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Abstract: We explore second-order systems of non-stiff initial-value problems (IVPs), particularly
those cases where the first derivatives are absent. These types of problems are of significant interest
and have applications in various domains, such as astronomy and physics. Runge–Kutta–Nyström
(RKN) pairs stand out as highly effective methods of addressing these IVPs. In order to create a pair
with eighth and sixth orders, we need to address a certain known set of equations concerning the
coefficients. When constructing such pairs for use in double-precision arithmetic, we often need to
meet various conditions. Primarily, we aim to maintain small coefficient magnitudes to prevent a loss
of accuracy. Nevertheless, in the context of quadruple precision, we can tolerate larger coefficients.
This flexibility enables us to establish pairs with eighth and sixth orders that exhibit significantly
reduced truncation errors. Traditionally, these pairs are constructed to go through eight stages per
step. Here, we propose using nine stages per step. Then we have available more coefficients in order
to further reduce truncation errors. As a result, we construct a novel pair that, as anticipated, achieves
superior performance compared to equivalent-order pairs in various significant problem scenarios.

Keywords: initial value problem; Runge–Kutta–Nyström; quadruple precision

MSC: 65L05; 65L06

1. Introduction

We center our attention on a particular class of second-order initial-value problems
(IVPs), which are defined as shown below:

ξ ′′ = ϕ(x, ξ), ξ(x0) = ξ0, ξ ′(x0) = ξ ′0. (1)

Here, ϕ : R×Rm → Rm is assumed to be sufficiently continuously differentiable, and the
initial conditions are given by (ξ0, ξ ′0) ∈ R2m.
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We compute some approxim·ation of the solution to Equation (1) in a number of points
that are separate from one other (xn, ξn, ξ ′n), applying an explicit Runge–Kutta–Nyström
method that is of algebr·aic order p. The structure of the method is as follows (for further
details on these methods, refer to [1] and ([2] p. 283)):

ϕi = ϕ(xn + ciτn, ξn + ciτnξ ′n + τ2
n

i−1

∑
j=1

dijϕj), i = 1, 2, 3, · · · , s − 1, s

ξn+1 = ξn + τnξ ′n + τ2
n ∑s

i=1 wiϕi,

ξ ′n+1 = ξ ′n + τn ∑s
i=1 w′

iϕi.

Here, τn = xn+1 − xn, representing the step size. Over the last five decades, there has been
a consistent interest in these methods. Noteworthy works have been made by various
researchers. E. Fehlberg [3] presented a detailed list of order conditions up to the eighth
order. Dormand and colleagues [4,5] gave a series of State-of-the-Art pairs of orders,
4(3), 6(4), and 8(6). El-Mikkawy et al. [6] introduced the idea of adding a stage more
than the minimal requirement, in order to increase the efficiency. This technique inspired
our approach here. Moreover, novel RKN approaches with distinct features have been
introduced. For example, RKN methods were also explored by Houven et al., aiming to
minimize errors in phase, while Calvo et al. [7] and Yoshida [8] devised RKN algorithms
that embed symplecticity.

In what follows, we choose p = 8 and merge the previously mentioned method with
a companion sixth-order formula. Consequently, we also compute a sixth-order estimate,
using the s·ame ϕi values:

ξ̂n+1 = ξn + τnξ ′n + τ2
n ∑s

i=1 ŵiϕi,

ξ̂ ′n+1 = ξ ′n + τn ∑s
i=1 ŵ′

iϕi.

The approxim·ations of ξn and ξ ′n in higher orders are utilized in all situations to advance
the solutions over time.

Consequently, we possess an error estimation:

ϵ = max
(
∥ξn+1 − ξ̂n+1∥, ∥ξ ′n+1 − ξ̂ ′n+1∥

)
= O

(
τ7
)

.

