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Abstract: We explore second-order systems of non-stiff initial-value problems (IVPs), particularly
those cases where the first derivatives are absent. These types of problems are of significant interest
and have applications in various domains, such as astronomy and physics. Runge-Kutta—Nystrom
(RKN) pairs stand out as highly effective methods of addressing these IVPs. In order to create a pair
with eighth and sixth orders, we need to address a certain known set of equations concerning the
coefficients. When constructing such pairs for use in double-precision arithmetic, we often need to
meet various conditions. Primarily, we aim to maintain small coefficient magnitudes to prevent a loss
of accuracy. Nevertheless, in the context of quadruple precision, we can tolerate larger coefficients.
This flexibility enables us to establish pairs with eighth and sixth orders that exhibit significantly
reduced truncation errors. Traditionally, these pairs are constructed to go through eight stages per
step. Here, we propose using nine stages per step. Then we have available more coefficients in order
to further reduce truncation errors. As a result, we construct a novel pair that, as anticipated, achieves
superior performance compared to equivalent-order pairs in various significant problem scenarios.

Keywords: initial value problem; Runge-Kutta-Nystrom; quadruple precision

MSC: 65L05; 65L06

1. Introduction

We center our attention on a particular class of second-order initial-value problems
(IVPs), which are defined as shown below:

&" = ¢(x,8),8(x0) = &o, &' (x0) = & 1

Here, ¢ : R x R" — R™ is assumed to be sufficiently continuously differentiable, and the
initial conditions are given by (&, &) € R?™.
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We compute some approximation of the solution to Equation (1) in a number of points
that are separate from one other (x,, &, &), applying an explicit Runge-Kutta—Nystrom
method that is of algebraic order p. The structure of the method is as follows (for further
details on these methods, refer to [1] and ([2] p. 283)):

i1
¢i = ¢ (o + ciTn, En + ety + T Y digy), i=1,2,3,---,s—1,s
=1

Gn1 = Cn + Tl + T;% i widi,

w1 = Cn T iy Wi

Here, T, = x,,41 — xu, representing the step size. Over the last five decades, there has been
a consistent interest in these methods. Noteworthy works have been made by various
researchers. E. Fehlberg [3] presented a detailed list of order conditions up to the eighth
order. Dormand and colleagues [4,5] gave a series of State-of-the-Art pairs of orders,
4(3), 6(4), and 8(6). El-Mikkawy et al. [6] introduced the idea of adding a stage more
than the minimal requirement, in order to increase the efficiency. This technique inspired
our approach here. Moreover, novel RKN approaches with distinct features have been
introduced. For example, RKN methods were also explored by Houven et al., aiming to
minimize errors in phase, while Calvo et al. [7] and Yoshida [8] devised RKN algorithms
that embed symplecticity.

In what follows, we choose p = 8 and merge the previously mentioned method with
a companion sixth-order formula. Consequently, we also compute a sixth-order estimate,
using the same ¢; values:

Enr1 = Cn + Tl + T3 Ty Wiy,
2! _ A~/
n+1 — gn + Tn Zzs'zl wi¢i~

The approximations of &, and ¢, in higher orders are utilized in all situations to advance
the solutions over time.
Consequently, we possess an error estimation:

e = max(||Gu1 — Eurall, 181 — Egall) = O<T7)'

Next, we contrast € with TOL, a user-defined small positive value referred to as the
tolerance, to gauge the size of the subsequent step as

Tyr1 = 09T, (€> , (2)

commonly employed with RKN8(6) pairs [4,9]; if TOL is less than €, we halt the advance-
ment of the solution. In this scenario, we reiterate the current step, but now we employ
T,+1 as the updated, shorter version, instead of 7.

