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Abstract: We consider the large class & of locally convex spaces that includes, among others, the
classes of (DF)-spaces and (LF)-spaces. For a space E in class ® we have characterized that a
subspace Y of (E,c(E, E')), endowed with the induced topology, is analytic if and only if Y has a
o(E, E')-compact resolution and is contained in a o (E, E’)-separable subset of E. This result is applied
to reprove a known important result (due to Cascales and Orihuela) about weak metrizability of
weakly compact sets in spaces of class ®. The mentioned characterization follows from the following
analogous result: The space C(X) of continuous real-valued functions on a completely regular
Hausdorff space X endowed with a topology ¢ stronger or equal than the pointwise topology 7, of
C(X) is analytic iff (C(X), €) is separable and is covered by a compact resolution.
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1. Introduction

A family {A, : « € NV} of sets covering a set X is called a resolution of X if A, C A B
whenever « < B, a, B € NN, A locally convex topological vector space E belongs to class &
if there is a resolution { A, : « € NN} in (E/,o(E’, E)) such that each sequence in any A, is
equicontinuous [1], and the resolution {A, : « € NN} is called a ®-representation of E’.

The class & is stable by taking subspaces, Hausdorff quotients, countable direct sums,
and products. It contains “almost all” important classes of locally convex spaces, including
(LF)-spaces and (DF)-spaces, hence it is indeed a very large class. We recall that this
class ® of locally convex space was introduced in [1] motivated by particular results for
(LF)-spaces and (DF)-spaces and common properties of the topological dual of each space
of these two classes.

An interesting result from [1] states that a compact set K is Talagrand compact if and
only if it is homeomorphic to a subset of a locally convex space in class &. Therefore,
dealing with Talagrand compact sets, one may ask when (weakly) compact sets in a locally
convex space in class & are (weakly) metrizable. Both questions were answered in [1,2],
respectively, see also [3] (and references there). Additionally, in the theory of locally convex
spaces working with compact sets of a locally convex space E raise the questions about
metrizability and weakly angelicity of compact subsets of E. In [1] and references therein, a
list of positive results concerning both questions is provided, with (LF)-spaces and (DF)-
spaces included in the list. For the spaces in class &, both above-mentioned problems have
positive answers.

Nevertheless, as was proved in [4], the space Cy(X) of continuous real-valued maps
on a completely regular Hausdorff space X, endowed with the pointwise topology belongs
to class & if and only if C,(X) is metrizable.
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All topological spaces are assumed to be completely regular. A topological space X
is web-bounding [5] (Note 3) if there is a family {A, : « € Q} of subsets of X for some
non-empty QO C NY whose union X is dense in X and such that if « = (1) € Q and
Xk € Couyngyony 1= U{Aﬁ (B = (myg) €Q, mj=njj= 1,...,k}, then (xg)x is functionally
bounded. If the same holds for X = X, we call X strongly web-bounding. The family
{Ay : @ € O} is called, respectively, a web-bounding representation or a strongly web-
bounding representation of X.

A topological space X is called a Lindelof Z-space [6] (or a K-countably determined
space [7]) if there is an upper semi-continuous compact-valued map from a non-empty
subset O C NN covering X. If the same holds for Q = NN, then X is called K-analytic.
X is quasi-Suslin if there exists a set-valued map T from NN into X covering X which is
quasi-Suslin, i.e., if #; — a in NNand x, € T(ay), then (x,), has a cluster point in T(«),
see [8].

A topological space X is analytic if it is a continuous image of the space N. Note that
analytic = K-analytic < Lindeldf A quasi-Suslin, and K-analytic = Lindelof X. Every
K-analytic space has a compact resolution, see [9], or [10], and every angelic space with a
compact resolution is K-analytic, see [10] (Corollary 1.1).

Recall that topological spaces containing dense quasi-Suslin spaces are web-bounding [5].
Hence, every space containing a dense o-compact space is web-bounding, in particular,
separable spaces are web-bounding. Applying [1] (Theorem 1, Note 4) we have that a
metrizable space is web-bounding if and only if it is separable. Additional information
concerning K-analytic properties on spaces C?(X) and properties of weakly compact sets
in C(X) are developed in [11,12].

2. Main Results

The following theorems are the main results of this paper that provide two natural
characterizations of analyticity. Theorem 1 characterizes when a non-empty subset Y of a
locally convex space E in class & is ¢ (E, E’)-analytic and Theorem 3 characterizes when
non-empty set Y C C,(X) is analytic, being X a web-bounding space. Although spaces
Cy(X) of continuous real-valued maps on X endowed with the pointwise topology T,
do not belong to class & for uncountable spaces X (as we have mentioned above), the
argument used in the proof of Theorem 3 applies to show the general Theorem 1.

