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Abstract: Sarcasm represents a language form where a discrepancy lies between the literal meanings
and implied intention. Sarcasm detection is challenging with unimodal text without clearly under-
standing the context, based on which multimodal information is introduced to benefit detection.
However, current approaches only focus on modeling text–image incongruity at the token level
and use the incongruity as the key to detection, ignoring the significance of the overall multimodal
features and textual semantics during processing. Moreover, semantic information from other sam-
ples with a similar manner of expression also facilitates sarcasm detection. In this work, a semantic
enhancement framework is proposed to address image–text congruity by modeling textual and
visual information at the multi-scale and multi-span token level. The efficacy of textual semantics
in multimodal sarcasm detection is pronounced. Aiming to bridge the cross-modal semantic gap,
semantic enhancement is performed by using a multiple contrastive learning strategy. Experiments
were conducted on a benchmark dataset. Our model outperforms the latest baseline by 1.87% in
terms of the F1-score and 1% in terms of accuracy.

Keywords: multimodal sarcasm detection; contrastive learning; graph neural networks; social media

MSC: 18C50

1. Introduction

Sarcasm refers to satirical or ironic statements where the literal meaning of the text is
converse to the authentic intention of the speaker [1,2]. In recent years, sarcastic utterances
have become ubiquitous on social media platforms and in daily life. As such, the detection
of sarcasm holds great potential in not only understanding the real sentiment of an individ-
ual but also mining the extensive conversation contexts in social discussions. There is an
ongoing trend whereby sarcasm detection tasks are attracting a great deal of interest [2,3].
Research on this task can find applications in diverse real-world scenarios, including social
media monitoring, sentiment analysis in customer reviews, automated content moderation,
and image retrieval systems [4].

In addition to texts, social media posts generally involve information of different
modalities. Images form one such category, being considered auxiliary to the text in
sarcasm detection. According to Figure 1, the sentence “What a wonderful weather!” conveys
no sarcastic intention via the words, whereas the attached image, which presents a gray
sky, expresses the opposite sentiment to the text. We can thereby identify it as a sarcastic
sentence. A key factor in sarcasm detection is the “inconsistency” between the image and
text, with recent publications focusing on distinguishing the discrepancy between textual
and visual information [2,5–7].
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What a wonderful weather! Weather 's lookin amazing today.

Figure 1. Examples of sarcastic social media posts.

In general, three processing steps can be distinguished when performing multimodal
sarcasm detection: textual and visual information extraction, intra- and inter-modal in-
teraction, and similarity determination and classification. Specifically, the exploitation of
images is concerned with the employment of object detectors [8], patches [2,6,7], etc. These
approaches are carried out through the matching and interaction of the local visual infor-
mation with the text, and in this manner, the overall sentiment of the image is neglected.
As presented in Figure 1, the gray sky conveys a negative sentiment that is opposite to the
sentiment of the sentence, which is indeed a substantial clue for consistency identification.

Despite the use of images, sentence syntax also plays a pivotal role in sarcasm detection,
being widely applied to text–image interaction processes. In line with the advances in
natural language processing and not just syntactic structure, semantic information also
affects the sentiment delivery [9–11]. In the state-of-the-art sarcasm-detecting methods, the
analysis of semantics is, however, still limited. Furthermore, people typically convey their
opinions with similar semantic expressions. According to the two examples in Figure 1,
both sentences literally appreciate the weather but are actually sarcastic. Thus, the semantic
information can be enhanced by associating the similarities.

However, in cases where the image–text consistency is taken as the only solution for
sarcasm identification, misunderstanding of the textual information can be induced. In
Figure 2, no sarcastic expression is given in this case. The sentence delivers a positive
sentiment about Argentina winning the World Cup, while the image presents a negative
sentiment from the coach of the opposing team. As a result, the semantics of the text is
indispensable for sentiment prediction. Aside from that, when seeing the different feature
spaces of the image and text, there is a semantic gap between the visual and textual features
that also considerably affects the resolution of text–image consistency.

Argentina are finally three-time 

champions after 36-year wait!

Figure 2. An example of a non-sarcastic statement with inconsistent text–image sentiment.