Next, we contrast ϵ with TOL, a user-defined small positive value referred to as the
tolerance, to gauge the size of the subsequent step as

τn+1 = 0.9τn

(
TOL

ϵ

)1/7
, (2)

commonly employed with RKN8(6) pairs [4,9]; if TOL is less than ϵ, we halt the advance-
ment of the solution. In this scenario, we reiterate the current step, but now we employ
τn+1 as the updated, shorter version, instead of τn.

The coefficients are often represented using the Butcher tableau, as described in [10].
Consequently, the method can be expressed using the following form:

c D

w, ŵ
w′, ŵ′

where D ∈ Rs×s, and c, ŵT, wT, ŵT, w′T ∈ Rs, meaning the weights are expressed as
row vectors.
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In this context, we explore a nine-stage pair (s = 9). The coefficients for this pair
are provided in the tableau displayed in Table 1, which is commonly named the “Butcher
tableau”. This type of tableau is in common use when tabulating the coefficients of the type
of methods we propose here ([2], p. 134).

Table 1. The Butcher tableau for RKN pairs of orders 8(6).

0
c2 d21

c3 d31 d32

c4 d41 d42 d43

c5 d51 d52 d53 d54

c6 d61 d62 d63 d64 d65

c7 d71 d72 d73 d74 d75 d76

1 d81 d82 d83 d84 d85 d86 d87

1 w1 0 w3 w4 w5 w6 w7 0
8th-order w w1 0 w3 w4 w5 w6 w7 0 0
6th-order ŵ ŵ1 0 ŵ3 ŵ4 ŵ5 ŵ6 ŵ7 0 0
8th-order w′ w′

1 0 w′
3 w′

4 w′
5 w′

6 w′
7 w′

8 w′
9

6th-order ŵ′ ŵ′
1 0 ŵ′

3 ŵ′
4 ŵ′

5 ŵ′
6 ŵ′

7 ŵ′
8 ŵ′

9

Usually, these pairs make use of merely eight st·ages per iteration, as the ultimate stage
is re-used as the initial one of the subsequent step. This leads to the values in the ninth
stage matching to the vector w. In simpler terms, d9j = wj when j = 1, 2, 3, · · · , 7, 8. This
device is frequently denoted as FSAL, which stands for first st·age as l·ast.

Eighth-order RKN pairs, which efficiently employ eight stages per step, were analyzed
in previous works [5,11]. It is worth noting that eighth-order RKN techniques, utilizing
seven stages per step, have been developed specifically for linear inhomogeneous problems.

Thus, to form a pair with eighth and sixth orders, it becomes necessary to tackle
a well-known set of equations related to the coefficients. When creating such pairs for
implementation in double-precision arithmetic, we encounter specific conditions that must
be satisfied. Our primary objective is to keep the coefficient magnitudes small, to prevent
any loss of accuracy. However, when dealing with quadruple precision, we can accept
larger coefficients. This increased flexibility allows us to design pairs with eighth and sixth
orders, resulting in significantly reduced truncation errors. Conventionally, these pairs
are designed to undergo eight stages per step. In this context, we suggest employing nine
stages per step, providing us with additional coefficients to further minimize truncation
errors. Consequently, we have devised an innovative pair that, as expected, demonstrates
superior performance compared to pairs of equivalent orders across various significant
problem scenarios.

2. Eighth-Order Runge–Kutta–Nyström Methods

We utilize an RKN method for (1) and employ T·aylor-series expansions for ξ(xn +
τ)− ξn+1 and ξ ′(xn + τ)− ξ ′n+1. By equating the expressions up to τ8 for an eighth-order
method, the outcomes found below are achieved:

ξ(xn + τ)− ξn+1 = τ2e2,1Q2,1 + τ3e3,1Q3,1 + · · ·+ τ8(e8,1Q8,1 + ... + e8,20Q8,20) + O
(

τ9
)

(3)

ξ ′(xn + τ)− ξ ′n+1 = τẽ1,1Q1,1 + τ2 ẽ2,1Q2,1 + · · ·+ τ8(ẽ8,1Q8,1 + ... + ẽ8,36Q8,36) + O
(

