
Citation: Ma, Z.; Gao, K.; Yu, H.; Wu,

N. Solving Heterogeneous USV

Scheduling Problems by

Problem-Specific Knowledge Based

Meta-Heuristics with Q-Learning.

Mathematics 2024, 12, 339. https://

doi.org/10.3390/math12020339

Academic Editor: José Antonio Sanz

Received: 21 December 2023

Revised: 16 January 2024

Accepted: 18 January 2024

Published: 19 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Solving Heterogeneous USV Scheduling Problems by
Problem-Specific Knowledge Based Meta-Heuristics
with Q-Learning
Zhenfang Ma , Kaizhou Gao * , Hui Yu and Naiqi Wu

Macau Institute of System Engineering, Macau University of Science and Technology, Avenida Wai Long,
Taipa 999078, Macau; 2220017692@student.must.edu.mo (Z.M.); 3220006100@student.must.edu.mo (H.Y.);
nqwu@must.edu.mo (N.W.)
* Correspondence: kzgao@must.edu.mo

Abstract: This study focuses on the scheduling problem of heterogeneous unmanned surface vehi-
cles (USVs) with obstacle avoidance pretreatment. The goal is to minimize the overall maximum
completion time of USVs. First, we develop a mathematical model for the problem. Second, with
obstacles, an A* algorithm is employed to generate a path between two points where tasks need to be
performed. Third, three meta-heuristics, i.e., simulated annealing (SA), genetic algorithm (GA), and
harmony search (HS), are employed and improved to solve the problems. Based on problem-specific
knowledge, nine local search operators are designed to improve the performance of the proposed
algorithms. In each iteration, three Q-learning strategies are used to select high-quality local search
operators. We aim to improve the performance of meta-heuristics by using Q-learning-based local
search operators. Finally, 13 instances with different scales are adopted to validate the effectiveness
of the proposed strategies. We compare with the classical meta-heuristics and the existing meta-
heuristics. The proposed meta-heuristics with Q-learning are overall better than the compared ones.
The results and comparisons show that HS with the second Q-learning, HS + QL2, exhibits the
strongest competitiveness (the smallest mean rank value 1.00) among 15 algorithms.

Keywords: unmanned surface vessel; scheduling; meta-heuristics; Q-learning

MSC: 90B35

1. Introduction

Oceans cover two-thirds of the earth’s area [1]; however, most of the oceans have
not been explored. Satellites, submersibles, and vessels are commonly used equipment
in ocean exploration, each playing a role in different fields. Satellites are mainly used
for ocean resource management and disaster monitoring by collecting large-scale and
high-frequency ocean information [2]. However, satellites are affected by many factors,
such as clouds, atmosphere, water color, etc., and cannot provide high-resolution and
high-accuracy data [3]. Submersibles can directly observe and analyze seabed resources,
such that direct data or samples can be obtained. Still, the operations of submersibles
are affected by water pressure, temperature, and battery capacity. They cannot last for
a long time or travel over a large area, and their execution needs vessels or satellites for
support and positioning [4]. Vessels can serve as platforms for ocean exploration and are
applied in many fields, such as marine environmental protection, channel measurement,
and ocean observation.

Unmanned surface vehicles (USVs) are characterized by unattended operations, high
payload capacity, low cost, and high maneuverability [5], and have been widely used in civil
and military fields [6]. Xie et al. [7] proposed a hybrid partitioning patrol scheme, which
divided the sea surface area into different importance levels and guides USVs to accomplish

Mathematics 2024, 12, 339. https://doi.org/10.3390/math12020339 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020339
https://doi.org/10.3390/math12020339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0001-7359-5928
https://orcid.org/0000-0002-9252-6928
https://orcid.org/0000-0001-6782-458X
https://doi.org/10.3390/math12020339
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020339?type=check_update&version=2

Mathematics 2024, 12, 339 2 of 23

patrol tasks. Li et al. [8] addressed the maritime safety issue under severe weather condi-
tions. Inspired by an immune–endocrine short feedback system, they presented a novel
approach to make USVs able to fully exploit their strengths and accomplish patrol tasks
in complex sea conditions. In terms of marine environment monitoring, Sutton et al. [9]
conducted the first autonomous circumnavigation of Antarctica using a USV, measuring
sea–air carbon dioxide, wind speed, and surface ocean properties. In [10], high-precision
data were collected from the coastal water of Belize by using a USV equipped with pH and
pCO2 sensors. Based on a wave-adaptive modular vessel USV, Sinisterra et al. [11] used a
stereo vision-based method to track moving target vessels on the sea surface. Benefiting
from the communication and carrying capacity of USVs, Shao et al. [12] proposed a collab-
orative unmanned surface vehicle–unmanned aerial vehicle platform. For collaborating
unmanned surface vehicle–autonomous underwater vehicles, Lei Yang et al. [4] proposed
three operation modes. Both teams used USVs as platforms to collaborate with UAVs and
AUVs, respectively, extending the utilization and capabilities of the devices.

The main contributions of this study are summarized as follows:

(1) a mixed integer linear programming model is established to describe the heteroge-
neous USV scheduling problems for minimizing the maximum completion time;

(2) problem-specific knowledge-based nine neighborhood search operators are designed
to improve the performance of metaheuristics;

(3) three Q-learning strategies are proposed to guide the selection of premium neighbor-
hood search operators during iterations.

The rest of this paper is structured as follows. Section 2 reviews the publications
on this topic. Section 3 introduces the mathematical model for the USV scheduling prob-
lems. Section 4 presents the proposed algorithms. Section 5 reports the experiential
results and comparisons, and finally, Section 6 summarizes the study and points out some
future directions.

2. Literature Review

In this section, we present an overview of the published literature in four dimensions:
path planning, meta-heuristic, Q-learning, and the problem’s heterogeneity.

Path planning of USVs on the sea surface is the basis for completing predetermined
task objectives with high speed, safety, and energy efficiency. In [13], path planning
problems were divided into two layers: local path planning and global one. In local
path planning, robots have limited knowledge of the environment, while in global path
planning, they have a complete understanding of the environment [13]. In our study,
the known environmental information is relatively complete and remains stable over
time, so a static and global path planning method is chosen [14]. Based on an automatic
identification system service platform, Kai Yu et al. [14] proposed an improved A* algorithm,
which allows ships to change their speed to avoid obstacles during global path planning.
Yang et al. [15] proposed a global path planning algorithm based on a double deep Q
network for the global path generation. In [16], a parallel evolutionary genetic algorithm
(PEGA) was proposed, which was implemented on a chip by a hardware and software
collaboration design method. The chip was used for global path planning of autonomous
mobile robots. Yin et al. [17] combined an adaptive agent modeling with a rapidly exploring
random tree star (RRT*) and proposed a reliability-based path planning algorithm ER-RRT*
with better performance.

Meta-heuristics have been widely applied in engineering optimization and scheduling
problems, such as traffic signal control [18], flow shop scheduling optimization [19], etc.
Compared to other algorithms, meta-heuristics can balance the computational cost and
the accuracy of the results [20]. They are also employed for solving task assignment
and path planning problems [21]. Gemeinder et al. [22] used GA to design a mobile
robot path planning software that focused on energy consumption. A hybrid of a GA
and particle swarm optimization algorithm was developed to calculate the optimal path
of fixed-wing unmanned aerial vehicles [23]. To improve the quality of the initial path,

Mathematics 2024, 12, 339 3 of 23

Nazarahari et al. [24] developed an enhanced genetic algorithm (EGA), which used five
customized crossover and mutation operators for the robots’ path planning. An improved
SA was developed by integrating two additional operators and path initialization rules in
environments with static and dynamic obstacles [25]. Huo et al. [26] addressed UAV path
planning problems in natural disaster rescue and battlefield collaborative action scenarios
and proposed an improved GA algorithm by integrating simulated annealing to solve them.
With the minimum energy consumption, Xiao et al. [27] designed an SA to balance task
allocation and path planning for segmented multi-UAV image acquisition tasks. Based on
five metaheuristics, Gao et al. [20] designed various heuristic rules and improving strategies
to solve the scheduling problems of multiple USVs.

Meta-heuristics are prone to local optimum and have low convergence speed. As one
of the most commonly used reinforcement learning algorithms, Q-learning has been em-
ployed to improve the performance of meta-heuristics in recent years [28–31]. Ren et al. [32]
proposed a variable neighborhood search algorithm with Q-learning to solve disassem-
bly line scheduling problems. In response to the slower learning speed of Q-learning,
Low et al. [33] developed a modified Q-learning for path planning by optimizing path
smoothness, time consumption, shortest distance, and total distance. Zhao et al. [34] pro-
posed a hyper-heuristic algorithm with Q-learning to solve an energy-efficient distributed
blocking flow shop scheduling problem. An efficient Q-learning was designed to solve
path planning and obstacle avoidance problems for mobile robots, in which a new reward
function was developed to improve the performance of Q-learning [35].

In the domain of unmanned vehicles (UVs) (such as AVs, UAVs, USVs, etc.), the
problems related to heterogeneous UVs have attracted much attention. Heterogeneous
UVs can be significantly more cost-effective and improve system performance by working
cooperatively [36]. In large-scale applications, it is common for heterogeneous UAVs with
different capabilities to cooperate [37]. Among the published works on heterogeneous
USVs, some studies have explored task allocation [38], coordinated control [39,40], and
path planning [41]. However, the scheduling problem for heterogeneous USVs has been
less considered.

3. Problem Description

The concerned problem involves the coordination and optimization of multiple het-
erogeneous USVs with different capabilities and constraints. With obstacles between some
points where tasks are to be performed, the distance between them should be calculated
in advance. The objective is to minimize the maximum competition time when all USVs
finish their tasks.

Figure 1 shows an example with three USVs and 13 tasks, where different tasks are
assigned to three vessels of different types. Due to their limited battery capacity, USVs may
have to return to the starting point to change a battery and replenish energy during the
tasks. In this study, the task points are presented by a two-dimensional plane space with
a length and width of 100 units. As shown in Figure 2, the modeling of the environment
consists of three parts: boundaries, obstacles, and task points. All task points and obstacles
are distributed within the boundaries.

In this problem, we have n tasks with a types, and Va and Ka, respectively, repre-
sent sets consisting of vessels and missions of the type a, n = n1 + n2 + n3 + . . . + na;
V1 =

{
v11, v12, . . . , v1n1

}
; V2 =

{
v21, v22, . . . , v2n2

}
; . . . ; Va = {va1, va2, . . . , vana}. There are

m USVs with b types, m = m1 + m2 + m3 + . . . + mb; the different types of USVs are de-
noted as K1 =

{
k11, k12, . . . , k1m1

}
; K2 =

{
k21, k22, . . . , k2m2

}
; . . . ; Kb =

{
kb1, kb2, . . . , kbmb

}
.

All tasks are processed independently, and each USV cannot be interrupted once a task is
started until it is completed. Each task can only be performed by one vessel. The ship mov-
ing time between task points is included in the total completion time. When all assigned
tasks are completed, a USV returns to its departure point.

