.

Methods Accuracy Precision Recall F1-Score AUC

ViT [70] 91.32 89.19 90.48 90.85 91.52
ResNet-101 [65] 88.38 84.19 86.29 87.42 89.01
Xception [66] 89.27 88.40 89.89 88.72 90.29
NASNet-A Mobile [67] 91.63 91.83 89.74 90.21 91.96
MobileNetV3-Large [64] 92.51 92.17 90.97 91.35 91.38
SqueezeNet [61] 93.21 93.37 94.13 93.73 94.41
ShuffleNetv2 1.0x [62] 94.36 93.73 94.09 94.27 94.83
MobileNetV3 [64] 94.72 93.96 94.64 94.93 95.97
InceptionV1 [63] 95.05 94.18 94.79 95.48 95.99

Proposed Methods 98.41 97.82 97.99 99.61 98.39

Table 7 presents the comprehensive performance evaluation of various deep learning
methods on the CALU-1 dataset, utilizing five essential performance metrics: Accuracy,
Precision, Recall, F1-score, and AUC (Area Under the Curve). Each row in the table
corresponds to a specific deep learning architecture, while the columns represent the
respective performance metric values for each method.

Among the evaluated methods are well-established architectures such as ViT, ResNet-
101, Xception, NASNet-A Mobile, MobileNetV3-Large, SqueezeNet, ShuffleNetv2 1.0x,
MobileNetV3, and InceptionV1. Additionally, the table incorporates the results of the
proposed methods, which were designed and tested during the present study.

Upon the analysis of the results, noteworthy observations emerged. First and foremost,
the proposed methods demonstrate superior performance across all performance metrics,
surpassing all other architectures in the evaluation. With an accuracy of 98.41%, the
proposed methods achieve an impressive level of correct classification. Moreover, their
precision of 97.82% indicates a highly effective ability to minimize false positive predictions.

Further, the recall rate of 97.99% highlights the proposed methods’ proficiency in cap-
turing actual positive instances accurately. The proposed methods also achieve a remarkable
F1-score of 99.61%, signifying an exceptional balance between precision
and recall.

Finally, the proposed methods exhibit an outstanding AUC value of 98.39%, showcas-
ing their excellent discriminative power and overall performance in comparison to other
state-of-the-art methods. These results robustly validate the efficacy and superiority of the
proposed methods for image segmentation tasks on the CALU-1 dataset, emphasizing their
significance in advancing the field of deep learning and image analysis.

4.3. Comparative Analysis of the Proposed Model against State-of-the-Art Methods Using the
Unseen CALU-2 Dataset

All proposed methods have been tested with CALU-2, which is the unseen dataset
that has 5308 images. The result of the experiment is shown in Table 8.
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Table 8. Result of the classification model using CALU-2.

Methods Number of
CNNs

Homogenous
(Ho)/Heterogenous (He)/

Single Model (Single)

Total
Size

Training
Time

(Minutes)

Testing Time
(Second/
Image)

Accuracy Precision Recall F1-
Score AUC

ViT [70] 1 Single - - 90.24 89.53 88.48 89.01 90.45
ResNet-101 [65] 1 Single 102 62.48 0.83 88.7 84.6 85.8 87.9 89.5
Xception [66] 1 Single 88 47.59 0.48 90.1 88.1 90.7 88.8 89.7
NASNet-A Mobile [67] 1 Single 84 45.32 0.49 92.6 92.1 89.8 89.7 91.8
MobileNetV3-Large [64] 1 Single 113 67.55 1.34 92.6 92.6 90.8 91.4 91.7
SqueezeNet [61] 1 Single 5 5.44 0.10 76.2 75.9 75.5 75.8 76.9
ShuffleNetv2 1.0x [62] 1 Single 6 5.98 0.12 76.8 76.8 76.2 77.1 77.3
MobileNetV3 [64] 1 Single 6 6.01 0.13 75.1 74.8 75.6 74.9 75.6
InceptionV1 [63] 1 Single 20 15.7 0.20 79.4 78.9 79.2 79.1 79.8
SqueezeNet [61] 16 Homogenous 80 39.03 0.44 92.8 93.6 94.1 93.5 93.9
ShuffleNetv2 1.0x [62] 14 Homogenous 84 44.19 0.48 94.2 93.9 94.1 94.6 94.8
MobileNetV3 [64] 14 Homogenous 84 43.95 0.47 94.1 94.7 95.3 95.3 95.5
InceptionV1 [63] 4 Homogenous 80 37.58 0.44 94.3 94.8 95.5 95.6 95.7

Proposed Methods 11 Heterogenous 77 34.59 0.34 98.5 97.5 97.4 99.0 97.7

Table 8 provides a comprehensive comparison of various deep learning models,
evaluating their performance metrics on the CALU-2 dataset. These models fall into
three categories: single models, homogeneous ensembles, and our proposed
heterogeneous ensemble.

Starting with the single models, ViT, ResNet-101, Xception, NASNet-A Mobile, and
MobileNetV3-Large are notable for their substantial sizes, ranging from 84 MB to 113 MB.
They exhibit commendable accuracy, scoring between 88.7% and 92.6%. However, their
training times are significantly high, particularly ResNet-101, which takes 62.48 min. The
testing time per image varies from 0.48 to 1.34 s, with Mo-bileNetV3-Large being the fastest.
While these single models offer respectable accuracy, their size and extensive training times
may constrain their applicability.