The coefficients are often represented using the Butcher tableau, as described in [10].
Consequently, the method can be expressed using the following form:

where D € R5%5, and ¢, @7, wT,®T,w'T € RS, meaning the weights are expressed as
row vectors.
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In this context, we explore a nine-stage pair (s = 9). The coefficients for this pair
are provided in the tableau displayed in Table 1, which is commonly named the “Butcher
tableau”. This type of tableau is in common use when tabulating the coefficients of the type
of methods we propose here ([2], p. 134).

Table 1. The Butcher tableau for RKN pairs of orders 8(6).

0

c2 doy

c3 d31 dsp

€4 dy dg dg

Cs ds1 dsp ds3 dsq

C6 de1 de2 de3 des des

c7 d71 d7 d73 dz4 dzs dze

1 dg1 dgp ds3 dgg dgs dse dg7

1 w1 0 w3 Wy ws We wy 0
8th-order w wy 0 w3 Wy ws We wy 0 0
6th-order @ @ 0 W5 Wy Ws W Wy 0 0
8th-order w’ w) 0 w) w)y wh wy wh wg w}
6th-order &' | @) 0 @ @, @ @, @, @ @

Usually, these pairs make use of merely eight stages per iteration, as the ultimate stage
is re-used as the initial one of the subsequent step. This leads to the values in the ninth
stage matching to the vector w. In simpler terms, dg]' =wjwhenj=1,23,---,7,8. This
device is frequently denoted as FSAL, which stands for first stage as last.

Eighth-order RKN pairs, which efficiently employ eight stages per step, were analyzed
in previous works [5,11]. It is worth noting that eighth-order RKN techniques, utilizing
seven stages per step, have been developed specifically for linear inhomogeneous problems.

Thus, to form a pair with eighth and sixth orders, it becomes necessary to tackle
a well-known set of equations related to the coefficients. When creating such pairs for
implementation in double-precision arithmetic, we encounter specific conditions that must
be satisfied. Our primary objective is to keep the coefficient magnitudes small, to prevent
any loss of accuracy. However, when dealing with quadruple precision, we can accept
larger coefficients. This increased flexibility allows us to design pairs with eighth and sixth
orders, resulting in significantly reduced truncation errors. Conventionally, these pairs
are designed to undergo eight stages per step. In this context, we suggest employing nine
stages per step, providing us with additional coefficients to further minimize truncation
errors. Consequently, we have devised an innovative pair that, as expected, demonstrates
superior performance compared to pairs of equivalent orders across various significant
problem scenarios.

2. Eighth-Order Runge-Kutta—Nystrom Methods

We utilize an RKN method for (1) and employ Taylor-series expansions for &(x, +
7) — &us1 and &' (x, + T) — &/, - By equating the expressions up to 7 for an eighth-order
method, the outcomes found below are achieved:

E(xn+7T) — Epy1 = T221Q21 + Te31Q31 + -+ - + T°(eg1Qs1 + - + 520Q820) + O(Tg) 3)

EGtn+71) = Ehpq = 1011Q11 + T201Q01 + -+ + T(851Q81 + - + 85,36Q8,36) + O(Tg)- 4)

Expression ejj depends on the variables w, D, and ¢, while & depends on w', D, and c. An
algorithm deriving them symbolically can be found in [12]. The expression Q;; involves
elementary differentials related to ¢’, ¢, and their partial derivatives, which are inherent to
the problem and beyond the method’s control. However, in the case of an eighth-order RKIN
method, it is imperative to eliminate the coefficients e;; and ¢;; in expressions (3) and (4) up
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to the specified order. Table 2 presents the count of the order requirements (i.e., ¢;; and ¢;;
for each order. For instance, a third algebraic order method entails satisfying two equations
for ¢ and addressing four order conditions for ¢’.

