
Citation: Qin, S.; Wang, J.; Wang, J.;

Guo, X.; Qi, L.; Fu, Y. Linear

Disassembly Line Balancing Problem

with Tool Deterioration and Solution

by Discrete Migratory Bird Optimizer.

Mathematics 2024, 12, 342. https://

doi.org/10.3390/math12020342

Academic Editor: Hendrik Richter

Received: 10 December 2023

Revised: 14 January 2024

Accepted: 18 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Linear Disassembly Line Balancing Problem with Tool
Deterioration and Solution by Discrete Migratory Bird Optimizer
Shujin Qin 1,2 , Jiaxin Wang 3, Jiacun Wang 4 , Xiwang Guo 2 , Liang Qi 5,* and Yaping Fu 6

1 Research Center of the Economic and Social Development of Henan East Provincial Joint, Shangqiu Normal
University, Shangqiu 476000, China; qinshujin@sqnu.edu.cn

2 College of Information and Control Engineering, Liaoning Petrochemical University, Fushun 113001, China;
guoxiwang@lnpu.edu.cn

3 Artificial Intelligence and Software College, Liaoning Petrochemical University, Fushun 113001, China;
wangjiaxin@stu.lnpu.edu.cn

4 Department of Computer Science and Software Engineering, Monmouth University,
West Long Branch, NJ 07764, USA; jwang@monmouth.edu

5 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China

6 School of Business, Qingdao University, Qingdao 266071, China; fuyaping@qdu.edu.cn
* Correspondence: qiliang@sdust.edu.cn

Abstract: In recent years, the global resource shortage has become a serious issue. Recycling end-of-
life (EOL) products is conducive to resource reuse and circular economy and can mitigate the resource
shortage issue. The disassembly of EOL products is the first step for resource reuse. Disassembly
activities need tools, and tool deterioration occurs inevitably during the disassembly process. This
work studies the influence of tool deterioration on disassembly efficiency. A disassembly line
balancing model with the goal of maximizing disassembly profits is established, in which tool
selection and assignment is a critical part. A modified discrete migratory bird optimizer is proposed to
solve optimization problems. The well-known IBM CPLEX optimizer is used to verify the correctness
of the model. Six real-world products are used for disassembly experiments. The popular fruit fly
optimization algorithm, whale optimization algorithm and salp swarm algorithm are used for search
performance comparison. The results show that the discrete migratory bird optimizer outperforms
all three other algorithms in all disassembly instances.

Keywords: disassembly line balancing problem; tool deterioration; migratory bird optimizer; genetic
operators

MSC: 68T20

1. Introduction

Over the years, a large quantity of EOL products have been accumulating. There are
many useful parts in these products, and recycling and reusing them is an important part
of the development of the circular economy. Disassembly is an important means to product
recycling [1–3], and the structure of the disassembly line is shown in Figure 1. However, in
the process of disassembly, the wear degree of disassembly tools and the execution order of
tasks can lead to different disassembly times for tasks on the workstations, which affects
the efficiency of disassembly. Considering these factors, a good disassembly scheme is very
important for the recovery of EOL products [4–7]. In order to solve this problem, many
researchers have studied the disassembly line balancing problem (DLBP).

Since DLBP was officially introduced by Gungor et al. in 2001 [8], researchers have
tried to solve DLBP by various methods. McGovern and Gupta [9] prove that DLBP is an
NP-complete problem. As the problem size increases slightly, the number of calculations
required to determine the optimality of a solution increases exponentially, whereupon it

Mathematics 2024, 12, 342. https://doi.org/10.3390/math12020342 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020342
https://doi.org/10.3390/math12020342
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4578-2726
https://orcid.org/0000-0003-4176-3947
https://orcid.org/0000-0002-9142-1251
https://orcid.org/0000-0002-0762-5607
https://doi.org/10.3390/math12020342
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020342?type=check_update&version=2


Mathematics 2024, 12, 342 2 of 20

is impossible to obtain the optimal solution in an acceptable time. At present, intelligent
optimization algorithms are widely used in solving DLBP because of their fast convergence
speed and strong robustness. McGovern and Gupta [9] propose a new formula for quanti-
fying the level of balancing and solve the problem with a genetic algorithm. Kalayci and
Gupta [10] propose a particle swarm optimization algorithm based on a neighborhood
mutation operator to solve this problem. Tuncel et al. [11] use a Monte-Carlo-based rein-
forcement learning technique to solve DLBP. Liu et al. [12] propose an improved discrete
artificial bee colony algorithm to solve the sequence-dependent disassembly line balancing
problem. Hu et al. [13] aim at reducing energy consumption and propose an improved
ant colony optimization algorithm to optimize the disassembly sequence. Guo et al. [14]
use various heuristic algorithms to solve the multi-objective optimization problem of the
disassembly line.

Figure 1. Disassembly line construction.

In the actual disassembly process, the processing time of the disassembly task is
affected by many factors. The functional deterioration of disassembly tools is one of
them. Tool deterioration causes the actual processing time of disassembly tasks to grow
longer over time [15–17]. Some studies are reported that consider tool deterioration in
manufacturing systems. For example, in [18], a scheduling model with deteriorating
characteristics is proposed. In this model, the authors define the processing time of the
job as a linear increasing function of its start time. In [19], Ng et al. compare the linear
functions of the decreasing and increasing processing times of the workpieces, which
prove that the two linear models are closely related. Cheng and Sun [20] prove that the
total weighted completion time problem is NP-hard. The above research is carried out for
single-machine scheduling. Toksarı and Güner [21] define the processing time of a job as a
function of the execution start time of the job and its position in the sequence, which is used
to solve the scheduling problem of advance or delay in parallel machines. Wang et al. [22]
propose two heuristic algorithms to solve a two-machine flow shop scheduling problem
with deterioration and learning effects. Behnamian [23] studies the impact of learning and
degradation on the hybrid flowshop scheduling with sequence-dependent setup time.

To the best of our knowledge, there is no research reported so far on the tool deteri-
oration in the scheduling and performance analysis of DLBP. In the actual disassembly
line, however, the deterioration effect cannot be ignored. This work studies DLBP with
tool deterioration. When product subassemblies are disassembled with worn tools, the
disassembly time will be prolonged. The prolonged time is called deterioration time. We
say that the tools have deterioration characteristics, and use the deterioration coefficient to
represent the influence degree of tool deterioration on the disassembly time.

On the other hand, DBLP is an NP-hard problem, and in many cases, we have to rely
on heuristic search to find the optimal solution to DBLP. The migratory bird optimizer
(MBO) is a heuristic optimization algorithm based on the migration behavior of migratory
birds that simulates the strategies and behaviors of the migratory bird population during
the migration process. MBO has a strong global search ability that can help find the
global optimal solution or approximate the optimal solution to a problem. MBO has
high robustness and can adapt to diverse problem domains and complex optimization
problems. Compared to some complex optimization algorithms, the implementation of
the migratory bird optimization algorithm is relatively simple and does not require a
large amount of parameter adjustment and problem specific knowledge. This makes the



Mathematics 2024, 12, 342 3 of 20

algorithm easy to understand, implement and apply [24]. At present, it has been applied
to the stochastic disassembly line balancing problems [25], scheduling problems [26,27],
knapsack problems [28], system identification problems [29] and quadratic assignment
problems [30]. In this work, we choose to use MBO to solve DLBP with tool deterioration.
More specifically, considering the impact of tool deterioration on the disassembly profits,
we design a sequence-dependent disassembly line [31] and use the discrete migratory bird
optimizer (DMBO) to solve DLBP with tool deterioration.