τ9
)

. (4)

Expression eij depends on the variables w, D, and c, while ẽij depends on w′, D, and c. An
algorithm deriving them symbolically can be found in [12]. The expression Qij involves
element·ary differenti·als related to ξ ′, ϕ, and their p·artial deriv·atives, which are inherent to
the problem and beyond the method’s control. However, in the case of an eighth-order RKN
method, it is imperative to elimin·ate the coefficients eij and ẽij in expressions (3) and (4) up
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to the specified order. Table 2 presents the count of the order requirements (i.e., eij and ẽij
for e·ach order. For instance, a third algebr·aic order method entails satisfying two equations
for ξ and addressing four order conditions for ξ ′.

Table 2. Number of order conditions of an RKN method.

Order

method number of︸ ︷︷ ︸ - order→ 1 2 3 4 5 6 7 8 9 10

RKN order conditions for ξ 0 1 1 2 3 6 10 20 36 72

order conditions for ξ ′ 1 1 2 3 6 10 20 36 72 137

Upon scrutiny of the Butcher t·ableau above [10] (specifically, Table 1) and aligning
the count of coefficients at hand for a nine-stage procedure with the order prerequisites
documented up to the eighth order in Table 2, a conspicuous incongruity emerges. To tackle
this issue, we adopt various simplification hypotheses that notably curtail the quantity of
order stipulations.

First, we assume
w = w′ · (Is − C). (5)

Here, Is ∈ Rs×s denotes the identity m·atrix, and C = diag(c). With this assumption,
we naturally s·atisfy the order prerequisites for ξ after elimin·ating equ·ations of equivalent
rank for ξ ′. Our primary goal is to remove exclusively ẽij concerning w′, D, c.

Once again, upon aggregating the figures in the ultimate row of Table 2, it becomes
evident that there are still an excessive number of conditions for the existing coefficients.
To tackle this issue, we proceed by introducing the following assumptions:

D · I = 1
2

c2, D · c =
1
6

c3, D · c2 =
1
12

c4. (6)

Here, we define ci as an element-wise product of matrices, denoted as ◦ (i.e., Hadamard
multiplication):

ci = c ◦ · · · ◦ c ◦ c︸ ︷︷ ︸
i− times.

,

It is important to highlight that this multiplication operation is of lesser precedence than
the dot product.

We addition·ally consider the row simplification requirement for RKN methods, ex-
pressed as

w′ · (D + C − 1
2
(C ◦ C)− 1

2
Is).

Additionally, we consider the following subsidi·ary simplifying assumptions:

(w · D)2 = 0, (w′ · D)2 = 0, (w′ · (C ◦ C) · D)2 = 0, (ŵ · D)2 = 0.

This substantial decrease in the count of the order prerequisites enables us to advance
in the computation of the coefficients for an eighth-order method (w′, w, D, and c), utilizing
the subsequent procedure. In the following, we give the Mathematica [13] version of the
algorithm, for the interested reader:

RKNT86[c4_, c5_, c6_, c7_, d85_, d86_, d87_, d92_, dw9_] :=
Module[{e, dw, dw1, dw3, dw4, dw5, dw6, dw7, dw8, dww1, dww3, dww4,

dww5, dww6, dww7, dww8, dww, c, c2, c3, cc, ii, w, ww, d, d21, d31,
d32, d41, d42, d43, , d51, d52, d53, d54, d61, d62, d63, d64, d65,
d71, d72, d73, d74, d75, d76, d81, d82, d83, d84, d91, d93, d94,

d95, d96, d97, mond, vanderl, simp1, equs, equ11, so, de, dc, dc2,
wdc}, e = {1, 1, 1, 1, 1, 1, 1, 1, 1};



