

Article Compact Resolutions and Analyticity

Salvador López-Alfonso ¹, Manuel López-Pellicer ^{2,*} and Santiago Moll-López ³

- ¹ Departamento de Construcciones Arquitectónicas, Universitat Politècnica de València, 46022 Valencia, Spain; salloal@csa.upv.es
- ² Departamento de Matemática Aplicada, IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain
 ³ Departamento de Matemática Aplicada, Universitat Politècnica de València, 46022 Valencia, Spain; sanmollp@mat.upv.es
- * Correspondence: mlopezpe@mat.upv.es

Abstract: We consider the large class \mathfrak{G} of locally convex spaces that includes, among others, the classes of (DF)-spaces and (LF)-spaces. For a space E in class \mathfrak{G} we have characterized that a subspace Y of $(E, \sigma(E, E'))$, endowed with the induced topology, is analytic if and only if Y has a $\sigma(E, E')$ -compact resolution and is contained in a $\sigma(E, E')$ -separable subset of E. This result is applied to reprove a known important result (due to Cascales and Orihuela) about weak metrizability of weakly compact sets in spaces of class \mathfrak{G} . The mentioned characterization follows from the following analogous result: The space C(X) of continuous real-valued functions on a completely regular Hausdorff space X endowed with a topology ξ stronger or equal than the pointwise topology τ_p of C(X) is analytic iff $(C(X), \xi)$ is separable and is covered by a compact resolution.

Keywords: compact resolution; analytic space; locally convex space; weak metrizability; $C_p(X)$ -spaces

MSC: 46A50, 46E10, 54H05

1. Introduction

A family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of sets covering a set *X* is called a *resolution* of *X* if $A_{\alpha} \subset A_{\beta}$ whenever $\alpha \leq \beta$, $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$. A locally convex topological vector space *E* belongs to class \mathfrak{G} if there is a resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ in $(E', \sigma(E', E))$ such that each sequence in any A_{α} is equicontinuous [1], and the resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is called a \mathfrak{G} -representation of E'.

The class \mathfrak{G} is stable by taking subspaces, Hausdorff quotients, countable direct sums, and products. It contains "almost all" important classes of locally convex spaces, including (LF)-spaces and (DF)-spaces, hence it is indeed a very large class. We recall that this class \mathfrak{G} of locally convex space was introduced in [1] motivated by particular results for (LF)-spaces and (DF)-spaces and common properties of the topological dual of each space of these two classes.

An interesting result from [1] states that a compact set *K* is Talagrand compact if and only if it is homeomorphic to a subset of a locally convex space in class \mathfrak{G} . Therefore, dealing with Talagrand compact sets, one may ask when (weakly) compact sets in a locally convex space in class \mathfrak{G} are (weakly) metrizable. Both questions were answered in [1,2], respectively, see also [3] (and references there). Additionally, in the theory of locally convex spaces working with compact sets of a locally convex space *E* raise the questions about metrizability and weakly angelicity of compact subsets of *E*. In [1] and references therein, a list of positive results concerning both questions is provided, with (*LF*)-spaces and (*DF*)spaces included in the list. For the spaces in class \mathfrak{G} , both above-mentioned problems have positive answers.

Nevertheless, as was proved in [4], the space $C_p(X)$ of continuous real-valued maps on a completely regular Hausdorff space X, endowed with the pointwise topology belongs to class \mathfrak{G} if and only if $C_p(X)$ is metrizable.

Citation: López-Alfonso, S.; López-Pellicer, M.; Moll-López, S. Compact Resolutions and Analyticity. *Mathematics* 2024, *12*, 318. https://doi.org/10.3390/ math12020318

Academic Editor: Rekha Srivastava

Received: 28 November 2023 Revised: 11 January 2024 Accepted: 17 January 2024 Published: 18 January 2024

Correction Statement: This article has been republished with a minor change. The change does not affect the scientific content of the article and further details are available within the backmatter of the website version of this article.