Mathematics 2024, 12, 339 4 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 24

moving time between task points is included in the total completion time. When all as-
signed tasks are completed, a USV returns to its departure point.

Figure 1. An example of scheduling problems with heterogeneous USVs.

Figure 2. An illustrative example of the environment model.

The used notations in the model are described in Table 1.

Table 1. The used notations in the model.

Notation Description
𝑖𝑖, 𝑗𝑗 Indices of tasks.
𝑘𝑘 Index of USVs.
𝑛𝑛 Total number of tasks.
𝑚𝑚 The number of USVs.
𝑑𝑑𝑖𝑖𝑖𝑖 Length of the path between tasks i and j.
𝑝𝑝 Speed of USVs.
𝑡𝑡𝑖𝑖𝑖𝑖 Travel time between tasks i and j.
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖 Additional time to travel from task i to the start point and from it to task j.
𝑡𝑡𝑖𝑖 Time required for performing task i.

Figure 1. An example of scheduling problems with heterogeneous USVs.

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 24

moving time between task points is included in the total completion time. When all as-
signed tasks are completed, a USV returns to its departure point.

Figure 1. An example of scheduling problems with heterogeneous USVs.

Figure 2. An illustrative example of the environment model.

The used notations in the model are described in Table 1.

Table 1. The used notations in the model.

Notation Description
𝑖𝑖, 𝑗𝑗 Indices of tasks.
𝑘𝑘 Index of USVs.
𝑛𝑛 Total number of tasks.
𝑚𝑚 The number of USVs.
𝑑𝑑𝑖𝑖𝑖𝑖 Length of the path between tasks i and j.
𝑝𝑝 Speed of USVs.
𝑡𝑡𝑖𝑖𝑖𝑖 Travel time between tasks i and j.
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑖𝑖𝑖𝑖 Additional time to travel from task i to the start point and from it to task j.
𝑡𝑡𝑖𝑖 Time required for performing task i.

Figure 2. An illustrative example of the environment model.

The used notations in the model are described in Table 1.
In real-life scenarios, many factors are challenging in the global planning stage, such

as wind, waves, ocean currents, and emergencies. In this study, triangular fuzzy numbers
(TFN) are used to make the model more realistic. The following methods perform addition,
rank, and maximization operations for triangular fuzzy numbers.

Mathematics 2024, 12, 339 5 of 23

Table 1. The used notations in the model.

Notation Description

i, j Indices of tasks.
k Index of USVs.
n Total number of tasks.
m The number of USVs.
dij Length of the path between tasks i and j.
p Speed of USVs.
tij Travel time between tasks i and j.

tij
back

Additional time to travel from task i to the start point and from it to
task j.

ti Time required for performing task i.
Bk Working time after battery replacement.
Nk The number of return trips to the departure point to replace batteries.
Wk The total time required for USV k to conduct travel and mapping.
Rk The required total round-trip time of USV k.
Ck Completion time for USV k to perform its tasks.

nij
If the remaining charge after task i is insufficient for the next task j,

nij = 1; else nij = 0.

xijk
If tasks i and j are assigned to USV k and task j is the successor of i,

xijk = 1; otherwise, xijk = 0.
yki Heterogeneous coefficient of vessel type matching task type.

Addition operation: two task times ti =
(
ti1, ti2, ti3

)
and tj =

(
tj1, tj2, tj3

)
, their

addition is as follows.

ti + tj =
(

ti1 + tj1, ti2 + tj2, ti3 + tj3

)
. (1)

Ranking operation: three criteria are used to compare ti and tj.

If
(
ti1 + 2ti2 + ti3

)
/4 > (<)

(
tj1 + 2tj2 + tj3

)
/4, then ti > (<)tj. (2)

If
(
ti1 + 2ti2 + ti3

)
/4 =

(
tj1 + 2tj2 + tj3

)
/4, but ti2 > (<)tj2, then ti > (<)tj. (3)

If
(
ti1 + 2ti2 + ti3

)
/4 =

(
tj1 + 2tj2 + tj3

)
/4, and ti2 = tj2, but ti3 − ti1 > (<)tj3 − tj1, then ti > (<)tj. (4)

Max operation:

If ti > tj, then ti
∨

tj = ti, otherwise ti
∨

tj = tj. (5)

The mathematical model is formulated as follows:

f = min
{

max[C1, C2, C3, . . . , Ck]
}

. (6)

s.t.
tij = dij/p, ∀i, j ∈ V. (7)

tij
back = ti0 + t0j, ∀i, j ∈ V. (8)

Wk =
n

∑
i=0

n

∑
j=0

xijk(tij + yki ∗ ti), ∀i, j ∈ V, ∀k ∈ K. (9)

Rk =
n

∑
i=0

n

∑
j=0

nij ∗ tij
back, ∀i, j ∈ V. (10)

Ck = Wk + Rk , ∀k ∈ K. (11)

Mathematics 2024, 12, 339 6 of 23

m

∑
k=1

n

∑
i=0

xijk = 1, ∀j ∈ V\{0}. (12)

m

∑
k=1

n

∑
j=0

xijk = 1, ∀i ∈ V\{0}. (13)

n

∑
i=0

xijk −
n

∑
i=0

xjik = 0, ∀k ∈ K, j ∈ V\{0}. (14)

n

∑
i=1

xi0k −
n

∑
j=1

x0jk = 0, ∀k ∈ K. (15)

m ≥ k. (16)

xijk ∈ {0, 1}, ∀i, j ∈ V, i ̸= j, ∀k ∈ K. (17)

t0 = 0. (18)

(Nk + 1) ∗ Bk ≥Wk + Rk, ∀k ∈ K. (19)

V1 ∪V2 ∪ . . . ∪Va = V, a > 1. (20)

K1 ∪ K2 ∪ . . . ∪ Kb = K, b > 1. (21)

As shown in Equation (6), the objective is to minimize the maximum completion time,
and the fitness values are expressed using TFN. The rules for calculating and comparing
TFN follow Equations (1)–(5). Equation (7) is the travel time from task point i to task point
j. Equation (8) expresses the time required for a single battery replacement. The total
time for a USV to perform a task and travel to the next task point is given in Equation (9).
In Equation (9), when the heterogeneous coefficient yki is infinity, it means that USVs
of the same type with USV k are unable to perform the same type of tasks with task i.
Equation (10) denotes the total time required for a USV to replace the battery. Equation (11)
represents the completion time of USV k.

Equations (12)–(21) represent the corresponding constraints for the heterogeneous USV
scheduling problems. Each task point should be visited once by a USV, which is indicated
by constraints (12)–(14). Constraint (15) restricts that all USVs start from the departure
point and return there after finishing all the assigned tasks. Constraints (16) and (17) limit
the USV amount and index variables. Constraint (18) specifies that the completion time
mapped by the start point is 0. Constraint (19) presents a limitation on the total battery
capacity of the USVs. Constraints (20) and (21) place the types of tasks and boats.

4. Proposed Algorithms

There are two parts in this section, the first part is the preprocessing of the environment
to avoid obstacles using the A* algorithm. The second part is the algorithm design, which
includes the coding and decoding of the solution, the meta-heuristics, the local search oper-
ators, the Q-learning-based local search, and the framework of the proposed algorithms.

4.1. Path Search

A* algorithms are common for path planning [42] and one of the most effective
methods for finding the shortest path in a static environment. They play a crucial role in
the field of vehicle navigation. The flowchart of the A* algorithm is shown in Figure 3.
When the A* algorithm starts iterating, it will search for the lowest cost grid around the
starting point of the grid map. Then, it searches for the next lowest cost grid around this
one and repeats the process until it arrives at the end point. The searched grids constitutes
the shortest path from the start point to the end point. To solve the stationary obstacle
avoidance problem for USVs, this study uses an A* algorithm to calculate the feasible path
between task points to obtain the shortest path with obstacles being avoided.

Mathematics 2024, 12, 339 7 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 24

shortest path from the start point to the end point. To solve the stationary obstacle avoid-
ance problem for USVs, this study uses an A* algorithm to calculate the feasible path be-
tween task points to obtain the shortest path with obstacles being avoided.

An example of the A* algorithm for path searching is shown in Figure 4. The length
of the shortest path found by the A* algorithm is used to calculate the travel time between
task points S and F.

Figure 3. Flowchart of A* algorithm.

Figure 4. An example of A* Algorithm for path searching.

Figure 3. Flowchart of A* algorithm.

An example of the A* algorithm for path searching is shown in Figure 4. The length of
the shortest path found by the A* algorithm is used to calculate the travel time between
task points S and F.

Mathematics 2024, 12, x FOR PEER REVIEW 7 of 24

shortest path from the start point to the end point. To solve the stationary obstacle avoid-
ance problem for USVs, this study uses an A* algorithm to calculate the feasible path be-
tween task points to obtain the shortest path with obstacles being avoided.

An example of the A* algorithm for path searching is shown in Figure 4. The length
of the shortest path found by the A* algorithm is used to calculate the travel time between
task points S and F.

Figure 3. Flowchart of A* algorithm.

Figure 4. An example of A* Algorithm for path searching.

Figure 4. An example of A* Algorithm for path searching.

4.2. Solution Representation

A USV scheduling problem is to assign tasks to USVs and sort the assigned tasks for
each USV. According to the characteristics of the problems, we design an encoding strategy
to represent a solution. It is in the form of L = (k0, S0, k1, S1, . . . , kn, Sn). A USV with serial
number k is assigned to the sequence of tasks Sk = (v0, v1, ..., va), where k or v is a vector

Mathematics 2024, 12, 339 8 of 23

with three elements denoted as [∂1, ∂2, ∂3] to present the attributes of USVs or tasks. If ∂1
has a value of 0, it represents a USV, while if it has a value of 1, it represents a task; ∂2 gives
the type of the USV or task; and ∂3 indicates its index.

An example for a solution is shown in Figure 5. In this solution, three ships perform
seven tasks. For example, element k2 = [0, 2, 1] represents a USV with serial number 1 of
type 2. Similarly,v0 = [1, 2, 0] represents a task of type 2 with serial number 0. The solution
can be represented as L = (k0, v1, v0, v2, k1, v3, v4, v6, k2, v5), and the sequence of tasks for
each vessel can be represented as S1 = (v1, v0, v2), S2 = (v3, v4, v6), S3 = (v5).

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 24

4.2. Solution Representation
A USV scheduling problem is to assign tasks to USVs and sort the assigned tasks for

each USV. According to the characteristics of the problems, we design an encoding strat-
egy to represent a solution. It is in the form of 𝐿𝐿 = (𝑘𝑘0,𝑆𝑆0, 𝑘𝑘1, 𝑆𝑆1, … , 𝑘𝑘𝑛𝑛, 𝑆𝑆𝑛𝑛). A USV with
serial number 𝑘𝑘 is assigned to the sequence of tasks 𝑆𝑆𝑘𝑘 = (𝑣𝑣0, 𝑣𝑣1, . . . , 𝑣𝑣𝑎𝑎), where 𝑘𝑘 or 𝑣𝑣
is a vector with three elements denoted as [𝜕𝜕1, 𝜕𝜕2, 𝜕𝜕3] to present the attributes of USVs or
tasks. If 𝜕𝜕1 has a value of 0, it represents a USV, while if it has a value of 1, it represents a
task; 𝜕𝜕2 gives the type of the USV or task; and 𝜕𝜕3 indicates its index.