Theorem 1. A subset Y of a locally convex space E in class & is o (E, E')-analytic if and only if Y
has a o (E, E")-compact resolution and is contained in a o (E, E')-separable subset.

Consequently, a locally convex space E in class & is weakly analytic if and only if E
is separable and admits a ¢ (E, E’)-compact resolution. Note that the latter condition is
equivalent to say that E is weakly K-analytic (since E is angelic by [1] (Theorem 11) and we
apply [10] (Corollary 1.1)).

We prove that C,(X) is analytic if and only if C,(X) has a compact resolution and is
separable, see Corollary 2.

Since every analytic compact set is metrizable [1] (Theorem 15), Theorem 1 yields the
following result from [2].

Corollary 1 (Cascales-Orihuela). A o(E, E')-compact set Y in a locally convex space E in class
& is o (E, E')-metrizable if and only if Y is contained in a o (E, E')-separable subset of E.

Moreover, we provide a short proof of the following another interesting result of this
type due to Cascales and Orihuela [1].

Theorem 2 (Cascales-Orihuela). A precompact set K in a locally convex space E in class &
is metrizable.

The following result uses some ideas from [1].
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Theorem 3. Let X be a web-bounding space. A non-empty set Y C C,(X) is analytic if and only
if Y has a compact resolution and is contained in a separable subset of C,(X).

3. Examples

Example 1. In RN endowed with the product topology, let E be the subspace of RN formed by
the vectors with a finite number of non-null components. Every non-void closed subset Y of E is
o(E, E')-analytic.

Proof. It is clear that the countable product RN belongs to class &, hence E is also in class
®. Let y be an element of Y. For each & = (a; : i € N) € NN let

Ay ={ytu{(nj:ieN)eY, nj=0ifi > a1 }.

The family {A, : « € NV} is a compact resolution of Y. Moreover Y is separable, because
the topology of RN has a countable base. By Theorem 1, Y is ¢(E, E/)-analytic. [

Theorem 2 is Theorem 2 in [1], where the authors provide a picture of possible appli-
cations of this Theorem, with detailed proofs concerning that:

* the inductive limits of increasing sequences of metrizable locally convex spaces;
*  the generalized inductive limits

E[ﬂ = lii{l(EI’l[,ﬁJ/An)

of sequences of pairs {(E,[Tn], An) : 1 =1,2,...}, where every A, is T,-metrizable
and every E,[7,] is locally convex;

e thelocally convex (DF)-spaces;

. and the locally convex dual metric spaces;

are in class &, hence, its precompact spaces are metrizable:

Example 2. Let X be the set N of natural number endowed with the discrete topology. A non-empty
set Y C Cp(X) is analytic if and only if Y has a compact resolution.

Proof. The space X admits a compact resolution that it is a strongly web-bounding repre-
sentation of X, hence the space X is strongly web-bounding. If Y has a compact resolution
then the Theorem 3 implies that Y is analytic, because the isomorphism between R and
Cp(X) implies that C(X) has a countable base. The converse is obvious because analytic
= K-analytic and every K-analytic space admits a compact resolution. [J

4. Proofs
We need the following result [9].

Proposition 1 (Talagrand). Let (X, {) be a regular space which admits a stronger topology ©
such that (X, 0) is a Lindelof X-space. Then d(X, ) < w(X,{), where d(X) and w(X) denote the
density and the weight of X, respectively.

4.1. Proof of Theorem 3

Let us prove Theorem 3.

It is obvious that if Y is analytic then Y is separable and K-analytic, so Theorem 3 holds.

To prove the converse of the statement of this theorem it is enough to show that
Y admits a weaker metrizable topology because then, by [1] (Theorem 15), the space Y
is analytic.

Firstly we are going to check that to prove this converse we may suppose the additional
condition that X is a strongly web-bounding space.

In fact, let X be a web-bounding space and suppose that there is a web-bounding
representation {A, : « € Q} of X whose union Xj is dense in X. Then the restriction
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map ¢ : Cp(X) = Cp(Xo) defined by ¢(f) := f|x, is an injective continuous linear map.
Let Y C Cy(X) be a subset with a compact resolution contained in a separable subset
L C Cy(X). Then for ¢(Y) the assumptions are satisfied, so ¢(Y) is analytic in the induced
topology from C,(Xp) and consequently ¢(Y) admits a weaker metrizable topology 7.
Then {¢1(A): A € T} is a weaker metrizable topology on Y. Therefore we may assume
that X is strongly web-bounding.

Hence, to finish the proof of Theorem 3 it is enough to prove the following Proposition.

Proposition 2. Let X be a strongly web-bounding space and let Y be a non-empty subset of C,(X)
such that Y has a compact resolution and is contained in a separable subset of Cp(X). Then Y
admits a weaker metrizable topology (hence, as was said before, Y is analytic).