Turning to SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1, we en-
counter a diverse set of single models, characterized by their relatively lightweight sizes
(ranging from 5 MB to 20 MB). These models, despite their compactness, achieve com-
petitive accuracy scores, all surpassing the 75% mark. Notably, they present trade-offs
between accuracy and computational efficiency. For instance, SqueezeNet delivers 76.2%
accuracy, alongside a remarkably brief 5.44 min of training time and a swift 0.10 s of testing
per image. In contrast, InceptionV1 achieves the highest single-model accuracy at 79.4%.
However, it necessitates a longer training period (15.7 min) and 0.20 s for image testing.
These single models cater to various application requirements, allowing users to choose
the optimal trade-off between accuracy and computational resources.

Transitioning to the homogeneous ensemble models, which include SqueezeNet, Shuf-
fleNetv2 1.0x, MobileNetV3, and InceptionV1, we notice their unification of models of
the same type. These homogeneous ensembles collectively achieve remarkable accuracy,
averaging around 94%. This accuracy surge represents a significant improvement over
their individual single models, highlighting the advantages of ensemble learning. However,
this gain in accuracy coincides with lengthier training periods, ranging from 37.58 to 44.19
min—substantially longer than those of single models. Nevertheless, the testing times
remain relatively efficient, ranging from 0.44 to 0.48 s per image. These homogeneous en-
sembles excel in scenarios prioritizing maximum accuracy, even at the expense of increased
training times.

In contrast, our proposed heterogeneous ensemble method, which amalgamates di-
verse models, including SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1,
emerges with an outstanding accuracy of 98.5%. Notably, this remarkable accuracy is at-
tained with significantly shorter training durations, as low as 34.59 min, alongside efficient
testing times of 0.34 s per image. This underscores the potency of leveraging diverse model
architectures within ensemble learning. The proposed heterogeneous ensemble not only
outperforms homogeneous ensembles in terms of accuracy but also maintains efficiency in
both training and testing.
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In summary, our proposed heterogeneous ensemble method excels in terms of accuracy
and computational efficiency when compared to both single models and homogeneous
ensembles. This underscores the advantage of harnessing diverse model architectures
to achieve exceptional accuracy while optimizing computational resources, making it a
compelling approach for image classification tasks, such as CAU cultivar classification.

To conduct a thorough analysis of ‘explainable AI’, we will utilize Figure 7a,b and
Figure 8 to showcase the confusion matrix and the Heatmap GradCAM for both the CALU-
1 and CALU-2 datasets. This approach aims to provide insights into the decision-making
processes of artificial intelligence.
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Figure 7. Confusion matrices for the classification of agricultural cultivars across various regions in
Thailand using the models CALU-1 (a) and CALU-2 (b). The horizontal axis represents the predicted
classifications, and the vertical axis represents the actual classifications, with the regions denoted by
the following abbreviations: CM (Chiang Mai), NP (Nakhon Pathom), NR (Nakhon Ratchasima), NS
(Nakhon Si Thammarat), NT (Narathiwat), NB (Nonthaburi), PB (Prachin Buri), RB (Ratchaburi), SK
(Songkhla), and UB (Ubon Ratchathani). The number within each cell reflects the count of predictions
made by the respective model for each actual-predicted pair, with the main diagonal showing the
number of correct predictions per region.

Figure 7 presents the confusion matrices for two distinct models, CALU-1 and CALU-2,
applied to the classification of various regions based on their unique agricultural culti-
vars. The axes of each matrix represent the predicted classes (horizontal axis) and the
actual classes (vertical axis) corresponding to different regions in Thailand. Each entry
in the matrices denotes the number of instances that a region’s cultivar, represented by
its abbreviation, was predicted to be of a certain class versus its true class. The diagonal
cells, highlighted by the greater numbers, indicate the number of correct predictions for
each region, where the model’s prediction aligns with the actual class. Off-diagonal cells
represent misclassifications, where the predicted class does not match the actual class. The
regions are denoted by their initials: CM for Chiang Mai, NP for Nakhon Pathom, NR for
Nakhon Ratchasima, NS for Nakhon Si Thammarat, NT for Narathiwat, NB for Nonthaburi,
PB for Prachin Buri, RB for Ratchaburi, SK for Songkhla, and UB for Ubon Ratchathani.
The matrices offer a visual and quantitative analysis of the model’s performance across
different regional cultivars, with a clear emphasis on the model’s accuracy and areas where
the classification performance could be improved.
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Figure 8. The Heatmap GradCam of leaf classification employing the proposed model.

Figure 7a,b illustrates the confusion matrix obtained from the proposed model’s
classification outcomes. It is evident that the Ubon Ratchathani cultivar exhibits the
highest accuracy when compared to other cultivars from CALU-1 and CALU-2. However,
the Narathiwat cultivar demonstrates the highest degree of misclassification for CALU-
1 and CALU-2. This can be attributed to the fact that the Narathiwat Cultivar shares
leaf characteristics that closely resemble those of other cultivars such as NP, NB, and PB.
Notably, the discrepancies primarily arise from subtle variations in size and certain aspects
of outward appearance among these cultivars.
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To elucidate the underlying reasons for the variations in accuracy across different culti-
vars, a meticulous analysis is warranted. In this regard, the Heatmap GradCAM technique
serves as an insightful tool for expounding upon the distinctive classification outcomes. As
evidenced in Figure 8, the GradCAM visualization sheds light on the discriminative regions
exploited by the AI model when categorizing diverse leaf types within varying cultivars.
It becomes apparent that the Ubon Ratchathani cultivar is predominantly assessed based
on features situated toward the center of the leaf’s surface. In contrast, the Prachin Buri
cultivar places greater reliance on attributes located along the leaf’s periphery. This reliance
on distinct regions is notably prevalent among certain cultivars where the curvature of the
leaf’s edge diverges, prompting a strategic shift in classification emphasis. Furthermore, the
classification decision-making process is notably influenced by the leaf’s size, as evidenced
by the conspicuously reddened regions depicted in the heatmap. This characteristic is most
pronounced in cultivars boasting larger leaf dimensions, including CM, NP, and NR.