An example for a solution is shown in Figure 5. In this solution, three ships perform
seven tasks. For example, element 𝑘𝑘2 = [0, 2, 1] represents a USV with serial number 1 of
type 2. Similarly, 𝑣𝑣0 = [1, 2, 0] represents a task of type 2 with serial number 0. The solu-
tion can be represented as 𝐿𝐿 = (𝑘𝑘0, 𝑣𝑣1, 𝑣𝑣0, 𝑣𝑣2, 𝑘𝑘1, 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣6, 𝑘𝑘2, 𝑣𝑣5), and the sequence of tasks
for each vessel can be represented as 𝑆𝑆1 = (𝑣𝑣1, 𝑣𝑣0, 𝑣𝑣2), 𝑆𝑆2 = (𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣6), 𝑆𝑆3 = (𝑣𝑣5).

Figure 5. Representation of a solution.

4.3. Meta-Heuristics
This study employs three meta-heuristics, GA, SA, and HS, and proposes their vari-

ants by applying Q-learning-based local search operators. The three algorithms are widely
used for solving various optimization and scheduling problems [43,44]. Figure 6 shows
the flowchart of the meta-heuristics.

Figure 5. Representation of a solution.

4.3. Meta-Heuristics

This study employs three meta-heuristics, GA, SA, and HS, and proposes their variants
by applying Q-learning-based local search operators. The three algorithms are widely used
for solving various optimization and scheduling problems [43,44]. Figure 6 shows the
flowchart of the meta-heuristics.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 24

Figure 6. Flowchart of meta-heuristics.

4.4. Local Search
Classical meta-heuristics are characterized by low convergence efficiency and easily

fall into local optimum for combinatorial optimization and scheduling problems. Based
on problem-specific knowledge, we design nine local search (LS) operators to improve the
convergence and solutions’ quality and they are categorized into three types. The LS op-
erators in the first type are for task assignment and sequencing of the same type of USVs,
while the LSs of the second type are designed for different USV types. The third type of
LSs are used for searching larger neighborhood space without considering heterogeneity.

Three LS operators, named as LS1, LS2, and LS3 in the first type, are designed to
adjust the task allocation and completion order in the same type of USVs to find better
neighbor solutions. As shown in Figure 7, LS1 is used to randomly select an element and
insert it into another random position. LS2 selects two elements randomly and exchanges
their positions. By LS3, a segment of a solution is randomly selected and the order of ele-
ments in it is reversed.

Figure 6. Flowchart of meta-heuristics.

Mathematics 2024, 12, 339 9 of 23

4.4. Local Search

Classical meta-heuristics are characterized by low convergence efficiency and easily
fall into local optimum for combinatorial optimization and scheduling problems. Based
on problem-specific knowledge, we design nine local search (LS) operators to improve
the convergence and solutions’ quality and they are categorized into three types. The LS
operators in the first type are for task assignment and sequencing of the same type of USVs,
while the LSs of the second type are designed for different USV types. The third type of
LSs are used for searching larger neighborhood space without considering heterogeneity.

Three LS operators, named as LS1, LS2, and LS3 in the first type, are designed to adjust
the task allocation and completion order in the same type of USVs to find better neighbor
solutions. As shown in Figure 7, LS1 is used to randomly select an element and insert it
into another random position. LS2 selects two elements randomly and exchanges their
positions. By LS3, a segment of a solution is randomly selected and the order of elements
in it is reversed.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 24

Figure 6. Flowchart of meta-heuristics.

4.4. Local Search
Classical meta-heuristics are characterized by low convergence efficiency and easily

fall into local optimum for combinatorial optimization and scheduling problems. Based
on problem-specific knowledge, we design nine local search (LS) operators to improve the
convergence and solutions’ quality and they are categorized into three types. The LS op-
erators in the first type are for task assignment and sequencing of the same type of USVs,
while the LSs of the second type are designed for different USV types. The third type of
LSs are used for searching larger neighborhood space without considering heterogeneity.

Three LS operators, named as LS1, LS2, and LS3 in the first type, are designed to
adjust the task allocation and completion order in the same type of USVs to find better
neighbor solutions. As shown in Figure 7, LS1 is used to randomly select an element and
insert it into another random position. LS2 selects two elements randomly and exchanges
their positions. By LS3, a segment of a solution is randomly selected and the order of ele-
ments in it is reversed.

Figure 7. Example of LS1, LS2, and LS3.

The LS operators in the second type consider the heterogeneity of the USVs. LS4 selects
an element randomly and inserts it into the sequence of a heterogeneous USV that is also
randomly selected. LS5 exchanges the positions of two randomly selected elements from
the sequences of two heterogeneous USVs. By LS6, a segment of a solution is randomly
selected where the tasks belong to heterogeneous USVs. Reverse operation is executed on
these elements and the assigned USV of each task may be changed. The detail for LS6 is
shown in Figure 8.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 24

Figure 7. Example of LS1, LS2, and LS3.

The LS operators in the second type consider the heterogeneity of the USVs. LS4 se-
lects an element randomly and inserts it into the sequence of a heterogeneous USV that is
also randomly selected. LS5 exchanges the positions of two randomly selected elements
from the sequences of two heterogeneous USVs. By LS6, a segment of a solution is ran-
domly selected where the tasks belong to heterogeneous USVs. Reverse operation is exe-
cuted on these elements and the assigned USV of each task may be changed. The detail
for LS6 is shown in Figure 8.

Figure 8. Example of LS6.

To extend the local search space, the third type of LSs are proposed, which do not
consider the heterogeneity of USVs and use different neighborhood structures from the
previous ones. In the third type, there are three LSs called LS7, LS8, and LS9. As shown in
Figure 9, LS7 randomly selects two segments of equal-length sequences from a solution
and then mixes them by inserting the elements one by one. LS8 randomly selects and in-
serts it into a random position. By LS9, a segment of sequence with a random length is
selected, and then a reverse operation is executed on it. After that, it is inserted into a
random position of the original solution.

Figure 9. Example of LS7, LS8, and LS9.

4.5. Q-Learning
Q-learning is a kind of reinforcement learning algorithm. As a method of decision-

making, it evaluates an agent’s behavior based on feedback from the environment and
stores the evaluation value of each action. The agent forms experience by constantly inter-
acting with the environment. The agent gains experience, chooses more appropriate ac-
tions, and eventually reaches a decision that is closer to the global optimum. In the Q-
table, Q-value records the impact of different actions on the long-term reward under dif-
ferent states. The optimal Q-value in the Q-table determines the selected action at each
time. The update formula of the Q-value is as follows.

Figure 8. Example of LS6.

To extend the local search space, the third type of LSs are proposed, which do not
consider the heterogeneity of USVs and use different neighborhood structures from the
previous ones. In the third type, there are three LSs called LS7, LS8, and LS9. As shown in
Figure 9, LS7 randomly selects two segments of equal-length sequences from a solution
and then mixes them by inserting the elements one by one. LS8 randomly selects and

Mathematics 2024, 12, 339 10 of 23

inserts it into a random position. By LS9, a segment of sequence with a random length
is selected, and then a reverse operation is executed on it. After that, it is inserted into a
random position of the original solution.

Mathematics 2024, 12, x FOR PEER REVIEW 10 of 24

Figure 7. Example of LS1, LS2, and LS3.

The LS operators in the second type consider the heterogeneity of the USVs. LS4 se-
lects an element randomly and inserts it into the sequence of a heterogeneous USV that is
also randomly selected. LS5 exchanges the positions of two randomly selected elements
from the sequences of two heterogeneous USVs. By LS6, a segment of a solution is ran-
domly selected where the tasks belong to heterogeneous USVs. Reverse operation is exe-
cuted on these elements and the assigned USV of each task may be changed. The detail
for LS6 is shown in Figure 8.

Figure 8. Example of LS6.

To extend the local search space, the third type of LSs are proposed, which do not
consider the heterogeneity of USVs and use different neighborhood structures from the
previous ones. In the third type, there are three LSs called LS7, LS8, and LS9. As shown in
Figure 9, LS7 randomly selects two segments of equal-length sequences from a solution
and then mixes them by inserting the elements one by one. LS8 randomly selects and in-
serts it into a random position. By LS9, a segment of sequence with a random length is
selected, and then a reverse operation is executed on it. After that, it is inserted into a
random position of the original solution.

Figure 9. Example of LS7, LS8, and LS9.

4.5. Q-Learning
Q-learning is a kind of reinforcement learning algorithm. As a method of decision-

making, it evaluates an agent’s behavior based on feedback from the environment and
stores the evaluation value of each action. The agent forms experience by constantly inter-
acting with the environment. The agent gains experience, chooses more appropriate ac-
tions, and eventually reaches a decision that is closer to the global optimum. In the Q-
table, Q-value records the impact of different actions on the long-term reward under dif-
ferent states. The optimal Q-value in the Q-table determines the selected action at each
time. The update formula of the Q-value is as follows.

Figure 9. Example of LS7, LS8, and LS9.

4.5. Q-Learning

Q-learning is a kind of reinforcement learning algorithm. As a method of decision-
making, it evaluates an agent’s behavior based on feedback from the environment and
stores the evaluation value of each action. The agent forms experience by constantly
interacting with the environment. The agent gains experience, chooses more appropriate
actions, and eventually reaches a decision that is closer to the global optimum. In the
Q-table, Q-value records the impact of different actions on the long-term reward under
different states. The optimal Q-value in the Q-table determines the selected action at each
time. The update formula of the Q-value is as follows.

Q(st ,at) ← Q(st ,at) + α
[

Rt + γmax
a

Q(st+1, at+1)−Q(St ,at)

]
, (22)

where st and at represent the state and action of an agent at step t; Rt is the reward obtained
by the agent executing action at; st+1 denotes the state at step t + 1, while max

a
Q(st+1, at+1)

represents the maximum Q-value corresponding to the actions under state st+1; α means
the learning rate, while γ represents the discount factor.

After each interaction with the environment, the agent adjusts the Q-value of the
current state-action pair according to the observed reward and the maximum Q-value of
the next state. By repeating this process continuously, the agent can gradually approach
the optimal Q-value function and choose the optimal behavior accordingly.