To address the above challenges, we propose a novel semantic enhancement frame-
work (SEF) for multimodal sarcasm detection. Specifically, we first obtain the textual vector
and the visual features via BERT and ViT, respectively. Then, we obtain the congruity
levels of the text and images across different spans by using cross-modal attention with
graph neural networks [2]. Considering the overall information of text and images and the
semantic distinction, we construct positive and negative examples of text–image pairs from
the same batch, compute the overall text–image similarity, and use contrastive learning
to optimize the multimodal representation. In addition, we model the semantic relations
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within the text through an Intra-modal GNN, which consists of a multi-headed attention
network and a graph neural network. The semantic information is enhanced with the
integration of other sentences from the same batch via contrastive learning. To the best of
our knowledge, the SEF is the first method that highlights the significance of semantics and
verifies its effectiveness in multimodal sarcasm detection.

Our contributions are threefold and are as follows:

• We propose a semantic enhancement framework (SEF) for multimodal sarcasm de-
tection tasks that captures the intra- and inter-modal semantic information of both
multiple spans and multiple granularities.

• By using contrastive learning, the semantics from text–image pairs within the same
batch is exploited for semantic information enhancement, aiming to bridge the seman-
tic gap between visual and textual modalities.

2. Related Work

Different from classical text-based sarcasm detection, multimodal sarcasm detection
integrates the information from both the text and the image to predict the sarcasm label.
The multimodal sarcasm detection task was first proposed by Schifanella et al. [12], who
made predictions based on manually extracted multimodal features. Cai et al. [13] devised
a hierarchical fusion network to deal with multimodal information and developed a Twitter-
based dataset for multimodal sarcasm detection tasks. Xu et al. [5] worked on cross-modal
comparison and semantic relations, based on which a decomposition and relationship net-
work was constructed. Yue et al. [14] proposed a novel model that utilizes ConceptNet for
prior knowledge incorporation and employed contrastive learning to enhance multimodal
satire detection. Qiao et al. [15] introduced MILNet, a Mutual-enhanced Incongruity Learn-
ing Network, for multimodal sarcasm detection, addressing issues related to irrelevant
information and incomplete input.

Pan et al. [6] set a foundation for identifying the text–image incongruity in the multi-
modal sarcasm detection task. Since then, a number of studies have proposed methods that
model the relationship between graphs and texts by using graph neural networks (GNNs).
Liang et al. [7] constructed a heterogeneous graph structure and used a GNN to capture
the intra- and inter-modal relations of the image and text. With the integration of ob-
ject detection, Liang et al. [8] designed Cross-Modal Graph Convolutional Networks to
tackle the matching between the text and objects in an image. Li et al. [2] captured both
atomic-level and composition-level incongruity between the image and text via a graph
attention network. Wen et al. [16] presented a Dual Incongruity Perceiving (DIP) network
for multimodal sarcasm detection, addressing the intrinsic incongruity between the image
and text in sarcastic data through channel-wise reweighting and Siamese layers. However,
these methods use text–image incongruity as the only inference for sarcasm detection,
which can cause an incorrect prediction. By contrast, we mitigate this deficiency by con-
structing a semantic enhancement framework via a GNN. In our model, the text semantics
are dedicatedly analyzed during processing. Moreover, other samples from datasets are
exploited for semantic enhancement via contrastive learning, which bridges the semantic
gap between multiple modalities.

3. Methodology

In this section, the semantic enhancement framework (SEF) for multimodal sarcasm
detection is described in detail. The architecture of the SEF is presented in Figure 3. Our
model consists of three main components: (1) a feature extractor, which employs pretrained
BERT and Vision Transformer (ViT) to, respectively, encode texts and images and thus
obtain the hidden representations of both modalities; (2) a cross-modal interaction module,
which works on the inter-modal interaction and computes the text–image congruity at multi-
span and multi-granularity levels; (3) a semantic enhancement module, which introduces
textual semantics via the intra-modal interaction of the text and optimizes the textual
representation via supervised contrastive learning.
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Figure 3. Model architecture.

