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Abstract: We consider the large class G of locally convex spaces that includes, among others, the
classes of (DF)-spaces and (LF)-spaces. For a space E in class G we have characterized that a
subspace Y of (E, σ(E, E′)), endowed with the induced topology, is analytic if and only if Y has a
σ(E, E′)-compact resolution and is contained in a σ(E, E′)-separable subset of E. This result is applied
to reprove a known important result (due to Cascales and Orihuela) about weak metrizability of
weakly compact sets in spaces of class G. The mentioned characterization follows from the following
analogous result: The space C(X) of continuous real-valued functions on a completely regular
Hausdorff space X endowed with a topology ξ stronger or equal than the pointwise topology τp of
C(X) is analytic iff (C(X), ξ) is separable and is covered by a compact resolution.

Keywords: compact resolution; analytic space; locally convex space; weak metrizability;
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1. Introduction

A family {Aα : α ∈ NN} of sets covering a set X is called a resolution of X if Aα ⊂ Aβ

whenever α ≤ β, α, β ∈ NN. A locally convex topological vector space E belongs to class G
if there is a resolution {Aα : α ∈ NN} in (E′, σ(E′, E)) such that each sequence in any Aα is
equicontinuous [1], and the resolution {Aα : α ∈ NN} is called a G-representation of E′.

The class G is stable by taking subspaces, Hausdorff quotients, countable direct sums,
and products. It contains “almost all” important classes of locally convex spaces, including
(LF)-spaces and (DF)-spaces, hence it is indeed a very large class. We recall that this
class G of locally convex space was introduced in [1] motivated by particular results for
(LF)-spaces and (DF)-spaces and common properties of the topological dual of each space
of these two classes.

An interesting result from [1] states that a compact set K is Talagrand compact if and
only if it is homeomorphic to a subset of a locally convex space in class G. Therefore,
dealing with Talagrand compact sets, one may ask when (weakly) compact sets in a locally
convex space in class G are (weakly) metrizable. Both questions were answered in [1,2],
respectively, see also [3] (and references there). Additionally, in the theory of locally convex
spaces working with compact sets of a locally convex space E raise the questions about
metrizability and weakly angelicity of compact subsets of E. In [1] and references therein, a
list of positive results concerning both questions is provided, with (LF)-spaces and (DF)-
spaces included in the list. For the spaces in class G, both above-mentioned problems have
positive answers.

Nevertheless, as was proved in [4], the space Cp(X) of continuous real-valued maps
on a completely regular Hausdorff space X, endowed with the pointwise topology belongs
to class G if and only if Cp(X) is metrizable.
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All topological spaces are assumed to be completely regular. A topological space X
is web-bounding [5] (Note 3) if there is a family {Aα : α ∈ Ω} of subsets of X for some
non-empty Ω ⊂ NN whose union X0 is dense in X and such that if α = (nk) ∈ Ω and
xk ∈ Cn1,n2,...,nk :=

⋃{Aβ : β = (mk) ∈ Ω, mj = nj, j = 1, . . . , k}, then (xk)k is functionally
bounded. If the same holds for X = X0 , we call X strongly web-bounding. The family
{Aα : α ∈ Ω} is called, respectively, a web-bounding representation or a strongly web-
bounding representation of X.

A topological space X is called a Lindelöf Σ-space [6] (or a K-countably determined
space [7]) if there is an upper semi-continuous compact-valued map from a non-empty
subset Ω ⊂ NN covering X. If the same holds for Ω = NN, then X is called K-analytic.
X is quasi-Suslin if there exists a set-valued map T from NN into X covering X which is
quasi-Suslin, i.e., if αn → α in NN and xn ∈ T(αn), then (xn)n has a cluster point in T(α),
see [8].

A topological space X is analytic if it is a continuous image of the space NN. Note that
analytic ⇒ K-analytic ⇔ Lindelöf ∧ quasi-Suslin, and K-analytic ⇒ Lindelöf Σ. Every
K-analytic space has a compact resolution, see [9], or [10], and every angelic space with a
compact resolution is K-analytic, see [10] (Corollary 1.1).