4.6. Q-Learning-Based Local Search
4.6.1. The First Q-Learning-Based Local Search (QL1)

By QL1, the states in the Q-table are set to be the task load ratios that match the
ship type. A group of four numbers represents the task load ratios of the ship cluster.
The task load ratios are divided into zero matching, low proportion matching, medium
proportion matching, and high proportion matching. They represent that the number of
tasks assigned to a ship that matches the ship type accounts for 0%, 1–33.33%, 33.34–66.66%,
and 66.67–100% of their total loads, respectively. As shown in Figure 10, state S = [0, 1, 1, 2]
means that the numbers of USVs under four ratio states are 0, 1, 1, 2. The actions in the
Q-table are set to nine local search operators, as shown in Table 2.

Mathematics 2024, 12, 339 11 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 11 of 24

𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) ← 𝑄𝑄(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡) + 𝛼𝛼 �𝑅𝑅𝑡𝑡 + 𝛾𝛾max
𝑎𝑎

𝑄𝑄 (𝑠𝑠𝑡𝑡 + 1, 𝑎𝑎𝑡𝑡 + 1) − 𝑄𝑄(𝑆𝑆𝑡𝑡,𝑎𝑎𝑡𝑡)�, (22)

where 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 represent the state and action of an agent at step 𝑡𝑡; 𝑅𝑅𝑡𝑡 is the reward
obtained by the agent executing action 𝑎𝑎𝑡𝑡; 𝑠𝑠𝑡𝑡 + 1 denotes the state at step 𝑡𝑡 + 1, while
max
𝑎𝑎

𝑄𝑄 (𝑠𝑠𝑡𝑡 + 1, 𝑎𝑎𝑡𝑡 + 1) represents the maximum Q-value corresponding to the actions under
state 𝑠𝑠𝑡𝑡 + 1; 𝛼𝛼 means the learning rate, while 𝛾𝛾 represents the discount factor.

After each interaction with the environment, the agent adjusts the Q-value of the cur-
rent state-action pair according to the observed reward and the maximum Q-value of the
next state. By repeating this process continuously, the agent can gradually approach the
optimal Q-value function and choose the optimal behavior accordingly.

4.6. Q-Learning-Based Local Search
4.6.1. The First Q-Learning-Based Local Search (QL1)

By QL1, the states in the Q-table are set to be the task load ratios that match the ship
type. A group of four numbers represents the task load ratios of the ship cluster. The task
load ratios are divided into zero matching, low proportion matching, medium proportion
matching, and high proportion matching. They represent that the number of tasks as-
signed to a ship that matches the ship type accounts for 0%, 1–33.33%, 33.34–66.66%, and
66.67–100% of their total loads, respectively. As shown in Figure 10, state S = [0, 1, 1, 2]
means that the numbers of USVs under four ratio states are 0, 1, 1, 2. The actions in the Q-
table are set to nine local search operators, as shown in Table 2.

Figure 10. An example of the state for QL1.

Table 2. The Q-table of QL1.

S/A 𝑂𝑂𝑝𝑝1 𝑂𝑂𝑝𝑝2 𝑂𝑂𝑝𝑝3 … 𝑂𝑂𝑝𝑝8 𝑂𝑂𝑝𝑝9
𝑆𝑆𝑆𝑆1 𝑄𝑄(1,1) 𝑄𝑄(1,2) 𝑄𝑄(1,3) … 𝑄𝑄(1,8) 𝑄𝑄(1,9)
𝑆𝑆𝑆𝑆2 𝑄𝑄(2,1) 𝑄𝑄(2,2) 𝑄𝑄(2,3) … 𝑄𝑄(2,8) 𝑄𝑄(2,9)
𝑆𝑆𝑆𝑆3 𝑄𝑄(3,1) 𝑄𝑄(3,2) 𝑄𝑄(3,3) … 𝑄𝑄(3,8) 𝑄𝑄(3,9)
𝑆𝑆𝑆𝑆4 𝑄𝑄(4,1) 𝑄𝑄(4,2) 𝑄𝑄(4,3) … 𝑄𝑄(4,8) 𝑄𝑄(4,9)

In the initial Q-table, all Q-values are set to 100, and all actions have an equal proba-
bility of being selected. After executing an action, the Q-value is updated according to the
following formula:

𝑅𝑅 = 𝜃𝜃(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 – 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛), (23)

where θ is the discount rate, 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 represent the fitness values
of the current solution and the new one, respectively.

4.6.2. The Second Q-Learning-Based Local Search (QL2)
By QL2, the states in the Q-table are set to be the loads of USVs in the ship cluster.

Similar to QL1, QL2 uses four numbers to represent a state. As shown in Figure 11, each
value represents the number of USVs and its position denotes the USVs’ workload. The

Figure 10. An example of the state for QL1.

Table 2. The Q-table of QL1.

S/A Op1 Op2 Op3 . . . Op8 Op9

SL1 Q(1,1) Q(1,2) Q(1,3) . . . Q(1,8) Q(1,9)
SL2 Q(2,1) Q(2,2) Q(2,3) . . . Q(2,8) Q(2,9)
SL3 Q(3,1) Q(3,2) Q(3,3) . . . Q(3,8) Q(3,9)
SL4 Q(4,1) Q(4,2) Q(4,3) . . . Q(4,8) Q(4,9)

In the initial Q-table, all Q-values are set to 100, and all actions have an equal probabil-
ity of being selected. After executing an action, the Q-value is updated according to the
following formula:

R = θ(f itnesscurrent – f itnessnew), (23)

where θ is the discount rate, f itnesscurrent and f itnessnew represent the fitness values of the
current solution and the new one, respectively.

4.6.2. The Second Q-Learning-Based Local Search (QL2)

By QL2, the states in the Q-table are set to be the loads of USVs in the ship cluster.
Similar to QL1, QL2 uses four numbers to represent a state. As shown in Figure 11, each
value represents the number of USVs and its position denotes the USVs’ workload. The
workloads are described as 0–25%, 26–50%, 51–75%, and 76–100%, respectively. In a state
S = [2,1,1,0], each value means the number of USVs under the corresponding task load.

Mathematics 2024, 12, x FOR PEER REVIEW 12 of 24

workloads are described as 0–25%, 26–50%, 51–75%, and 76–100%, respectively. In a state
S = [2,1,1,0], each value means the number of USVs under the corresponding task load.

Figure 11. An example of the state for QL2.

Similar to QL1, the actions of QL2 are the nine local search operators. In the initial Q-
table, all Q-values are also set to 100, and the initial probability of selecting each local
search operator is the same.

4.6.3. The Third Q-Learning-Based Local Search (QL3)
By QL3, a general strategy is adopted without designing a special state identifier for

the problem. The nine local search operators are treated as both states and actions. It fo-
cuses on optimizing the execution order of neighborhood search operators. As shown in
Table 3, both the states and actions are the nine local search operators. For example, if the
current state is 𝑂𝑂𝑝𝑝1, an action is executed in the last iteration. If 𝑂𝑂𝑝𝑝8 is chosen as an action
currently, after executing it, the state is changed to 𝑂𝑂𝑝𝑝8.

Table 3. The Q-table of QL3.

S/A 𝑂𝑂𝑝𝑝1 𝑂𝑂𝑝𝑝2 𝑂𝑂𝑝𝑝3 … 𝑂𝑂𝑝𝑝8 𝑂𝑂𝑝𝑝9
𝑂𝑂𝑝𝑝1 𝑄𝑄(1,1) 𝑄𝑄(1,2) 𝑄𝑄(1,3) … 𝑄𝑄(1,8) 𝑄𝑄(1,9)
𝑂𝑂𝑝𝑝2 𝑄𝑄(2,1) 𝑄𝑄(2,2) 𝑄𝑄(2,3) … 𝑄𝑄(2,8) 𝑄𝑄(2,9)
𝑂𝑂𝑝𝑝3 𝑄𝑄(3,1) 𝑄𝑄(3,2) 𝑄𝑄(3,3) … 𝑄𝑄(3,8) 𝑄𝑄(3,9)
… … … … … … …
𝑂𝑂𝑝𝑝8 𝑄𝑄(8,1) 𝑄𝑄(8,2) 𝑄𝑄(8,3) … 𝑄𝑄(8,8) 𝑄𝑄(8,9)
𝑂𝑂𝑝𝑝9 𝑄𝑄(9,1) 𝑄𝑄(9,2) 𝑄𝑄(9,3) … 𝑄𝑄(9,8) 𝑄𝑄(9,9)

4.7. The Framework of the Proposed Algorithms
This study proposes three Q-learning strategies to guide local search selection, which

are embedded into three meta-heuristics: GA, SA, and HS. The framework of the proposed
algorithms is shown in Figure 12. First, the population is initialized by the solutions gen-
erated in Section 4.2, and then the initial solutions are evaluated. Second, new solutions
are generated by the algorithm-specific strategies. Then, the QL-based local search strate-
gies in Section 4.6 further optimize the solutions by meta-heuristics. Finally, it repeats the
whole iteration process until the termination condition is reached, and then outputs the
best results.

Figure 11. An example of the state for QL2.

Similar to QL1, the actions of QL2 are the nine local search operators. In the initial
Q-table, all Q-values are also set to 100, and the initial probability of selecting each local
search operator is the same.

4.6.3. The Third Q-Learning-Based Local Search (QL3)

By QL3, a general strategy is adopted without designing a special state identifier for
the problem. The nine local search operators are treated as both states and actions. It
focuses on optimizing the execution order of neighborhood search operators. As shown in
Table 3, both the states and actions are the nine local search operators. For example, if the
current state is Op1, an action is executed in the last iteration. If Op8 is chosen as an action
currently, after executing it, the state is changed to Op8.

Mathematics 2024, 12, 339 12 of 23

Table 3. The Q-table of QL3.

S/A Op1 Op2 Op3 . . . Op8 Op9

Op1 Q(1,1) Q(1,2) Q(1,3) . . . Q(1,8) Q(1,9)
Op2 Q(2,1) Q(2,2) Q(2,3) . . . Q(2,8) Q(2,9)
Op3 Q(3,1) Q(3,2) Q(3,3) . . . Q(3,8) Q(3,9)
. .

Op8 Q(8,1) Q(8,2) Q(8,3) . . . Q(8,8) Q(8,9)
Op9 Q(9,1) Q(9,2) Q(9,3) . . . Q(9,8) Q(9,9)

4.7. The Framework of the Proposed Algorithms

This study proposes three Q-learning strategies to guide local search selection, which
are embedded into three meta-heuristics: GA, SA, and HS. The framework of the proposed
algorithms is shown in Figure 12. First, the population is initialized by the solutions
generated in Section 4.2, and then the initial solutions are evaluated. Second, new solutions
are generated by the algorithm-specific strategies. Then, the QL-based local search strategies
in Section 4.6 further optimize the solutions by meta-heuristics. Finally, it repeats the
whole iteration process until the termination condition is reached, and then outputs the
best results.

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 24

Figure 12. The flow chart of the proposed algorithms.