Compared with the existing studies, we have made the following contributions:

(1) We consider the impact of tool deterioration on disassembly efficiency; a linear disas-
sembly line balancing model is established to rationally allocate tasks on the worksta-
tions and optimize disassembly profit.

(2) For DLBP with tool deterioration, we propose a discrete migratory bird optimizer.
In this algorithm, we use a two-stage coding method to represent the solution and
design three search methods to help the birds update, which can find the optimal
solution faster.

(3) We use CPLEX to verify the correctness of the model. By comparing the experimental
results of DMBO and other intelligent optimization algorithms, we confirmed that
DMBO has excellent performance in solving the presented DBLP.

This work is an extension of our previous work reported in [32], a conference paper,
with significant improvements. First, according to the characteristics of DLBP with tool
deterioration, we established a mathematical model to maximize the disassembly profit and
verify the model with CPLEX to ensure the accuracy of the model [33]. Second, we chose
three popular intelligent optimization algorithms to compare with DMBO and verified
that DMBO has excellent optimization performance. Finally, we added more experimental
cases to make the experimental results more convincing. In addition, we also compared
the experimental results of whether tool deterioration is considered, which proves that it is
necessary to consider the impact of tool deterioration in DLBP.

The rest of this work is organized as follows. In Section 2, DLBP with tool deterioration
is described, and the mathematical model is established. In Section 3, the flow of the
DMBO algorithm is introduced. Section 4 shows six experimental cases and the results of
comparative experiments. In Section 5, we provide a summary and outlook.

2. Problem Description and Modeling
2.1. Problem Description

DLBP aims to disassemble EOL products on disassembly lines and obtain subassem-
blies by performing a series of disassembly tasks. For these disassembly tasks, we should
reasonably allocate them to workstations on the basis of meeting the constraints of task
precedence relation and workstation cycle time, and constantly optimize the disassembly
scheme to find the solution that best meets our goals.

A single product linear disassembly line consists of a limited number of workstations
with multiple disassembly locations on each workstation. When an EOL product is disas-
sembled, disassembly tasks are assigned to each workstation in turn. For tasks assigned to
one workstation, locations are used to indicate their order. Each workstation is equipped
with disassembly tools required by the disassembly tasks.

In many studies on DLBP, the disassembly time of subassemblies is constant, and the
disassembly task is allocated according to the cycle time of the workstation. As shown in
Figure 2, the profit of this disassembly scheme is 185. However, in the actual disassembly
process, the tools will be worn to varying degrees after long-term use, resulting in an
increase in the disassembly time of subassemblies with the in-use time of tools, increasing
the disassembly cost. If we still execute the scheme in Figure 2 after the tool is worn,
because both task 1 and task 15 need to use tool 1, when using tool 1 to execute task 1 and
then using it to execute task 15, the disassembly time of task 15 is extended by 4.4 due to the
deterioration characteristics of tool 1, resulting in a deterioration cost of 22. Therefore, we



Mathematics 2024, 12, 342 4 of 20

consider the tool deterioration when formulating the disassembly plan, so as to maximize
the disassembly profits.

1

Entrance

4 149

Workstation 1 Workstation 2

Exit

Task:

Tool:

15

Figure 2. Disassembly scheme without considering tool deterioration.

2.2. Disassembly Sequence

As in other process-oriented system studies, formal modeling of disassembly processes
is always desired [34]. In this work, we use the AND/OR graph to describe the disassem-
bly process of EOL products. The AND/OR graph can not only obtain the precedence
and conflict relationship of disassembly tasks but also obtain the relationship between
disassembly tasks and subassemblies. The necessity of an AND/OR graph in disassembly
planning lies in representing the sequential relationships between the operations or tasks
involved in the disassembly process. It helps to determine the order of disassembly of
subassemblies based on their subordinate relationships and constraints. For a disassembly
task sequence, each disassembly task in the sequence needs to meet the constraints specified
by the AND/OR graph to ensure that the disassembly sequence is correct and feasible. The
nodes in the AND/OR graph represent the subassemblies of the product. In each node,
the number in angle brackets represents the index of the subassembly, and the number
after angle brackets represents the smallest non-detachable part index contained in the
subassembly. The directed angle going out of the node represents the disassembly task.
Disassembly tasks starting from the same node have an OR relationship. When different
disassembly tasks can be executed under a node, only one disassembly task can be selected
for execution. The parent subassembly can obtain multiple sub-components by performing
a disassembly task, and these sub-components form an AND relationship. Figure 3 shows
a case of compass, and Figure 4 is its AND/OR graph. From these two figures, it can be
seen that the compass includes 18 subassemblies and 15 disassembly tasks.

As shown in Figure 4, by performing disassembly task 1, subassembly <1> can be
disassembled into subassembly <2> and subassembly <3>; then, subassembly <1> is called
the parent node of subassembly <2> and subassembly <3>, and subassembly <2> and
subassembly <3> are called the child node of subassembly <1>. Subassembly <2> and
<3> form an AND relationship. Subassembly <2> can choose to perform disassembly
task 3 to obtain subassembly <8> and subassembly <9>, and subassembly <2> can also
choose to perform disassembly task 4 to obtain subassembly <5> and subassembly <10>.
Disassembly task 3 and disassembly task 4 form an OR relationship, so we can only select
one of them to put into the disassembly sequence.

According to the AND/OR graph, we define the following three matrices:
Task relationship matrix: The task relationship matrix A = [cij] is used to describe the

conflict relation and precedence relation between the current disassembly task i and other
disassembly tasks j. It is defined as

cij =


1, if task j is the immediate predecessor task of task i;
−1, if task i and task j conflict with each other;
0, otherwise.



Mathematics 2024, 12, 342 5 of 20

Figure 3. Structure of a compass.

<1>1-7

<2>1-5 <3>6,7

1

<4>1-3,6,7

<5>4,5 <6>2-7
<7>1

2

5

<8>2，4，5

<9>1，3 <10>1-3

<5>4，5

3
4

<10>1-3 <3>6，7 <11>3，6，7
<12>1，2

6 7 <8>2，4，5 <11>3，6，7

11

<13>2 <5>4，5 <9>1，3 <13>2 <14>3 <3>6，7 <7>1 <13>2

8

9
10

12

<15>4 <16>5
<7>1 <14>3 <17>6 <18>7

13
14

15

Figure 4. AND/OR graph of a compass.