Table 2. Number of order conditions of an RKN method.

method number of - order— 1 2 3 4 5 6 7 8 9 10
————

order conditions for ¢ 0 1 1 2 3 6 10 20 36 72
20 36 72 137

RKN

N
@
(o)}
—_
o

order conditions for & 1 1

Upon scrutiny of the Butcher tableau above [10] (specifically, Table 1) and aligning
the count of coefficients at hand for a nine-stage procedure with the order prerequisites
documented up to the eighth order in Table 2, a conspicuous incongruity emerges. To tackle
this issue, we adopt various simplification hypotheses that notably curtail the quantity of
order stipulations.

First, we assume

w=uw"-(Iy—C). (5)

Here, [; € R°*° denotes the identity matrix, and C = diag(c). With this assumption,
we naturally satisfy the order prerequisites for ¢ after eliminating equations of equivalent
rank for ¢’. Our primary goal is to remove exclusively ¢; concerning w’, D, c.

Once again, upon aggregating the figures in the ultimate row of Table 2, it becomes
evident that there are still an excessive number of conditions for the existing coefficients.
To tackle this issue, we proceed by introducing the following assumptions:

1 1
D-I==%D-c=-3D *=—c*

2 6 o ©)

Here, we define ¢’ as an element-wise product of matrices, denoted as o (i.e., Hadamard
multiplication):
ct=co---ocog,
_\/_/
i— times.

It is important to highlight that this multiplication operation is of lesser precedence than
the dot product.
We additionally consider the row simplification requirement for RKN methods, ex-

pressed as

1 1

Additionally, we consider the following subsidiary simplifying assumptions:
(ZU'D)ZZO, (w’-D)Z:O, (w’(CoC)D)2 =0, (Zf)D)z =0.

This substantial decrease in the count of the order prerequisites enables us to advance
in the computation of the coefficients for an eighth-order method (w’, w, D, and c¢), utilizing
the subsequent procedure. In the following, we give the Mathematica [13] version of the
algorithm, for the interested reader:

RKNT86[c4_, c5_, c6_, c7_, d85_, d86_, d87_, d92_, dw9_] :=
Module[{e, dw, dwl, dw3, dw4, dw5, dw6, dw7, dw8, dwwl, dww3, dww4,
dwwb5, dww6, dww7, dww8, dww, c, c2, c3, cc, ii, w, ww, d, d21, d31,
d32, d41, d42, d43, , d51, d52, d53, d54, d61, d62, d63, d64, d65,
d71, d72, d73, dr4, 475, 476, d81, d82, d83, d84, d91, d93, d94,
d95, d96, 497, mond, vanderl, simpl, equs, equll, so, de, dc, dc2,
wdc}, e={1, 1, 1, 1, 1, 1, 1, 1, 1};
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dw = {dwl, 0, dw3, dw4, dwb, dw6, dw7, dw8, dw9};
dww = {dwwl, 0, dww3, dww4, dwwb, dww6, dww7, dww8, dw9 - 3/20%};
c = {0, c2, c3, c4, c5, c6, c7, 1, 1};
cc = DiagonalMatrix[c]; ii = IdentityMatrix[9];
w = dw.(ii - cc);
ww = dww. (ii - cc);
4 = {{0, 0, 0, 0, 0, 0, O, O, O}, {421, 0, 0, O, O, O, O, O,
0}, {431, 432, o, 0, 0, 0, O, O, 0}, {d41, 442, 443, 0, 0, 0, O,
0, 0}, {d51, d52, d53, 454, 0, 0, 0, O, 0}, {d61, d62, d63, d64,
d65, 0, 0, 0, 0}, {471, 472, 473, 474, 475, 476, 0, 0, 0}, {dsi1,
d82, 483, ds84, d85, 486, d87, 0, 0}, {d91, d92, d93, 494, 495,
do6, do7, 0, 0}};
mond = {dw.e == 1, dw.c == 1/2, dw.c"2 == 1/3, dw.c"3 == 1/4,
dw.c"4 == 1/5, dw.c”5 == 1/6, dw.c"6 == 1/7};
vanderl = {dww.e - 1, dww.c - 1/2, dww.(c c) - 1/3,
dww.(c ¢ ¢c) - 1/4, duw.(c c c ¢c) - 1/5, duw.(c ¢ ¢ c ¢c) - 1/6};
simpl = {(w.d) [[2]] == 0, (dw.d)[[2]] == 0, (dw.(c~2xd))[[2]] ==
0, (dww.d)[[2]] == 0};
equs = {dw.(cc - ii).(cc - c7*ii).d.(cc - c3*ii).(cc - c4*ii).c ==
Integrate[(x - 1)*(x - c7)*
Integratel
Integrate[(x - c3)*(x - c4)*x, {x, 0, x}], {x, 0, x}], {x, O,
131,
dw.(cc - ii).d.(cc - c3*ii).(cc - c4*ii).(cc - cb*ii).c ==
Integrate[(x - 1)*
Integratel[
Integrate[(x - c3)*(x - c4)*(x - cb)*x, {x, 0, x}], {x, O,
x}], {x, 0, 1}1,
dw.(cc - ii).d.(cc - c3*ii).(cc - c4*ii).(cc - cB*ii).c ==
Integrate[(x - 1)*
Integratel[
Integrate[(x - c3)*(x - c4)*(x - c6)*x, {x, 0, x}], {x, O,
x}], {x, 0, 1}1};
equll =
dww.d.(cc - c3 ii).(cc - c4 ii).c -
c2%(c2 - c3)*(c2 - c4)*(dww.d) [[2]] -
Integratel[
Integratel[
Integrate[(x - c3)*(x - cd)*x, {x, 0, x}], {x, 0, x}], {x, O,
131
c3 = (15 - 20%c4 - 20*c5 + 28%c4*ch - 20*c6 + 28*cd*c6 + 28*cb*c6 -
42xcdxcbxcb - 20%c7 + 28%cd*c7 + 28%cb*c7 - 42%cd*chb*xc7 +
28*cB*xcT - 42%cld*cbxcT - 42%chb*cbxc7 +
TO*c4*chbxcb*
c7)/(2x(10 - 14%cd - 14xch + 21%cd*ch - 14%c6 + 21*cd*c6 +
21*chb*cb - 35*cd*xcbkc6 - 14%c7 + 21%cd*xc7 + 21*cbxc7 -
35%cdxch*c7 + 21%cbxc7 - 3bxcd*cb*xc7 - 3bxch*cb*c7 +
TOxcd*chb*c6*c7)) ;
c2 = c3/2;
so Solve[mond, {dwl, dw3, dw4, dwb, dw6, dw7, dw8}];
{dwl, dw3, dw4, dwb5, dw6, dw7, dw8} = Simplify[so[[1, All, 2]1]1];
de = d.e - ¢c”2/2; dc = d.c - ¢~3/6; dc2 = d.c"2 - c~4/12;
d32 = c3°3/6/c2;
so = Solve[{dc[[4]] == 0, dc2[[4]] == 0}, {d42, d43}]; {d42, d43} =
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Simplify[so[[1, All, 2]11];
so = Solve[simpl, {d82, 472, d62, d452}]; {d82, d72, d62, d52} =
Simplify[so[[1, All, 2]1];
so = Solvelequs, {d65, d76, d75}]; {d65, d76, d75} =
Simplify[so[[1, All, 2111;
so = Solvel[
Join[dc[[5 ;; 8]1, dc2[[5 ;; 8]1]] == Array[O0 &, 8], {d53, d54,
d63, d64, 473, d74, d83, d84}];
{d53, d54, d63, d64, d73, d74, d83, d84} = Simplify[sol[[1, All, 2]11]1;
wdc = dw.(d - cc~2/2 + cc - ii/2);
so = Solvel[
wdc[[3 ;; 7]] == Array[0 &, 5], {d93, d94, d95, d96, d97}];
{d93, 494, 495, d96, d97} = Simplifyl[so[[1, All, 2]1];
so = Solvel[
de[[2 ;; 9]] == Array[O0 &, 8], {d21, d31, d41, d51, d61, 471, d81,
do1}];
{d21, 431, d41, 451, 461, d71, d81, 491} = sol[[1, All, 211;
so = Solve[{Join[vanderl, {equi1}] == {0, 0, O, O, O, O, 0}}, {dwwi,
dww3, dww4, dwwb, dww6, dww7, dwwS}];
{dwwl, dww3, dwwd, dwwb, dww6, dww7, dww8} =
Simplify[so[[1, All, 2]11]; Return[{d, c, w, ww, dw, dwwl}]]