5. Experiments and Discussions
5.1. Experimental Setup

To evaluate the effectiveness of the improved algorithms, we solve 13 cases with dif-
ferent scales from a USV company in China. The number of USVs is changed from 2 to 8,
while the number of tasks is changed from 20 to 120, and there are 3 types of USVs and
tasks included in each case. There are few publications used to solve the heterogeneous
USVs scheduling problems with obstacle avoidance. In this study, we compare three clas-
sical meta-heuristics and their 12 variants, including different local search operators and
Q-learning-based local search selection strategies. All algorithms are coded in Python and
run on a computer equipped with Intel® Core™-12400 @2.50 GHz with 32.0 GB of
memory. To make a fair comparison, each instance is run independently 30 times and the
run time is set as follows:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 0.45 × (𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 0.4 × 𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈), (24)

where 𝑛𝑛𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the number of tasks while 𝑛𝑛𝑈𝑈𝑈𝑈𝑈𝑈 represents the number of USVs. The Q-
tables in the three Q-learning strategies are updated online. The parameters’ setting of Q-
learning and meta-heuristics are shown in Tables 4 and 5.

Table 4. Parameter setting of the meta-heuristics.

Meta-Heuristics Parameters Value

GA
Crossover rate 0.8
Mutation rate 0.1

SA
Start temp 100

Temperature drop coefficient 0.96

Figure 12. The flow chart of the proposed algorithms.

Mathematics 2024, 12, 339 13 of 23

5. Experiments and Discussion
5.1. Experimental Setup

To evaluate the effectiveness of the improved algorithms, we solve 13 cases with
different scales from a USV company in China. The number of USVs is changed from 2 to
8, while the number of tasks is changed from 20 to 120, and there are 3 types of USVs and
tasks included in each case. There are few publications used to solve the heterogeneous
USVs scheduling problems with obstacle avoidance. In this study, we compare three
classical meta-heuristics and their 12 variants, including different local search operators
and Q-learning-based local search selection strategies. All algorithms are coded in Python
and run on a computer equipped with Intel® Core™-12400 @2.50 GHz with 32.0 GB of
memory. To make a fair comparison, each instance is run independently 30 times and the
run time is set as follows:

Time = 0.45× (nTask + 0.4× nUSV), (24)

where nTask is the number of tasks while nUSV represents the number of USVs. The Q-tables
in the three Q-learning strategies are updated online. The parameters’ setting of Q-learning
and meta-heuristics are shown in Tables 4 and 5.

Table 4. Parameter setting of the meta-heuristics.

Meta-Heuristics Parameters Value

GA
Crossover rate 0.8
Mutation rate 0.1

SA
Start temp 100

Temperature drop coefficient 0.96

HS
Harmony memory considering rate 0.7

Pitch adjusting rate 0.5

Table 5. Parameter setting of Q-learning.

Q-Learning Value

Penalry learning rate 0.6
Discount rate θ 0.8

Reward learning rate 1

5.2. Effectiveness of Proposed Strategies

In this sub-section, three meta-heuristics (SA, GA, and HS) and their variants based
on the local search operators (SA + LS, GA + LS, and HS + LS) and the variants using
Q-learning-based strategies to guide the local search (SA + QL1, SA + QL2, SA + QL3,
GA + QL1, GA + QL2, GA + QL3, HS + QL1, HS + QL2, and HS + QL3) are evaluated
and compared.

Tables 6–8 show the average fitness and CV values obtained by all the compared
algorithms for the 13 cases. The CV values are calculated using the following formula:

CV =
S
M
× 100%, (25)

where S is the standard deviation and M is the mean of the results obtained in 30 runs
of a case by one algorithm. The best results are shown in bold. We find that the meta-
heuristics with Q-learning-based local search strategies perform better than others in their
respective groups.

Mathematics 2024, 12, 339 14 of 23

Table 6. Statistical results by SA and its variants.

Instance
SA SA + LS SA + QL1 SA + QL2 SA + QL3

Avg. CV Avg. CV Avg. CV Avg. CV Avg. CV

2 × 20 682.56 2.01 686.38 1.79 685.04 1.72 688.43 1.66 682.05 2.15
2 × 40 1377.62 1.18 1378.15 1.18 1376.47 0.91 1375.11 1.00 1376.43 1.21
2 × 80 3054.90 1.22 3070.32 0.69 3062.77 1.17 3055.89 1.13 3054.50 0.88
4 × 20 354.29 2.17 359.43 1.81 359.62 2.01 358.14 2.38 353.59 1.62
4 × 40 706.55 1.75 708.31 1.97 707.71 1.22 709.55 1.44 695.10 1.61
4 × 80 1244.87 1.33 1241.23 1.61 1245.89 1.47 1245.72 1.30 1221.78 1.07
6 × 20 213.75 2.88 214.82 4.42 216.54 3.07 214.51 2.90 211.37 3.38
6 × 40 477.15 3.50 469.68 2.59 471.73 3.36 477.29 2.43 456.72 3.70
6 × 80 844.30 3.36 842.46 3.14 837.26 2.47 848.27 2.30 805.19 2.07
8 × 20 132.22 2.46 131.85 4.57 132.02 2.91 132.72 2.69 128.50 3.66
8 × 40 387.19 2.60 383.98 3.70 383.00 3.84 378.66 3.89 364.40 4.35
8 × 80 681.51 3.17 673.10 3.75 672.00 3.54 676.35 2.73 642.21 3.50

8 × 120 1026.49 2.51 1005.34 2.66 998.29 4.31 1008.36 3.89 937.87 3.35

Table 7. Statistical results by GA and its variants.

Instance
GA GA + LS GA + QL1 GA + QL2 GA + QL3

Avg. CV Avg. CV Avg. CV Avg. CV Avg. CV

2 × 20 681.31 1.53 681.81 1.75 682.33 1.89 686.36 1.49 683.02 1.59
2 × 40 1396.66 1.73 1391.86 1.66 1402.06 1.65 1393.81 1.56 1395.31 1.65
2 × 80 3100.41 0.91 3107.03 0.76 3099.52 1.07 3087.55 1.15 3097.92 1.22
4 × 20 367.87 6.15 353.59 2.20 356.22 2.10 353.95 2.77 350.81 2.31
4 × 40 707.01 3.63 699.45 1.39 698.34 1.44 697.18 1.49 698.73 1.56
4 × 80 1259.42 4.92 1239.40 1.03 1234.65 1.40 1237.09 1.31 1229.75 1.38
6 × 20 223.21 3.75 208.39 2.64 207.92 2.76 209.18 2.65 209.21 2.80
6 × 40 483.34 3.78 460.23 3.60 464.08 2.34 463.06 2.49 461.32 3.10
6 × 80 831.63 3.29 826.40 1.91 824.48 2.65 830.01 2.27 822.23 2.51
8 × 20 133.54 2.66 127.32 3.50 128.15 2.91 127.52 3.18 126.67 3.43
8 × 40 386.96 4.10 370.47 2.23 365.92 2.36 366.31 2.93 369.11 2.69
8 × 80 656.56 4.87 655.87 2.44 651.78 1.81 647.76 2.80 650.32 2.98

8 × 120 985.92 3.52 977.55 2.21 968.87 2.05 972.27 2.58 963.55 2.73

Table 8. Statistical results by HS and its variants.

Instance
HS HS + LS HS + QL1 HS + QL2 HS + QL3

Avg. CV Avg. CV Avg. CV Avg. CV Avg. CV

2 × 20 702.96 2.36 684.33 1.70 663.20 1.96 677.04 1.95 669.04 2.25
2 × 40 1398.19 1.38 1373.60 0.79 1336.33 0.94 1349.45 1.28 1341.78 1.36
2 × 80 3102.60 1.24 3045.14 1.28 2949.68 1.23 2989.51 1.16 2977.13 1.07
4 × 20 373.17 2.97 352.02 2.28 343.97 2.09 341.99 2.48 341.05 1.74
4 × 40 721.68 2.88 688.38 1.47 673.16 2.05 673.01 1.42 672.82 1.86
4 × 80 1270.32 2.07 1212.95 0.98 1177.59 1.54 1177.71 1.41 1177.81 1.36
6 × 20 226.63 3.64 205.36 3.18 202.59 3.27 197.89 2.45 198.62 1.72
6 × 40 493.85 3.48 440.35 2.92 434.87 3.04 419.50 2.16 421.35 2.72
6 × 80 865.68 3.53 796.13 1.70 771.60 1.28 757.34 1.57 759.34 1.56
8 × 20 138.32 4.59 125.50 3.26 123.95 3.73 117.81 4.64 120.54 3.41
8 × 40 402.64 4.76 353.35 2.77 345.56 2.71 327.55 2.29 331.19 2.38
8 × 80 697.09 4.25 612.07 3.12 596.13 1.98 580.05 1.62 579.33 1.75

8 × 120 1043.27 4.67 907.46 1.35 860.34 2.47 844.76 1.95 845.74 1.48

To further validate the effectiveness of the local search operators and Q-learning
strategies, we execute the Friedman test on meta-heuristics (SA, GA, and HS) and their
variants, respectively. The results are presented in Figures A1–A7 in Appendix A. After

Mathematics 2024, 12, 339 15 of 23

analyzing the results, we can conclude that the three algorithms, SA + QL3, GA + QL1,
and HS + QL2 achieved better performance than their peers in the respective groups. It
can be concluded that the proposed Q-learning guided local search strategies can improve
the performance of the basic meta-heuristics and their variants with randomized local
search strategy.

5.3. Statistical Test

To further analyze the performance difference among SA + QL3, GA + QL3, and
HS + QL2. The Friedman test is executed on their results for 13 cases, as shown in Figure 13.
The asymptotic significance (Asympt. Sig.) is much less than 0.05. This means that there
is a significant performance difference among the three algorithms. The three algorithms
are ranked using the Nemenyi post hoc test, and the results are shown in Figure 14. In
this test, the algorithms with smaller average ranking values have better performance. The
average ranking value (1.00) of HS + QL2 is lower compared to the ones by SA + QL3 and
GA + QL3. The two-way analysis of variance by rank for the three algorithms is given
in Figure 15. This test shows the distribution of rankings achieved by the algorithms for
thirteen examples. It can be observed that the HS + QL2 achieves the best results for most
cases. Hence, we can conclude that the HS + QL2 is more competitive than its peers.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 24

Figure 13. The test statistics of the three algorithms.

Figure 14. The Nemenyi post hoc test of the three algorithms.

Figure 15. The Rank distribution of the three algorithms.

Figure 13. The test statistics of the three algorithms.

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 24

Figure 13. The test statistics of the three algorithms.

Figure 14. The Nemenyi post hoc test of the three algorithms.

Figure 15. The Rank distribution of the three algorithms.

Figure 14. The Nemenyi post hoc test of the three algorithms.

Mathematics 2024, 12, 339 16 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 16 of 24

Figure 13. The test statistics of the three algorithms.

Figure 14. The Nemenyi post hoc test of the three algorithms.

Figure 15. The Rank distribution of the three algorithms. Figure 15. The Rank distribution of the three algorithms.