Proof. Let vX be the real-compactification of X. Since X is strongly web-bounding, we
apply [3] (Theorem 9.15) to deduce that vX is Lindelof Z-space.

As a help to the reader we split the proof in two parts.

Step 1. Assume that Y is a subset of C,(vX), Y has a compact resolution and it is
contained in a separable subset L C C,(vX). Now we prove that L (and also Y) admits
a weaker metrizable topology. Let D be a countable dense subset of L. Let 7p and 7, be
the weakest topologies on vX that make continuous the functions of D and L, respectively.
By density f(x) = f(y) for each f € D ) implies f/(x (x) = f(y) for each f € L, hence
the topological quotients (0X, 7b) and (vX,T;) of (vX,Tp) and (vX,T7) respect to the
relations x ~ y if f(x) = f(y) forall f of D and x ~ yif f(x) = f(y) for all f of L,
respectively, are algebraically identical and we denote by ¢ : vX — vX is the quotient map.

If we define the map F : (vX,7p) — RP by F(z) = {f( ) f € D}, z € vX, then
clearly F is continuous and x ~ y if and only F(x) = F(y). (vX, TD) is homeomorphic to a
subspace of RP and consequently (vX, 7/7\3) is metrizable and separable. On the other hand
(vX, 7/>L) is a Lindelof X-space, since it is a continuous image of the Lindelof X-space vX. It
follows from Proposition 1 that the space (vX, 7/>L) is separable.

_Let S = {x, : n € N} be a countable subset of vX such that the set ¢(S) is 7. dense
in vX. For each f e Llet f be the element of C (UX) such that f = f(p Let f,g € Lbe

such that f|s = g|s. Then, from fg|s = g¢|s if follows that f |<P = &ly(s) and the density

condition implies that f = g. Therefore f = f ¢ =8¢ = g. Consequently, if fand g
are two different elements of L there exists m € N such that f(x,,) # g(x). This means
that the weaker topology on L defined by the topology of the pointwise convergence on S
is metrizable.

Step 2. Let Y C Cp(X) be equipped with a compact resolution and let L be a separable
set in Cp(X) containing Y. Let ¢ : C»(X) — Cp(vX) be defined by ¢(f) = f " where f"
is the unique continuous extension of f to the whole vX. Since ¢ is continuous on each
countable set, see [13] (Theorem 4.6(3)), (Y) has a resolution of countably compact sets.
On the other hand, the space C,(vX) is angelic, see [5] (Theorem 3), so every countably
compact set in C, (vX) is compact. Hence, ¢(Y) has a compact resolution.

Let {fs : n € N} be a dense subset of L. Take any € > 0, any f ¥V € (L) and let
U = {uy,up,-- -, up} beanarbitrary finite subset of vX. Then thereis f € Lwith¢(f) = f"
and by [13] (Theorem 4.6(1)) for each u; € U there exists x; € X such that f(x;) = f Y(u;)
and f,(x;) = f,"(u;) for each n € N. Choose m € N such that |f,;(x;) — f(x;)| < € for each

1 <i < p. Hence,
o (i) = f “(ui)| = [fn(xi) — f(xi)] <€

for each 1 < i < p. This shows that {f,," : n € N} is a dense subset of (L), so that (L)
is separable. By Step 1 we derive that (Y is analytic in C,(vX). The continuity of the
surjection ! : C(vX) — Cp(X) implies that = (y(Y)) = Y is also analytic. O

For a completely regular topological space X, Tkachuk proved in [14] that Cp,(X) is
K-analytic if and only if it has a compact resolution. If X is a separable metric space, then
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Cy(X) is analytic if and only if it admits a resolution consisting of bounded sets, see [15]
(Corollary 2.5) and [16] (Proposition 1).

From the proof of Proposition 2 follows immediately the following claim that enables
to get in Corollary 2 the following variant for analyticity of C,(X) for arbitrary X.

Claim 1. Let X be a topological space such that its real compactification vX is Lindelof E-space
and let Y be a non-empty subset of C,(X) such that Y has a compact resolution and is contained
in a separable subset of C,(X). Then, Y admits a weaker metrizable topology (hence, as was said
before, Y is analytic).

Corollary 2. Let ¢ be a topology on C(X) which is stronger or equal than the pointwise topology
Tp of C(X). Then (C(X),¢) is analytic if and only if (C(X),¢) is separable and has a {-compact
resolution.