It is worth noting that a simplified algorithm like this has never been seen before. It
greatly assisted us in developing our pair.

3. Construction of RKN Pair-Sharing Orders Eight and Six

Applying the algorithm detailed in the preceding section, we have the ability to con-
struct an eighth-order RKN technique while maintaining a nine-stage requirement per step.
This procedure grants us a total of nine independent variables to exploit for optimizing the
effectiveness of our innovative approach. We opt to minimize the components associated
with the primary error, specifically the Euclidean magnitude of the coefficients eg; and &y;
from the ninth-order series expansions (3) and (4).

In the context of double-precision arithmetic, our objective is to maintain small coeffi-
cient magnitudes. Large coefficients in the order of 10%, function values around 10%, and
tolerances like e = 1071 would push the limits of the available digits. However, when
employing quadruple precision, we can accommodate these larger coefficients even with
much lower tolerances, approximately down to 10~2%. With this allowance for increased
coefficients, we can now proceed to a new minimization approach.

To tackle this challenge, we opt to employ the differential evolution algorithm [14,15].
Differential evolution is an iterative process, and within each iteration, known as a gen-

eration g, we operate with a population of individuals denoted as (cflg), cég ), ceey, wé(g)) P

wherei =1,2,---, P, and P signifies the population size. A population (cflo),céo), e, Wl ©)

withi=1,2,---, P, is randomly generated in the first step of the method. Additionally, wé
define the fitness function as follows:

=3+t Byt BByt By = HT(9)H2 + |

2,

representing the discrepancy resulting from a ninth-order method. The fitness function
is then applied to each individual within the initial population, with the objective of
minimizing it.

This procedure unfolds in three distinct phases: differentiation, crossover, and selec-
tion. For its execution, we utilized the DeMat software [16] within the MATLAB environ-
ment [17], where the latter stage is implemented. It is essential to note that achieving a
successful outcome is not guaranteed in a single optimization attempt. Consequently, we
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iterated through this procedure multiple times, often several hundred, to ultimately reach
a solution. To further enhance accuracy, we meticulously refined the obtained result. This
fine-tuning process involved working with multi-precision arithmetic and leveraging the
NMinimize function available in Mathematica [13].

Table 3 provides an overview of the key attributes associated with the primary eighth-
order RKN pairs examined in this study. The norms displayed in the table represent the
Euclidean norm of the ninth-order coefficients (i.e., those of ) within expressions (3) and (4).

We anticipate superior performance from our new method, as it yields considerably dimin-
ished local truncation errors.

Table 3. Fundamental traits of the RKN pairs under examination.

Pair

Stages FSAL H TO) Hz H T/09) Hz
RKNTS(6) [18] 9 YES 1.7-1078 1.6-1078
RKNTS(6)q9 9 NO 1.8-10710 1.8-10710

The parameters of the new method we have developed are available in the following lists:

__ 3191538187421696

w 219155615/421696 __ 13815874303602012
1 = 76607108605432915”

w 13815874303602012 __ 14604812893174087
3 = 69579866183121917 /

4 = 79378705834398872

_ 12061218770183621

w 15609617015400
5 = 166622303733231213”