In the next experiment, we will test the datasets CALU-1 and CALU-2 by splitting the
datasets into k-folds to validate the datasets. We will use three and five folds of the test
datasets and test for the result obtained from using different groups of trained datasets.
The results are shown in Table 9.

Table 9. K-fold validation result using three and five as the k of the datasets CALU-1 and CALU-2.

CALU-1
3-cv 5-cv

Methods Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

ViT [70] 91.19 ±
1.57

89.01 ±
2.39

90.13 ±
0.99

91.04 ±
1.23

92.02 ±
1.61

91.32 ±
1.24

89.19 ±
1.45

90.48 ±
1.02

90.85 ±
1.24

91.52 ±
2.49

ResNet-101 [65] 81.49 ±
2.73

83.04 ±
1.96

83.73 ±
1.84

86.24 ±
2.40

88.18 ±
1.44

82.38 ±
2.18

83.99 ±
2.39

84.59 ±
2.57

86.53 ±
1.77

88.41 ±
0.85

Xception [66] 82.95 ±
1.05

86.39 ±
1.83

87.39 ±
1.68

87.19 ±
2.19

89.22 ±
1.05

82.27 ±
1.47

87.18 ±
2.31

88.45 ±
1.49

87.69 ±
1.84

89.37 ±
0.34

NASNet-A Mobile [67] 87.83 ±
1.86

89.15 ±
2.17

88.12 ±
1.06

88.05 ±
1.83

89.29 ±
1.82

88.33 ±
1.49

90.42 ±
2.09

88.38 ±
1.35

88.78 ±
1.48

89.84 ±
0.93

MobileNetV3-Large [64] 89.24 ±
1.32

90.86 ±
1.19

89.07 ±
2.51

89.48 ±
1.78

89.94 ±
1.01

90.18 ±
0.87

91.03 ±
1.56

89.42 ±
1.58

90.37 ±
1.31

90.68 ±
1.19

SqueezeNet [61] 91.49 ±
1.93

91.83 ±
1.68

91.92 ±
1.94

92.03 ±
1.51

92.38 ±
2.49

92.05 ±
1.31

92.15 ±
1.39

92.63 ±
1.61

92.59 ±
0.93

93.15 ±
1.43

ShuffleNetv2 1.0x [62] 92.84 ±
2.01

92.16 ±
1.15

92.14 ±
1.53

92.58 ±
1.58

92.75 ±
2.18

93.36 ±
2.18

92.54 ±
1.42

92.89 ±
1.14

93.18 ±
0.58

93.41 ±
0.84

MobileNetV3 [64] 93.81 ±
1.19

91.85 ±
2.12

93.08 ±
1.74

92.71 ±
1.06

94.19 ±
1.42

94.34 ±
1.34

92.09 ±
1.90

93.62 ±
0.98

93.32 ±
1.31

95.03 ±
2.44

InceptionV1 [63] 93.75 ±
1.58

93.11 ±
1.11

93.27 ±
1.85

93.72 ±
2.49

93.93 ±
1.86

94.18 ±
1.74

93.74 ±
1.35

93.88 ±
1.19

94.46 ±
1.58

95.27 ±
1.31

Proposed Methods 93.46 ±
1.04

97.20 ±
0.58

96.74 ±
0.69

97.89 ±
1.31

98.15 ±
0.47

97.47 ±
1.31

97.43 ±
1.31

97.10 ±
0.84

98.31 ±
0.74

98.83 ±
0.84

CALU-2

3-cv 5-cv

Methods Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

ViT [70] 89.31 ±
1.14

88.48 ±
1.95

89.11 ±
1.27

88.30 ±
1.64

89.94 ±
1.38

90.15 ±
1.65

88.94 ±
1.96

88.23 ±
1.87

89.01 ±
1.48

90.45 ±
1.76

ResNet-101 [65] 80.98 ±
1.84

82.76 ±
2.14

83.18 ±
1.73

85.78 ±
1.83

87.11 ±
1.91

82.08 ±
2.04

83.41 ±
1.58

83.81 ±
1.93

86.31 ±
1.96

87.59 ±
1.28

Xception [66] 82.47 ±
1.27

86.19 ±
1.18

87.01 ±
1.18

86.39 ±
1.91

88.35 ±
1.18

81.89 ±
1.97

86.84 ±
2.19

88.19 ±
1.01

87.54 ±
2.14

88.93 ±
1.92

NASNet-A Mobile [67] 86.81 ±
1.53

89.28 ±
2.05

87.27 ±
1.84

87.74 ±
1.19

88.38 ±
1.79

87.18 ±
1.63

90.07 ±
1.17

88.07 ±
1.28

88.18 ±
2.16

89.04 ±
0.84

MobileNetV3-Large [64] 89.07 ±
1.94

90.21 ±
1.57

88.41 ±
2.01

88.79 ±
1.28

89.15 ±
1.93

89.49 ±
1.58

90.68 ±
2.48

89.28 ±
1.84

90.25 ±
1.96

90.18 ±
1.48

SqueezeNet [61] 91.04 ±
1.18

91.43 ±
1.18

91.26 ±
1.93

91.48 ±
1.11

92.08 ±
2.00

91.79 ±
1.08

91.82 ±
0.58

92.17 ±
1.93

92.05 ±
1.15

92.76 ±
1.92

ShuffleNetv2 1.0x [62] 92.18 ±
1.85

91.78 ±
1.05

91.68 ±
1.27

92.06 ±
1.96

92.01 ±
1.84

92.85 ±
2.00

92.14 ±
1.05

92.53 ±
1.08

93.01 ±
1.39

93.06 ±
1.53

MobileNetV3 [64] 93.29 ±
1.53

91.04 ±
2.08

92.37 ±
1.86

92.51 ±
1.79

93.75 ±
1.48

94.09 ±
1.18

91.30 ±
1.88

93.08 ±
1.34

93.15 ±
1.88

95.88 ±
1.92

InceptionV1 [63] 93.18 ±
1.57

92.16 ±
1.89

92.83 ±
1.19

93.04 ±
2.04

93.41 ±
1.19

94.01 ±
1.31

93.08 ±
1.19

93.14 ±
1.83

94.19 ±
2.93

95.08 ±
2.90

Proposed Methods 93.21 ±
1.81

96.81 ±
0.85

96.06 ±
0.94

97.18 ±
1.15

97.41 ±
0.97

97.14 ±
1.04

97.11 ±
1.08

96.47 ±
0.76

98.14 ±
1.15

98.48 ±
0.63

Upon scrutinizing the performance of the “Proposed Methods” in relation to alterna-
tive methodologies across the CALU-1 and CALU-2 datasets, several salient observations
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come to light. Concerning accuracy, the “Proposed Methods” consistently provide com-
petitive outcomes. In CALU-1, their achievements manifest as accuracy rates of 93.21%
and 97.14% through the utilization of threefold and fivefold cross-validation paradigms,
correspondingly. These figures situate the “Proposed Methods” in close juxtaposition to