3.1. Feature Extractor

Let (ST , SI) be a text–image pair, where ST = {x1, x2, · · · , xn} is an n-word text and SI
is the attached image. Each word xi in the text is mapped into a 768-dimensional embedding
using the pretrained BERT model [17], X = BERT([CLS]ST [SEP]). We define Xcls as the
representation of the token [CLS] to denote the sentence information. The textual feature
representation is T (T ∈ Rn×d), generated by sending X into a multi-layer perceptron (MLP)
to transform it into a 300-dimensional output. On the other hand, assuming the size of
image SI is Lh × Lw, we resize SI to 224 × 224 pixels [5,7]. The image is then divided into
r patches, and these patches are reshaped into a sequence of Z = {p1, p2, · · · , pr}. The
sequence Z is fed into ViT [18], which is trained on ImageNet for image classification.
The output image patch embedding V = ViT([CLS]Z) contains rich visual semantic
information. Likewise, the representation Vcls of the token [CLS] represents the semantics
of the given image SI . Then, the visual feature representation I (I ∈ Rr×d) is also generated
via an MLP.

3.2. Cross-Modal Interaction
3.2.1. Token-Level Congruity

As pointed out in the Introduction, text–image congruity is a crucial criterion for
multimodal sarcasm detection. Following the idea of Liu et al. [2], we compute the atomic-
level congruity and the composition-level congruity between each text token and image
patch after inter- and inter-modality fusion, respectively.

Atomic-level congruity score: Textual features and visual features are aligned using
a multi-headed cross-attention mechanism, based on which the cross-modal features are
mapped into the same space:

Hi = softmax


(

TWi
q

)⊤
√

d/h

(
IWi

k

)(IWi
v

)
(1)

T∗ = norm(T + MLP([H1 ∥ H2 ∥ · · · ∥ Hh])) (2)



Mathematics 2024, 12, 317 5 of 13

where T ∈ Rn×d and I ∈ Rr×d are the feature representations of the text and the image;
h is the cross-attention head number; Wi

q, Wi
k, Wi

v ∈ Rd× d
h are the projection matrices of

the query, key, and value, respectively; the function “norm” stands for the normalization
operation; “∥” denotes the concatenation operation; Hi is the output of each cross-attention
head; and T∗ is the textual representation with the alignment of the image. To detect the
cross-modal consistency, the consistency score between the i-th text token and the j-th
image patch is computed as follows:

Ga =
1√
d

(
T∗ I⊤

)
(3)

Obviously, diversified words have distinguishing effects on sarcasm detection. The
atomic-level congruity score sa is derived via a weighted sum of Ga and the importance
score of each token:

sa = softmax(T∗Wa + ba)
⊤Ga (4)

where Wa ∈ Rd×1 and ba ∈ Rn are trainable parameters for the token importance score
computation.

Composition-level congruity score: At this stage, the textual graph and the visual
graph are constructed based on the input text–image pairs. Specifically, in the text graph,
each node stands for a text token, and each edge represents the dependency between words,
which are extracted by spaCy [2,7]. For the visual graph, each image patch is taken as a
graph node, which connects to its adjacent nodes according to the geometrical adjacency in
the image. Notably, the graphs of both modalities are undirected and contain self-loops for
representation. Subsequently, a graph attention network (GAT) is employed to deal with
both textual and visual graphs [19]. By exploiting the masked self-attention layers, the GAT
is employed to learn the relative importance between nodes in order to obtain multimodal
information on a deeper level. We take the text graph as an example:

αl
ij =

exp
(

LeakyReLU
(

a⊤l
[
Wltl

i ∥ Wltl
j

]))
∑k∈Ni

exp
(
LeakyReLU

(
a⊤l
[
Wltl

i ∥ Wltl
k
])) (5)

tl+1
i = αl

iiWltl
i + ∑

j∈Ni

αl
ijWltl

j (6)

where k, Wl ∈ Rd×d, and al ∈ R2d are learnable parameters of the l-layer in the GAT; αl
ij

refers to the attention score between node i and its adjacent node j; tl
i is the feature of node

i in layer l; and tl+1
i is the node output. We define T

′
= [tLT

1 , tLT

2 , · · · , tLT
n ] as the textual

embedding of the LT-layer in the GAT, involving the complex dependencies of all relevant
textual tokens. However, considering the parsing errors and the lack of syntax-related
words, the text graph can be unreliable. As such, the weighted sum b ∈ Rd of each word
embedding in T∗ is computed, which is further concatenated with T

′
to demonstrate the

congruity:

b = softmax(TWP + bP)
⊤T∗ (7)

T
′′
= T

′ ∥ b (8)

where WP ∈ Rd×1 and bP ∈ Rn are learnable parameters. In this manner, we also obtain
the visual embedding I

′
= [iLI

1 , iLI

2 , · · · , iLI
r ] as the LI-th layer outcome in the GAT. Then,

the congruity score sb between T
′′

and I
′

is computed as follows:

Gb =
1√
d

(
T

′′
I
′⊤
)

(9)
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sb = softmax
(

T
′′
Wb + bb

)⊤
Gb (10)

where Gb ∈ R(n+1)×r is the similarity matrix between textual and visual modalities, and
Wb ∈ Rd×1 and bb ∈ Rn+1 are learnable parameters.