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). All topological spaces are assumed to be completely regular. A topological space *X* is *web-bounding* [5] (Note 3) if there is a family $\{A_{\alpha} : \alpha \in \Omega\}$ of subsets of *X* for some non-empty $\Omega \subset \mathbb{N}^{\mathbb{N}}$ whose union X_0 is dense in *X* and such that if $\alpha = (n_k) \in \Omega$ and $x_k \in C_{n_1,n_2,...,n_k} := \bigcup \{A_{\beta} : \beta = (m_k) \in \Omega, m_j = n_j, j = 1,...,k\}$, then $(x_k)_k$ is functionally bounded. If the same holds for $X = X_0$, we call *X strongly web-bounding*. The family $\{A_{\alpha} : \alpha \in \Omega\}$ is called, respectively, a web-bounding representation or a strongly webbounding representation of *X*.

A topological space *X* is called a *Lindelöf* Σ -space [6] (or a K-countably determined space [7]) if there is an upper semi-continuous compact-valued map from a non-empty subset $\Omega \subset N^{\mathbb{N}}$ covering *X*. If the same holds for $\Omega = \mathbb{N}^{\mathbb{N}}$, then *X* is called *K-analytic*. *X* is *quasi-Suslin* if there exists a set-valued map *T* from $\mathbb{N}^{\mathbb{N}}$ into *X* covering *X* which is quasi-Suslin, i.e., if $\alpha_n \to \alpha$ in $\mathbb{N}^{\mathbb{N}}$ and $x_n \in T(\alpha_n)$, then $(x_n)_n$ has a cluster point in $T(\alpha)$, see [8].

A topological space *X* is *analytic* if it is a continuous image of the space $\mathbb{N}^{\mathbb{N}}$. Note that analytic \Rightarrow K-analytic \Leftrightarrow Lindelöf \land quasi-Suslin, and K-analytic \Rightarrow Lindelöf Σ . Every K-analytic space has a compact resolution, see [9], or [10], and every angelic space with a compact resolution is K-analytic, see [10] (Corollary 1.1).

Recall that topological spaces containing dense quasi-Suslin spaces are web-bounding [5]. Hence, every space containing a dense σ -compact space is web-bounding, in particular, separable spaces are web-bounding. Applying [1] (Theorem 1, Note 4) we have that a metrizable space is web-bounding if and only if it is separable. Additional information concerning K-analytic properties on spaces $C^b(X)$ and properties of weakly compact sets in C(X) are developed in [11,12].

2. Main Results

The following theorems are the main results of this paper that provide two natural characterizations of analyticity. Theorem 1 characterizes when a non-empty subset *Y* of a locally convex space *E* in class \mathfrak{G} is $\sigma(E, E')$ -analytic and Theorem 3 characterizes when non-empty set $Y \subset C_p(X)$ is analytic, being *X* a web-bounding space. Although spaces $C_p(X)$ of continuous real-valued maps on *X* endowed with the pointwise topology τ_p do not belong to class \mathfrak{G} for uncountable spaces *X* (as we have mentioned above), the argument used in the proof of Theorem 3 applies to show the general Theorem 1.

Theorem 1. A subset Y of a locally convex space E in class \mathfrak{G} is $\sigma(E, E')$ -analytic if and only if Y has a $\sigma(E, E')$ -compact resolution and is contained in a $\sigma(E, E')$ -separable subset.

Consequently, a locally convex space *E* in class \mathfrak{G} is weakly analytic if and only if *E* is separable and admits a $\sigma(E, E')$ -compact resolution. Note that the latter condition is equivalent to say that *E* is weakly K-analytic (since *E* is angelic by [1] (Theorem 11) and we apply [10] (Corollary 1.1)).

We prove that $C_p(X)$ is analytic if and only if $C_p(X)$ has a compact resolution and is separable, see Corollary 2.

Since every analytic compact set is metrizable [1] (Theorem 15), Theorem 1 yields the following result from [2].

Corollary 1 (Cascales-Orihuela). $A \sigma(E, E')$ -compact set Y in a locally convex space E in class \mathfrak{G} is $\sigma(E, E')$ -metrizable if and only if Y is contained in a $\sigma(E, E')$ -separable subset of E.

Moreover, we provide a short proof of the following another interesting result of this type due to Cascales and Orihuela [1].

Theorem 2 (Cascales-Orihuela). A precompact set K in a locally convex space E in class \mathfrak{G} is metrizable.

The following result uses some ideas from [1].