The task relationship matrix of the compass is as follows:

A =



0 −1 0 0 −1 −1 −1 0 0 −1 −1 −1 0 0 0
−1 0 −1 −1 −1 0 0 −1 0 0 −1 0 0 0 0
1 −1 0 −1 −1 −1 −1 0 −1 −1 −1 −1 0 0 0
1 −1 −1 0 −1 −1 −1 −1 0 −1 −1 −1 0 0 0
−1 −1 −1 −1 0 −1 −1 0 −1 0 0 −1 0 −1 0
−1 1 −1 −1 −1 0 −1 −1 0 −1 −1 −1 0 0 0
−1 1 −1 −1 −1 −1 0 −1 −1 0 −1 0 0 −1 0
0 −1 1 −1 0 −1 −1 0 −1 0 1 −1 0 0 0
0 0 −1 1 −1 1 −1 −1 0 −1 −1 −1 0 0 0
−1 0 −1 −1 0 −1 1 0 −1 0 1 0 0 −1 0
−1 −1 −1 −1 1 −1 −1 0 −1 0 0 −1 0 −1 0
−1 0 −1 −1 −1 −1 1 −1 −1 0 −1 0 0 −1 0
0 1 0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 −1 0 −1 0 1 −1 −1 −1 0 0 0
1 0 0 0 0 1 0 0 0 1 0 0 0 0 0





Mathematics 2024, 12, 342 6 of 20

Incidence matrix: The incidence matrix B = [bni] is used to describe the relationship
between disassembly tasks and components, which is defined as

bni =


1, if component n is obtained by performing task i;
−1, if component n is disassembly via task i;
0, otherwise.

Resource use matrix: The resource use matrix D = [dir] is used to describe the use
relationship between disassembly task i and disassembly tool r, which is defined as

dir =

{
1, if tool r is required to perform task i;
0, otherwise.

Taking the compass as an example, there are three kinds of tools needed to disassemble
the compass, and we equipped each workstation with these three tools and picked the
corresponding tools to perform the disassembly tasks according to the resource use matrix,
as follows. According to Table 1, it is known that tool 1 is required to perform task 1 and
tool 3 is required to perform task 2.

Table 1. The task-to-tool relationship for disassembling a compass.

Task number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tool used 1 3 1 2 3 1 2 3 1 2 3 1 1 3 1

In order to establish a single objective linear disassembly line model, we make the
following assumptions:

(1) Matrices A, B and D are known.
(2) The deterioration coefficient of each disassembly tool is known.
(3) The number of workstations is limited.
(4) The working time of each open workstation cannot exceed the cycle time of

the workstation.
(5) The switched-on workstation is assigned at least one disassembly task.
(6) The time spent performing the disassembly task is linearly related to the use time of

the disassembly tool.
(7) The deterioration cost per unit time and the normal execution time and execution cost

of each disassembly task are known.

2.3. Mathematical Model

This part shows the mathematical model of a single product linear disassembly line
balancing problem. The notations and decision variables in the mathematical model are
defined as follows:
Sets:

W set of workstations, W = {1, 2, . . . , W}, where W is the

number of workstations.

I set of tasks, I = {1, 2, . . . , I}, where I means the number

of tasks.

K set of locations, K = {1, 2, . . . , K}, where K is the number

of locations on the workstation.



Mathematics 2024, 12, 342 7 of 20

R set of disassembly tools, R = {1, 2, . . . , R}, where R is

the number of tools.

N set of components, N = {1, 2, . . . , N}, where N is the

number of components.

IC
i set of tasks that conflict with task i, IC

i =
{

j | cij = −1,

i, j ∈ I}.

IP
i set of immediate tasks for task i, IP

i =
{

j | cij = 1, i, j ∈ I
}

.

Indexes:

w Workstation index, w ∈ W.

n Component index, n ∈ N.

i, j Task indexes, i, j ∈ I.
k Location index, k ∈ K.

r Disassembly tool index, r ∈ R.

Parameters:

T Cycle time of the workstation.

TN
w,i Normal disassembly time of task i on workstation w.

αw,i Deterioration coefficient of processing task i on the w-th

workstation.

bn,i An element in the n-th row and i-th column of B.

di,r An element in the i-th row and r-th column of D.

Vn Profits of component n.

C Deterioration cost per unit of time.

CD
i Disassembly cost of task i.

CW Fixed cost of opening the workstation.

Decision variables:

Sw,i,r The time that tool r on the w-th workstation has been

used before task i is executed.

TA
w,i Actual disassembly time of task i on the w-th workstation.

TD
w,i Deterioration time of task i on the w-th workstation.

xi,w,k =


1, If task i is executed at k-th

position on workstation w;
0, Otherwise.

uw =

{
1, If workstation w is used;
0, Otherwise.

The following is a mathematical model to describe the problem considered in this work.

max ∑
i∈I

∑
w∈W

∑
k∈K

∑
n∈N

Vnbn,ixi,w,k − ∑
i∈I

∑
w∈W

∑
k∈K

CD
i xi,w,k−

∑
w∈W

CWuw − ∑
w∈W

∑
i∈I

CTD
w,i

(1)



Mathematics 2024, 12, 342 8 of 20

∑
w∈W

∑
k∈K

xi,w,k ≤ 1, ∀i ∈ I (2)

uw ≥ uw+1, ∀w ∈ W (3)

∑
i∈I

xi,w,k ≤ 1, ∀w ∈ W, k ∈ K (4)

∑
i∈I

xi,w,k ≥ ∑
i∈I

xi,w,k+1, ∀w ∈ W, k ∈ K (5)

∑
w∈W

∑
k∈K

xi,w,k + ∑
i′∈IC

i

∑
w∈W

∑
k∈K

xi′ ,w,k ≤ 1,

∀i ∈ I
(6)

∑
i∈I

∑
k∈K

xi,w,k ≥ uw, ∀w ∈ W (7)

∑
i∈I

∑
k∈K

xi,w,k ≤ Muw, ∀w ∈ W (8)

xi,w,k ≤ ∑
i′∈IP

i

w−1

∑
w′=1

∑
k′∈K

xi′ ,w′ ,k′ + ∑
i′∈IP

i

k−1

∑
k′=1

xi′ ,w,k′ ,

∀i ∈ I, w ∈ W, k ∈ K

(9)

Sw,i,r ≥ Sw,j,r + T′
w,jdj,r + M

(
xi,w,k + xj,w,k−1 − 2

)
,

∀i, j ∈ I, w ∈ W, r ∈ R, k ∈ K
(10)

TA
w,i ≥ TN

w,i + TD
w,i + M

(
xi,w,k − 1

)
,

∀i ∈ I, w ∈ W, k ∈ K
(11)

TD
w,i ≥ di,rαw,iSw,i,r, ∀i ∈ I, w ∈ W, r ∈ R (12)

∑
i∈I

TA
w,i ≤ T, ∀w ∈ W (13)

The objective function (1) aims to maximize the profits, which is equal to the benefit
of the disassembled components minus the workstation cost, tool deterioration cost, and
task execution cost. Constraint (2) ensures that each task can only be executed once at
most. Constraint (3) ensures that the workstations are turned on in order. Constraint (4)
ensures that at most one task can be performed at each location. Constraint (5) indicates
that the disassembly task is sequentially assigned to each position of the workstation.
Constraint (6) indicates that only one of the two conflicting disassembly tasks can be
performed. Constraints (7) and (8) ensure that the open workstation must assign tasks,
and the unopened workstation cannot assign tasks. Constraint (9) indicates that the task
priority relationship should be satisfied between disassembly tasks. The constraint (10)
represents the time each tool has been used before the disassembly task is performed.
The constraint (11) represents the actual disassembly time of the task, which are equal
to the normal disassembly time of the task plus the deterioration time of the task on
the workstation. The constraint (12) represents the deterioration time of the task on the
workstation. Constraint (13) indicates that the working time of the workstation cannot
exceed the cycle time of the workstation.