Mathematics 2024, 12, 316 5 of 14

dw = {dw1, 0, dw3, dw4, dw5, dw6, dw7, dw8, dw9};
dww = {dww1, 0, dww3, dww4, dww5, dww6, dww7, dww8, dw9 - 3/20};
c = {0, c2, c3, c4, c5, c6, c7, 1, 1};
cc = DiagonalMatrix[c]; ii = IdentityMatrix[9];
w = dw.(ii - cc);
ww = dww.(ii - cc);
d = {{0, 0, 0, 0, 0, 0, 0, 0, 0}, {d21, 0, 0, 0, 0, 0, 0, 0,

0}, {d31, d32, 0, 0, 0, 0, 0, 0, 0}, {d41, d42, d43, 0, 0, 0, 0,
0, 0}, {d51, d52, d53, d54, 0, 0, 0, 0, 0}, {d61, d62, d63, d64,
d65, 0, 0, 0, 0}, {d71, d72, d73, d74, d75, d76, 0, 0, 0}, {d81,
d82, d83, d84, d85, d86, d87, 0, 0}, {d91, d92, d93, d94, d95,
d96, d97, 0, 0}};

mond = {dw.e == 1, dw.c == 1/2, dw.c^2 == 1/3, dw.c^3 == 1/4,
dw.c^4 == 1/5, dw.c^5 == 1/6, dw.c^6 == 1/7};

vanderl = {dww.e - 1, dww.c - 1/2, dww.(c c) - 1/3,
dww.(c c c) - 1/4, dww.(c c c c) - 1/5, dww.(c c c c c) - 1/6};

simp1 = {(w.d)[[2]] == 0, (dw.d)[[2]] == 0, (dw.(c^2*d))[[2]] ==
0, (dww.d)[[2]] == 0};

equs = {dw.(cc - ii).(cc - c7*ii).d.(cc - c3*ii).(cc - c4*ii).c ==
Integrate[(x - 1)*(x - c7)*

Integrate[
Integrate[(x - c3)*(x - c4)*x, {x, 0, x}], {x, 0, x}], {x, 0,

1}],
dw.(cc - ii).d.(cc - c3*ii).(cc - c4*ii).(cc - c5*ii).c ==
Integrate[(x - 1)*

Integrate[
Integrate[(x - c3)*(x - c4)*(x - c5)*x, {x, 0, x}], {x, 0,
x}], {x, 0, 1}],

dw.(cc - ii).d.(cc - c3*ii).(cc - c4*ii).(cc - c6*ii).c ==
Integrate[(x - 1)*

Integrate[
Integrate[(x - c3)*(x - c4)*(x - c6)*x, {x, 0, x}], {x, 0,
x}], {x, 0, 1}]};

equ11 =
dww.d.(cc - c3 ii).(cc - c4 ii).c -
c2*(c2 - c3)*(c2 - c4)*(dww.d)[[2]] -
Integrate[
Integrate[
Integrate[(x - c3)*(x - c4)*x, {x, 0, x}], {x, 0, x}], {x, 0,
1}];

c3 = (15 - 20*c4 - 20*c5 + 28*c4*c5 - 20*c6 + 28*c4*c6 + 28*c5*c6 -
42*c4*c5*c6 - 20*c7 + 28*c4*c7 + 28*c5*c7 - 42*c4*c5*c7 +
28*c6*c7 - 42*c4*c6*c7 - 42*c5*c6*c7 +
70*c4*c5*c6*
c7)/(2*(10 - 14*c4 - 14*c5 + 21*c4*c5 - 14*c6 + 21*c4*c6 +
21*c5*c6 - 35*c4*c5*c6 - 14*c7 + 21*c4*c7 + 21*c5*c7 -
35*c4*c5*c7 + 21*c6*c7 - 35*c4*c6*c7 - 35*c5*c6*c7 +
70*c4*c5*c6*c7));