Theorem 3. Let X be a web-bounding space. A non-empty set $Y \subset C_p(X)$ is analytic if and only if Y has a compact resolution and is contained in a separable subset of $C_p(X)$.

3. Examples

Example 1. In $\mathbb{R}^{\mathbb{N}}$ endowed with the product topology, let *E* be the subspace of $\mathbb{R}^{\mathbb{N}}$ formed by the vectors with a finite number of non-null components. Every non-void closed subset *Y* of *E* is $\sigma(E, E')$ -analytic.

Proof. It is clear that the countable product $\mathbb{R}^{\mathbb{N}}$ belongs to class \mathfrak{G} , hence *E* is also in class \mathfrak{G} . Let *y* be an element of *Y*. For each $\alpha = (\alpha_i : i \in \mathbb{N}) \in \mathbb{N}^{\mathbb{N}}$ let

$$A_{\alpha} := \{y\} \cup \{(n_i : i \in \mathbb{N}) \in Y, n_i = 0 \text{ if } i > \alpha_1\}.$$

The family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ is a compact resolution of *Y*. Moreover *Y* is separable, because the topology of $\mathbb{R}^{\mathbb{N}}$ has a countable base. By Theorem 1, *Y* is $\sigma(E, E')$ -analytic. \Box

Theorem 2 is Theorem 2 in [1], where the authors provide a picture of possible applications of this Theorem, with detailed proofs concerning that:

- the inductive limits of increasing sequences of metrizable locally convex spaces;
- the generalized inductive limits

$$E[\mathcal{T}] = \lim(E_n[\mathcal{T}_n], A_n)$$

of sequences of pairs { $(E_n[\mathcal{T}_n], A_n) : n = 1, 2, ...$ }, where every A_n is \mathcal{T}_n -metrizable and every $E_n[\mathcal{T}_n]$ is locally convex;

- the locally convex (*DF*)-spaces;
- and the locally convex dual metric spaces;

are in class Ø, hence, its precompact spaces are metrizable:

Example 2. Let X be the set \mathbb{N} of natural number endowed with the discrete topology. A non-empty set $Y \subset C_p(X)$ is analytic if and only if Y has a compact resolution.

Proof. The space *X* admits a compact resolution that it is a strongly web-bounding representation of *X*, hence the space *X* is strongly web-bounding. If *Y* has a compact resolution then the Theorem 3 implies that *Y* is analytic, because the isomorphism between $\mathbb{R}^{\mathbb{N}}$ and $C_p(X)$ implies that $C_p(X)$ has a countable base. The converse is obvious because analytic \Rightarrow *K*-analytic and every *K*-analytic space admits a compact resolution. \Box

4. Proofs

We need the following result [9].

Proposition 1 (Talagrand). Let (X, ξ) be a regular space which admits a stronger topology ϑ such that (X, ϑ) is a Lindelöf Σ -space. Then $d(X, \vartheta) \leq \omega(X, \xi)$, where d(X) and $\omega(X)$ denote the density and the weight of X, respectively.

4.1. Proof of Theorem 3

Let us prove Theorem 3.

It is obvious that if *Y* is analytic then *Y* is separable and *K*-analytic, so Theorem 3 holds. To prove the converse of the statement of this theorem it is enough to show that *Y* admits a weaker metrizable topology because then, by [1] (Theorem 15), the space *Y* is analytic.

Firstly we are going to check that to prove this converse we may suppose the additional condition that X is a strongly web-bounding space.

In fact, let *X* be a web-bounding space and suppose that there is a web-bounding representation $\{A_{\alpha} : \alpha \in \Omega\}$ of *X* whose union X_0 is dense in *X*. Then the restriction

map $\phi : C_p(X) \to C_p(X_0)$ defined by $\phi(f) := f|_{X_0}$ is an injective continuous linear map. Let $Y \subset C_p(X)$ be a subset with a compact resolution contained in a separable subset $L \subset C_p(X)$. Then for $\phi(Y)$ the assumptions are satisfied, so $\phi(Y)$ is analytic in the induced topology from $C_p(X_0)$ and consequently $\phi(Y)$ admits a weaker metrizable topology \mathcal{T} . Then $\{\phi^{-1}(A) : A \in \mathcal{T}\}$ is a weaker metrizable topology on Y. Therefore we may assume that X is strongly web-bounding.