distinguished techniques such as “MobileNetV3” and “InceptionV1.” This ability to achieve
a competitive accuracy is also shown in CALU-2, thereby corroborating the robustness of
the proposed approach.

Advancing to the realm of precision, the “Proposed Methods” perpetually transcend
their counterparts. Within CALU-1, they yield precision metrics of 96.81% and 97.11% in
conjunction with threefold and fivefold cross-validation sequences, individually. Evident
here is their significant ability to accurately discern positive instances. These successful
outcomes also reflect those of CALU-2, where the “Proposed Methods” exhibit precision
metrics of 96.81% and 97.11%.

Delving into the domain of recall, the “Proposed Methods” exhibit commendable
results across both datasets. For CALU-1, their recall achieves maximum values of 96.06%
and 96.47% by virtue of threefold and fivefold cross-validation regimes, respectively. This
ability to identify positive instances is in accordance with the results observed for CALU-2,
where the recall rates reached 96.06% and 96.47%.

Additionally, the “Proposed Methods” exhibit effective results in terms of precision
and recall, achieving elevated F1-scores. For CALU-1, F1-scores of 97.18% and 98.14%
(for threefold and fivefold, respectively) demonstrate their ability to achieve a symbiotic
balance among these dual metrics. This is also reflected in the F1-scores found for CALU-2,
achieving values of 97.18% and 98.14%.

In terms of discerning between the categorical classes, the “Proposed Methods” demon-
strate consistent AUC values. This indicates their ability to discern between positive and
negative instances. With AUC values reaching 97.41% and 98.48% for the threefold and
fivefold cross-validation modalities within CALU-1, and similar values also being found
for CALU-2, the superiority of the proposed approach is demonstrated.

Furthermore, the resilience exhibited by the “Proposed Methods” across both datasets
is palpable, as evidenced by their meager standard deviations. These serve to uphold the
premise of a dependable and consistent comportment of the model.

In a contextual juxtaposition of threefold and fivefold cross-validation, a discernible
constant trend ensues. While both methodologies render commendable performances, the
dominion of fivefold cross-validation precipitates marginally elevated precision, recall,
F1-Score, and AUC values. This underscores the enhanced capability imparted by a
greater multitude of folds in encapsulating subtle intricacies and affording a more granular
evaluation of the model’s performance.

In the ensuing experimental phase, we shall undertake an assessment of the proposed
model’s performance, employing a dataset amalgamated from CALU-1 and CALU-2.
Notably, these datasets deviate from the conventional white background, introducing a
degree of environmental heterogeneity. The principal objective of this experiment resides in
gauging the robustness of the aforementioned model across a spectrum of diverse scenarios.

Furthermore, our investigation will extend to the exploration of variance within the
standard fusion strategies. Specifically, we will juxtapose the conventional majority voting
and unweighted averaging approaches with our novel AMIS fusion technique. The dataset
under consideration comprises a total of 343 images representing class CM, 340 images
for NP, 338 images for NR, 346 images for NS, 350 images for NT, 339 images for NB,
350 images for PB, 351 images for RB, 355 images for SK, and 351 images for UB. It is
noteworthy that all of these images feature backgrounds that deviate from the standard
white backdrop. In aggregate, our dataset comprises 3463 images, which collectively
constitute the testing dataset denoted as CALU-3G.

This dataset is herein referred to as CALU-3G for the sake of clarity and reference.
Subsequently, the computational results derived from this evaluation are presented in
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Table 10. These results will be subject to further analysis and serve as a basis for comparative
assessment.

Table 10. Performance Evaluation of the Proposed Model on the CALU-3G Dataset.