Mathematics 2024, 12, 342 9 of 20

3. Proposed Algorithm

Inspired by the “V” shaped flight formation of migratory birds, Duman et al. propose
MBO [30]. The “V” formation is a flight mode often used when migratory birds migrate.
By flying in the V-formation, birds can save energy and increase flight distance. MBO can
find a better solution in a short time by searching the neighborhood of migratory birds and
sharing the neighborhood solutions. This search strategy improves the probability of the
algorithm searching for the approximate optimal solution and ensures that the solution
selected by each individual is not bad. MBO has good convergence and robustness. It can
be used to solve various single objective optimization problems. In order to solve the DLBP
with tool deterioration, we propose to use DMBO.

3.1. Discrete Migratory Bird Optimizer

In the original MBO, both the leader bird and the follower birds evolved through
neighborhood search and sharing neighborhood solutions. After all birds evolved, the
leader bird moved to the tail of the left or right queue, and the first follower bird in the
left or right queue became a new leader bird, and then proceeded to the next iteration. In
this work, we improve the methods of population recombination and replacement of the
leader bird, so that the population can approach the optimal solution faster. In addition,
we design three mutation strategies to increase the diversity of the population in order to
avoid the algorithm falling into local optimization.

The main content of DMBO is individual evolution. After birds in the population are
arranged into the V shape, each bird can generate some neighborhood solutions through
crossover operators and mutation operators and select a better individual from the neigh-
borhood solutions to replace itself. Unused neighborhood solutions are shared with the
next bird to help it evolve. The neighborhood solution set of the leader bird is expressed
as Sleader, and the neighborhood solution sets of the left and right following birds are
expressed as Sle f t and Sright. The detailed steps of DMBO are shown in Algorithm 1.

Algorithm 1: Discrete migratory bird optimizer
Input: population size, number of iterations
Output: the best solution set X

Begin
Initialize population.
while (g <maximum number of iterations) do

Construct a V formation queue.
while (k <population size) do

Individual evolution.
k = k + 1

end while
Recombination of population.
Replacement of the leader bird.
g = g + 1
Update X.

end while
return X
End

(a) Population initialization: Based on the population size n, n feasible solutions are
randomly generated, and one feasible solution represents a migratory bird.

(b) Construct V formation queue: Select a stronger individual in the population as the
leader bird, and the other birds are divided to the left and right sides to form a V
shape in turn, and the left and right queues are represented as Ble f t and Bright.



Mathematics 2024, 12, 342 10 of 20

(c) The evolution of the leader: The leader bird generates several neighborhood solutions
according to the evolutionary strategy, then puts the neighborhood into Sleader, and
compares the individuals in Sleader with the leader bird. If an individual better than
the leader bird is found in Sleader, the leader bird is replaced; if it is not found, the
leader bird is not replaced. Finally, the unused neighborhood solution is passed to
the followers.

(d) The evolution of the follower: First, the follower birds generate neighborhood solutions
according to the evolutionary strategy, then we put the neighborhood solutions and
the solutions passed by the previous birds into Sle f t or Sright. If the individual in
Sle f t/Sright is better than the current follower bird, the follower is replaced. The
detailed steps of individual evolution are shown in Algorithm 2.

(e) Recombination of population and replacement of the leader bird: When the set number
of cycles has been reached, all migratory birds in the population have evolved, and
then the initial population and the new individuals are aggregated to form a new set B.
In order to make the population move closer to the optimal solution faster, we mutate
the initial population and add it to set B. Then, we traverse the individuals in the set,
select the best n individuals to build a new population, select the best one from the n
individuals to be the leader bird, and assign the remaining individuals to the left and
right in turn. Furthermore, we put the best one in the external archive X.

The algorithm terminates when the preset maximum iterations are reached.

Algorithm 2: Individual evolution
Input: a V formation queue
Output: an evolved queue Q

Begin
Generate four neighborhood solutions around the leader bird.
Store neighborhood solutions in Sleader.
Select the best solution in Sleader as the leader bird.
Unused individuals in Sleader are stored in Sle f t and Sright.
while (i <maximum number of Ble f t) do

for each individual do
Generate two neighborhood solutions around the i-th
follower in the left queue.
Store neighborhood solutions in Sle f t.
Select the best solution in Sle f t as the i-th follower bird.
Remove used individuals from Sle f t.

end for
i = i + 1

end while
while (i <maximum number of Bright) do

for each individual do
Generate two neighborhood solutions around the i-th
follower in the right queue.
Store neighborhood solutions in Sright.
Select the best solution in Sright as the i-th follower bird.
Remove used individuals from Sright.

end for
i = i + 1

end while
return Q
End



Mathematics 2024, 12, 342 11 of 20

3.2. Encoding and Decoding

Based on the characteristics of DLBP with tool deterioration, we want to obtain a set
of disassembly sequences for the EOL products and assign them reasonably to several
workstations in a disassembly line according to our disassembly goals. To more clearly
describe the problem under study, we use encoding and decoding to interpret a solution.

We design a two-stage encoding method that defines an integer string π = (π1, π2)
to represent a solution. π1 represents a sequence of disassembly tasks, and π2 represents
the corresponding workstation sequence of the disassembly tasks in π1. Take a solution of
the compass as an example, as shown in Figure 5. When a new individual is generated, a
disassembly task sequence is randomly generated, and then the task sequence is adjusted
according to the conflict and precedence relation matrices of the disassembly task to make
it a feasible task sequence.

Figure 5. Encoding example.

In the decoding process, each task in the sequence of feasible tasks is assigned to
the workstation in turn and satisfies the cycle time constraints of the workstation. When
assigning a task, we calculate whether the total disassembly time of all disassembly tasks
on the current workstation exceed the workstation’s cycle time after assigning the task
to the current workstation. If the total disassembly time exceeds the cycle time of the
workstation after assigning the task, the task is assigned to the next workstation. If the
total disassembly time does not exceed the workstation’s cycle time after assigning the task,
we randomly assign the task to the current or next workstation. The decoding diagram is
shown in Figure 6. In summary, the disassembly task sequence can be decoded to obtain
a specific solution, after which we can calculate and evaluate the target function value of
the solution.

1 4 9 14

1 2

Disassembly sequence

Workstation

Figure 6. Assign tasks to workstations.

3.3. Evolution of Leader and Followers

In DMBO, after population initialization is complete, for the individuals in the popu-
lation to evolve in the direction we want, we need to generate some new individuals to
update the population. In this study, the precedence preserving crossover (PPX) operator
and three mutation operators are designed to help the leader and follower birds to evolve.

PPX operator enables individuals to maintain precedence and conflict constraints after
crossover. As Figure 7 shows, the specific steps for PPX are as follows:

(a) Traverse the V-shaped queue formed by the migratory bird population, and select the
current migratory bird and its next migratory bird as parent 1 and parent 2, respectively.

(b) Randomly generate a mask represented by a binary number, and parent 1 and parent
2 generate new individuals according to this mask. The 0 in this mask means to obtain
the disassembly task from parent 1, and the 1 means to obtain the disassembly task
from parent 2. If the acquired task already exists in the new individual, we need to
skip the current task and obtain the next one from the parent.