c2 = c3/2;
so = Solve[mond, {dw1, dw3, dw4, dw5, dw6, dw7, dw8}];
{dw1, dw3, dw4, dw5, dw6, dw7, dw8} = Simplify[so[[1, All, 2]]];
de = d.e - c^2/2; dc = d.c - c^3/6; dc2 = d.c^2 - c^4/12;
d32 = c3^3/6/c2;
so = Solve[{dc[[4]] == 0, dc2[[4]] == 0}, {d42, d43}]; {d42, d43} =
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Simplify[so[[1, All, 2]]];
so = Solve[simp1, {d82, d72, d62, d52}]; {d82, d72, d62, d52} =
Simplify[so[[1, All, 2]]];

so = Solve[equs, {d65, d76, d75}]; {d65, d76, d75} =
Simplify[so[[1, All, 2]]];

so = Solve[
Join[dc[[5 ;; 8]], dc2[[5 ;; 8]]] == Array[0 &, 8], {d53, d54,
d63, d64, d73, d74, d83, d84}];

{d53, d54, d63, d64, d73, d74, d83, d84} = Simplify[so[[1, All, 2]]];
wdc = dw.(d - cc^2/2 + cc - ii/2);
so = Solve[

wdc[[3 ;; 7]] == Array[0 &, 5], {d93, d94, d95, d96, d97}];
{d93, d94, d95, d96, d97} = Simplify[so[[1, All, 2]]];
so = Solve[

de[[2 ;; 9]] == Array[0 &, 8], {d21, d31, d41, d51, d61, d71, d81,
d91}];

{d21, d31, d41, d51, d61, d71, d81, d91} = so[[1, All, 2]];
so = Solve[{Join[vanderl, {equ11}] == {0, 0, 0, 0, 0, 0, 0}}, {dww1,

dww3, dww4, dww5, dww6, dww7, dww8}];
{dww1, dww3, dww4, dww5, dww6, dww7, dww8} =
Simplify[so[[1, All, 2]]]; Return[{d, c, w, ww, dw, dww}]]

It is worth noting that a simplified algorithm like this has never been seen before. It
greatly assisted us in developing our pair.

3. Construction of RKN Pair-Sharing Orders Eight and Six

Applying the algorithm detailed in the preceding section, we have the ability to con-
struct an eighth-order RKN technique while maintaining a nine-stage requirement per step.
This procedure grants us a total of nine independent variables to exploit for optimizing the
effectiveness of our innovative approach. We opt to minimize the components associated
with the primary error, specifically the Euclidean magnitude of the coefficients e9j and ẽ9j
from the ninth-order series expansions (3) and (4).

In the context of double-precision arithmetic, our objective is to maintain small coeffi-
cient magnitudes. Large coefficients in the order of 104, function values around 103, and
tolerances like ε = 10−10 would push the limits of the avail·able digits. However, when
employing qu·adruple precision, we can accommodate these larger coefficients even with
much lower toler·ances, approximately down to 10−24. With this allowance for increased
coefficients, we c·an now proceed to a new minimiz·ation approach.

To tackle this challenge, we opt to employ the differenti·al evolution algorithm [14,15].
Differenti·al evolution is an iter·ative process, and within each iteration, known as a gen-
eration g, we oper·ate with a population of individu·als denoted as

(
c(g)

4 , c(g)
5 , · · · , w′

9
(g)
)

i
,

where i = 1, 2, · · · , P, and P signifies the population size. A popul·ation
(

c(0)4 , c(0)5 , · · · , w′
9
(0)
)

i
,

with i = 1, 2, · · · , P, is r·andomly generated in the first step of the method. Additionally, we
define the fitness function as follows:

Φ =
√

e2
9,1 + e2

9,2 + · · ·+ e2
9,36 +

√
ẽ2

9,1 + ẽ2
9,2 + · · ·+ ẽ2

9,72 =
∥∥∥T(9)

∥∥∥
2
+
∥∥∥T′(9)

∥∥∥
2,

representing the discrepancy resulting from a ninth-order method. The fitness function
is then applied to each individual within the initial population, with the objective of
minimizing it.