Recall that topological spaces containing dense quasi-Suslin spaces are web-bounding [5].
Hence, every space containing a dense σ-compact space is web-bounding, in particular,
separable spaces are web-bounding. Applying [1] (Theorem 1, Note 4) we have that a
metrizable space is web-bounding if and only if it is separable. Additional information
concerning K-analytic properties on spaces Cb(X) and properties of weakly compact sets
in C(X) are developed in [11,12].

2. Main Results

The following theorems are the main results of this paper that provide two natural
characterizations of analyticity. Theorem 1 characterizes when a non-empty subset Y of a
locally convex space E in class G is σ(E, E′)-analytic and Theorem 3 characterizes when
non-empty set Y ⊂ Cp(X) is analytic, being X a web-bounding space. Although spaces
Cp(X) of continuous real-valued maps on X endowed with the pointwise topology τp
do not belong to class G for uncountable spaces X (as we have mentioned above), the
argument used in the proof of Theorem 3 applies to show the general Theorem 1.

Theorem 1. A subset Y of a locally convex space E in class G is σ(E, E′)-analytic if and only if Y
has a σ(E, E′)-compact resolution and is contained in a σ(E, E′)-separable subset.

Consequently, a locally convex space E in class G is weakly analytic if and only if E
is separable and admits a σ(E, E′)-compact resolution. Note that the latter condition is
equivalent to say that E is weakly K-analytic (since E is angelic by [1] (Theorem 11) and we
apply [10] (Corollary 1.1)).

We prove that Cp(X) is analytic if and only if Cp(X) has a compact resolution and is
separable, see Corollary 2.

Since every analytic compact set is metrizable [1] (Theorem 15), Theorem 1 yields the
following result from [2].

Corollary 1 (Cascales-Orihuela). A σ(E, E′)-compact set Y in a locally convex space E in class
G is σ(E, E′)-metrizable if and only if Y is contained in a σ(E, E′)-separable subset of E.

Moreover, we provide a short proof of the following another interesting result of this
type due to Cascales and Orihuela [1].

Theorem 2 (Cascales-Orihuela). A precompact set K in a locally convex space E in class G

is metrizable.

The following result uses some ideas from [1].
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Theorem 3. Let X be a web-bounding space. A non-empty set Y ⊂ Cp(X) is analytic if and only
if Y has a compact resolution and is contained in a separable subset of Cp(X).

3. Examples

Example 1. In RN endowed with the product topology, let E be the subspace of RN formed by
the vectors with a finite number of non-null components. Every non-void closed subset Y of E is
σ(E, E′)-analytic.

Proof. It is clear that the countable product RN belongs to class G, hence E is also in class
G. Let y be an element of Y. For each α = (αi : i ∈ N) ∈ NN let

Aα := {y} ∪ {(ni : i ∈ N) ∈ Y, ni = 0 if i > α1}.

The family {Aα : α ∈ NN} is a compact resolution of Y. Moreover Y is separable, because
the topology of RN has a countable base. By Theorem 1, Y is σ(E, E′)-analytic.

Theorem 2 is Theorem 2 in [1], where the authors provide a picture of possible appli-
cations of this Theorem, with detailed proofs concerning that:

• the inductive limits of increasing sequences of metrizable locally convex spaces;
• the generalized inductive limits

E[T ] = lim
−→

(En[Tn], An)

of sequences of pairs {(En[Tn], An) : n = 1, 2, . . . }, where every An is Tn-metrizable
and every En[Tn] is locally convex;

• the locally convex (DF)-spaces;
• and the locally convex dual metric spaces;

are in class G, hence, its precompact spaces are metrizable:

Example 2. Let X be the set N of natural number endowed with the discrete topology. A non-empty
set Y ⊂ Cp(X) is analytic if and only if Y has a compact resolution.

Proof. The space X admits a compact resolution that it is a strongly web-bounding repre-
sentation of X, hence the space X is strongly web-bounding. If Y has a compact resolution
then the Theorem 3 implies that Y is analytic, because the isomorphism between RN and
Cp(X) implies that Cp(X) has a countable base. The converse is obvious because analytic
⇒ K-analytic and every K-analytic space admits a compact resolution.