3.2.2. Global-Level Congruity

As pointed out in the Introduction, there are two main challenges in multimodal
sarcasm detection: (a) incomplete visual semantics caused by object detection approaches
or patch utilization; (b) the confusion of incongruity identification due to the semantic gap
between modalities. Inspired by the work of Xu et al. [5], a global congruity module is
devised. In this module, the overall similarity between the text and the image is computed.
Then, the feature representations of both textual and visual modalities are optimized by
using contrastive learning, with the aim of bridging the semantic gap.

A contrastive learning strategy is proposed to deal with the global-level congruity.
Positive and negative examples are generated from an input pair (Xcls, Vcls) within a
batch of size N. We define Xcls and Vcls as the sentence representation and image global
representation of the Feature Extractor. At this stage, all positive examples are textual and
visual representations from the same input pair (Xa

cls, Vb
cls)a=b, while negative examples

are those from different input pairs (Xa
cls, Vb

cls)a ̸=b. In this way, each input pair in a batch
contains 1 positive example and N-1 negative examples. Each example (Xa

cls, Vb
cls) is sent

to an MLP layer for transformation into the feature representations Ta
cls and Ia

cls. Both the
image-to-text contrastive loss function and the text-to-image contrastive loss function are
minimized, based on which the similarity between positive examples is maximized and
the similarity between negative examples is minimized [20]. Specifically, the image-to-text
contrastive loss function of the i-th positive example in a batch can be written as follows:

L(Icls→Tcls)
i = − log

exp
(
sim

(
Ii
cls, Ti

cls
)
/τ
)

∑N
j=1 exp

(
sim

(
Ii
cls, T j

cls

)
/τ
) (11)

where sim
(

Ii
cls, Ti

cls
)
=

Ii
cls

⊤Ti
cls

∥Ii
cls∥∥Ti

cls∥
denotes the cosine similarity between Ii

cls and Ti
cls, and τ

is the temperature hyperparameter.
Likewise, the text-to-image contrastive loss function of the i-th positive example is

L(Tcls→Icls)
i = − log

exp
(
sim

(
Ti

cls, Ii
cls
)
/τ
)

∑N
j=1 exp

(
sim

(
Ti

cls, I j
cls

)
/τ
) (12)

The final loss function for the batch is

Lglo =
1
N

N

∑
t=1

(
λaL(Icls→Tcls)

i + (1 − λa)L(Tcls→Icls)
i

)
(13)

where λa ∈ [0, 1] is a hyperparameter.

3.3. Semantic-Enhanced Module

As a sentiment-analysis-related task, the result based on only the identification of text–
image incongruity may be unreliable. Notably, current sentiment analysis studies reveal
that the exploitation of semantics provides a deep-level understanding, which substantially
benefits the sentiment polarity prediction [9,10,21]. For this reason, an Intra-modal GNN
is designed to capture the semantic information within the sentence. Firstly, an attention
matrix A, as the adjacency matrix, is derived via the multi-headed self-attention mechanism,
which is



Mathematics 2024, 12, 317 7 of 13

A = softmax

(
(TWk)

(
TWq

)⊤
√

datt

)
(14)

datt =
d
K

(15)

where T ∈ Rn×d stands for the textual features generated by the Feature Extractor, K is the
head number, and Wk,Wq ∈ Rd×datt are trainable weight matrices. Then, a convolutional
neural network (GCN) is applied to extract the semantic information F:

F = GCN
(

A, T, W f

)
(16)

where W f is the trainable parameter matrix of the GCN.
In practical use, people generally convey the same sentiment in a similar manner.