We = 371765604219257
6 233291059437933767 7

W7 = T11475530824146994

4544292102832777 A~

— __ 4682651711005479 A~
1 = T109056534231464193”

3 = 23585400043481548”

S

Wy = A6722285954615265
4~ 253893219962912894

W= = 4751354290135738

275420922524446
5 = 65721585748949841/

7 = 83046920983443867

S

e = 20872833551830
6 — T34159415686285343 "

/ __ 3191538187421696 w! — 10308242332317290 v _ 7107618457535881
1 — 76607108605432915” 3 — 24357423208271919 4 — 21873268413857328
wl. — 22056521909108756 w! — - 15596425292979 w!, — 325257858967320448
5 — 75044404292647497 6 — 34434009875005756 7 — T 9895379989758637
Wl — _ 264730262449877449 w! — 17208373
8 = T T7963593493382224 ’ 9 — 35885750
) — 4544292102832777 5 — 18333976229602070 o _ 146694624662575579
1 — T09056534231464193” 3 = 78901367072948263 4 — 151359699798674378
. — 40221502534828457 ~1 _91894267481143 !, — 776789986225611057
5 = 137021353651599420 6 — 87253900673082639 7 = 23764274461164518
. — _ 1116801360586595899 A1 __ 23651021
8 = T T33934531992244452 ’ 9 = 71771500
o, — 2595146787461113 . _ 23785164771277655 . _ 14427641
2 = 35654960162808999/ 3 T T163393282122478121/ “4 — 33259908
s — 26914142 cr — 15577224 o — 38090011
5 = 35708683” 6 — 18277247/ 7 = 38093876
don — -295132092736843 day — -378512699615967 day — -802015671331405
7 4
21 = T11419829353054663 31 = 107173587955359337 32 = T13542950051902326
Ay — -9945580188014483 Ay — — 21127832523454066 dun — 18088716445271473
41 = 7107861941766479192/ 42 = 7 115356389813386625 43 = 97760613913942175
dey — _ 184569114806220359 de, — 595308873796066195 des — _ 95938071830688501
51 = T 112841400437628580/ — T146500969503370446 / 53 = 7 39190010187048758
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de, — 24740235889975229 d.. — 828692824853675681 der — _ 8922830626242929564
54 = B1328315902644410” 61 = T 365166841077510 / 62 = 1616145596072733
den — 5309688443105545745 5 _ _ 1024584250889564737 de= — 243334944688840544
— T 1512691814917754 64 — 3835297140363491 / — 26685249097802661
doy — _ 198499310481410068 drry — 988020934248343439 don — _ 372584950612767755
71 = 7 "14988189920044743 72 = "30631779844455146 / 73 = T 18396862167620476
doy — 93706617067436735 dom — ,2652169291282213 doe — 3326767107636
74 = 54962117018052057 / 75 = 72706638769934851 / 76 = 15583415053986647
dey — _ 172476446800076249 5 _ 1052320941122775251 4 . _ _ 287682559714467205
81 = T 77764528330584470 / 82 T 732896321613528843 # “83 — 6581569888910478
Aoy — 336649615658501777 des — _ 94884627 dew — — 177655963
— 14242861273902858 = T 9749078 / — T 35046632
dey — 112476592 do; — 1589642054066860483 do, — 206513499
87 = 20068355 91 = T 2111418052567415 * 92 = 71728459
dos — _ 5009179395035143313 7~ _ _ 2192653675860564860 7. _ _ 1099957025566422337
93 = 3047562608623994 / 4 = 1440780190602451 5 = 1624301323788501
dor — _ 3640940497065881569 dos — 1917284830561677115 dos = 0
9% — 10360892974776789 * 97 = T 4934686172719308 ’ 98 = Y.