Mathematics 2024, 12, 342 12 of 20

In order to increase the diversity of solutions, we need to conduct mutation operations
on new individuals. The mutation operators we designed are as follows:

(a) Task sequence variation: Under the premise of not exceeding the total number of
tasks in the case, appropriately add 1 to 3 tasks randomly after the individual task
sequence. As shown in Figure 8, two tasks are randomly added after the individual
task sequence to make the task sequence longer. This mutation strategy can solve the
problem of shortening the individual task sequence after the crossover operation.

(b) Location variation: Starting from the second task in the task sequence, randomly
select a task, find out the location of the superior task and subordinate task of the
task according to the priority relationship of the task, and randomly select a location
between the two locations to insert the task. As shown in Figure 9, in the current task
sequence, select task 14 randomly. Its superior task is task 1, and its subordinate task is
task 9. Then, insert task 14 in a randomly selected position between task 1 and task 9.

(c) Workstation variation: Randomly select a workstation in the current solution, assign
the first task on the workstation to the previous workstation, or assign the last task
on the workstation to the next workstation. As shown in Figure 10, the second
workstation is randomly selected, and the first task 14 on the second workstation is
assigned to workstation 1.

1 4 9 14 1 3 8 13

0 1 1 0

1 3 8 4

Parent 2Parent 1

Child

Mask

Figure 7. Process of crossover.

1 4 9 14Task sequence

Mutate

1 4 9 14New task sequence 15 6

Figure 8. Process of task sequence variation.

1 8 14 6Task sequence

Mutate

New task sequence

9 10

1 8 6 14 9 10

Figure 9. Process of location variation.



Mathematics 2024, 12, 342 13 of 20

1 8 14 6 9Task sequence

Workstation 1 2

Mutate

1 8 14 6 9Task sequence

Workstation 1 2

Figure 10. Process of workstation variation.

4. Experimental Results
4.1. Test Instances

DMBO is implemented on IntelliJ IDEA 2020.3.3 x64 and runs under the Jmetal
framework. The mathematical model is verified in IBM ILOG CPLEX Optimization Studio.
The operating environment is Windows 10, and the CPU is AMD a6-9210 Radeon r4,5
computer cores 2C + 3G 2.40 GHz.

In order to make the experimental results more reliable and comprehensive, we select
six disassembly cases of different scales for testing, among which the ballpoint pen [35] (see
Figure 11), washing machine [36] (see Figures 12 and 13) and compass [37] (see Figure 3)
are small-scale cases; the refrigerator [38] (see Figure 14) and radio [35] (see Figure 15) are
medium-scale cases; and the hammer drill [39] (see Figure 16) is a large-scale case. The
details of the six cases are shown in Table 2.

Figure 11. Disassembly diagram of a ballpoint pen.

Figure 12. Disassembly diagram of a washing machine.

Before starting the experiment, we need to set the parameters of each case. Take
the radio as an example. Its parameter settings are shown in Table 3. C represents the
deterioration cost per unit time. The total deterioration cost can be obtained by multiplying
C by the total deterioration time. CW represents the fixed cost of opening the workstation.
Multiply CW by the number of workstations opened to obtain the total cost of workstations
opened. The values of W and K are set based on the scale of the case. R is set based on
the kind of tools needed to disassemble the product. αw,i represents the degree of tool



Mathematics 2024, 12, 342 14 of 20

deterioration. The higher the value of αw,i, the longer it takes to execute task i with this tool.
TN

w,i indicates the normal disassembly time of task i without considering tool deterioration.
Vn represents the profit of component n. Our goal is to disassemble the components with
high profit as much as possible. CD

i represents the disassembly cost of task i. For each task
executed, we add its disassembly cost to the total cost. T in Table 2 represents the cycle
time of the workstation, which is set according to the scale of the case.

Figure 13. AND/OR graph of a washing machine.

Figure 14. Disassembly precedence graph of the refrigerator.

Figure 15. Structure of a radio.

Table 2. Test cases.

Case ID Name Num of Tasks Num of
Subassemblies T

1 Ballpoint pen 13 15 150
2 Washing machine 13 15 150
3 Compass 15 18 80
4 Refrigerator 25 25 150
5 Radio 30 29 200
6 Hammer drill 46 63 200



Mathematics 2024, 12, 342 15 of 20

Table 3. Parameter settings for the radio.

Parameter Meaning Value

C Deterioration cost per unit time 2
CW Fixed cost of opening the workstation 10
W The number of workstations 10
R The number of tools 3
K The number of locations on the workstation 10

αw,i Deterioration coefficient U(0, 1)
TN

w,i Normal disassembly time U(0, 80)
Vn Profits of component n U(0, 600)
CD

i Disassembly cost of task i U(0, 15)

Figure 16. Structure of a hammer drill.

4.2. Comparative Analysis of DMBO and CPLEX Results

In order to verify the correctness of the mathematical model and the performance
of the algorithm, we use CPLEX and DMBO to solve six test cases separately [40]. The
results of six cases solved based on CPLEX are shown in Table 4. We take the solution of
the washing machine as an example. The meaning of the disassembly sequence is that
task 1, task 4, and task 8 are assigned to the first workstation, and task 12 is assigned to
the second workstation, the total profit obtained by the disassembly assignment is 1155.
When small-scale cases such as washing machines and ball pens are solved by CPLEX,
the optimal solution can be accurately obtained in a very short time. For medium-scale
cases such as the radio, it takes a long time to solve with CPLEX, which is significantly
increased compared with small-scale cases, but it can also find the optimal solution in a
certain time. When using CPLEX to solve large-scale cases such as hammer drills, it is still
inefficient to obtain a feasible solution after running for five hours. In this article, we use “-”
to indicate that no results have been obtained. Therefore, it can be concluded that the size
of the experimental case has a great impact on the efficiency of CPLEX.

The results of six cases solved based on DMBO are shown in Table 5. For the small-
and medium-sized cases, DMBO achieved the same optimal solution as CPLEX, indicating
the correctness and effectiveness of the DMBO. In the case of the hammer drill, CPLEX
failed to obtain a feasible solution within 5 h, while DMBO converged to a feasible solution
within seconds, demonstrating the excellent search capability of DMBO. The computation
time of DMBO does not show significant differences across different case sizes, implying
that the size of the experimental cases has little impact on the efficiency of DMBO.



Mathematics 2024, 12, 342 16 of 20

Table 4. Results of solving the instances with CPLEX.

Case Disassembly Sequence Profit Computation Time (s)

Ballpoint pen 1 → 12 → (7, 10) 1572 3.96
Washing machine (1, 4, 8) → 12 1155 3.81

Compass (2, 6) → (9, 14) → 15 180 12.14
Refrigerator - - 18,000

Radio (2, 11, 12) → (5, 6) → (7, 8, 30) 1868 881.60
Hammer drill - - 18,000

Table 5. Results of solving the instances with DMBO.