As a result, we can also leverage samples with similar expressions to obtain the semantic
information. Specifically, supervised contrastive learning can be used to optimize textual
feature representation by spatially aggregating semantic-related sentences while separating
the unrelated ones [22]. For the construction of positive and negative examples, textual
representations with the same label in a batch are positive examples, and those with
different labels are negative examples. Let D =

(
Xclsi, X+

clsi

)
be an example pair, where

Xcls is the sentence representation of BERT in the Feature Extractor, and Xclsi and X+
clsi are

semantic-related texts with the same label. By feeding Xclsi and X+
clsi to the MLP, we thus

obtain hi and h+i to facilitate the computation. Then, the training objective of the N-size
batch is

Lsim = −
N

∑
i=1

log
exp

(
sim

(
hi, h+i

)
/τ
)

∑N
j=1 exp

(
sim

(
hi, h+i

)
/τ
) (17)

where τ is the temperature hyperparameter, and sim(h1, h2) = h1
⊤h2

∥h1∥∥h2∥
represents the

cosine similarity.

3.4. Training and Learning Objectives

At this point, the token-level congruity (i.e., atomic-level congruity score sa and
composition-level congruity score sb) and the semantic information from the Intra-modal
GNN are fused for sarcasm detection. The final sarcastic representation f is defined as
follows:

py = softmax(IWi + bi) (18)

f = py ⊙ sa ∥ py ⊙ sb ∥ F (19)

where Wi ∈ Rd1 and bi ∈ Rr are trainable parameters, py ∈ Rr is the attention vector, and
⊙ stands for the operation of the element-wise vector product.

The final sarcastic representation f is sent to a fully connected layer with a softmax
function. The probability distribution of f in the sarcasm decision space is given as

ŷ = softmax(Woy + bo) (20)

where Wo ∈ R2×2r and bo ∈ R2 are trainable parameters.
Model training is carried out by minimizing the total loss function L with the standard

gradient descent algorithm:

Lsar = −
N

∑
i=1

yi log ŷi + (1 − yi) log(1 − ŷi) (21)
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L = Lsar + αLsim + βLglo (22)

where ŷi is the prediction outcome of sample i, yi is the real label of sample i, N is the size
of the training dataset, and α and β are hyperparameters to control the contribution of
different loss functions.

4. Experiments
4.1. Dataset

Experiments were carried out on a publicly available benchmark dataset [13] for
multimodal sarcasm detection. This dataset contains tweets of sarcastic expressions as
positive examples and those of non-sarcastic expressions as negative examples. Each
sample in the dataset consists of text and an attached image. More details of the dataset are
shown in Table 1 [2].

Table 1. Statistics of dataset.

Training Development Testing

Positive 8642 959 959

Negative 11,174 1451 1450

All 19,816 2410 2409

4.2. Experimental Settings

All data preprocessing procedures were conducted following the method reported by
Cai et al. [13]. Every single word in the text and each patch in the image were mapped to
768-dimensional embeddings using pretrained BERT and pretrained ViT, respectively. The
layer number of the GAT was set to 2, which is the optimal value according to ongoing
studies. The hyperparameters of the loss function, i.e., α and β, were 0.02 and 0.05. The
temperature hyperparameter τ of simcse was 0.07, while the temperature hyperparameter
of text–image global-level congruity computation was 0.17. The Adam optimizer was
adopted with a learning rate of 0.0001 and a batch size of 32. To prevent overfitting, both
dropout and early stopping were employed. The accuracy and F1-score were taken as
metrics to demonstrate the working performance.

4.3. Baseline

The working performance of our model was evaluated in comparison with the follow-
ing baselines:

(1) Image-based methods: These models exploit only visual information for sarcasm
detection, including Image [13], which uses ResNet [23] for sarcasm classifier training,
and ViT [18], which applies a pretrained ViT [cls] token representation to detect sarcasm.

(2) Text-based methods: These models exploit only textual information for sarcasm
detection, including TextCNN [24], which was devised on the basis of a CNN; Bi-LSTM
[25], which is a bidirectional long short-term memory network for text classification; SIARN
[26], which uses inner-attention for text sarcasm detection; SMSD [27], which captures
the textual incongruity by searching a self-matching network; and BERT [17], which is a
pretrained model with the input “[CLS]text[SEP]”.