In order to investigate the linear stability, we adopt the methodologies presented in
Horn [19] or Dormand et al. [4]. We, therefore, analyze the test problem &’ = u?& (where u
is a complex number). By considering that ¢’ = u&, we deduce the recursive relations for ¢
and ¢’ as follows:

Cni1 = {1 + sz(l - K2D) eyt K(l + K*w (I — K2D> 1C> } “&n = R(x) - Cn,
{Kw/(l - KZD) 7le+ (1 +K2w’(l - KZD) lc) } & =R'(x)-¢&,

/
CnJrl

with ¥ = ut. Thus, there are two absolute stability regions for RKN methods. Namely,
for { and {’. We may produce them requiring |R(x)| < 1 and |R'(x)| < 1. Such regions
are shown in Figures 1 and 2, where they are compared to the corresponding ones of the
competitor method RKNT8(6) [18].

----- RKNT8(6)q9 -------- RKNT8(6)
8 . -
6 I,o'::
%) I ,’;‘:: -------- 1
2 o 1
< e
N h/.{’ i
g 4- & i
? I ;{0 Ii
£ ] ‘{' |
£
L il' 4
2r ! A
L ¢ |
i { ]
[1
]
L : 4
¥
Ot | ‘\ | | |
-8 -6 -4 -2 0
Real Axis

Figure 1. Absolute stability regions for §(x).
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----- RKNT8(6)q9 =-------- RKNT8(6)
8 |- -
6 SEEmmm—s ot
e N
7
~ :
< -~ 1
> &
Sl o |
.g i
£ &
- *
K
’
4
2+ '1,5' q
§ |
3 ;
[ |
I ]
[ |
0 [ | '\ | | | 1]
-8 -6 -4 -2 0
Real Axis

Figure 2. Absolute stability regions for &’ (x).

This stability analysis type is linked to the A-stability of Runge-Kutta methods. Al-
ternatively, we can explore stability regarding the test problem &’ = —u2¢ [20], which
leads to the identification of intervals of periodicity. In any case, here we are interested in
reaching very high accuracies. In consequence, extended stability regions play a lesser role
in achieving this.

4. Numerical Results
Below, we provide numerical tests to demonstrate the effectiveness of our new
approach.

4.1. The Methods
We chose the following explicit eighth-order methods for our testing;:

e The RKNT8(6) pair with orders 8(6), as described in [18].
e The RKNTS8(6)q9 pair with orders 8(6) introduced in this work.

We conducted the tests using these pairs by assessing the error € at each step. Formula (2)
was employed to determine the new step size, as the error’s asymptotic behavior was
O(77). All simulations were performed following the framework outlined in the previous
section. The selection of RKNT8(6) was justified, as this pair clearly outperformed all other
similar pairs (i.e., sharing orders 8(6)) in quadruple precision tests [18]. The latter pair
achieved this by itself attaining a very low principal truncation norm (see Table 3).

4.2. The Problems

In our experiments, we chose several established problems from the existing literature.
These problems were solved with tolerances of 10=20,10~21,10~22,1023,10~ %4 During
these runs, we collected data on the number of steps taken, including both accepted and
rejected steps, as well as the maximum global error observed at the final point. The results
are presented in various efficiency plots. All computational work was performed using the
software Mathematica [13].
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4.2.1. Inhomogeneous Equation

The first test problem we considered was the following inhomogeneous equation:
g’ = —100¢(x) +99 -sin(x), &(0) =1, ¢'(0) =11,
which has the theoretical solution,
¢(x) = cos(10x) + sin(10x) + sin(x).

We addressed this issue over the range x € [0, 107t]. The associated efficiency graphs are
presented in Figure 3.