This procedure unfolds in three distinct phases: differentiation, crossover, and selec-
tion. For its execution, we utilized the DeMat software [16] within the MATLAB environ-
ment [17], where the latter stage is implemented. It is essential to note that achieving a
successful outcome is not guaranteed in a single optimization attempt. Consequently, we
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iterated through this procedure multiple times, often several hundred, to ultimately reach
a solution. To further enhance accuracy, we meticulously refined the obtained result. This
fine-tuning process involved working with multi-precision arithmetic and leveraging the
NMinimize function available in M·athematica [13].

Table 3 provides an overview of the key attributes associated with the primary eighth-
order RKN pairs examined in this study. The norms displayed in the table represent the
Euclide·an norm of the ninth-order coefficients (i.e., those of τ9) within expressions (3) and (4).
We anticipate superior performance from our new method, as it yields considerably dimin-
ished loc·al trunc·ation errors.

Table 3. Fundamental traits of the RKN pairs under examination.

Pair Stages FSAL
∥∥∥T(9)

∥∥∥
2

∥∥∥T ′(9)
∥∥∥

2

RKNT8(6) [18] 9 YES 1.7 · 10−8 1.6 · 10−8

RKNT8(6)q9 9 NO 1.8 · 10−10 1.8 · 10−10

The parameters of the new method we have developed are available in the following lists:

w1 = 3191538187421696
76607108605432915 , w3 = 13815874303602012

69579866183121917 , w4 = 14604812893174087
79378705834398872

w5 = 12061218770183621
166622303733231213 , w6 = 15609617015400

233291059437933767 , w7 = 371765604219257
111475530824146994

ŵ1 = 4544292102832777
109056534231464193 , ŵ3 = 4682651711005479

23585400043481548 , ŵ4 = 46722285954615265
253893219962912894

ŵ5 = 4751354290135738
65721585748949841 , ŵ6 = 20872833551830

134159415686285343 , ŵ7 = 275420922524446
83046920983443867

w′
1 = 3191538187421696

76607108605432915 , w′
3 = 10308242332317290

44357423208271919 , w′
4 = 7107618457535881

21873268413857328

w′
5 = 22056521909108756

75044404292647497 , w′
6 = 15596425292979

34434009875005756 , w′
7 = 325257858967320448

9895379989758637

w′
8 = − 264730262449877449

7963593493382224 , w′
9 = 17208373

35885750

ŵ′
1 = 4544292102832777

109056534231464193 , ŵ′
3 = 18333976229602070

78901367072948263 , ŵ′
4 = 146694624662575579

451359699798674378

ŵ′
5 = 40221502534828457

137021353651599420 , ŵ′
6 = 91894267481143

87253900673082639 , ŵ′
7 = 776789986225611057

23764274461164518

ŵ′
8 = − 1116801360586595899

33934531992244452 , ŵ′
9 = 23651021

71771500

c2 = 2595146787461113
35654960162808999 , c3 = 23785164771277655

163393282122478121 , c4 = 14427641
33259908

c5 = 26914142
35708683 , c6 = 15577224

18277247 , c7 = 38090011
38093876

d21 = 295132092736843
111419829353054663 , d31 = 378512699615967

107173587955359337 , d32 = 802015671331405
113542950051902326

d41 = 9945580188014483
107861941766479192 , d42 = − 21127832523454066

115356389813386625 , d43 = 18088716445271473
97760613913942175

d51 = − 184569114806220359
112841400437628580 , d52 = 595308873796066195

146500969503370446 , d53 = − 95938071830688501
39190010187048758
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d54 = 24740235889975229
81328315902644410 , d61 = 828692824853675681