Case Disassembly Sequence Profit Computation Time (s)

Ballpoint pen 1 → 12 → (7, 10) 1572 0.190
Washing machine (1, 4, 8) → 12 1155 0.352

Compass (2, 6) → (9, 14) → 15 180 1.543

Refrigerator
(2, 1) → (21, 16) → (14, 8) → (3, 4, 18)
→ (19, 20, 5) → (17, 6) → (15, 10, 9)

→ (7, 11, 22) → 12 → (13, 23) → (24, 25)
2295 8.227

Radio (2, 11, 12) → (5, 6) → (7, 8, 30) 1868 3.435

Hammer drill
(1, 2) → (3, 5, 9) → (16, 11)
→ (26, 20) → (35, 30) → 37

→ (40, 42) → (22, 32) → (18, 38, 43)
6492 9.455

In Table 6, we study the optimal values and computation times obtained for the
six cases based on CPLEX and DMBO, through which it is known that, for the same case,
DMBO takes significantly less time to obtain the optimal solution than CPLEX, and DMBO
can achieve as good or better solutions than CPLEX.

Table 6. Comparison of results between DMBO and CPLEX.

Case
Profit Computation Time (s)

CPLEX DMBO Increased by CPLEX DMBO Reduced by

Ballpoint pen 1572 1572 0.00% 3.96 0.190 95.2%
Washing machine 1155 1155 0.00% 3.81 0.352 90.8%

Compass 180 180 0.00% 12.14 1.543 87.3%
Refrigerator - 2295 - 18,000 8.227 -

Radio 1868 1868 0.00% 881.60 3.435 99.6%
Hammer drill - 6492 - 18,000 9.455 -

4.3. Analysis of DMBO Performance

Figure 17 shows the initial and optimal solutions for the radio disassembly. We use
cyan to indicate that the task uses tool 1, blue to indicate that the task uses tool 2, and orange
to indicate that the task uses tool 3. In the initial solution, there are two tasks on workstation
1 and workstation 2 that use the same tool. Due to the deterioration effect of the tool, the
disassembly time of workstation 1 and workstation 2 is extended. In the optimal solution
obtained by DMBO, tasks using the same tool are assigned to different workstations to
reduce the impact of tool deterioration. Table 7 lists the detailed data of the initial solution
and the optimal solution. From this table, we can see that in the initial solution, the
deterioration effect occurred on workstations 1 and 2, resulting in a total extension of the
task execution time by 22.9 and a deterioration cost of 45.8. After the optimization of the
algorithm, the impact of tool deterioration is avoided, and the profit of the final solution is
increased by 2.51%. This shows that DMBO has good optimization performance.



Mathematics 2024, 12, 342 17 of 20

Table 7. Comparison between the initial solution (IS) and optimal solution (OS).

Deterioration Time Deterioration Cost Profit
Advance

IS OS IS OS IS OS

22.9 0 45.8 0 1822.2 1868 2.51%

2

Workstation 1

1 2 1 2

Workstation 3

1 2

Workstation 2

Initial solution (IS):

Optimal solution (OS):

7 8

3 3 3

2 11

Workstation 1

1 2 1 2

Workstation 3

1 2

Workstation 2

5 6 30 7

3 3 3

11

12 8

30 12 5 6

Figure 17. Initial solution and optimal solution of radio.

In many existing studies on DLBP, the impact of deterioration effect on disassembly
profit in disassembly lines is not considered. When solving the optimal solution without
considering the deterioration effect of disassembly tools, we obtain the disassembly solution
as shown in Figure 18. From the figure, we can see that there are multiple tasks using the
same tool on workstation 1 and workstation 2. However, in the actual disassembly process,
the deterioration effect is inevitable. If we disassemble the radio according to the solution
in Figure 18, the execution time of tasks 19, 27, and 29 will be extended. Table 8 lists the
comparison between the two solutions with or without tool deterioration. From this table,
we can see that the execution time of the tasks is prolonged by 55.65 and the deterioration
cost is increased by 111.3 when the deterioration of the tool is not considered. However, if
we consider the deterioration effect of tools and avoid the impact of tool deterioration on
disassembly time and cost, the disassembly profit of radio will increase by 5.49%. Therefore,
it is necessary to consider the impact of tool deterioration in DLBP.

2 11

Workstation 1

1 2 1 2

Workstation 2

30 25 27 29

3 3

14 19

Figure 18. Optimal solution of radio without considering tool deterioration (OSWT).

Table 8. Comparison of solutions with (OSWT) and without (OS) tool deterioration.

Deterioration Time Deterioration Cost Profit
Difference

OSWT OS OSWT OS OSWT OS

55.65 0 111.3 0 1770.7 1868 5.49%

4.4. Comparison between DMBO and Other Algorithms

In order to check the performance of DMBO in solving optimization problems, we also
use discrete fruit fly optimization algorithm (DFOA) [41], a discrete whale optimization



Mathematics 2024, 12, 342 18 of 20

algorithm (DWOA) [42], and a salp swarm algorithm (SSA) [43] to solve the problems in this
study. DFOA is easy to understand and implement, with low computational complexity and
strong local search capabilities. DWOA is a swarm intelligence optimization algorithm that
mimics the behavior of humpback whales during hunting. It has the characteristics of fewer
parameters and fast convergence speed. SSA has low complexity, strong flexibility and
basically does not require parameter settings, making it have good application prospects in
various optimization fields. Under the condition of 400 iterations and 100 population sizes,
20 experiments are carried out, the optimal value of each generation is recorded in each
experiment, and then the average value of each generation is calculated. Take the radio as
an example. Its iterative process is shown in Figure 19. From the iteration chart, it can be
observed that DMBO exhibits strong global search capability. Compared to the other three
algorithms, DMBO converges faster and is able to find better solutions in fewer iterations.

Figure 19. Iterative comparison of four algorithms.

In addition, we also sorted out the optimal value, the worst value and the average
value of each algorithm in 20 experiments, as shown in Table 9. From this table, we can
find that with the increase in the case size, the quality of the solution of DMBO is better
and the performance of DMBO remains stable.

Table 9. Experimental results of stability test.

Case
Optimal Worst Average

DMBO DFOA SSA DWOA DMBO DFOA SSA DWOA DMBO DFOA SSA DWOA

Ballpoint pen 1572 1572 1572 1572 1572 1572 1562 1366 1572 1572 1567 1469
Washing machine 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155

Compass 180 180 180 180 180 175 167 178 180 177.5 173.5 179
Refrigerator 2295 2295 2275 2285 2217 2204 2178 2177 2256 2249.5 2226.5 2231

Radio 1868 1868 1864 1864 1864 1861 1851 1854 1866 1864.5 1857.5 1859
Hammer drill 6492 6492 6462 6482 6482 6472 6308 6294 6487 6482 6385 6388

5. Conclusions

In this work, considering the fact that disassembly tools deteriorate in functions when
they are being used, a single product disassembly model with the goal of maximal profit is
proposed, which attempts to assign tasks that use the same tool to different workstations.
CPLEX is used to validate the correctness of the model. The results of a series of experiments
show that the proposed DMBO algorithm has a good performance in solving DLBP and is
superior to DFOA and other algorithms. The comparison of DMBO with CPLEX on their
computation time to achieve optimal solution reveals that DMBO is more efficient. For
small-scale cases, DMBO runs faster and can obtain solutions that are as good as CPLEX.
For some large-scale cases, CPLEX cannot find the optimal solution. However, DMBO
can find a feasible solution in a short time. Therefore, DMBO can be used to solve the
disassembly of small-scale cases such as ballpoint pens and washing machines, as well as
medium-scale and large-scale cases such as radios and hammer drills.