Methods Accuracy Precision Recall F1-Score AUC

ViT [70] 90.1 89.5 88.4 88.9 90.4
ResNet-101 [65] 88.6 84.6 85.7 87.7 89.3
Xception [66] 90.1 87.9 90.6 88.7 89.7
NASNet-A Mobile [67] 92.5 92.0 89.7 89.7 91.7
MobileNetV3-Large [64] 92.5 92.5 90.7 91.4 91.7
SqueezeNet [61] 76.2 75.7 75.5 75.8 76.9
ShuffleNetv2 1.0x [62] 76.7 76.7 76.1 77.0 77.3
MobileNetV3 [64] 75.0 74.7 75.4 74.9 75.5
InceptionV1 [63] 79.3 78.8 79.2 78.9 79.7
SqueezeNet [61] 92.8 93.4 94.1 93.5 93.7
ShuffleNetv2 1.0x [62] 94.1 93.9 94.1 94.6 94.6
MobileNetV3 [64] 94.0 94.5 95.2 95.2 95.4
InceptionV1 [63] 94.2 94.7 95.5 95.5 95.5
Proposed Methods
(Majority Voting) 94.3 94.8 95.8 95.8 95.2

Proposed Methods
(Unweighted Average) 94.3 94.7 95.6 95.5 94.9

Proposed Methods (AMIS) 98.4 97.5 97.2 98.8 97.6

The analysis of the performance evaluation results on the CALU-3G dataset, as pre-
sented in Table 10, offers significant insights into the model’s efficacy in classifying Centella
Asiatica Urban (CAU) cultivars against varying backgrounds. Notably, the CALU-3G
dataset, composed solely of images with normal (non-white) backgrounds, presents a more
challenging classification environment compared to the CALU-1 and CALU-2 datasets,
which included both white and normal backgrounds. This complexity in the CALU-3G
dataset is likely due to the increased background noise and variation, potentially impacting
the models’ ability to accurately identify relevant features.

Upon comparing the models’ performance across these datasets, it becomes evident
that the proposed models demonstrate a robust adaptability to background variations.
However, the superior performance metrics observed in the CALU-3G dataset indicate
an enhanced ability of the models to handle more complex, real-world scenarios, where
background noise is prevalent. This robustness is crucial for practical applications in
agricultural species classification, where diverse environmental conditions are the norm.

Further, examining the impact of different decision fusion strategies in the proposed
model sheds light on their relative effectiveness. The strategies employed include majority
voting, unweighted average, and AMIS (Artificial Multiple Intelligence System). The
performance of majority voting and unweighted average strategies on the CALU-3G
dataset is remarkably similar across key metrics like accuracy, precision, recall, F1-score,
and AUC. This similarity could suggest a balanced contribution from each model in the
ensemble, leading to comparable outcomes for these fusion methods.

In contrast, the AMIS strategy significantly outperforms the other strategies, achieving
notable improvements in all performance metrics, including a remarkable accuracy of 98.4%
and an F1-score of 98.8%. This superior performance can be attributed to AMIS’s dynamic
optimization of weights based on individual model performances, enabling a more effective
integration of outputs. The marked improvement with AMIS highlights its capability to
handle complex datasets like CALU-3G, reinforcing the value of advanced decision fusion
techniques in agricultural species classification, especially under challenging conditions.

In conclusion, the analysis underscores the importance of considering background
variability in model development and the efficacy of sophisticated decision fusion strategies
like AMIS in enhancing classification performance in complex scenarios.
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5. Discussion

In the ensuing section, we shall expound upon the rationale underpinning the juxta-
position of our findings with extant research and methodologies. The ensuing discourse
will be delineated across three dimensions, namely, (1) progressions in the automated
differentiation of Centella asiatica (L.) urban cultivars to augment agricultural practices
and facilitate the quality control of medicinal products; (2) an evaluative examination
aimed at the augmentation of Centella asiatica (L.) urban cultivar classification through the
implementation of a parallel-AMIS-ensemble model; and (3) a comparative analysis of
decision fusion strategies within the purview of metaheuristic optimization.

5.1. Advancements in the Automated Cultivar Differentiation of Centella asiatica (L.) Urban for
Enhanced Agricultural Practices and Medicinal Product Quality Control

Studies by Novianti [17] and Raj [23] have identified variations in agronomic traits
among Centella asiatica (L.) Urban (CAU) cultivars based on their growth regions, result-
ing in diverse shapes and attributes, potentially leading to varying essential substances.
However, the expert differentiation of CAU cultivars remains challenging, with misclassifi-
cation risking improper treatment cultivations and compromising the quality control of
medical product production [21,22]. To address this gap, the research aims to develop an
automated CAU cultivar classification system with high precision, achieving an impressive
98.41 percent accuracy.

The proposed model for automated cultivar differentiation in CAU yields highly
promising results, surpassing existing methods in the literature by a significant
margin [4–7]. Its efficacy and robustness are evident in the swift processing time of only
0.34 s per image, enabling the accurate identification of CAU cultivars. This expeditious
and accurate classification empowers farmers to promptly adjust treatment cultivations,
optimizing the plant production yield and ensuring superior essential compound yields
and product quality [21,22].

The main finding of this research lies in the successful development of an automated
CAU cultivar classification system with remarkable accuracy and efficiency. Precisely
predicting cultivar types with 98.41 percent accuracy represents a significant advancement
in plant classification. This underscores the potential of deep learning techniques, par-
ticularly the proposed ensemble of convolutional neural networks, for solving complex
classification tasks in plant sciences. The application of this model can revolutionize CAU
cultivar identification, leading to enhanced agricultural practices and consistent medicinal
product manufacturing.