To present the convergence of the three algorithms clearly, Figure 16 shows the conver-
gence curves of them for the largest instance, “8 × 120”. The convergence curves of another
case are shown in Figures A8–A11 in Appendix B. It can be seen from the figure that the
convergence of HS + QL2 performs the best among the three algorithms, and its final result
is also better than those of its peers.

Mathematics 2024, 12, x FOR PEER REVIEW 17 of 24

Figure 16. The convergence curves of the three algorithms for the largest case.

5.4. Compare with Existing Algorithms
The SA + QL3, GA + QL3, and HS + QL2 are compare with PSO_LS and PSO_QL in

[20]. Table 9 shows the average fitness values obtained by the five algorithms. From Table
9, it can be observed that the results by SA + QL3, GA + QL3, and HS + QL2 are better than
those by PSO_LS and PSO_QL. The HS + QL2 obtains the best average values for all in-
stances. It can be concluded that HS + QL2 has the best performance for solving the heter-
ogeneous USV scheduling problems.

Table 9. Comparison of average fitness values for five meta-heuristics.

Instance
PSO_LS

Avg.
PSO_QL

Avg.
SA + QL3

Avg.
GA + QL3

Avg.
HS + QL2

Avg.

2 × 20 748.50 792.39 682.05 683.02 677.04
2 × 40 1466.23 1548.17 1376.43 1395.31 1349.45
2 × 80 3076.76 3063.13 3054.50 3097.92 2989.51
4 × 20 447.30 411.03 353.59 350.81 341.99
4 × 40 720.39 735.50 695.10 698.73 673.01
4 × 80 1382.46 1278.32 1221.78 1229.75 1177.71
8 × 20 170.70 153.98 128.50 126.67 117.81
8 × 40 528.98 582.02 364.40 369.11 327.55
8 × 80 973.89 1074.39 642.21 650.32 580.05

8 × 120 1562.90 1579.68 937.87 963.55 844.76

6. Conclusions and Future Work
In this study, Q-learning is employed to guide three meta-heuristics to select the ap-

propriate local search operators for solving the heterogeneous USV scheduling problems.
Based on the nature of the problem, we propose nine local search operators and design
three different Q-learning strategies. The performance of the proposed local search oper-
ators and the Q-learning strategies are verified by solving 13 instances with different
scales. We have compared the proposed meta-heuristics with Q-learning strategies to the
existing algorithms. The experimental results and analysis suggest that the proposed al-
gorithms perform better than the peers.

The future research directions are as follows:
(1) consider more objectives such as energy consumption, carbon emission, and safety;

Figure 16. The convergence curves of the three algorithms for the largest case.

Mathematics 2024, 12, 339 17 of 23

5.4. Compare with Existing Algorithms

The SA + QL3, GA + QL3, and HS + QL2 are compare with PSO_LS and PSO_QL
in [20]. Table 9 shows the average fitness values obtained by the five algorithms. From
Table 9, it can be observed that the results by SA + QL3, GA + QL3, and HS + QL2 are
better than those by PSO_LS and PSO_QL. The HS + QL2 obtains the best average values
for all instances. It can be concluded that HS + QL2 has the best performance for solving
the heterogeneous USV scheduling problems.

Table 9. Comparison of average fitness values for five meta-heuristics.

Instance PSO_LS
Avg.

PSO_QL
Avg.

SA + QL3
Avg.

GA + QL3
Avg.

HS + QL2
Avg.

2 × 20 748.50 792.39 682.05 683.02 677.04
2 × 40 1466.23 1548.17 1376.43 1395.31 1349.45
2 × 80 3076.76 3063.13 3054.50 3097.92 2989.51
4 × 20 447.30 411.03 353.59 350.81 341.99
4 × 40 720.39 735.50 695.10 698.73 673.01
4 × 80 1382.46 1278.32 1221.78 1229.75 1177.71
8 × 20 170.70 153.98 128.50 126.67 117.81
8 × 40 528.98 582.02 364.40 369.11 327.55
8 × 80 973.89 1074.39 642.21 650.32 580.05

8 × 120 1562.90 1579.68 937.87 963.55 844.76

6. Conclusions and Future Work

In this study, Q-learning is employed to guide three meta-heuristics to select the
appropriate local search operators for solving the heterogeneous USV scheduling problems.
Based on the nature of the problem, we propose nine local search operators and design three
different Q-learning strategies. The performance of the proposed local search operators
and the Q-learning strategies are verified by solving 13 instances with different scales. We
have compared the proposed meta-heuristics with Q-learning strategies to the existing
algorithms. The experimental results and analysis suggest that the proposed algorithms
perform better than the peers.

The future research directions are as follows:

(1) consider more objectives such as energy consumption, carbon emission, and safety;
(2) design more approaches to integrate meta-heuristics and reinforcement learning algorithms;
(3) extend the algorithms to solve more USV scheduling and optimization problems.

Author Contributions: Conceptualization, Z.M.; methodology, Z.M., K.G. and H.Y.; writing—original
draft preparation, Z.M. and H.Y.; writing, review, and editing, K.G. and N.W.; supervision, K.G. All
authors have read and agreed to the published version of the manuscript.

Funding: This study is partially supported by the Zhuhai Industry–University–Research Project with
Hongkong and Macao under Grant ZH22017002210014PWC, the National Natural Science Foundation
of China under Grant 62173356, the Science and Technology Development Fund (FDCT), Macau
SAR, under Grant 0019/2021/A, the Guangdong Basic and Applied Basic Research Foundation
(2023A1515011531), and research on the Key Technologies for Scheduling and Optimization of
Complex Distributed Manufacturing Systems (22JR10KA007).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

The Friedman test is performed to verify the improvement of the new strategies
over the meta-heuristics. From Figure A1, it can be seen that the asymptotic significance

Mathematics 2024, 12, 339 18 of 23

(Asympt. Sig.) for the three basic algorithms with their variants is much less than 0.05. It
means that the basic algorithms are significantly different from their improved variants.

These algorithms were ranked using the Nemenyi post hoc test, and the resulting
rankings are shown in Figures A2–A4. In the three groups, the three algorithms, SA + QL3,
GA + QL3, and HS + QL2 have the smallest average ranking values (1.08, 2.15, and 1.77),
respectively. Friedmann’s two-way analysis of variance by rank gives a clearer presentation
of the instance distribution for the compared algorithms, as shown in Figures A5–A7. It
can be seen that SA + QL3, GA + QL3, and HS + QL2 achieve the best results in most cases.

Mathematics 2024, 12, x FOR PEER REVIEW 18 of 24

(2) design more approaches to integrate meta-heuristics and reinforcement learning al-
gorithms;

(3) extend the algorithms to solve more USV scheduling and optimization problems.

Author Contributions: Conceptualization, Z.M.; methodology, Z.M., K.G. and H.Y.; writing—orig-
inal draft preparation, Z.M. and H.Y.; writing, review, and editing, K.G. and N.W.; supervision, K.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This study is partially supported by the Zhuhai Industry–University–Research Project
with Hongkong and Macao under Grant ZH22017002210014PWC, the National Natural Science
Foundation of China under Grant 62173356, the Science and Technology Development Fund
(FDCT), Macau SAR, under Grant 0019/2021/A, the Guangdong Basic and Applied Basic Research
Foundation (2023A1515011531), and research on the Key Technologies for Scheduling and Optimi-
zation of Complex Distributed Manufacturing Systems (22JR10KA007).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
The Friedman test is performed to verify the improvement of the new strategies over

the meta-heuristics. From Figure A1, it can be seen that the asymptotic significance
(Asympt. Sig.) for the three basic algorithms with their variants is much less than 0.05. It
means that the basic algorithms are significantly different from their improved variants.

These algorithms were ranked using the Nemenyi post hoc test, and the resulting
rankings are shown in Figures A2–A4. In the three groups, the three algorithms, SA + QL3,
GA + QL3, and HS + QL2 have the smallest average ranking values (1.08, 2.15, and 1.77),
respectively. Friedmann’s two-way analysis of variance by rank gives a clearer presenta-
tion of the instance distribution for the compared algorithms, as shown in Figures A5–A7.
It can be seen that SA + QL3, GA + QL3, and HS + QL2 achieve the best results in most
cases.

Figure A1. Friedman Test of meta-heuristics and their variants. Figure A1. Friedman Test of meta-heuristics and their variants.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 24

Figure A2. The Nemenyi post hoc test of SA and their variants.

Figure A3. The Nemenyi post hoc test of GA and their variants.

Figure A4. The Nemenyi post hoc test of HS and their variants.

Figure A2. The Nemenyi post hoc test of SA and their variants.

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 24

Figure A2. The Nemenyi post hoc test of SA and their variants.

Figure A3. The Nemenyi post hoc test of GA and their variants.

Figure A4. The Nemenyi post hoc test of HS and their variants.

Figure A3. The Nemenyi post hoc test of GA and their variants.

Mathematics 2024, 12, 339 19 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 19 of 24

Figure A2. The Nemenyi post hoc test of SA and their variants.

Figure A3. The Nemenyi post hoc test of GA and their variants.

Figure A4. The Nemenyi post hoc test of HS and their variants. Figure A4. The Nemenyi post hoc test of HS and their variants.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 24

Figure A5. The Rank distribution of SA and their variants.

Figure A6. The Rank distribution of GA and their variants.

Figure A7. The Rank distribution of HS and their variants.

Appendix B
As shown in Figures A8–A11, we provide the convergence curves for the cases cor-

responding to the maximum number of tasks with two-USVs, four-USVs, six-USVs, and
eight-USVs.

Figure A5. The Rank distribution of SA and their variants.

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 24

Figure A5. The Rank distribution of SA and their variants.

Figure A6. The Rank distribution of GA and their variants.

Figure A7. The Rank distribution of HS and their variants.

Appendix B
As shown in Figures A8–A11, we provide the convergence curves for the cases cor-

responding to the maximum number of tasks with two-USVs, four-USVs, six-USVs, and
eight-USVs.

Figure A6. The Rank distribution of GA and their variants.

Mathematics 2024, 12, 339 20 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 24

Figure A5. The Rank distribution of SA and their variants.

Figure A6. The Rank distribution of GA and their variants.

Figure A7. The Rank distribution of HS and their variants.

Appendix B
As shown in Figures A8–A11, we provide the convergence curves for the cases cor-

responding to the maximum number of tasks with two-USVs, four-USVs, six-USVs, and
eight-USVs.

Figure A7. The Rank distribution of HS and their variants.

Appendix B

As shown in Figures A8–A11, we provide the convergence curves for the cases cor-
responding to the maximum number of tasks with two-USVs, four-USVs, six-USVs, and
eight-USVs.

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 24

Figure A8. The convergence curves of the three algorithms for case “2 × 80”.

Figure A9. The convergence curves of the three algorithms for case “4 × 80”.

Figure A10. The convergence curves of the three algorithms for case “6 × 80”.

Figure A8. The convergence curves of the three algorithms for case “2 × 80”.

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 24

Figure A8. The convergence curves of the three algorithms for case “2 × 80”.

Figure A9. The convergence curves of the three algorithms for case “4 × 80”.