4. Proofs

We need the following result [9].

Proposition 1 (Talagrand). Let (X, ξ) be a regular space which admits a stronger topology ϑ
such that (X, ϑ) is a Lindelöf Σ-space. Then d(X, ϑ) ≤ ω(X, ξ), where d(X) and ω(X) denote the
density and the weight of X, respectively.

4.1. Proof of Theorem 3

Let us prove Theorem 3.
It is obvious that if Y is analytic then Y is separable and K-analytic, so Theorem 3 holds.
To prove the converse of the statement of this theorem it is enough to show that

Y admits a weaker metrizable topology because then, by [1] (Theorem 15), the space Y
is analytic.

Firstly we are going to check that to prove this converse we may suppose the additional
condition that X is a strongly web-bounding space.

In fact, let X be a web-bounding space and suppose that there is a web-bounding
representation {Aα : α ∈ Ω} of X whose union X0 is dense in X. Then the restriction
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map ϕ : Cp(X) → Cp(X0) defined by ϕ( f ) := f |X0 is an injective continuous linear map.
Let Y ⊂ Cp(X) be a subset with a compact resolution contained in a separable subset
L ⊂ Cp(X). Then for ϕ(Y) the assumptions are satisfied, so ϕ(Y) is analytic in the induced
topology from Cp(X0) and consequently ϕ(Y) admits a weaker metrizable topology T .
Then

{
ϕ−1(A) : A ∈ T

}
is a weaker metrizable topology on Y. Therefore we may assume

that X is strongly web-bounding.
Hence, to finish the proof of Theorem 3 it is enough to prove the following Proposition.

Proposition 2. Let X be a strongly web-bounding space and let Y be a non-empty subset of Cp(X)
such that Y has a compact resolution and is contained in a separable subset of Cp(X). Then Y
admits a weaker metrizable topology (hence, as was said before, Y is analytic).

Proof. Let υX be the real-compactification of X. Since X is strongly web-bounding, we
apply [3] (Theorem 9.15) to deduce that υX is Lindelöf Σ-space.

As a help to the reader we split the proof in two parts.
Step 1. Assume that Y is a subset of Cp(υX), Y has a compact resolution and it is

contained in a separable subset L ⊂ Cp(υX). Now we prove that L (and also Y) admits
a weaker metrizable topology. Let D be a countable dense subset of L. Let TD and TL be
the weakest topologies on υX that make continuous the functions of D and L, respectively.
By density f (x) = f (y) for each f ∈ D implies f (x) = f (y) for each f ∈ L, hence
the topological quotients (υ̂X, T̂D) and (υ̂X, T̂L) of (υX, TD) and (υX, TL) respect to the
relations x ∼ y if f (x) = f (y) for all f of D and x ∼ y if f (x) = f (y) for all f of L,
respectively, are algebraically identical and we denote by φ : υX → υ̂X is the quotient map.

If we define the map F : (υX, TD) → RD by F(z) = { f (z) : f ∈ D}, z ∈ υX, then
clearly F is continuous and x ∼ y if and only F(x) = F(y). (υ̂X, T̂D) is homeomorphic to a
subspace of RD and consequently (υ̂X, T̂D) is metrizable and separable. On the other hand
(υ̂X, T̂L) is a Lindelöf Σ-space, since it is a continuous image of the Lindelöf Σ-space υX. It
follows from Proposition 1 that the space (υ̂X, T̂L) is separable.

Let S = {xn : n ∈ N} be a countable subset of υX such that the set φ(S) is T̂L dense
in υ̂X. For each f ∈ L let f̂ be the element of Cp(υ̂X) such that f = f̂ φ. Let f , g ∈ L be
such that f |S = g|S. Then, from f̂ φ|S = ĝφ|S if follows that f̂ |φ(S) = ĝ|φ(S) and the density

condition implies that f̂ = ĝ. Therefore f = f̂ φ = ĝφ = g. Consequently, if f and g
are two different elements of L there exists m ∈ N such that f (xm) ̸= g(xm). This means
that the weaker topology on L defined by the topology of the pointwise convergence on S
is metrizable.