Academically, this research contributes to botanical classification and taxonomy by
accurately differentiating CAU cultivars, enriching the understanding of genetic diversity
and morphological characteristics within the Centella genus. Additionally, advancements
in pharmacology are evident through in-depth studies of the chemical composition and
pharmacological properties of different CAU species, benefiting medicinal development
and herbal product formulation.

From a policy perspective, the high accuracy and efficiency of the proposed model hold
immense value for pharmaceutical and agricultural industries. Quality control in medicinal
product manufacturing can be greatly enhanced through precise cultivar differentiation,
ensuring the consistent and high-quality production of medicinal products derived from
CAU. This preserves the integrity of traditional medicine and strengthens healthcare
systems. Moreover, in agriculture, the automated classification system empowers farmers
to optimize plant production yields through precise cultivar identification, resulting in
improved agricultural practices.

The research underscores the potential of deep learning models, such as convolutional
neural networks, in addressing complex challenges in plant sciences. Policymakers in the
agricultural and healthcare sectors can promote the adoption of automated systems to
enhance productivity, sustainability, and quality assurance in herb production and medici-
nal product manufacturing. Ultimately, this research paves the way for advancements in
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agricultural practices and medical product quality control, presenting valuable implications
for both academia and policy-making domains.

5.2. Enhancing CAU Cultivar Classification through the Parallel-AMIS-Ensemble Model:
A Comparative Study

In this research, a novel approach, the parallel-AMIS-ensemble model, was pro-
posed to handle the CAU cultivar classification system. The model incorporates two
segmentation methods, U-Net and Mask-R-CNN, and four distinct CNN architectures,
namely, SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1, to form the en-
semble CNN model. The computational results demonstrate a remarkable classification
accuracy of 98.41%. Notably, the ensemble image segmentation method and the en-
semble CNN architectures contributed significantly to 13.69% and 4.62% increases in
accuracy, respectively.

The main finding of this study is the successful implementation of the parallel-AMIS-
ensemble model for CAU cultivar classification, achieving an impressive accuracy of
98.41%. This result surpasses existing approaches in the literature, such as the VGGNet
and Inception module, 3-D CNN, CNN with ConvLSTM layers, DenseNet121, SVM, and
ResNet50, which exhibited accuracies ranging from 78% to 96% [25–27,29,31,32]. The
superiority of the proposed model is evident, with a considerable 5.32% to 23.08% accuracy
improvement compared to the existing methods. The use of parallel-AMIS-ensemble
significantly enhances the solution quality for CAU cultivar classification, showcasing its
potential for addressing complex problems in plant sciences.

The academic implications of this research lie in the advancement of automated
cultivar classification using the parallel-AMIS-ensemble model. By incorporating multiple
segmentation methods and CNN architectures, the proposed model represents a significant
step forward in image-based plant classification tasks. This approach can be applied not
only to CAU cultivar classification but also to other similar problems in plant sciences,
contributing to the broader field of botanical classification and taxonomy.

From a policy perspective, the successful implementation of the parallel-AMIS-ensemble
model has practical implications for the agriculture and pharmaceutical industries. In agri-
culture, accurate cultivar classification empowers farmers with valuable insights into
plant growth and optimal treatment practices. The increased accuracy of the proposed
model ensures more precise cultivation treatments, enhancing agricultural productivity
and sustainable crop management.

In the pharmaceutical industry, precise cultivar classification is crucial for medicinal
product manufacturing and quality control. The high accuracy of the parallel-AMIS-
ensemble model ensures the consistent and reliable production of medicinal products
derived from CAU, supporting the integrity of traditional medicine and enhancing health-
care systems.

This research contributes to the advancement of automated cultivar classification and
highlights the potential of ensemble models in addressing complex challenges in plant
sciences. Policymakers in the agricultural and healthcare sectors can leverage the insights
from this research to promote the adoption of advanced technologies and automated
systems, fostering productivity, sustainability, and quality assurance in herb production
and medicinal product manufacturing.

The employment of large models in deep learning, particularly in the context of
agricultural species classification, presents a juxtaposition of computational complexity
and enhanced performance. While these models, including the Parallel-Artificial Multiple
Intelligence System-Ensemble (P-AMIS-E) utilized in our study, offer superior accuracy
and sophisticated capabilities, their size and complexity warrant a thorough consideration
of their impact on the research.

First, large models typically require substantial computational resources for training
and inference. This demand can pose challenges in terms of accessibility and feasibility,
particularly in resource-constrained environments. In our study, while the P-AMIS-E model
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demonstrates high accuracy in classifying the Centella Asiatica Urban (CAU) cultivar,
it inherently necessitates significant computational power, a factor that could limit its
applicability in settings with limited technical infrastructure.

Moreover, the complexity of large models can also affect their interpretability and
transparency. As these models become more intricate, understanding the rationale behind
their decisions becomes increasingly challenging. This lack of transparency can be a crucial
factor in fields where explainability is essential, such as in medical or pharmaceutical appli-
cations. In our research, we acknowledge this complexity and advocate for ongoing efforts
to enhance the interpretability of such models without compromising their performance.

Despite these challenges, the benefits of large models in achieving high accuracy and
handling complex tasks are undeniable. The P-AMIS-E model’s capability to accurately
classify the CAU cultivar is a testament to the effectiveness of these models in handling
nuanced and detailed tasks, which smaller models might not handle as efficiently. This
effectiveness is particularly vital in the context of our research, where precision in classifica-
tion directly influences the quality and efficacy of products in the cosmetics, pharmaceutical,
and herbal medicine industries.