Mathematics 2024, 12, 342 19 of 20

Our next step is to apply DMBO to solve multi-objective disassembly balancing
problems on different types of disassembly layouts, such as U-shaped disassembly lines
and parallel disassembly lines. We will also explore the tool feasibility on workstations and
the influence of tool change, as well as consider uncertainty factors in EOL products.

Author Contributions: Conceptualization, X.G. and L.Q.; methodology, S.Q.; validation, J.W. (Jiaxin
Wang) writing—original draft preparation, S.Q.; writing—review and editing, J.W. (Jiacun Wang);
visualization, Y.F.; supervision, L.Q. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is supported in part by NSFC under Grant 61903229, in part by Liaoning
Revitalization Talents Program under Grant XLYC1907166, in part by the Natural Science Foundation
of Shandong Province under Grant ZR2019BF004, and in part by Archival Science and Technology
Project of Liaoning Province under Grant 2021-B-004.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Zai, A.; Sm, B.; Fs, C. Robotic disassembly line balancing problem: A mathematical model and ant colony optimization approach.

Appl. Math. Model. 2020, 86, 335–348.
2. Bahubalendruni, M.R.; Varupala, V.P. Disassembly sequence planning for safe disposal of end-of-life waste electric and electronic

equipment. Natl. Acad. Sci. Lett. 2021, 44, 243–247. [CrossRef]
3. Feng, Y.; Gao, Y.; Tian, G.; Li, Z.; Hu, H.; Zheng, H. Flexible process planning and end-of-life decision-making for product

recovery optimization based on hybrid disassembly. IEEE Trans. Autom. Sci. Eng. 2018, 16, 311–326. [CrossRef]
4. Zhu, Q.; Tang, H.; Huang, J.; Hou, Y. Task Scheduling for Multi-Cloud Computing Subject to Security and Reliability Constraints.

IEEE/CAA J. Autom. Sin. 2021, 8, 848–865. [CrossRef]
5. Anil Kumar, G.; Bahubalendruni, M.R.; Prasad, V.; Sankaranarayanasamy, K. A multi-layered disassembly sequence planning

method to support decision making in de-manufacturing. Sādhanā 2021, 46, 102. [CrossRef]
6. Zhou, Z.; Liu, J.; Pham, D.T.; Xu, W.; Ramirez, F.J.; Ji, C.; Liu, Q. Disassembly sequence planning: Recent developments and

future trends. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1450–1471. [CrossRef]
7. Gulivindala, A.K.; Bahubalendruni, M.; Chandrasekar, R.; Ahmed, E.; Abidi, M.H.; Al-Ahmari, A. Automated disassembly

sequence prediction for industry 4.0 using enhanced genetic algorithm. Comput. Mater. Contin. 2021, 69, 2531–2548. [CrossRef]
8. Gungor, A.; Gupta, S.M. A solution approach to the disassembly line balancing problem in the presence of task failures. Int. J.

Prod. Res. 2001, 39, 1427–1467. [CrossRef]
9. McGovern, S.M.; Gupta, S.M. A balancing method and genetic algorithm for disassembly line balancing. Eur. J. Oper. Res. 2007,

179, 692–708. [CrossRef]
10. Kalayci, C.B.; Gupta, S.M. A particle swarm optimization algorithm with neighborhood-based mutation for sequence-dependent

disassembly line balancing problem. Int. J. Adv. Manuf. Technol. 2013, 69, 197–209. [CrossRef]
11. Tuncel, E.; Zeid, A.; Kamarthi, S. Solving large scale disassembly line balancing problem with uncertainty using reinforcement

learning. J. Intell. Manuf. 2012, 25, 647–659. [CrossRef]
12. Liu, J.; Wang, S. Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development of Economy and

Environment. Sustainability 2017, 9, 309. [CrossRef]
13. Hu, B.; Feng, Y.; Zheng, H.; Tan, J. Sequence planning for selective disassembly aiming at reducing energy consumption using a

constraints relation graph and improved ant colony optimization algorithm. Energies 2018, 11, 2106. [CrossRef]
14. Guo, X.; Wei, T.; Wang, J.; Liu, S.; Qin, S.; Qi, L. Multiobjective U-shaped disassembly line balancing problem considering human

fatigue index and an efficient solution. IEEE Trans. Comput. Soc. Syst. 2023, 10, 2061–2073. [CrossRef]
15. Liu, C.; Xiong, C. Single machine resource allocation scheduling problems with deterioration effect and general positional effect.

Math. Biosci. Eng. 2021, 18, 2562–2578. [CrossRef] [PubMed]
16. Kalaki Juybari, J.; Kalaki Juybari, S.; Hasanzadeh, R. Parallel machines scheduling with time-dependent deterioration, using

meta-heuristic algorithms. SN Appl. Sci. 2021, 3, 333. [CrossRef]
17. Mir, M.S.S.; Rezaeian, J.; Mohamadian, H. Scheduling parallel machine problem under general effects of deterioration and

learning with past-sequence-dependent setup time: Heuristic and meta-heuristic approaches. Soft Comput. 2020, 24, 1335–1355.
18. Gupta, J.N.; Gupta, S.K. Single facility scheduling with nonlinear processing times. Comput. Ind. Eng. 1988, 14, 387–393.

[CrossRef]
19. Ng, C.T.; Cheng, T.E.; Bachman, A.; Janiak, A. Three scheduling problems with deteriorating jobs to minimize the total completion

time. Inf. Process. Lett. 2002, 81, 327–333. [CrossRef]

http://doi.org/10.1007/s40009-020-00994-0
http://dx.doi.org/10.1109/TASE.2018.2840348
http://dx.doi.org/10.1109/JAS.2021.1003934
http://dx.doi.org/10.1007/s12046-021-01622-3
http://dx.doi.org/10.1177/0954405418789975
http://dx.doi.org/10.32604/cmc.2021.018014
http://dx.doi.org/10.1080/00207540110052157
http://dx.doi.org/10.1016/j.ejor.2005.03.055
http://dx.doi.org/10.1007/s00170-013-4990-1
http://dx.doi.org/10.1007/s10845-012-0711-0
http://dx.doi.org/10.3390/su9020309
http://dx.doi.org/10.3390/en11082106
http://dx.doi.org/10.1109/TCSS.2022.3217101
http://dx.doi.org/10.3934/mbe.2021130
http://www.ncbi.nlm.nih.gov/pubmed/33892560
http://dx.doi.org/10.1007/s42452-021-04333-w
http://dx.doi.org/10.1016/0360-8352(88)90041-1
http://dx.doi.org/10.1016/S0020-0190(01)00244-7


Mathematics 2024, 12, 342 20 of 20

20. Cheng, M.; Sun, S. Two scheduling problems in group technology with deteriorating jobs. Appl. Math. J. Chin. Univ. 2005,
20, 225–234.