Proof. It is enough to prove this Corollary when ¢ = 7,, because a submetrizable topolog-
ical space is analytic if and only if it admits a compact resolution (see [1] (Theorem 15)).
Assume that C,(X) is separable and has a compact resolution. Then by [17] (Corollary 23)
the space vX is a Lindelof X-space. Now, Claim 1 for Y = C,(X) implies that C,(X) is
analytic. The converse is clear. [

Hence, a separable space C,(X) admits a compact resolution if and only if it is analytic,
or, equivalently, there is an upper semi-continuous compact-valued map from N covering
Cp(X) if and only if Cp(X) is a continuous image of NN.

The following example shows that Corollary 2 does not work in general for the weak*-
dual L, (X) of Cp(X).

Example 3. Corollary 2 fails for the weak*-dual L, ([0,1]%) of C, ([0, 1]%).

Proof. It is well known that the space [0,1]® endowed with the product topology is K-
analytic separable but not analytic. Consequently L, ([0, 1]®) is K-analytic and separable
by [6] (Proposition 0.5.14). L,([0,1]®) is not analytic, since [0, 1]¥ is a closed subspace of
Ly([0, 1]®) and each closed subspace of an analytic space is analytic. [

4.2. Proofs of Theorems 1 and 2

We are ready to prove Theorem 1.

Proof. Note that (E/,c(E’, E)) is strongly web-bounding. Indeed, let {A, : « € NN} be a
&-representation of E’. Then if a« = (ny) € NN and x; € Chyna,...ner k € N, there exists for
each k € Na B; € NN such that x; € Ap, and (By1, Bra, -, Brk) = (n1,12,- -+, ny). From
these equalities for k € N it follows that there exists ¥ € NN with 8, < «. Hence, x; € Ay
for all k € N, yielding equicontinuity of (xx)x, so (xg )k is functionally bounded. Finally, as
(E,o(E,E")) is contained in C,(E’,0(E’, E)) the proof follows applying Theorem 3. [J

We complete the paper with a short and elementary proof of Theorem 2. It is enough
to make the proof for a compact subset K of E, because the completion of a locally convex
space E in class & belongs to class & and the closure in the completion of a precompact
subset of E is a compact subset.

Proof. Let {Ay:a € NN} be a B-representation of E’. By T we denote the topology of E and
let K be a compact of E. We say that a subset M of E’ is K'-separated if (a + K°) "M = {a},
for each a € M. By Zorn’s lemma there exists a maximal K%-separated subset M; of E’ and
the maximal condition implies that M; + K® = E’.

Note that M is countable. Indeed, otherwise, since E' = {Aﬂé T E NN} and A, C A B
whenever & < j, for o, B in NN, we determine a sequence & = (ny) € NN such that each
Cring,.nys k € N, contains and uncountable subset of M; and then by a very easy standard
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argument we obtain countable infinite subset P of M; and v € NN such that P C A,,
see [3,10,18].

Since E belongs to ®, P is equicontinuous, so, by Grothendieck theorem of polar
topologies ([19] (Chapter IV, $21.7)) P is precompact in the topology of uniform convergence
on the T-precompact subsets of E. Therefore there exists a finite set {a; : 1 <i <k} C P
such that P C U{ai +KY:1<i< k}. Clearly there exists 1 < j < k such that the set
(aj + K?) N P is infinite, contradicting the hypothesis that M; (D P) is K'-separated.

Let M,, be a maximal subset of E’ that it is n_lKO—separated, foreachn € N. The
set My := U{M,, : n € N} is countable. Let Tj, be the weakest topology on K that makes
continuous the functions of M. If x # y are two points of K then there exist ¢ € E’ and
n € Nsuch that [¢(x) — g(y)| > 3n~L. Since E' = M,, + n~ 'K, there exists f € M, (C M)
such that ¢ € f +n1K°. Hence,

() = f()] = I8(x) —g(y) —g(x) + f(x) +8(y) — f(y)| > 3n~" —2n~ ! =n"",
Therefore (K, Tp,) is metrizable, so K is metrizable. []

5. Conclusions

For a locally convex space E in class &, we have characterized that a subset Y of
(E,o(E,E')), endowed with the induced topology, is o (E, E’)-analytic if and only if Y has a
o (E, E')-compact resolution and is contained in a ¢ (E, E’)-separable subset of E. If X is a
web-bounding space, then we have obtained that a non-empty subset Y of C,(X) provided
with the induced topology is analytic if and only if Y has a compact resolution and is
contained in a separable subset of C,(X). Moreover, for a topology ¢ on C(X) which is
stronger or equal to the pointwise topology T, of C(X) we obtain that (C(X),¢) is analytic
if and only if (C(X), ¢) is separable and has a {-compact resolution. This last result suggests
for future work to characterize the locally convex spaces E in class & that are analytic, being
¢ a topology stronger than the weak topology ¢(E, E').

Another direction of future research is to obtain similar characterizations for spaces in
class & and for spaces C,(X) replacing analytic by weaker properties like to be K-analytic
or quasi-Suslin.
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