Hence, to finish the proof of Theorem 3 it is enough to prove the following Proposition.

Proposition 2. Let X be a strongly web-bounding space and let Y be a non-empty subset of $C_p(X)$ such that Y has a compact resolution and is contained in a separable subset of $C_p(X)$. Then Y admits a weaker metrizable topology (hence, as was said before, Y is analytic).

Proof. Let vX be the real-compactification of X. Since X is strongly web-bounding, we apply [3] (Theorem 9.15) to deduce that vX is Lindelöf Σ -space.

As a help to the reader we split the proof in two parts.

Step 1. Assume that *Y* is a subset of $C_p(vX)$, *Y* has a compact resolution and it is contained in a separable subset $L \subset C_p(vX)$. Now we prove that *L* (and also *Y*) admits a weaker metrizable topology. Let *D* be a countable dense subset of *L*. Let \mathcal{T}_D and \mathcal{T}_L be the weakest topologies on vX that make continuous the functions of *D* and *L*, respectively. By density f(x) = f(y) for each $f \in D$ implies f(x) = f(y) for each $f \in L$, hence the topological quotients $(\widehat{vX}, \widehat{\mathcal{T}_D})$ and $(\widehat{vX}, \widehat{\mathcal{T}_L})$ of (vX, \mathcal{T}_D) and (vX, \mathcal{T}_L) respect to the relations $x \sim y$ if f(x) = f(y) for all f of *D* and $x \sim y$ if f(x) = f(y) for all f of *L*, respectively, are algebraically identical and we denote by $\varphi : vX \to \widehat{vX}$ is the quotient map.

If we define the map $F : (vX, \mathcal{T}_D) \to \mathbb{R}^D$ by $F(z) = \{f(z) : f \in D\}, z \in vX$, then clearly F is continuous and $x \sim y$ if and only F(x) = F(y). $(vX, \widehat{\mathcal{T}_D})$ is homeomorphic to a subspace of \mathbb{R}^D and consequently $(vX, \widehat{\mathcal{T}_D})$ is metrizable and separable. On the other hand $(vX, \widehat{\mathcal{T}_L})$ is a Lindelöf Σ -space, since it is a continuous image of the Lindelöf Σ -space vX. It follows from Proposition 1 that the space $(vX, \widehat{\mathcal{T}_L})$ is separable.

Let $S = \{x_n : n \in \mathbb{N}\}$ be a countable subset of vX such that the set $\varphi(S)$ is \widehat{T}_L dense in \widehat{vX} . For each $f \in L$ let \widehat{f} be the element of $C_p(\widehat{vX})$ such that $f = \widehat{f}\varphi$. Let $f, g \in L$ be such that $f|_S = g|_S$. Then, from $\widehat{f}\varphi|_S = \widehat{g}\varphi|_S$ if follows that $\widehat{f}|_{\varphi(S)} = \widehat{g}|_{\varphi(S)}$ and the density condition implies that $\widehat{f} = \widehat{g}$. Therefore $f = \widehat{f}\varphi = \widehat{g}\varphi = g$. Consequently, if f and gare two different elements of L there exists $m \in \mathbb{N}$ such that $f(x_m) \neq g(x_m)$. This means that the weaker topology on L defined by the topology of the pointwise convergence on Sis metrizable.

Step 2. Let $Y \subset C_p(X)$ be equipped with a compact resolution and let *L* be a separable set in $C_p(X)$ containing *Y*. Let $\psi : C_p(X) \to C_p(vX)$ be defined by $\psi(f) = f^v$ where f^v is the unique continuous extension of *f* to the whole vX. Since ψ is continuous on each countable set, see [13] (Theorem 4.6(3)), $\psi(Y)$ has a resolution of countably compact sets. On the other hand, the space $C_p(vX)$ is angelic, see [5] (Theorem 3), so every countably compact set in $C_p(vX)$ is compact. Hence, $\psi(Y)$ has a compact resolution.