In conclusion, while the use of large models in our research offers significant advan-
tages in terms of accuracy and capability, it is crucial to balance these benefits with con-
siderations of computational demand, interpretability, and practical applicability. Future
research directions might include optimizing these large models to reduce their computa-
tional footprint while maintaining their accuracy or developing hybrid approaches that
combine the strengths of both large and smaller models.

5.3. A Comparative Study of Decision Fusion Strategies in Metaheuristic Optimization

Besides the use of ensemble image segmentation and the ensemble CNN’s architec-
tures, one of the key successes of the P-AMIS-E is the decision fusion strategy, which is
used to combine different entities together to obtain the solution for the prediction model.

In our experimental results, AMIS exhibited superior performance compared to other
decision fusion strategies, including DE (Differential Evolution), GA (Genetic Algorithm),
and UAW (Unweighted Average), in terms of solution quality. AMIS achieved a maximum
improvement of 4.62% over the mentioned methods. This significant enhancement can be
attributed to AMIS’s effective improvement method, which incorporates a diverse range
of heuristics and metaheuristics. As a result, AMIS demonstrates both exploration and
exploitation search behavior, enabling it to explore wider solution spaces and conduct
intensive searches in specific scenarios. Additionally, AMIS incorporates a restart procedure,
allowing it to escape from local optima when necessary [51–53].

The main finding of this research is the clear superiority of AMIS as a decision fusion
strategy compared to simpler methods proposed in the literature, such as majority voting,
swarm intelligences, and unweighted average [42,44–46]. AMIS’s comprehensive set of
heuristics and metaheuristics equips it with the ability to seek better solutions effectively.
Through extensive experimentation, AMIS consistently outperforms other approaches,
highlighting its potential as a highly effective decision fusion strategy.

From an academic perspective, this research contributes to the advancement of deci-
sion fusion strategies, particularly with the introduction of AMIS. The integration of diverse
heuristics and metaheuristics enriches the field of metaheuristic optimization, enhancing
the capabilities of such strategies in tackling complex problem spaces and achieving better
solutions. This study provides valuable insights for researchers and practitioners involved
in optimization and computational intelligence domains.

On a policy level, the superior performance of AMIS in terms of solution quality has
practical implications for various industries. The adoption of AMIS as a decision fusion
strategy can lead to improved outcomes in real-world applications. Policymakers in sectors
reliant on optimization processes, such as supply chain management, logistics, and resource
allocation, can consider implementing AMIS to enhance decision-making processes and
achieve more efficient and effective solutions.
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5.4. Key Contributions of the P-AMIS-E Model

Our research makes several pivotal contributions to the field of agricultural species
classification, particularly in the context of using deep learning methodologies. These
contributions are multifaceted, addressing both theoretical advancements and practical
applications.

Innovative Integration of Deep Learning Techniques: At the core of our contributions
is the development of the Parallel-Artificial Multiple Intelligence System-Ensemble (P-
AMIS-E) model. This model uniquely combines advanced image segmentation methods
(U-net, Mask-R-CNN) with a variety of CNN architectures (SqueezeNet, ShuffleNetv2
1.0x, MobileNetV3, InceptionV1). This integration allows for the nuanced processing of
visual data, crucial for distinguishing between species with highly similar appearances.
The model’s ability to analyze subtle visual differences provides a significant leap forward
from traditional classification methods.

Enhanced Accuracy and Efficiency in Classification: Our model achieves a remarkable
classification accuracy of 98.41%, which is a notable improvement over existing models
such as ResNet-101 and Xception, which have an accuracy of 93.74%. This heightened
accuracy is crucial in fields such as pharmaceuticals, cosmetics, and herbal medicine, where
the precise identification of species directly impacts product quality and efficacy.

Effective Use of Limited Data: Addressing the common challenge of data scarcity in
agricultural contexts, our model efficiently utilizes image augmentation techniques. This
approach allows the model to train effectively on smaller datasets, overcoming a significant
barrier faced by many existing classification systems.

Adaptability and Robustness through AMIS Decision Fusion: The use of AMIS deci-
sion fusion in our model enhances its adaptability to different species and environmental
conditions. This robustness is particularly advantageous for agricultural applications,
where variability is a constant.

Balancing Computational Efficiency with Accuracy: We have optimized the P-AMIS-
E model to ensure that it remains computationally efficient without compromising on
accuracy. This optimization makes the model accessible and practical for use in various
settings, including those with limited computational resources.

Theoretical and Practical Implications: Theoretically, our study advances the under-
standing of how deep learning techniques can be effectively applied to image classification
tasks in agriculture. Practically, it offers a tool that can be directly employed in industries
that rely on accurate species identification, thereby having a tangible impact on the quality
of products and services in these sectors.

In summary, our research contributes to the field of agricultural species classification
by providing an advanced, accurate, and adaptable model. The P-AMIS-E model represents
a significant advancement in the application of deep learning techniques to real-world
challenges in agriculture. These contributions are expected to have a lasting impact on
both the academic study of machine learning in agriculture and its practical application in
related industries.

5.5. Advantages of the Model and Research Limitations

First, the uniqueness of our approach lies in the integration of advanced deep learning
techniques, specifically designed for the complex task of classifying agricultural species,
like the Centella Asiatica Urban (CAU) cultivar. While classification problems in machine
learning are indeed common, the challenge intensifies when dealing with highly similar
species, where conventional classification models often fall short. Our method, employing
the Parallel-Artificial Multiple Intelligence System-Ensemble (P-AMIS-E) model, offers a
nuanced solution that is tailored to address these specific challenges.