Step 2. Let Y ⊂ Cp(X) be equipped with a compact resolution and let L be a separable
set in Cp(X) containing Y. Let ψ : Cp(X) → Cp(υX) be defined by ψ( f ) = f υ where f υ

is the unique continuous extension of f to the whole υX. Since ψ is continuous on each
countable set, see [13] (Theorem 4.6(3)), ψ(Y) has a resolution of countably compact sets.
On the other hand, the space Cp(υX) is angelic, see [5] (Theorem 3), so every countably
compact set in Cp(υX) is compact. Hence, ψ(Y) has a compact resolution.

Let { fn : n ∈ N} be a dense subset of L. Take any ϵ > 0, any f υ ∈ ψ(L) and let
U = {u1, u2, · · · , up} be an arbitrary finite subset of υX. Then there is f ∈ L with ψ( f ) = f υ

and by [13] (Theorem 4.6(1)) for each ui ∈ U there exists xi ∈ X such that f (xi) = f υ(ui)
and fn(xi) = f υ

n (ui) for each n ∈ N. Choose m ∈ N such that | fm(xi)− f (xi)| < ϵ for each
1 ≤ i ≤ p. Hence,

| f υ
m (ui)− f υ(ui)| = | fm(xi)− f (xi)| < ϵ

for each 1 ≤ i ≤ p. This shows that { f υ
n : n ∈ N} is a dense subset of ψ(L), so that ψ(L)

is separable. By Step 1 we derive that ψ(Y) is analytic in Cp(υX). The continuity of the
surjection ψ−1 : Cp(υX) → Cp(X) implies that ψ−1(ψ(Y)) = Y is also analytic.

For a completely regular topological space X, Tkachuk proved in [14] that Cp(X) is
K-analytic if and only if it has a compact resolution. If X is a separable metric space, then
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Cp(X) is analytic if and only if it admits a resolution consisting of bounded sets, see [15]
(Corollary 2.5) and [16] (Proposition 1).

From the proof of Proposition 2 follows immediately the following claim that enables
to get in Corollary 2 the following variant for analyticity of Cp(X) for arbitrary X.

Claim 1. Let X be a topological space such that its real compactification υX is Lindelöf Σ-space
and let Y be a non-empty subset of Cp(X) such that Y has a compact resolution and is contained
in a separable subset of Cp(X). Then, Y admits a weaker metrizable topology (hence, as was said
before, Y is analytic).

Corollary 2. Let ξ be a topology on C(X) which is stronger or equal than the pointwise topology
τp of C(X). Then (C(X), ξ) is analytic if and only if (C(X), ξ) is separable and has a ξ-compact
resolution.

Proof. It is enough to prove this Corollary when ξ = τp, because a submetrizable topolog-
ical space is analytic if and only if it admits a compact resolution (see [1] (Theorem 15)).
Assume that Cp(X) is separable and has a compact resolution. Then by [17] (Corollary 23)
the space υX is a Lindelöf Σ-space. Now, Claim 1 for Y = Cp(X) implies that Cp(X) is
analytic. The converse is clear.

Hence, a separable space Cp(X) admits a compact resolution if and only if it is analytic,
or, equivalently, there is an upper semi-continuous compact-valued map from NN covering
Cp(X) if and only if Cp(X) is a continuous image of NN.

The following example shows that Corollary 2 does not work in general for the weak∗-
dual Lp(X) of Cp(X).

Example 3. Corollary 2 fails for the weak∗-dual Lp([0, 1]R) of Cp([0, 1]R).

Proof. It is well known that the space [0, 1]R endowed with the product topology is K-
analytic separable but not analytic. Consequently Lp([0, 1]R) is K-analytic and separable
by [6] (Proposition 0.5.14). Lp([0, 1]R) is not analytic, since [0, 1]R is a closed subspace of
Lp([0, 1]R) and each closed subspace of an analytic space is analytic.

4.2. Proofs of Theorems 1 and 2

We are ready to prove Theorem 1.