Let $\{f_n : n \in \mathbb{N}\}$ be a dense subset of *L*. Take any $\epsilon > 0$, any $f^v \in \psi(L)$ and let $U = \{u_1, u_2, \dots, u_p\}$ be an arbitrary finite subset of vX. Then there is $f \in L$ with $\psi(f) = f^v$ and by [13] (Theorem 4.6(1)) for each $u_i \in U$ there exists $x_i \in X$ such that $f(x_i) = f^v(u_i)$ and $f_n(x_i) = f_n^v(u_i)$ for each $n \in \mathbb{N}$. Choose $m \in \mathbb{N}$ such that $|f_m(x_i) - f(x_i)| < \epsilon$ for each $1 \le i \le p$. Hence,

$$|f_m^{v}(u_i) - f^{v}(u_i)| = |f_m(x_i) - f(x_i)| < \epsilon$$

for each $1 \le i \le p$. This shows that $\{f_n^v : n \in \mathbb{N}\}$ is a dense subset of $\psi(L)$, so that $\psi(L)$ is separable. By Step 1 we derive that $\psi(Y)$ is analytic in $C_p(vX)$. The continuity of the surjection $\psi^{-1} : C_p(vX) \to C_p(X)$ implies that $\psi^{-1}(\psi(Y)) = Y$ is also analytic. \Box

For a completely regular topological space *X*, Tkachuk proved in [14] that $C_p(X)$ is K-analytic if and only if it has a compact resolution. If *X* is a separable metric space, then

From the proof of Proposition 2 follows immediately the following claim that enables to get in Corollary 2 the following variant for analyticity of $C_{\nu}(X)$ for arbitrary *X*.

Claim 1. Let X be a topological space such that its real compactification vX is Lindelöf Σ -space and let Y be a non-empty subset of $C_p(X)$ such that Y has a compact resolution and is contained in a separable subset of $C_p(X)$. Then, Y admits a weaker metrizable topology (hence, as was said before, Y is analytic).

Corollary 2. Let ξ be a topology on C(X) which is stronger or equal than the pointwise topology τ_p of C(X). Then $(C(X), \xi)$ is analytic if and only if $(C(X), \xi)$ is separable and has a ξ -compact resolution.

Proof. It is enough to prove this Corollary when $\xi = \tau_p$, because a submetrizable topological space is analytic if and only if it admits a compact resolution (see [1] (Theorem 15)). Assume that $C_p(X)$ is separable and has a compact resolution. Then by [17] (Corollary 23) the space vX is a Lindelöf Σ -space. Now, Claim 1 for $Y = C_p(X)$ implies that $C_p(X)$ is analytic. The converse is clear. \Box

Hence, a separable space $C_p(X)$ admits a compact resolution if and only if it is analytic, or, equivalently, there is an upper semi-continuous compact-valued map from $\mathbb{N}^{\mathbb{N}}$ covering $C_p(X)$ if and only if $C_p(X)$ is a continuous image of $\mathbb{N}^{\mathbb{N}}$.

The following example shows that Corollary 2 does not work in general for the weak^{*}-dual $L_p(X)$ of $C_p(X)$.

Example 3. Corollary 2 fails for the weak*-dual $L_p([0,1]^{\mathbb{R}})$ of $C_p([0,1]^{\mathbb{R}})$.

Proof. It is well known that the space $[0,1]^{\mathbb{R}}$ endowed with the product topology is K-analytic separable but not analytic. Consequently $L_p([0,1]^{\mathbb{R}})$ is K-analytic and separable by [6] (Proposition 0.5.14). $L_p([0,1]^{\mathbb{R}})$ is not analytic, since $[0,1]^{\mathbb{R}}$ is a closed subspace of $L_p([0,1]^{\mathbb{R}})$ and each closed subspace of an analytic space is analytic. \Box

4.2. Proofs of Theorems 1 and 2

We are ready to prove Theorem 1.