Inhomogeneous
1 0'23 T T T T T T T
' —O— RKNTS8(6)
02k —-&-—RKNT8(6)q9 ]
1025k
S 3
\\
26 I \\\ |
1077 3
5 | AN ]
= ~.
© r ~. 1
1027 ¢ "o 1
1 0’28 ? N \0\ . ?
29| I ]
10 [ i
10-30 | 1 1 1 1 1 1 1
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
stages x108
Figure 3. Efficiency plots for the inhomogeneous equation.
4.2.2. Inhomogeneous Linear System
Then, we considered the system
™ 10 0
" o_ 1 .
(;I 1 1 (: + l: sin x :|’
10 100
with the analytical solution
‘= co0s 0.3x — % sinx
10100

c0s 0.3x — {pg7 Sinx

We integrated that problem in the interval x € [0, 107t], and the efficiency plots are shown
in Figure 4.



Mathematics 2024, 12, 316

11 of 14

Inhomogeneous System
T T T T

1028 w w
& —O—RKNT8(6) | ]
\ —-&-—RKNT8(6)q9 | |

T T

10-24 L

10-25 L

error

10-26 L

10-27 L

10-28 L

10-29 1 1 1 1 1 1 1 1
3 4 5 6 7 8 9 10 11
stages x10%

Figure 4. Efficiency plots for the linear inhomogeneous system.

4.2.3. Problem F
We continued with problem F, described in

¢ 1" 'z /1
\/ﬁ,% :—4x2_2§+2\/m,x6[ 27‘[,10‘|,

sharing, initially, the values

o) oe(Vir) - (Vi) (e (i) -

and the analytical solution

lé'r// — _4x2.l§_2

1#(x) = cos x?, 2& = sinx?.

Here, !¢ and 2 are components and time steps.
We conducted an integration of the issue over the interval x € [0,107]. The solution’s
theory can be found in [3]. The graphs with the performances are presented in Figure 5.

4.2.4. Coupled Nonlinear Pendulum

In conclusion, we examined a refined version of the nonlinear problem as described
in [2], p. 297. The equations governing the motion are as follows:

e = —sin(1¢) — 0.2(sin(1¢) — sin(?¢)) cos(1&) + e 1%,
28 = —sin(*¢) — 0.1(sin(?¢) — sin(}&)) cos(%E).

We conducted the integration over the interval x € [0,496] with an initial state of complete
rest, wherein 1&(0) =, ¢(0) =, &(0) =,2&(0) = 0.

As no analytical solution was known, we approximated the solution by performing
an integration with a very stringent tolerance of TOL = 10~28. The efficiency plots can be
found in Figure 6.
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Problem F

T T T

—O— RKNT8(6)
—-©-—RKNT8(6)q9

10'22 T T T

10-24 L

10-26 L

error

10-28 L

10730 ¢ T~

10-32 1 1 1 1 1 1 1 1 1
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
stages x10°

Figure 5. Efficiency plots for problem F.

Coupled nonlinear pendulum
T T T T

T

1023 w
E —6— RKNTS8(6)
—-&-—RKNT8(6)q9

1024

10728 ¢

error

1026 ¢
1027 ¢

10728 ¢

10729
0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

stages %108
Figure 6. Efficiency plots for the coupled nonlinear pendulum.

4.3. Discussion of the Results

The function evaluation (stages) needed for concluding the integrations for various
tolerances and the true global error (i.e., the difference from the theoretical solution) at
the end point are plotted in Figures 3—6 for both pairs under consideration. The results
indicate that the new pair significantly outperformed the other RKN8(6) pairs in the tested
problems, achieving an increase of approximately more than a digit of accuracy in most
cases. These findings highlight the superior performance of the new approach when high
levels of accuracy are needed for solving specific second-order initial-value problems,
surpassing previous methods.
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5. Conclusions

In this study, we focused on Runge-Kutta—Nystrom pairs tailored for solving second-
order initial-value problems where the first derivative is absent. We took advantage of the
capabilities of working with quadruple-precision arithmetic, allowing us to handle large
coefficients. The primary innovation of our approach lies in the fact that our proposed
method features significantly smaller truncation error terms when compared to other eighth-
order pairs documented in the literature. Our efforts were substantiated by numerical tests
conducted on relevant problems, affirming the effectiveness of our method.
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