Proof. Note that (E′, σ(E′, E)) is strongly web-bounding. Indeed, let {Aα : α ∈ NN} be a
G-representation of E′. Then if α = (nk) ∈ NN and xk ∈ Cn1,n2,...,nk , k ∈ N, there exists for
each k ∈ N a βk ∈ NN such that xk ∈ Aβk and (βk1, βk2, · · · , βkk) = (n1, n2, · · · , nk). From
these equalities for k ∈ N it follows that there exists γ ∈ NN with βk ≤ γ. Hence, xk ∈ Aγ

for all k ∈ N, yielding equicontinuity of (xk)k, so (xk)k is functionally bounded. Finally, as
(E, σ(E, E′)) is contained in Cp(E′, σ(E′, E)) the proof follows applying Theorem 3.

We complete the paper with a short and elementary proof of Theorem 2. It is enough
to make the proof for a compact subset K of E, because the completion of a locally convex
space E in class G belongs to class G and the closure in the completion of a precompact
subset of E is a compact subset.

Proof. Let
{

Aα : α ∈ NN} be a G-representation of E′. By τ we denote the topology of E and
let K be a compact of E. We say that a subset M of E′ is K0-separated if

(
a + K0)∩ M = {a},

for each a ∈ M. By Zorn’s lemma there exists a maximal K0-separated subset M1 of E′ and
the maximal condition implies that M1 + K0 = E′.

Note that M1 is countable. Indeed, otherwise, since E′ =
{

Aα : α ∈ NN} and Aα ⊂ Aβ

whenever α ≤ β, for α, β in NN, we determine a sequence α = (nk) ∈ NN such that each
Cn1,n2,...,nk , k ∈ N, contains and uncountable subset of M1 and then by a very easy standard
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argument we obtain countable infinite subset P of M1 and γ ∈ NN such that P ⊂ Aγ,
see [3,10,18].

Since E belongs to G, P is equicontinuous, so, by Grothendieck theorem of polar
topologies ([19] (Chapter IV, $21.7)) P is precompact in the topology of uniform convergence
on the τ-precompact subsets of E. Therefore there exists a finite set {ai : 1 ≤ i ≤ k} ⊂ P
such that P ⊂ ⋃{

ai + K0 : 1 ≤ i ≤ k
}

. Clearly there exists 1 ≤ j ≤ k such that the set(
aj + K0) ∩ P is infinite, contradicting the hypothesis that M1 (⊃ P) is K0-separated.

Let Mn be a maximal subset of E′ that it is n−1K0-separated, for each n ∈ N . The
set M0 :=

⋃
{Mn : n ∈ N} is countable. Let τM0 be the weakest topology on K that makes

continuous the functions of M0. If x ̸= y are two points of K then there exist g ∈ E′ and
n ∈ N such that |g(x)− g(y)| > 3n−1. Since E′ = Mn + n−1K0, there exists f ∈ Mn(⊂ M0)
such that g ∈ f + n−1K0. Hence,

| f (x)− f (y)| = |g(x)− g(y)− g(x) + f (x) + g(y)− f (y)| > 3n−1 − 2n−1 = n−1.

Therefore (K, τM0) is metrizable, so K is metrizable.

5. Conclusions

For a locally convex space E in class G, we have characterized that a subset Y of
(E, σ(E, E′)), endowed with the induced topology, is σ(E, E′)-analytic if and only if Y has a
σ(E, E′)-compact resolution and is contained in a σ(E, E′)-separable subset of E. If X is a
web-bounding space, then we have obtained that a non-empty subset Y of Cp(X) provided
with the induced topology is analytic if and only if Y has a compact resolution and is
contained in a separable subset of Cp(X). Moreover, for a topology ξ on C(X) which is
stronger or equal to the pointwise topology τp of C(X) we obtain that (C(X), ξ) is analytic
if and only if (C(X), ξ) is separable and has a ξ-compact resolution. This last result suggests
for future work to characterize the locally convex spaces E in class G that are analytic, being
ξ a topology stronger than the weak topology σ(E, E′).

Another direction of future research is to obtain similar characterizations for spaces in
class G and for spaces Cp(X) replacing analytic by weaker properties like to be K-analytic
or quasi-Suslin.
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