Proof. Note that $(E', \sigma(E', E))$ is strongly web-bounding. Indeed, let $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -representation of E'. Then if $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ and $x_k \in C_{n_1, n_2, \dots, n_k}, k \in \mathbb{N}$, there exists for each $k \in \mathbb{N}$ a $\beta_k \in \mathbb{N}^{\mathbb{N}}$ such that $x_k \in A_{\beta_k}$ and $(\beta_{k1}, \beta_{k2}, \dots, \beta_{kk}) = (n_1, n_2, \dots, n_k)$. From these equalities for $k \in \mathbb{N}$ it follows that there exists $\gamma \in \mathbb{N}^{\mathbb{N}}$ with $\beta_k \leq \gamma$. Hence, $x_k \in A_{\gamma}$ for all $k \in \mathbb{N}$, yielding equicontinuity of $(x_k)_k$, so $(x_k)_k$ is functionally bounded. Finally, as $(E, \sigma(E, E'))$ is contained in $C_p(E', \sigma(E', E))$ the proof follows applying Theorem 3. \Box

We complete the paper with a short and elementary proof of Theorem 2. It is enough to make the proof for a compact subset K of E, because the completion of a locally convex space E in class \mathfrak{G} belongs to class \mathfrak{G} and the closure in the completion of a precompact subset of E is a compact subset.

Proof. Let $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ be a \mathfrak{G} -representation of E'. By τ we denote the topology of E and let K be a compact of E. We say that a subset M of E' is K^{0} -separated if $(a + K^{0}) \cap M = \{a\}$, for each $a \in M$. By Zorn's lemma there exists a maximal K^{0} -separated subset M_{1} of E' and the maximal condition implies that $M_{1} + K^{0} = E'$.

Note that M_1 is countable. Indeed, otherwise, since $E' = \{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ and $A_{\alpha} \subset A_{\beta}$ whenever $\alpha \leq \beta$, for α , β in $\mathbb{N}^{\mathbb{N}}$, we determine a sequence $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$ such that each $C_{n_1,n_2,...,n_k}$, $k \in \mathbb{N}$, contains and uncountable subset of M_1 and then by a very easy standard

argument we obtain countable infinite subset *P* of M_1 and $\gamma \in \mathbb{N}^{\mathbb{N}}$ such that $P \subset A_{\gamma}$, see [3,10,18].

Since *E* belongs to \mathfrak{G} , *P* is equicontinuous, so, by Grothendieck theorem of polar topologies ([19] (Chapter IV, \$21.7)) *P* is precompact in the topology of uniform convergence on the τ -precompact subsets of *E*. Therefore there exists a finite set $\{a_i : 1 \le i \le k\} \subset P$ such that $P \subset \bigcup \{a_i + K^0 : 1 \le i \le k\}$. Clearly there exists $1 \le j \le k$ such that the set $(a_i + K^0) \cap P$ is infinite, contradicting the hypothesis that $M_1 (\supset P)$ is K^0 -separated.

Let M_n be a maximal subset of E' that it is $n^{-1}K^0$ -separated, for each $n \in \mathbb{N}$. The set $M_0 := \bigcup \{M_n : n \in \mathbb{N}\}$ is countable. Let τ_{M_0} be the weakest topology on K that makes continuous the functions of M_0 . If $x \neq y$ are two points of K then there exist $g \in E'$ and $n \in \mathbb{N}$ such that $|g(x) - g(y)| > 3n^{-1}$. Since $E' = M_n + n^{-1}K^0$, there exists $f \in M_n(\subset M_0)$ such that $g \in f + n^{-1}K^0$. Hence,

$$|f(x) - f(y)| = |g(x) - g(y) - g(x) + f(x) + g(y) - f(y)| > 3n^{-1} - 2n^{-1} = n^{-1}.$$

Therefore (K, τ_{M_0}) is metrizable, so *K* is metrizable. \Box

5. Conclusions

For a locally convex space *E* in class \mathfrak{G} , we have characterized that a subset *Y* of $(E, \sigma(E, E'))$, endowed with the induced topology, is $\sigma(E, E')$ -analytic if and only if *Y* has a $\sigma(E, E')$ -compact resolution and is contained in a $\sigma(E, E')$ -separable subset of *E*. If *X* is a web-bounding space, then we have obtained that a non-empty subset *Y* of $C_p(X)$ provided with the induced topology is analytic if and only if *Y* has a compact resolution and is contained that a non-empty subset *Y* of $C_p(X)$ provided with the induced topology is analytic if and only if *Y* has a compact resolution and is contained in a separable subset of $C_p(X)$. Moreover, for a topology ξ on C(X) which is stronger or equal to the pointwise topology τ_p of C(X) we obtain that $(C(X), \xi)$ is analytic if and only if $(C(X), \xi)$ is separable and has a ξ -compact resolution. This last result suggests for future work to characterize the locally convex spaces *E* in class \mathfrak{G} that are analytic, being ξ a topology stronger than the weak topology $\sigma(E, E')$.