(3) Multimodal methods: These models leverage both textual and visual information
for sarcasm detection, including HFM [13], which is a hierarchical multimodal feature
fusion model for multimodal sarcasm detection; D&R Net [5], which is a decomposition
and relation network for both cross-modality contrast and semantic association modeling;
Res-BERT [6], which is proposed for sarcasm detection by concatenating visual and textual
features; Att-BERT [6], which explores inter-modal attention and co-attention to model
multimodal incongruity; InCrossMGs [7], which is a graph-based model and exploits both
intra- and inter-modal sarcasm relations; a non-external-knowledge-variant of CMGCN [8],
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which extracts visual features via object detection and fuses textual and visual information
using a cross-modal graph; and HKE [2], which is a hierarchical model for sarcasm detection
by reasoning atomic-level congruity and composition-level congruity.

5. Experimental Results
5.1. Main Results

The experimental results are presented in Table 2. Among all the methods, the pro-
posed model achieves the best and the most consistent working performance. One can
observe that the text-based methods are generally more competitive than the image-based
methods. Clearly, the textual modality is taken as a better alternative for capturing sarcastic
information. In line with this result, the semantic information can be applied to detect the
sarcastic expression as an auxiliary. Furthermore, the multimodal methods consistently
outperform the unimodal baselines, indicating the effectiveness of exploiting multimodal
information in sarcasm detection. Specifically, our model dominates the state-of-the-art
methods in all evaluation settings. There is a considerable performance gap between our
model and the baselines. A minimum accuracy gap and F1 gap of 1.09% and 1.87% are
observed against HKE, which are significant. With the integration of semantic information,
our model shows its superiority in identifying the incongruity between texts and images. It
is reasonable to obtain more reliable multimodal information and thus better performance,
which is observed in this case.

Table 2. Main results.

Model Acc (%) Pre (%) Rec (%) F1 (%)

Image Image [13] 64.76 54.41 70.80 61.53
ViT [18] 67.83 57.93 70.07 63.43

Text

TextCNN [24] 80.03 74.29 76.39 75.32
Bi-LSTM [25] 81.90 76.66 78.42 77.53
SIARN [26] 80.57 75.55 75.70 75.63
SMSD [27] 80.90 76.46 75.18 75.82
BERT [17] 83.85 78.72 82.27 80.22

Multimodal

HFM [13] 83.44 76.57 84.15 80.18
D&R Net [5] 84.02 77.97 83.42 80.60
Res-BERT [6] 84.80 77.80 84.15 80.85
Att-BERT [6] 86.05 78.63 83.31 80.90
InCrossMGs [7] 86.10 81.38 84.36 82.84
CMGCN [8] 86.54 - - 82.73

HKE [2] 87.36 81.84 86.48 84.09

SEF (Ours) 88.45 85.35 86.58 85.96

5.2. Ablation Study

An ablation experiment was conducted to demonstrate the contribution of each com-
ponent in our model. Three variants of our model were used for comparison: (1) removal
of the global-level congruity module (w/o global); (2) removal of supervised contrastive
learning from the semantic enhancement module (w/o simcse); and (3) removal of seman-
tics from the semantic enhancement module (w/o semantic). For a fair comparison, we
used the same parameter settings for each model.

The results of the ablation study are shown in Table 3. The ablation of semantic
information from the semantic enhancement module results in the largest performance
drop, indicating the significance of semantics for the multimodal sarcasm detection task.
In comparison, the use of global congruity also makes a contribution to the sarcasm
detection result. The identification of incongruity among multiple modalities is distinctive.
In addition, the withdrawal of supervised contrastive learning (w/o simcse) leads to a
marginal performance decrease. The exploitation of sentence semantics from the dataset
also benefits sarcasm detection.
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Table 3. Ablation study results.

Model Acc (%) F1 (%)

SEF 88.45 85.96

w/o global 87.91 84.97

w/o simcse 88.20 85.37

w/o semantic 87.65 84.78

5.3. Effect of GAT Layer Number

The effect of the GAT layer number on the sarcasm detection result was investigated;
see Figure 4a. Both the accuracy and the F1-score vary in line with the GAT layer num-
bers. The best result is obtained with an optimal GAT layer of 2. Then, the working
performance declines with the increasing layer number. A possible explanation is that
the over-smoothing of the GAT makes it challenging to distinguish between the nodes of
different modalities.
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Figure 4. (a) Results of different GAT layers. (b) Results of different GCN layers.