365166841077510 , d62 = − 8922830626242929564
1616145596072733

d63 = 5309688443105545745
1512691814917754 , d64 = − 1024584250889564737

3835297140363491 , d65 = 243334944688840544
26685249097802661

d71 = − 198499310481410068
14988189920044743 , d72 = 988020934248343439

30631779844455146 , d73 = − 372584950612767755
18396862167620476

d74 = 93706617067436735
54962117018052057 , d75 = 2652169291282213

72706638769934851 , d76 = 3326767107636
45583415053986647

d81 = − 172476446800076249
77764528330584470 , d82 = 1052320941122775251

32896321613528843 , d83 = − 287682559714467205
6581569888910478

d84 = 336649615658501777
14242861273902858 , d85 = − 94884627

9749078 , d86 = − 177655963
35046632

d87 = 112476592
20068355 , d91 = 1589642054066860483

2111418052567415 , d92 = 206513499
21728459

d93 = − 5009179395035143313
3047562608623994 , d94 = − 2192653675860564860

1440780190602451 , d95 = − 1099957025566422337
1624301323788501

d96 = − 3640940497065881569
10360892974776789 , d97 = 1917284830561677115

4934686172719308 , d98 = 0.

In order to investigate the linear stability, we adopt the methodologies presented in
Horn [19] or Dormand et al. [4]. We, therefore, analyze the test problem ξ ′′ = µ2ξ (where µ
is a complex number). By considering that ξ ′ = µξ, we deduce the recursive relations for ξ
and ξ ′ as follows:

ξn+1 =

{
1 + κ2w

(
I − κ2D

)−1
e + κ

(
1 + κ2w

(
I − κ2D

)−1
c
)}

· ξn = R(κ) · ξn,

ξ ′n+1 =

{
κw′
(

I − κ2D
)−1

e +
(

1 + κ2w′
(

I − κ2D
)−1

c
)}

· ξ ′n = R′(κ) · ξ ′n,

with κ = µτ. Thus, there are two absolute stability regions for RKN methods. Namely,
for ζ and ζ ′. We may produce them requiring |R(κ)| < 1 and |R′(κ)| < 1. Such regions
are shown in Figures 1 and 2, where they are compared to the corresponding ones of the
competitor method RKNT8(6) [18].

RKNT8(6)q9 RKNT8(6)

-8 -6 -4 -2 0

0

2

4

6

8

Real Axis

Im
a
g
in
a
ry
A
x
is

Figure 1. Absolute stability regions for ξ(x).
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Figure 2. Absolute stability regions for ξ ′(x).

This stability analysis type is linked to the A-stability of Runge–Kutta methods. Al-
ternatively, we can explore stability regarding the test problem ξ ′′ = −µ2ξ [20], which
leads to the identification of intervals of periodicity. In any case, here we are interested in
reaching very high accuracies. In consequence, extended stability regions play a lesser role
in achieving this.

4. Numerical Results

Below, we provide numeric·al tests to demonstrate the effectiveness of our new
approach.

4.1. The Methods

We chose the following explicit eighth-order methods for our testing:

• The RKNT8(6) pair with orders 8(6), as described in [18].
• The RKNT8(6)q9 pair with orders 8(6) introduced in this work.

We conducted the tests using these pairs by assessing the error ϵ at e·ach step. Formula (2)
was employed to determine the new step size, as the error’s asymptotic behavior was
O(τ7). All simulations were performed following the fr·amework outlined in the previous
section. The selection of RKNT8(6) was justified, as this pair clearly outperformed all other
similar pairs (i.e., sharing orders 8(6)) in quadruple precision tests [18]. The latter pair
achieved this by itself attaining a very low principal truncation norm (see Table 3).

4.2. The Problems

In our experiments, we chose several established problems from the existing literature.
These problems were solved with tolerances of 10−20, 10−21, 10−22, 10−23, 10−24. During
these runs, we collected data on the number of steps taken, including both accepted and
rejected steps, as well as the m·aximum glob·al error observed at the final point. The results
are presented in various efficiency plots. All computational work was performed using the
software Mathematica [13].
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4.2.1. Inhomogeneous Equation

The first test problem we considered was the following inhomogeneous equ·ation:

ξ ′′ = −100ξ(x) + 99 · sin(x), ξ(0) = 1, ξ ′(0) = 11,

which has the theoretic·al solution,

ξ(x) = cos(10x) + sin(10x) + sin(x).