Figure A10. The convergence curves of the three algorithms for case “6 × 80”.

Figure A9. The convergence curves of the three algorithms for case “4 × 80”.

Mathematics 2024, 12, 339 21 of 23

Mathematics 2024, 12, x FOR PEER REVIEW 21 of 24

Figure A8. The convergence curves of the three algorithms for case “2 × 80”.

Figure A9. The convergence curves of the three algorithms for case “4 × 80”.

Figure A10. The convergence curves of the three algorithms for case “6 × 80”. Figure A10. The convergence curves of the three algorithms for case “6 × 80”.

Mathematics 2024, 12, x FOR PEER REVIEW 22 of 24

Figure A11. The convergence curves of the three algorithms for case “8 × 80”.

References
1. Yuh, J.; Marani, G.; Blidberg, D.R. Applications of Marine Robotic Vehicles. Intel. Serv. Robot. 2011, 4, 221–231.

https://doi.org/10.1007/s11370-011-0096-5.
2. Xingfa, G.; Xudong, T. Overview of China Earth Observation Satellite Programs [Space Agencies]. IEEE Geosci. Remote Sens.

Mag. 2015, 3, 113–129. https://doi.org/10.1109/MGRS.2015.2467172.
3. McCarthy, M.J.; Colna, K.E.; El-Mezayen, M.M.; Laureano-Rosario, A.E.; Méndez-Lázaro, P.; Otis, D.B.; Toro-Farmer, G.; Vega-

Rodriguez, M.; Muller-Karger, F.E. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications.
Environ. Manag. 2017, 60, 323–339. https://doi.org/10.1007/s00267-017-0880-x.

4. Yang, L.; Zhao, S.; Wang, X.; Shen, P.; Zhang, T. Deep-Sea Underwater Cooperative Operation of Manned/Unmanned Submers-
ible and Surface Vehicles for Different Application Scenarios. JMSE 2022, 10, 909. https://doi.org/10.3390/jmse10070909.

5. Sotelo-Torres, F.; Alvarez, L.V.; Roberts, R.C. An Unmanned Surface Vehicle (USV): Development of an Autonomous Boat with
a Sensor Integration System for Bathymetric Surveys. Sensors 2023, 23, 4420.

6. Ren, R.-Y.; Zou, Z.-J.; Wang, Y.-D.; Wang, X.-G. Adaptive Nomoto Model Used in the Path Following Problem of Ships. J Mar
Sci. Technol 2018, 23, 888–898. https://doi.org/10.1007/s00773-017-0518-y.

7. Xie, J.; Zhou, R.; Luo, J.; Peng, Y.; Liu, Y.; Xie, S.; Pu, H. Hybrid Partition-Based Patrolling Scheme for Maritime Area Patrol with
Multiple Cooperative Unmanned Surface Vehicles. JMSE 2020, 8, 936. https://doi.org/10.3390/jmse8110936.

8. Huang, L.; Zhou, M.; Hao, K. Non-Dominated Immune-Endocrine Short Feedback Algorithm for Multi-Robot Maritime Patrol-
ling. IEEE Trans. Intell. Transport. Syst. 2020, 21, 362–373. https://doi.org/10.1109/TITS.2019.2892377.

9. Sutton, A.J.; Williams, N.L.; Tilbrook, B. Constraining Southern Ocean CO 2 Flux Uncertainty Using Uncrewed Surface Vehicle
Observations. Geophys. Res. Lett. 2021, 48, e2020GL091748. https://doi.org/10.1029/2020GL091748.

10. Cryer, S.; Carvalho, F.; Wood, T.; Strong, J.A.; Brown, P.; Loucaides, S.; Young, A.; Sanders, R.; Evans, C. Evaluating the Sensor-
Equipped Autonomous Surface Vehicle C-Worker 4 as a Tool for Identifying Coastal Ocean Acidification and Changes in Car-
bonate Chemistry. JMSE 2020, 8, 939. https://doi.org/10.3390/jmse8110939.

11. Sinisterra, A.J.; Dhanak, M.R.; Von Ellenrieder, K. Stereovision-Based Target Tracking System for USV Operations. Ocean Eng.
2017, 133, 197–214. https://doi.org/10.1016/j.oceaneng.2017.01.024.

12. Shao, G.; Ma, Y.; Malekian, R.; Yan, X.; Li, Z. A Novel Cooperative Platform Design for Coupled USV–UAV Systems. IEEE Trans.
Ind. Inf. 2019, 15, 4913–4922. https://doi.org/10.1109/TII.2019.2912024.

13. Zafar, M.N.; Mohanta, J.C. Methodology for Path Planning and Optimization of Mobile Robots: A Review. Procedia Comput. Sci.
2018, 133, 141–152. https://doi.org/10.1016/j.procs.2018.07.018.

14. Yu, K.; Liang, X.; Li, M.; Chen, Z.; Yao, Y.; Li, X.; Zhao, Z.; Teng, Y. USV Path Planning Method with Velocity Variation and
Global Optimisation Based on AIS Service Platform. Ocean Eng. 2021, 236, 109560.
https://doi.org/10.1016/j.oceaneng.2021.109560.

15. Xiaofei, Y.; Yilun, S.; Wei, L.; Hui, Y.; Weibo, Z.; Zhengrong, X. Global Path Planning Algorithm Based on Double DQN for
Multi-Tasks Amphibious Unmanned Surface Vehicle. Ocean Eng. 2022, 266, 112809.
https://doi.org/10.1016/j.oceaneng.2022.112809.

16. Tsai, C.-C.; Huang, H.-C.; Chan, C.-K. Parallel Elite Genetic Algorithm and Its Application to Global Path Planning for Autono-
mous Robot Navigation. IEEE Trans. Ind. Electron. 2011, 58, 4813–4821. https://doi.org/10.1109/TIE.2011.2109332.

17. Yin, J.; Hu, Z.; Mourelatos, Z.P.; Gorsich, D.; Singh, A.; Tau, S. Efficient Reliability-Based Path Planning of Off-Road Autonomous
Ground Vehicles Through the Coupling of Surrogate Modeling and RRT. IEEE Trans. Intell. Transport. Syst. 2023, 43, 15035–
15050. https://doi.org/10.1109/TITS.2023.3296651.

Figure A11. The convergence curves of the three algorithms for case “8 × 80”.

References
1. Yuh, J.; Marani, G.; Blidberg, D.R. Applications of Marine Robotic Vehicles. Intel. Serv. Robot. 2011, 4, 221–231. [CrossRef]
2. Xingfa, G.; Xudong, T. Overview of China Earth Observation Satellite Programs [Space Agencies]. IEEE Geosci. Remote Sens. Mag.

2015, 3, 113–129. [CrossRef]
3. McCarthy, M.J.; Colna, K.E.; El-Mezayen, M.M.; Laureano-Rosario, A.E.; Méndez-Lázaro, P.; Otis, D.B.; Toro-Farmer, G.; Vega-

Rodriguez, M.; Muller-Karger, F.E. Satellite Remote Sensing for Coastal Management: A Review of Successful Applications.
Environ. Manag. 2017, 60, 323–339. [CrossRef] [PubMed]

4. Yang, L.; Zhao, S.; Wang, X.; Shen, P.; Zhang, T. Deep-Sea Underwater Cooperative Operation of Manned/Unmanned Submersible
and Surface Vehicles for Different Application Scenarios. JMSE 2022, 10, 909. [CrossRef]

5. Sotelo-Torres, F.; Alvarez, L.V.; Roberts, R.C. An Unmanned Surface Vehicle (USV): Development of an Autonomous Boat with a
Sensor Integration System for Bathymetric Surveys. Sensors 2023, 23, 4420. [CrossRef] [PubMed]

6. Ren, R.-Y.; Zou, Z.-J.; Wang, Y.-D.; Wang, X.-G. Adaptive Nomoto Model Used in the Path Following Problem of Ships. J. Mar. Sci.
Technol. 2018, 23, 888–898. [CrossRef]

7. Xie, J.; Zhou, R.; Luo, J.; Peng, Y.; Liu, Y.; Xie, S.; Pu, H. Hybrid Partition-Based Patrolling Scheme for Maritime Area Patrol with
Multiple Cooperative Unmanned Surface Vehicles. J. Mar. Sci. Eng. 2020, 8, 936. [CrossRef]

8. Huang, L.; Zhou, M.; Hao, K. Non-Dominated Immune-Endocrine Short Feedback Algorithm for Multi-Robot Maritime Patrolling.
IEEE Trans. Intell. Transport. Syst. 2020, 21, 362–373. [CrossRef]

9. Sutton, A.J.; Williams, N.L.; Tilbrook, B. Constraining Southern Ocean CO2 Flux Uncertainty Using Uncrewed Surface Vehicle
Observations. Geophys. Res. Lett. 2021, 48, e2020GL091748. [CrossRef]

https://doi.org/10.1007/s11370-011-0096-5
https://doi.org/10.1109/MGRS.2015.2467172
https://doi.org/10.1007/s00267-017-0880-x
https://www.ncbi.nlm.nih.gov/pubmed/28484828
https://doi.org/10.3390/jmse10070909
https://doi.org/10.3390/s23094420
https://www.ncbi.nlm.nih.gov/pubmed/37177623
https://doi.org/10.1007/s00773-017-0518-y
https://doi.org/10.3390/jmse8110936
https://doi.org/10.1109/TITS.2019.2892377
https://doi.org/10.1029/2020GL091748

Mathematics 2024, 12, 339 22 of 23

10. Cryer, S.; Carvalho, F.; Wood, T.; Strong, J.A.; Brown, P.; Loucaides, S.; Young, A.; Sanders, R.; Evans, C. Evaluating the
Sensor-Equipped Autonomous Surface Vehicle C-Worker 4 as a Tool for Identifying Coastal Ocean Acidification and Changes in
Carbonate Chemistry. J. Mar. Sci. Eng. 2020, 8, 939. [CrossRef]

11. Sinisterra, A.J.; Dhanak, M.R.; Von Ellenrieder, K. Stereovision-Based Target Tracking System for USV Operations. Ocean Eng.
2017, 133, 197–214. [CrossRef]

12. Shao, G.; Ma, Y.; Malekian, R.; Yan, X.; Li, Z. A Novel Cooperative Platform Design for Coupled USV–UAV Systems. IEEE Trans.
Ind. Inf. 2019, 15, 4913–4922. [CrossRef]

13. Zafar, M.N.; Mohanta, J.C. Methodology for Path Planning and Optimization of Mobile Robots: A Review. Procedia Comput. Sci.
2018, 133, 141–152. [CrossRef]

14. Yu, K.; Liang, X.; Li, M.; Chen, Z.; Yao, Y.; Li, X.; Zhao, Z.; Teng, Y. USV Path Planning Method with Velocity Variation and Global
Optimisation Based on AIS Service Platform. Ocean Eng. 2021, 236, 109560. [CrossRef]