21. Toksarı, M.D.; Güner, E. Minimizing the earliness/tardiness costs on parallel machine with learning effects and deteriorating
jobs: A mixed nonlinear integer programming approach. Int. J. Adv. Manuf. Technol. 2008, 38, 801–808. [CrossRef]

22. Wang, J.; Ji, P.; Cheng, T.C.E.; Wang, D. Minimizing makespan in a two-machine flow shop with effects of deterioration and
learning. Optim. Lett. 2011, 6, 1393–1409. [CrossRef]

23. Behnamian, J. Scheduling and worker assignment problems on hybrid flowshop with cost-related objective function. Int. J. Adv.
Manuf. Technol. 2014, 74, 267–283. [CrossRef]

24. Kouka, S.; Makhadmeh, S.N.; Al-Betar, M.A.; Dalbah, L.M.; Nachouki, M. Recent Applications and Advances of Migrating Birds
Optimization. Arch. Comput. Methods Eng. 2023, 31, 243–262. [CrossRef]

25. Qin, G.; Guo, X.; Liu, S.; Qi, L.; Zhao, J.; Zhao, Z.; Tang, Y. Multi-objective Discrete Migrating Birds Optimizer Solving Multiple-
product Partial U-shaped Disassembly Line Balancing Problem. In Proceedings of the 2021 IEEE 29th Mediterranean Conference
on Control and Automation (MED), Puglia, Italy, 22–25 June 2021; pp. 59–64.

26. Gad, A.G.; Houssein, E.H.; Zhou, M.; Suganthan, P.N.; Wazery, Y.M. Damping-assisted evolutionary swarm intelligence for
industrial iot task scheduling in cloud computing. IEEE Internet Things J. 2023, 11, 1698–1710. [CrossRef]

27. Fu, Y.; Ma, X.; Gao, K.; Li, Z.; Dong, H. Multi-Objective Home Health Care Routing and Scheduling With Sharing Service via a
Problem-Specific Knowledge-Based Artificial Bee Colony Algorithm. IEEE Trans. Intell. Transp. Syst. 2023. [CrossRef]

28. Ulker, E.; Tongur, V. Migrating birds optimization (MBO) algorithm to solve knapsack problem. Procedia Comput. Sci. 2017,
111, 71–76. [CrossRef]

29. Makas, H.; Yumuşak, N. System identification by using migrating birds optimization algorithm: A comparative performance
analysis. Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 1879–1900. [CrossRef]

30. Duman, E.; Uysal, M.; Alkaya, A.F. Migrating birds optimization: A new metaheuristic approach and its performance on
quadratic assignment problem. Inf. Sci. 2012, 217, 65–77. [CrossRef]

31. Kalayci, C.B.; Shaaban, S.; Gupta, S.M. Ant colony optimization for sequence-dependent disassembly line balancing problem. J.
Manuf. Technol. Manag. 2013, 24, 413–427. [CrossRef]

32. Wang, J.; Guo, X.; Wang, J.; Qin, S.; Qi, L.; Tang, Y. Discrete Migratory Bird Optimizer for Disassembly Line Balancing Problem
Considering Tool Deterioration. In Proceedings of the 2022 IEEE International Conference on Networking, Sensing and Control
(ICNSC), Shanghai, China, 15–18 December 2022; pp. 1–6.

33. Fu, Y.; Zhou, M.; Guo, X.; Qi, L. Scheduling dual-objective stochastic hybrid flow shop with deteriorating jobs via bi-population
evolutionary algorithm. IEEE Trans. Syst. Man Cybern. Syst. 2019, 50, 5037–5048. [CrossRef]

34. Wang, J. Patient flow modeling and optimal staffing for emergency departments: A Petri net approach. IEEE Trans. Comput. Soc.
Syst. 2023, 10, 2022–2032. [CrossRef]

35. Lu, Q.; Ren, Y.; Jin, H.; Meng, L.; Li, L.; Zhang, C.; Sutherland, J.W. A hybrid metaheuristic algorithm for a profit-oriented and
energy-efficient disassembly sequencing problem. Robot. Comput.-Integr. Manuf. 2020, 61, 101828. [CrossRef]

36. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of multiobjective optimizers: An
analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]

37. Bentaha, M.L.; Battaïa, O.; Dolgui, A. L-shaped algorithm for stochastic disassembly line balancing problem. IFAC Proc. Vol. 2013,
46, 407–411. [CrossRef]

38. Zhu, L.; Zhang, Z.; Guan, C. Multi-objective partial parallel disassembly line balancing problem using hybrid group neighbour-
hood search algorithm. J. Manuf. Syst. 2020, 56, 252–269. [CrossRef]

39. Pistolesi, F.; Lazzerini, B.; Dalle Mura, M.; Dini, G. EMOGA: A hybrid genetic algorithm with extremal optimization core for
multiobjective disassembly line balancing. IEEE Trans. Ind. Inform. 2017, 14, 1089–1098. [CrossRef]

40. Ma, X.; Fu, Y.; Gao, K.; Zhu, L.; Sadollah, A. A multi-objective scheduling and routing problem for home health care services via
brain storm optimization. Complex Syst. Model. Simul. 2023, 3, 32–46. [CrossRef]

41. Han, M. A V2G scheduling strategy based on the fruit fly optimization algorithm. J. Phys. Conf. Ser. 2021, 1952, 042063. [CrossRef]
42. Li, Y.; He, Y.; Liu, X.; Guo, X.; Li, Z. A novel discrete whale optimization algorithm for solving knapsack problems. Appl. Intell.

2020, 50, 3350–3366. [CrossRef]
43. Chamchuen, S.; Siritaratiwat, A.; Fuangfoo, P.; Suthisopapan, P.; Khunkitti, P. Adaptive Salp Swarm Algorithm as Optimal

Feature Selection for Power Quality Disturbance Classification. Appl. Sci. 2021, 11, 5670. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s00170-007-1128-3
http://dx.doi.org/10.1007/s11590-011-0334-y
http://dx.doi.org/10.1007/s00170-014-5960-y
http://dx.doi.org/10.1007/s11831-023-09984-z
http://dx.doi.org/10.1109/JIOT.2023.3291367
http://dx.doi.org/10.1109/TITS.2023.3315785
http://dx.doi.org/10.1016/j.procs.2017.06.012
http://dx.doi.org/10.3906/elk-1311-45
http://dx.doi.org/10.1016/j.ins.2012.06.032
http://dx.doi.org/10.1108/17410381311318909
http://dx.doi.org/10.1109/TSMC.2019.2907575
http://dx.doi.org/10.1109/TCSS.2022.3186249
http://dx.doi.org/10.1016/j.rcim.2019.101828
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.3182/20130619-3-RU-3018.00500
http://dx.doi.org/10.1016/j.jmsy.2020.06.013
http://dx.doi.org/10.1109/TII.2017.2778223
http://dx.doi.org/10.23919/CSMS.2022.0025
http://dx.doi.org/10.1088/1742-6596/1952/4/042063
http://dx.doi.org/10.1007/s10489-020-01722-3
http://dx.doi.org/10.3390/app11125670

	Introduction
	Problem Description and Modeling
	Problem Description
	Disassembly Sequence
	Mathematical Model

	Proposed Algorithm
	Discrete Migratory Bird Optimizer
	Encoding and Decoding
	Evolution of Leader and Followers

	Experimental Results
	Test Instances
	Comparative Analysis of DMBO and CPLEX Results
	Analysis of DMBO Performance
	Comparison between DMBO and Other Algorithms

	Conclusions
	References