We addressed this issue over the range x ∈ [0, 10π]. The associated efficiency graphs are
presented in Figure 3.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

stages 106

10-30

10-29

10-28

10-27

10-26

10-25

10-24

10-23

e
rr

o
r

Inhomogeneous

RKNT8(6)

RKNT8(6)q9

Figure 3. Efficiency plots for the inhomogeneous equation.

4.2.2. Inhomogeneous Line·ar System

Then, we considered the system

ξ ′′ =

 1
100 − 1

10

− 1
10

1
100

 · ξ +

[
0

sin x

]
,

with the analytical solution

ξ =

 cos 0.3x − 1000
10101 sin x

cos 0.3x − 10100
10101 sin x

.

We integr·ated that problem in the interv·al x ∈ [0, 10π], and the efficiency plots are shown
in Figure 4.
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e
rr
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Inhomogeneous System

RKNT8(6)

RKNT8(6)q9

Figure 4. Efficiency plots for the linear inhomogeneous system.

4.2.3. Problem F

We continued with problem F, described in

1ξ ′′ = −4x2 · 1ξ − 2
2ξ√

1ξ2 + 2ξ2
, 2ξ ′′ = −4x2 ·2 ξ + 2

1ξ√
1ξ2 + 2ξ2

, x ∈
[√

1
2

π, 10

]
,

sharing, initially, the values

1ξ

(√
1
2

π

)
= 0, 2ξ

(√
1
2

π

)
= 1, 1ξ ′

(√
1
2

π

)
= −

(√
2π
)

, 2ξ ′
(√

1
2

π

)
= 0

and the analytical solution
1ξ(x) = cos x2, 2ξ = sin x2.

Here, 1ξ and 2ξ are components and time steps.
We conducted an integration of the issue over the interv·al x ∈ [0, 10π]. The solution’s

theory can be found in [3]. The graphs with the performances are presented in Figure 5.

4.2.4. Coupled Nonlinear Pendulum

In conclusion, we examined a refined version of the nonlinear problem as described
in [2], p. 297. The equations governing the motion are as follows:

1ξ ′′ = − sin(1ξ)− 0.2(sin(1ξ)− sin(2ξ)) cos(1ξ) + e−10x,
2ξ ′′ = − sin(2ξ)− 0.1(sin(2ξ)− sin(1ξ)) cos(2ξ).

We conducted the integration over the interval x ∈ [0, 496] with an initial state of complete
rest, wherein 1ξ(0) =,2 ξ(0) =,1 ξ ′(0) =,2 ξ ′(0) = 0.

As no analytical solution was known, we approximated the solution by performing
an integration with a very stringent tolerance of TOL = 10−28. The efficiency plots can be
found in Figure 6.
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Figure 5. Efficiency plots for problem F.
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Figure 6. Efficiency plots for the coupled nonlinear pendulum.

4.3. Discussion of the Results

The function evaluation (stages) needed for concluding the integrations for various
tolerances and the true global error (i.e., the difference from the theoretical solution) at
the end point are plotted in Figures 3–6 for both pairs under consideration. The results
indicate that the new p·air significantly outperformed the other RKN8(6) pairs in the tested
problems, achieving an increase of approximately more than a digit of accuracy in most
cases. These findings highlight the superior performance of the new approach when high
levels of accuracy are needed for solving specific second-order initial-value problems,
surpassing previous methods.
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5. Conclusions

In this study, we focused on Runge–Kutta–Nyström pairs tailored for solving second-
order initi·al-value problems where the first derivative is absent. We took advantage of the
capabilities of working with quadruple-precision arithmetic, allowing us to handle large
coefficients. The primary innovation of our approach lies in the fact that our proposed
method features significantly smaller truncation error terms when compared to other eighth-
order pairs documented in the literature. Our efforts were substantiated by numerical tests
conducted on relevant problems, affirming the effectiveness of our method.
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