15. Xiaofei, Y.; Yilun, S.; Wei, L.; Hui, Y.; Weibo, Z.; Zhengrong, X. Global Path Planning Algorithm Based on Double DQN for
Multi-Tasks Amphibious Unmanned Surface Vehicle. Ocean Eng. 2022, 266, 112809. [CrossRef]

16. Tsai, C.-C.; Huang, H.-C.; Chan, C.-K. Parallel Elite Genetic Algorithm and Its Application to Global Path Planning for Au-
tonomous Robot Navigation. IEEE Trans. Ind. Electron. 2011, 58, 4813–4821. [CrossRef]

17. Yin, J.; Hu, Z.; Mourelatos, Z.P.; Gorsich, D.; Singh, A.; Tau, S. Efficient Reliability-Based Path Planning of Off-Road Autonomous
Ground Vehicles Through the Coupling of Surrogate Modeling and RRT. IEEE Trans. Intell. Transport. Syst. 2023, 43, 15035–15050.
[CrossRef]

18. Gao, K.; Zhang, Y.; Su, R.; Yang, F.; Suganthan, P.N.; Zhou, M. Solving Traffic Signal Scheduling Problems in Heterogeneous
Traffic Network by Using Meta-Heuristics. IEEE Trans. Intell. Transport. Syst. 2019, 20, 3272–3282. [CrossRef]

19. Kuo, I.-H.; Horng, S.-J.; Kao, T.-W.; Lin, T.-L.; Lee, C.-L.; Terano, T.; Pan, Y. An Efficient Flow-Shop Scheduling Algorithm Based
on a Hybrid Particle Swarm Optimization Model. Expert Syst. Appl. 2009, 36, 7027–7032. [CrossRef]

20. Gao, M.; Gao, K.; Ma, Z.; Tang, W. Ensemble Meta-Heuristics and Q-Learning for Solving Unmanned Surface Vessels Scheduling
Problems. Swarm Evol. Comput. 2023, 82, 101358. [CrossRef]

21. Liu, L.; Wang, X.; Yang, X.; Liu, H.; Li, J.; Wang, P. Path Planning Techniques for Mobile Robots: Review and Prospect. Expert Syst.
Appl. 2023, 227, 120254. [CrossRef]

22. Gemeinder, M.; Gerke, M. GA-Based Path Planning for Mobile Robot Systems Employing an Active Search Algorithm. Appl. Soft
Comput. 2003, 3, 149–158. [CrossRef]

23. Roberge, V.; Tarbouchi, M.; Labonte, G. Comparison of Parallel Genetic Algorithm and Particle Swarm Optimization for Real-Time
UAV Path Planning. IEEE Trans. Ind. Inf. 2013, 9, 132–141. [CrossRef]

24. Nazarahari, M.; Khanmirza, E.; Doostie, S. Multi-Objective Multi-Robot Path Planning in Continuous Environment Using an
Enhanced Genetic Algorithm. Expert Syst. Appl. 2019, 115, 106–120. [CrossRef]

25. Miao, H.; Tian, Y.-C. Dynamic Robot Path Planning Using an Enhanced Simulated Annealing Approach. Appl. Math. Comput.
2013, 222, 420–437. [CrossRef]

26. Huo, L.; Zhu, J.; Wu, G.; Li, Z. A Novel Simulated Annealing Based Strategy for Balanced UAV Task Assignment and Path
Planning. Sensors 2020, 20, 4769. [CrossRef] [PubMed]

27. Xiao, S.; Tan, X.; Wang, J. A Simulated Annealing Algorithm and Grid Map-Based UAV Coverage Path Planning Method for 3D
Reconstruction. Electronics 2021, 10, 853. [CrossRef]

28. Zhao, F.; Zhou, G.; Wang, L. A Cooperative Scatter Search with Reinforcement Learning Mechanism for the Distributed
Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53,
4899–4911. [CrossRef]

29. Zhao, F.; Wang, Q.; Wang, L. An Inverse Reinforcement Learning Framework with the Q-Learning Mechanism for the Metaheuris-
tic Algorithm. Knowl. Based Syst. 2023, 265, 110368. [CrossRef]

30. Zhao, F.; Wang, Z.; Wang, L. A Reinforcement Learning Driven Artificial Bee Colony Algorithm for Distributed Heterogeneous
No-Wait Flowshop Scheduling Problem with Sequence-Dependent Setup Times. IEEE Trans. Automat. Sci. Eng. 2022, 20,
2305–2320. [CrossRef]

31. Yu, H.; Gao, K.-Z.; Ma, Z.-F.; Pan, Y.-X. Improved Meta-Heuristics with Q-Learning for Solving Distributed Assembly Permutation
Flowshop Scheduling Problems. Swarm Evol. Comput. 2023, 80, 101335. [CrossRef]

32. Ren, Y.; Gao, K.; Fu, Y.; Sang, H.; Li, D.; Luo, Z. A Novel Q-Learning Based Variable Neighborhood Iterative Search Algorithm for
Solving Disassembly Line Scheduling Problems. Swarm Evol. Comput. 2023, 80, 101338. [CrossRef]

33. Low, E.S.; Ong, P.; Low, C.Y.; Omar, R. Modified Q-Learning with Distance Metric and Virtual Target on Path Planning of Mobile
Robot. Expert Syst. Appl. 2022, 199, 117191. [CrossRef]

34. Zhao, F.; Di, S.; Wang, L. A Hyperheuristic With Q-Learning for the Multiobjective Energy-Efficient Distributed Blocking Flow
Shop Scheduling Problem. IEEE Trans. Cybern. 2023, 53, 3337–3350. [CrossRef] [PubMed]

35. Maoudj, A.; Hentout, A. Optimal Path Planning Approach Based on Q-Learning Algorithm for Mobile Robots. Appl. Soft Comput.
2020, 97, 106796. [CrossRef]

36. Zhao, X.; Zong, Q.; Tian, B.; Zhang, B.; You, M. Fast Task Allocation for Heterogeneous Unmanned Aerial Vehicles through
Reinforcement Learning. Aerosp. Sci. Technol. 2019, 92, 588–594. [CrossRef]

https://doi.org/10.3390/jmse8110939
https://doi.org/10.1016/j.oceaneng.2017.01.024
https://doi.org/10.1109/TII.2019.2912024
https://doi.org/10.1016/j.procs.2018.07.018
https://doi.org/10.1016/j.oceaneng.2021.109560
https://doi.org/10.1016/j.oceaneng.2022.112809
https://doi.org/10.1109/TIE.2011.2109332
https://doi.org/10.1109/TITS.2023.3296651
https://doi.org/10.1109/TITS.2018.2873790
https://doi.org/10.1016/j.eswa.2008.08.054
https://doi.org/10.1016/j.swevo.2023.101358
https://doi.org/10.1016/j.eswa.2023.120254
https://doi.org/10.1016/S1568-4946(03)00010-3
https://doi.org/10.1109/TII.2012.2198665
https://doi.org/10.1016/j.eswa.2018.08.008
https://doi.org/10.1016/j.amc.2013.07.022
https://doi.org/10.3390/s20174769
https://www.ncbi.nlm.nih.gov/pubmed/32846950
https://doi.org/10.3390/electronics10070853
https://doi.org/10.1109/TSMC.2023.3256484
https://doi.org/10.1016/j.knosys.2023.110368
https://doi.org/10.1109/TASE.2022.3212786
https://doi.org/10.1016/j.swevo.2023.101335
https://doi.org/10.1016/j.swevo.2023.101338
https://doi.org/10.1016/j.eswa.2022.117191
https://doi.org/10.1109/TCYB.2022.3192112
https://www.ncbi.nlm.nih.gov/pubmed/35994539
https://doi.org/10.1016/j.asoc.2020.106796
https://doi.org/10.1016/j.ast.2019.06.024

Mathematics 2024, 12, 339 23 of 23

37. Chen, J.; Ling, F.; Zhang, Y.; You, T.; Liu, Y.; Du, X. Coverage Path Planning of Heterogeneous Unmanned Aerial Vehicles Based
on Ant Colony System. Swarm Evol. Comput. 2022, 69, 101005. [CrossRef]

38. Tan, G.; Zhuang, J.; Zou, J.; Wan, L. Multi-Type Task Allocation for Multiple Heterogeneous Unmanned Surface Vehicles (USVs)
Based on the Self-Organizing Map. Appl. Ocean Res. 2022, 126, 103262. [CrossRef]

39. Tan, G.; Sun, H.; Du, L.; Zhuang, J.; Zou, J.; Wan, L. Coordinated Control of the Heterogeneous Unmanned Surface Vehicle Swarm
Based on the Distributed Null-Space-Based Behavioral Approach. Ocean Eng. 2022, 266, 112928. [CrossRef]

40. Liu, Y.; Lin, X.; Zhang, C. Affine Formation Maneuver Control for Multi-Heterogeneous Unmanned Surface Vessels in Narrow
Channel Environments. J. Mar. Sci. Eng. 2023, 11, 1811. [CrossRef]

41. Tan, G.; Zhuang, J.; Zou, J.; Wan, L. Adaptive Adjustable Fast Marching Square Method Based Path Planning for the Swarm of
Heterogeneous Unmanned Surface Vehicles (USVs). Ocean Eng. 2023, 268, 113432. [CrossRef]

42. Bell, M.G.H. Hyperstar: A Multi-Path Astar Algorithm for Risk Averse Vehicle Navigation. Transp. Res. Part B Methodol. 2009, 43,
97–107. [CrossRef]

43. Gao, K.; Huang, Y.; Sadollah, A.; Wang, L. A Review of Energy-Efficient Scheduling in Intelligent Production Systems. Complex
Intell. Syst. 2020, 6, 237–249. [CrossRef]

44. Gao, K.; Cao, Z.; Zhang, L.; Chen, Z.; Han, Y.; Pan, Q. A Review on Swarm Intelligence and Evolutionary Algorithms for Solving
Flexible Job Shop Scheduling Problems. IEEE/CAA J. Autom. Sin. 2019, 6, 904–916. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.swevo.2021.101005
https://doi.org/10.1016/j.apor.2022.103262
https://doi.org/10.1016/j.oceaneng.2022.112928
https://doi.org/10.3390/jmse11091811
https://doi.org/10.1016/j.oceaneng.2022.113432
https://doi.org/10.1016/j.trb.2008.05.010
https://doi.org/10.1007/s40747-019-00122-6
https://doi.org/10.1109/JAS.2019.1911540

	Introduction
	Literature Review
	Problem Description
	Proposed Algorithms
	Path Search
	Solution Representation
	Meta-Heuristics
	Local Search
	Q-Learning
	Q-Learning-Based Local Search
	The First Q-Learning-Based Local Search (QL1)
	The Second Q-Learning-Based Local Search (QL2)
	The Third Q-Learning-Based Local Search (QL3)

	The Framework of the Proposed Algorithms

	Experiments and Discussion
	Experimental Setup
	Effectiveness of Proposed Strategies
	Statistical Test
	Compare with Existing Algorithms

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