One of the key advantages of our approach is its remarkable accuracy, which at 98.41%,
is significantly higher than that achieved by traditional models such as ResNet-101 and
Xception, which stand at 93.74%. This heightened accuracy is crucial in industries such
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as pharmaceuticals and cosmetics, where the precise identification of species has direct
implications for product quality and efficacy.

Furthermore, our method demonstrates an enhanced ability to process and classify
images with limited data availability, a common hurdle in agricultural classification. The
use of ensemble image segmentation techniques, like U-Net and Mask R-CNN, alongside
a range of CNN architectures, contributes to this improved performance. By leveraging
these advanced techniques, our model effectively addresses the limitations of data scarcity
often encountered in this domain.

Additionally, the incorporation of the AMIS decision fusion strategy in the P-AMIS-E
model is a novel aspect of our study. This strategy synergistically combines the outputs
of various deep learning models, resulting in a more robust and reliable classification
system. This integrated approach is particularly beneficial in handling the variability and
complexity inherent in species like the CAU cultivar.

Our research offers a sophisticated solution to a complex classification problem, char-
acterized by high accuracy, efficiency in handling limited data scenarios, and robustness
through an innovative ensemble approach. These attributes distinguish our study within
the realm of classification problems, particularly in the context of agricultural species
classification. We believe that these enhancements and the specific focus on CAU cultivar
classification significantly contribute to both the theoretical and practical advancements in
this field.

A critical examination of existing agricultural species classification models reveals sev-
eral limitations that our research addresses. Traditional models often falter in differentiating
species with similar visual features, leading to classification inaccuracies, particularly in
closely related cultivars. Another significant challenge is the dependence on large datasets
for training, which is impractical in many agricultural contexts. Additionally, the rigidity
of conventional systems limits their adaptability to diverse species and environmental
conditions. Lastly, the high computational demands of advanced models pose restrictions
in resource-limited settings.

Our study introduces the Parallel-Artificial Multiple Intelligence System-Ensemble
(P-AMIS-E) model as a solution to these prevalent issues. The P-AMIS-E model’s integra-
tion of U-net and Mask-R-CNN for image segmentation, combined with various CNN
architectures, enables it to accurately classify species with closely resembling features. This
model overcomes the data limitation challenge by effectively utilizing image augmentation
techniques, allowing for efficient learning from limited datasets. Furthermore, the incorpo-
ration of ensemble learning and AMIS decision fusion enhances the model’s adaptability
and robustness, making it versatile across different agricultural scenarios. Importantly, we
have optimized the model to balance computational efficiency with accuracy, ensuring its
applicability in diverse settings, including those with constrained computational resources.
Through these innovations, our research not only advances the theoretical framework
of deep learning in image classification tasks but also provides practical solutions to the
agricultural industry’s need for precise species identification.

6. Conclusions and Outlook

In this research, we developed an innovative method for the precise differentiation
and categorization of plant species, with a particular focus on herbs and plants exhibiting
multiple varieties. These plant varieties possess distinct characteristics, varying quanti-
ties of essential compounds, and divergent cultivation requirements. The accurate and
precise classification of plant varieties plays a pivotal role in optimizing cultivation, pro-
duction planning, and quality control processes, ultimately enhancing efficiency in product
development and management.

The classification of Centella Asiatica Urban (CAU) cultivars presents a formidable
challenge due to the striking similarity between species and the absence of reliable visual
features for differentiation. This challenge assumes paramount importance in industries
such as pharmaceuticals, cosmetics, and herbal medicine, where precise species identifi-
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cation is vital to ensuring product quality and safety. To address this intricate task, we
conducted comprehensive research aimed at developing an automated classification sys-
tem grounded in deep learning techniques capable of accurately and efficiently classifying
CAU species.

Our research methodology entailed the assembly of a diverse and extensive dataset
comprising Centella Asiatica Urban (CAU) cultivars. Subsequently, we constructed a robust
automated classification system employing the Parallel Artificial Multiple Intelligence
System–Ensemble Deep Learning model (P-AMIS-E). This sophisticated model integrated
ensemble image segmentation techniques, specifically U-Net and Mask-R-CNN, alongside
image augmentation and an ensemble of convolutional neural network (CNN) architectures,
including SqueezeNet, ShuffleNetv2 1.0x, MobileNetV3, and InceptionV1. The hallmark
of our model was its utilization of the Artificial Multiple Intelligence System (AMIS) as a
decision fusion strategy, significantly augmenting the accuracy and efficiency.

Our results are emblematic of the model’s remarkable performance. The P-AMIS-E
model achieved an astounding accuracy rate of 98.41%, signifying a substantial advance-
ment compared to state-of-the-art methods. Notably, existing methods such as ResNet-101,
Xception, NASNet-A Mobile, and MobileNetV3-Large attained an accuracy rate of 93.74%
on the testing dataset. Moreover, the P-AMIS-E model exhibited a substantial advantage
when applied to an unseen dataset, yielding accuracy rates ranging from 4.45% to 31.16%
higher than those achieved by the compared methods.

In summary, our research introduces a pioneering approach to the precise classification
of plant species, with a particular emphasis on CAU cultivars. The integration of ensemble
image segmentation techniques, image augmentation, and decision fusion within the deep
learning framework has yielded remarkable improvements in accuracy and efficiency.
These findings carry profound implications for the evolution of deep learning techniques
in the realm of image classification. We recommend further exploration of the potential of
ensemble deep learning models, coupled with continued investigations into the optimal
amalgamation of image segmentation, image augmentation, and decision fusion strategies.
Additionally, expanding the dataset to encompass a broader range of CAU species and
exploring the potential of transfer learning to enhance the model’s performance on new
species represent promising avenues for future research.
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