5.4. Effect of GCN Layer Number

Likewise, the effect of the GCN layer number on our model is also reported. As
presented in Figure 4b, the best-performing model is available with a GCN layer number of
1. Similar to the GAT, the increase in the layer number also results in a performance drop.
With respect to the GCN, the vanishing gradient and information redundancy can arise
because of excessive layers, which causes model instability and thus imprecise results.

5.5. Case Study

Three representative cases were selected to validate the effectiveness of the semantic
enhancement and global congruity in our model. The sarcasm detection results of HKE,
SEF, and its two variants are presented in Table 4.

In the first two cases, the text intuitively conveys the same sentiment as the image, but
their true labels are sarcasm. In the first case, both the text and the image involve drinking
a lot of beer, expressing a consistent sentiment according to each modality. Specifically,
HKE and the SEF w/o semantic identify it as non-sarcasm based on a shallow analysis.
By contrast, with the application of semantic information, the SEF and SEF w/o global
can correctly predict the label as sarcasm. With respect to the second case, the text and
the image depict a shortage of potatoes. With the integration of semantic enhancement
and global congruity computation, our model predicts the label correctly. These two cases
demonstrate the efficacy of semantic information in predicting and facilitating multimodal
sarcasm detection.
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In the last case, the text delivers a not-big-enough space, while the image illustrates
a large space. Its true label is sarcasm due to the inconsistency between the text and the
image. However, HKE and the SEF w/o global fail to predict the label because the image
is divided into multiple patches using ViT. For this reason, the size of the space is invisible,
which confuses the computation of text–image incongruity. By contrast, our model is
capable of identifying the global congruity of the image, based on which a reliable decision
is made.

Table 4. Results of three cases using HKE, SEF, SEF w/o semantic, and SEF w/o global.

Methods Effectiveness of Semantic Enhancement Effectiveness of
Lobal Congruity

another night having
to grind out belgian

beer styles , studying
for certified <user>.
bloody nightmare
#beer #nightmare

emoji_156

apparently we have a
potato shortage in

rotherham this is what
i received in a large

fries box tonight
<user>

#valueformoney

hi there <user>, i don’t
believe this room is

large enough for one
on one podcasts.

#dominion

HKE 56 56 56

SEF 52 52 52

SEF w/o semantic 56 56 52

SEF w/o global 52 56 56

5.6. Visualization

The textual features extracted by the simcse module are visualized using the t-SNE
algorithm [28], aiming at verifying the effectiveness of simcse for semantic enhancement;
see Figure 5. For both HKE and the SEF without simcse, the features of the same labels
disperse within the space. In comparison, the feature vectors are more aggregated in the
SEF. With the application of simcse, not only is the distribution of same-labeled features
more concentrated, but the distinguishing-labeled features are also separated to a large
extent. As a result, our model shows its capability in textual feature learning and sarcasm
detection.

Figure 5. Visualization of textual feature vectors. Dots in red and blue represent the non-sarcastic
and sarcastic samples, respectively.

6. Conclusions

In this work, a semantic enhancement framework is proposed for the task of multi-
modal sarcasm detection. To deal with the multimodal relation, the image–text congruity
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is modeled on both a multi-scale and multi-span token level. Furthermore, instead of
identifying the sarcasm solely based on multimodal incongruity, an Intra-modal GNN is
devised to capture the textual semantic information as an auxiliary. The exploitation of
textual semantics enhances the semantic delivery via multiple contrastive learning and
mitigates cross-modal semantic disparities. Experiments were carried out to verify the
superiority of our model and the effectiveness of semantics in multimodal sarcasm de-
tection, which establishes strong evidence of the remarkable working performance. Our
model outperforms the state of the art by 1.87% in terms of the F1-score and 1% in terms
of accuracy.

However, the results of this paper are subject to certain limitations. Currently, there is
a scarcity of datasets for multimodal sarcasm, and the available data are limited in quantity.
Expanding the dataset with additional samples would enhance the generalizability of the
testing methods.

Additionally, further exploration can be conducted by integrating the proposed ap-
proach with large-scale language models for more in-depth analysis to improve the accuracy
in detecting nuanced forms of sarcasm across diverse contexts.
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