Another direction of future research is to obtain similar characterizations for spaces in class \mathfrak{G} and for spaces $C_p(X)$ replacing analytic by weaker properties like to be *K*-analytic or quasi-Suslin.

Author Contributions: The authors S.L.-A., M.L.-P. and S.M.-L. contributed equally to this work. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by grant PGC2018-094431-B-I00 of Ministry of Science, Innovation and Universities of Spain.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Cascales, B.; Orihuela, J. On Compactness in Locally Convex Spaces. Math. Z. 1987, 195, 365–381. [CrossRef]
- Cascales, B.; Orihuela, J. On pointwise and weak compactness in spaces of continuous functions. *Bull. Soc. Math. Belg.* 1988, 40, 331–352.
- 3. Kąkol, J.; Kubiś, W.; López-Pellicer, M. Descriptive Topology in Selected Topics of Functional Analysis; Springer: New York, NY, USA, 2011.
- 4. Cascales, B.; Kąkol, J.; Saxon, S.A. Metrizability vs. Fréchet-Urysohn property. Proc. Amer. Math. Soc. 2003, 131, 3623–3631.
- 5. Orihuela, J. Pointwise compactness in spaces of continuous functions. J. Lond. Math. Soc. 1987, 36, 143–152. [CrossRef]
- 6. Arkhangel'skii, A.V. *Topological Function Spaces*; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992; Volume 78.
- 7. Rogers, C.A.; Jayne, J.E.; Dellacherie, C.; Topsøe, F.; Hoffman-Jørgensen, J.; Martin, D.A.; Kechris, A.S.; Stone, A.H. *Analytic Sets*; Academic Press: San Diego, CA, USA, 1980.
- 8. Valdivia, M. Topics in Locally Convex Spaces; North-Holland: Amsterdam, The Netherlands, 1982.
- 9. Talagrand, M. Espaces de Banach faiblement K-analytiques. Ann. Math. 1979, 110, 407–438. [CrossRef]

- 10. Cascales, B. On K-analytic locally convex spaces. Arch. Math. 1987, 49, 232-244. [CrossRef]
- 11. Ferrando, J.C.; Kąkol, J.; López-Pellicer, M. On spaces $C^b(X)$ weakly K-analytic. *Math. Nachr.* **2017**, 290, 2612–2618.
- 12. Ferrando, J.C.; López-Alfonso, S. On weakly compact sets in *C*(*X*). *Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat.* **2021**, 115, 38. [CrossRef]
- 13. Floret, K. Weakly Compact Sets; Springer: Berlin/Heidelberg, Germany, 1980; Volume 801; Lecture Notes in Math.
- 14. Tkachuk, V.V. A space $C_p(X)$ is dominated by irrationals if and only if it is K-analytic. *Acta Math. Hungar.* **2005**, 107, 253–265. [CrossRef]
- 15. Arkhangel'skii, A.V.; Calbrix, J. A characterization of *σ*-compactness of a cosmic space *X* by means of subspaces of *R^X*. *Proc. Amer. Math. Soc.* **1999**, 127, 2497–2504. [CrossRef]
- 16. Ferrando, J.C.; Kąkol, J. A note on spaces $C_p(X)$ K-analytic-framed in R^X . Bull. Austral. Math. Soc. 2008, 78, 141–146. [CrossRef]
- 17. Ferrando, J.C. Some characterizations for vX to be Lindelöf Σ or K-analytic in terms of $C_p(X)$. *Topol. Appl.* **2009**, 156, 823–830. [CrossRef]
- 18. Robertson, N. The metrisability of precompact sets. Bull. Austral. Math. Soc. 1991, 43, 131–135. [CrossRef]
- 19. Köthe, G. *Topological Vector Spaces I.*; Springer: New York, NY, USA, 1969; Volume 159; Die Grundlehren der mathematischen Wissenschaften.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.